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Abstract

We consider the following activation process in undirected graphs: a
vertex is active either if it belongs to a set of initially activated vertices
or if at some point it has at least r active neighbors, where r > 1 is the
activation threshold. A contagious set is a set whose activation results
with the entire graph being active. Given a graph G, let m(G, r) be the
minimal size of a contagious set. It is known that for every d-regular or
nearly d-regular graph on n vertices, m(G, r) ≤ O(nr

d
). We consider such

graphs that additionally have expansion properties, parameterized by the
spectral gap and/or the girth of the graphs.

The general flavor of our results is that sufficiently strong expansion
properties imply that m(G, 2) ≤ O( n

d2
) (and more generally, m(G, r) ≤

O( n

dr/(r−1) )). In addition, we demonstrate that rather weak assump-
tions on the girth and/or the spectral gap suffice in order to imply that
m(G, 2) ≤ O(n log d

d2
). For example, we show this for graphs of girth at

least 7, and for graphs with λ(G) < (1 − ε)d, provided the graph has no
4-cycles.

Our results are algorithmic, entailing simple and efficient algorithms
for selecting contagious sets.
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1 Introduction

Threshold models in graphs and networks have received much attention in di-
verse research fields. Typically in such models there is an undirected graph
G = (V,E) where every node v ∈ V has a threshold function t(v). In addition,
it is assumed that every node can be in two states: either active or inactive.
An initial set of nodes (termed seeds) is activated. An inactive vertex v be-
comes active once it has at least t(v) active neighbors. In this work we focus on
progressive models: once a vertex is active, it remains active forever.

Threshold models emerge in various settings such as brain modeling, diffu-
sion of innovation, ideas, and trends in social networks as well as resilience to
cascading failures in financial networks, power grids and communication net-
works [17, 34, 29, 39, 43]. Within computer science, the rising popularity of
social media has resulted in much interest in various optimization problems
related to cascading behavior in networks [25, 34, 38].

We shall focus on threshold models where every vertex has the same thresh-
old r. Such activation rules, which are often referred to as bootstrap percolation,
have been introduced in statistical physics settings [21] (a note regarding ter-
minology. The term bootstrap percolation is sometimes used with the implicit
assumption that the set of seeds is random. In this paper we use this term
also when the set of seeds is selected deterministically rather than at random).
Formally, in r-neighbor bootstrap percolation we are given an undirected graph
G = (V,E) and an integer r > 1. Every vertex is either active or inactive. A set
of vertices composed entirely of active vertices is called active. Initially, a set of
vertices A0 is activated. These vertices are called seeds. A contagious process
evolves in discrete steps where for i > 0,

Ai = Ai−1 ∪ {v : |N(v) ∩Ai−1| ≥ r},

where N(v) is the set of neighbors of v. In words, a vertex becomes active in a
given step if it has at least r active neighbors. We refer to r as the threshold.
Set

〈A0〉 =
⋃
i

Ai.

Definition 1.1 Given G = (V,E), a set A0 ⊆ V is called contagious if 〈A0〉 =
V . In words, activating A0 results with the entire graph being activated. The
minimal cardinality of a contagious set is denoted by m(G, r). For a contagious
set A0, the number of generations is the minimal integer t with

⋃
i≤tAi = V .

Bootstrap percolation has been subjected to extensive research in computer
science (see for example [2, 22, 41]) as well as in probabilistic and combinatorial
settings [9, 14, 10, 12, 33]. It is known that in every d-regular graph m(G, r) ≤
rn
d+1 [2, 42]. For certain families of graphs (a collection of disjoint cliques each
of size d+ 1), m(G, r) = rn

d+1 .
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1.1 Contagious sets in expander graphs: motivation

In this work we study how m(G, r) depends on the expansion properties of G.
Let G be a d-regular graph. We shall distinguish between two types of expansion
properties, and associate one parameter with each type. One type is what we
refer to as global expansion. The parameter that we associate with it is λ(G),
the second largest eigenvalue (in absolute value) of the adjacency matrix of G.
We focus on spectral expanders, namely, graphs for which λ(G) ≤ δd for some
δ < 1 (observe that for every d-regular graph λ(G) ≤ d). We refer to this class
of graphs as (n, d, λ)-graphs, where n is the number of vertices. The other type
is what we refer to as local expansion. The parameter that we associate with it
is the girth g (the length of a shortest cycle in G). If g ≥ 2k+1 this implies that
every vertex has d(d−1)k−1 distinct neighbors at distance k from it. We remark
that large girth does not imply small λ (a graph might have high girth without
even being connected, in which case λ = d), and λ < δd need not imply high
girth (a graph with λ < δd may have triangles and four-cycles). We also remark
that our results concerning high girth graphs can be extended to graphs that
do have short cycles, provided that every small set of vertices has a sufficiently
large neighborhood. Details of this are omitted from this manuscript.

Expanders are rich mathematical objects with diverse applications in alge-
bra, combinatorics, probability and theoretical computer science [31]. Further-
more, expander graphs are used in designing fault tolerant networks, hence it
makes sense to study various algorithmic problems on expanders and there are
several works in this flavor [20, 3, 35]. Understanding optimization problems
on expanders and random graphs may be useful in understanding these prob-
lems in worst-case settings (see for example [7]). The study of combinatorial
optimization problems on graphs with high girth is quite natural as well.

Several works have demonstrated that expanders are resilient to random or
adversarial faults in the sense that they keep a certain degree of connectivity in
the presence of faulty edges or nodes [4, 5, 8]. As expanders are advocated as
sparse graphs with fault tolerant against static failures, it is of interest to study
their resilience to cascading failures that spread across the network topology.

1.2 Our results

For simplicity of the presentation, our results will be stated for the case r =
2, and we will only briefly mention extensions to larger values of r. These
extensions do not involve new ideas, but rather a more complicated application
of the ideas that work for r = 2.

It will be convenient for us to distinguish between three algorithms for se-
lecting seeds.

Random-parallel. In this algorithm one fixes a parameter p ∈ (0, 1) (that may
depend on the input graph G), and initially activates each vertex independently
with probability p. If the set of seeds (initially activated vertices) happens to
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be contagious the algorithm succeeds, and if not it fails. This is typically the
algorithm implicitly associated with the term bootstrap percolation.

Random-sequential. This algorithm proceeds in rounds. In each round, the
algorithm picks a new vertex at random to become a seed, but only among those
vertices that have not been activated in previous rounds (neither by becoming
seeds, nor by a cascade effect).

Greedy. This is a family of algorithms, parameterized by the greedy rule
that is used. The algorithm proceeds in rounds. In each round the algorithm
selects one vertex as a seed according to some greedy rule. A natural rule is
to select the vertex whose activation will result in the largest cascade of newly
activated vertices. In our work we shall consider other greedy rules as well.

Our first result concerns spectral expanders. To put the following theorem
in context one should note that for every d-regular graph λ ≥ Ω(

√
d), and that

for most d-regular graphs λ ≤ O(
√
d) (see [31], for example).

Theorem 1 Let G be an (n, d, λ)-graph. If λ = O(
√
d) then m(G, 2) = O( nd2 ).

Moreover, a contagious set can be chosen by the random-parallel algorithm (with
a value of p = O(d−2)). For the randomly constructed contagious set, the num-
ber of generations until complete activation is O(logd log n+log log d) with prob-
ability 1− o(1).

Our next result concerns high girth graphs. The random-parallel algorithm
is inappropriate in this case (for example, when the graph is composed of many
separate components, p might need to be very close to 1 to ensure that each
component has at least two seeds), and hence we revert to the random-serial
algorithm.

Theorem 2 Let G be a d-regular graph of girth at least 2k+ 1. If k ≥ log log d
then m(G, 2) = O( nd2 ).

Proposition 1.1 below, shows that for constant d, the number of generations
in Theorem 1 is best possible among all d-regular graphs (up to constant factors)
as far as random parallel activation is concerned. We remark that Theorem 2
gives examples where random sequential activation leads to fewer generations
than random parallel activation.

Proposition 1.1 For every d-regular graph, if every vertex is initially activated
independently with probability at most 1/4, then with probability 1 − o(1) the
number of generations until complete activation is at least logd log n.

Theorems 1 and 2 give nearly best possible bounds for m(G, 2) when λ ≤
O(
√
d) or the girth exceeds 2 log log d.

Theorem 3 For d large enough there are (n, d, λ)-graphs with λ = O(
√
d), girth

Ω(log log d) and m(G, 2) ≥ Ω( n
d2 log d ).
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The upper and lower bounds above extend to activation thresholds 2 <
r � d, with the adjustment that the terms d2 need to be replaced by d

r
r−1

(for example, an upper bound of m(G, 2) ≤ O( nd2 ) is replaced by m(G, r) ≤
O( n

d
r
r−1

)). See Section 8 for precise statements of these results.

Theorem 1 does not address graphs for which λ(d) ≥ Ω(d), and Theorem 2
does not address graphs of constant girth. One may conjecture that for every
δ < 1, an (n, d, λ)-graph with λ < δd has m(G, 2) ≤ O( nd2 ) (with the hidden
constant in the O notation depending on δ). We do not know if this conjecture is
true, but the following proposition gives partial progress towards this conjecture.

Proposition 1.2 Let G be an (n, d, λ)-graph where λ < δd where δ < 1 is
independent of d. Then there is a contagious set in G of size O( n

d
3
2

). Moreover,

the contagious set can be chosen by the random-parallel algorithm.

Another conjecture is that for every d-regular graph with no 4-cycles, m(G, 2) ≤
O( nd2 ). For graphs of girth 5, the proof of Theorem 2 establishes a bound of
m(G, 2) ≤ O( n

d3/2
). We can improve over this bound as follows.

Theorem 4 Let G be a graph of minimum degree d and with no 4-cycles. Then
m(G, 2) ≤ O( n

d7/4
). Moreover, the contagious set can be chosen by the random-

sequential algorithm.

For graphs of girth at least 7 (in fact, absence of 4-cycles and 6-cycles suf-
fices), we can nearly obtain the desired upper bound of O( nd2 ), with a signifi-
cantly smaller girth than the girth required in Theorem 2. The algorithm used
in the proof of Theorem 5 involves an interplay between random and greedy
selection of seeds.

Theorem 5 Let G be a d-regular graph of girth at least 7. Then m(G, 2) ≤
O(n log d

d2 ).

One can combine an even weaker girth requirement with a modest expansion
requirement and nearly obtain the desired upper bound of O( nd2 ). Observe that
in Theorem 6 we parameterize the spectral ratio λ(G)/d by 1 − ε. Hence for
smaller ε we get worst expansion, and our upper bounds on m(G, 2) get larger.

Theorem 6 For arbitrary ε ∈ (0, 1), let G be an (n, d, λ)-graph with λ ≤ (1−ε)d
and with no 4-cycles. Then m(G, 2) ≤ O(n log d

ε2d2 ). Moreover, the contagious set
can be chosen by a greedy algorithm.

The proof of Theorem 6 works without change when the condition λ ≤
(1 − ε)d is replaced by the weaker condition λ2 ≤ (1 − ε)d, where λ2 is the
second largest eigenvalue of the adjacency matrix. Moreover, the contagious
set in Theorem 6 can also be chosen by the random-parallel algorithm, but the

5

1957 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

01
/1

8/
15

 to
 1

32
.6

6.
40

.1
04

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



proof for this is more involved than the proof for the greedy algorithm, and is
omitted.

We also obtain the following bounds on the size of m(G, 2) in the Binomial
random graph G(n, p) :

Theorem 7 Let G ∼ G(n, p) with p := d
n and w(n) < d < n

1
2−ε, where ε > 0 is

an arbitrary constant and w(n) is an arbitrary function tending to infinity with
n. Then with high probability

Ω

(
n

d2 log d

)
≤ m(G, 2) ≤ O

(
n log∗ d

d2 log d

)
.

Some of our upper bounds on m(G, 2) are summarized in Table 1. They
hold for every graph with the corresponding expansion property.

Let us comment on the range of d for which our results hold. All our upper
bounds hold when d is a large enough constant, and furthermore, d can be a
growing function of n. There are obvious limits on how quickly d can grow as a
function of n for the results to make sense (e.g., in Theorem 2, one must have
dlog log d < n so as to satisfy the girth condition). We alert the reader that our
proof of Theorem 1 builds on Theorem 2 and hence inherits the requirement
that dlog log d < n. Our proof of the lower bound in Theorem 3 assumes that d
is a constant independent of n, though the related lower bound in Theorem 7
does not make such an assumption. In general, we did not attempt to find the
largest d as a function of n for which the Theorems in this work apply.

Graph Parameters Upper bound

Girth larger than 2 log log d O( n
d2

)

No 4-cycles O(nd−7/4)

Girth at least 7 O(n log d
d2

)

λ(G) ≤ O(
√
d) O( n

d2
)

No 4-cycles and λ(G) ≤ (1− ε)d O( log d
ε2d2

n)

Table 1: Upper bounds on m(G, 2) as a function of graph parameters.
The results apply to d-regular graphs as a function of their girth and λ(G),
where λ(G) is the second largest eigenvalue in absolute value.

Our current work is concerned with regular and nearly regular graphs. How-
ever, we remark here that the algorithmic question of finding a small contagious
set in an irregular graph can be reduced to this question in regular graphs
(though our reduction does not preserve expansion properties). See Section 9
for more details. We also note that insights from the study of contagious sets in
expanding nearly regular graphs can be applied to expanding highly irregular
graphs. See Section 10 for more details.
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1.3 Overview of proof techniques

The following lemma simplifies the selection of contagious sets in spectral ex-
panders (its proof is in Section 4). We remark that its proof works without
change when the condition λ ≤ δd is replaced by the weaker condition λ2 ≤ δd.

Lemma 1.1 Let G be an (n, d, λ)-graph such that λ < δd with δ < 1. Let the
activation threshold of every vertex be r = 2. Then every set of size larger than

n
(1−δ)d is contagious.

Hence in spectral expanders it suffices to find a set that activates n
(1−δ)d ver-

tices, and then the whole graph is activated by Lemma 1.1. A similar approach
does not hold for graphs of large girth (which need not even be connected). For
such graphs we shall use the random-sequential algorithm. We shall work in two
stages, first finding a set of seeds that activates a large part of the graph, and
then arguing that this suffices in order to activate the whole graph. However,
now the second stage of the argument is more delicate and requires the selection
of additional seeds.

Lemma 1.2 Consider an arbitrary randomized algorithm RA for selecting seeds
in a graph G with vertex set [n]. For every vertex i, let pi denote the probability
that vertex i is a seed, and let qi > 0 denote the probability that vertex i is
activated. (Observe that necessarily qi ≥ pi). Then there is a distribution D
over contagious sets such that for every vertex i, the probability that i is a seed
in a random contagious set selected according to D is at most pi/qi.

Proof: Consider a sequence of rounds, where in every round RA is applied
on G with independent randomness. As qi > 0 for every i, eventually every
vertex is activated in at least one of the rounds. For every j, include vertex i
in set Sj if and only if i was chosen as a seed in round j, and i has not been
activated in any round prior to j. The set S =

⋃
Sj is necessarily contagious.

(One can show by induction on r that
⋃r
j=1 Sr activates all those vertices that

are activated by round r.) Now:

Pr[i ∈ S] =
∞∑
j=1

Pr[i ∈ Sj ] =
∞∑
j=1

pi(1− qi)j−1 = pi

∞∑
j=0

(1− qj)j = pi/qi

2

Corollary 1.1 Let G be a graph on n vertices for which if every vertex is a
seed independently with probability p, then for every vertex it holds that the
probability that it is activated is at least 1/C (C > 1). Then G has a contagious
set of size at most Cpn.
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Proof: Applying Lemma 1.2 with pi = p and qi ≥ 1/C we get for the
random contagious set S:

E[|S|] =
∑
i

Pr[i ∈ S] ≤
∑
i

Cp = Cpn.

There must be at least one contagious set of size not larger than the expected
size of contagious sets (taken from the distribution whose existence is implied
by the proof). 2

We now explain how Theorem 2 (contagious sets in high girth graphs) is
proved. As the girth of the graph is 2k + 1, every vertex v is a root of a d-
regular tree of depth k. Suppose that every leaf (a vertex at distance k from
v) is made a seed independently with probability p. Now we let a cascade of
activations propagate from the leaves to the root, with the goal of inferring that
the root is activated with constant probability. A simple calculation shows that
once p ≥ Ω( 1

d2 ), we have “amplification” in the sense that the probability of a
node being activated increases as we get closer to the root of the tree. Hence,
the deeper the tree, the smaller p needs to be in order to ensure the root is
activated with constant probability. Thereafter, an application of Corollary 1.1
proves Theorem 2.

Theorem 1 (contagious sets in spectral expanders) follows from a proof sim-
ilar to that of Theorem 2, using a result of [11] that shows that every vertex
of an (n, d, λ)-graph is a root of a sufficiently large tree (where λ = O(

√
d)

implies that the degrees of nonleaf nodes in the tree are Ω(d)). The resulting
algorithm is random-parallel rather than random-sequential because there is no
need to use Corollary 1.1 – we can use Lemma 1.1 instead. (Moreover, if one
is not concerned with the number of generations until complete activation, it
suffices to have the root of the tree activated with probability Ω(1/d) rather
then constant, though this does not lead to substantial improvements in the
bounds.) Let us comment that Theorem 1 can be extended to the case where
λ(G) �

√
d, although the upper bounds in this case on m(G, 2) are weaker –

see the discussion after the proof of Theorem 1.
The lower bound argument (Theorem 3) is based on the observation that a

“small” contagious set A entails a not much bigger set B (A ⊂ B) such that
G[B] (the induced subgraph on B) has average degree close to 4. This is because
every newly activated vertex in B must be adjacent to two vertices causing it
to become active. Hence it suffices to design (n, d, λ)-graphs with λ = O(

√
d)

and large girth for which no set of O( nd2 ) vertices has average degree (at least)
nearly 4− 2

log d . Such graphs can be constructed using the probabilistic method.
The proof of Proposition 1.2 follows quite easily from Lemma 1.1.
The proof of Theorem 4 (contagious sets in graphs with no 4-cycles) is based

on considering all neighbors of a vertex v up to distance 3. However, as the girth
is possibly smaller than 6, this neighborhood is no longer a tree, contrary to
the case analyzed in Theorem 2. Hence analyzing the probability that this
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neighborhood activates v involves handling dependencies, making the analysis
considerably more complicated than that of Theorem 2. The absence of 4-
cycles gives some control over these dependencies, leading to essentially the
same amplification effect that one would get had the neighborhood been a tree.

The proof of Theorem 5 (contagious sets in graphs with girth at least 7)
involves selecting a random initial set A of O(n log d

d2 ) seeds, and considering the
set B of vertices that have a neighboring seed. Girth considerations are used in
order to show that the subgraph induced on B has large connected components.
Thereafter, choosing one seed in each large connected component of B activates
the whole component. This allows us to cheaply extend the set of activated
vertices to include most of B, and hence reach a size of Ω(n log d

d ). At this stage
one would expect a typical vertex to have Ω(log d) active neighbors, and hence it
should not be difficult to activate the remaining vertices in the graph. Turning
this intuition into a formal proof involves some extra work, including appealing
to Lemma 1.2.

The proof of Theorem 6 (contagious sets in graphs with no 4-cycles and
λ = (1− ε)d) involves the following amplification effect. Consider log d rounds,
where in each round n/d2 seeds are selected at random. The property that we
wish to maintain is that the number of active vertices doubles after every round
(until we eventually apply Lemma 1.1). Hence after every round t we want there

to be roughly 2tn
d2 activated vertices (whereas there are only tn

d2 seeds). For an
inductive argument to apply, we would like the active vertices to have roughly
2tn
d neighbors. These neighbors may be thought of as excited vertices, as they

need only one additional active neighbor in order to become active. This makes
it plausible that in the next round 2tn

d2 new active vertices will be generated,
because each new seed is likely to have 2t neighbors that are already excited,
and these excited neighbors will be activated. We show that such a delicate
balance can be kept for log d rounds by a greedy choice of seeds. Initially, our
greedy rule does not seek to select a seed that maximizes the number of newly
activated vertices, but rather to maximize the number of newly excited vertices.
Both spectral expansion and absence of 4-cycles are used in order to analyze this
greedy rule. Only after the number of excited vertices reaches n/2, we switch
to a greedy rule that maximizes the number of newly activated vertices.

1.4 Related work

As already noted, m(G, r) has been determined for certain families of graphs.
For example, if G is the k-dimensional grid [n]k then m(G, r) = Θ(nr−1) if
1 ≤ r ≤ k and Θ(nk) otherwise [13]. If G is the n-dimensional hypercube on
2n vertices it is known that m(G, 2) = n [9]. To the best of our knowledge, the
current work is the first to study how m(G, r) depends on the girth of G and
on λ(G).

Random regular graphs are expected to have very good expansion proper-
ties, and hence results on m(G, r) for random regular graphs can serve as a
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benchmark against which to compare results for expanders. Balogh and Pit-
tel [14] proved an upper bound on m(G, r) when G is chosen uniformly among
all n-vertex d-regular graphs for d > 2. Using differential equations, they show
that a random set of size smaller than (p(G, r) − εn)n will not be contagious
with high probability1. On the other hand, a random set of size (p(G, r) + εn)n
will be contagious with high probability, where limn→∞ εn = 0 (for some ex-
plicitly defined function εn). The value of p(G, r) is 1 − infy∈(0,1)

y
R(y) with

R(y) = Pr(Bin(d− 1, 1− y) < r) where Bin(d− 1, 1− y) is a binomial random
variable with parameters d− 1 and 1− y. It can be shown that p(G, 2) tends to
1

2d2 as d grows [14]. We are not aware of a closed formula of p(G, r), nor are we
aware of asymptotic evaluations (as a function of d and r) of it for 2 < r < d−1.
The work of [14] on random d regular graph does not provide lower bounds on
m(G, r) – it only implies that with high probability (probability 1 − o(1)) a
random set of size ( 1

2d2 − ε)n is not contagious.
A different proof of the result of [14] building on cores in random graphs was

given by Janson [32]. Interestingly, p(G, r) is identical to the critical thresh-
old for complete activation of the infinite d-regular tree [12]. Our bounds for
expander graphs are partly based on analyzing the spread of activation from
the leafs of a d-regular tree to its root, and this part of the analysis involves a
recursive approach similar to those employed in previous work (though we do
so in a setting in which the depth of the tree is finite rather than infinite).

The critical size of a random set needed for full activation (with high prob-
ability) of the binomial random graph G(n, p) was studied in [33] where the
critical size of a random set required for complete activation of G(n, p) for ar-
bitrary constant threshold r is determined in great detail of precision. We shall
apply the following Theorem (focusing on the case r = 2) from [33] (which
follows from Theorem 3.1, page 1996 in [33]:

Theorem 8 Let ε, δ be arbitrary (small) positive constants. Suppose that p <
n−1/2−ε, with pn = w(n) being some function tending to infinity with n. Let
A be an arbitrary set of vertices that are activated as seeds. Then with high
probability over the choice of random graph from G(n, p) the following holds:

1. If |A| ≥ (1+δ)
2np2 then at least n− (n2p)e−pn(1 + O(1)) vertices will be acti-

vated.

2. if |A| ≤ (1−δ)
2np2 then at most o(n) vertices will be activated.

In particular, Theorem 8 implies that when G ∼ G(n, p) with p as above,
then with high probability m(G, 2) ≤ 1+δ

2np2 . (Observe that for d = (n − 1)p,

(n2p)e−pn = o(n/d2) for the range of p in Theorem 8, and hence the set of
vertices not activated by A is small and can be added to the set of seeds with
only negligible effect on the total number of seeds.) The asymptotic behavior of

1That is, with probability tending to 1 as the number of vertices n tends to infinity.
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m(G, 2) in G(n, p) with p as in Theorem 8 was recently shown to be Θ( n
d2 log d )

in [26] improving upon an earlier result appearing in [24].
The time (number of generations) until complete activation in bootstrap

percolation is the topic of several recent works such as [19]. For G(n, p), Jan-
son et al., [33] studied the number of generations until complete activation for
various parameters (e.g., Theorem 3.10, pp. 2000). In particular, for r = 2,
they show that when p = n−α where 1/2 < α < 1 and for a fixed set of size 1+δ

np2

(namely., a set of cardinality twice as large than the critical cardinality needed
for complete activation), the number of generations is with high probability
log log(np) +O(1).

The optimization problem, where given G = (V,E) with threshold r, we
seek to activate a set of minimum cardinality (that is, of cardinality m(G, r))
so that the whole of G is activated, is called the Target Set Selection prob-
lem [22]. Calculating m(G, r) exactly is NP-hard and obtaining an approxima-

tion better than O(2log
1−ε n) (n is the number of vertices) is intractable, unless

NP ⊆ DTIME(npoly(logn)) [22]. These hardness results hold even when r = 2
and G has maximal degree d, where d is a constant not depending on the size
of G [22]. For recent results demonstrating the tractability of target set selec-
tion in graphs with certain structural properties such as bounded treewidth see
[16, 23]. To the best of our knowledge, no approximation algorithm with ap-
proximation ratio significantly better than the trivial n approximation is known
for the target set selection problem. The results of [2, 42] are algorithmic and
they imply for a fixed threshold r a polynomial time O(n/d) approximation al-
gorithm for m(G, r). We are not aware of an approximation algorithm achieving
better approximation ratio as a function of d for m(G, r) in d-regular graphs.
Approximation and hardness of other propagation problems that are similar to
target set selection was considered in [1].

2 Preliminaries and notation

Unless explicitly stated, we will always deal with d-regular, undirected graphs
on n vertices. A graph G has girth g if the shortest cycle in G is of length g. For
clarity reasons, floor and ceiling signs are omitted. For a natural number l, we
denote the set {1, ..., l} by [l]. log refers to the logarithm in base 2. We denote by
Bin(k, p) the binomial distribution with k independent trials, each with success
probability p. Given a d-regular graph G = (V,E) in the bootstrap percolation
model with threshold r, we shall often be interested in the case where every
vertex is chosen to belong to A0 independently with probability p0 ∈ [0, 1]. We
denote by pc(G, r) the minimal p0 such that a set A0 whose elements are chosen
independently with probability p0 is contagious with probability 1

2 .

pc(G, r) = inf
p

[Pr(〈A0〉 = V ) =
1

2
],

11
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where every vertex is chosen independently to A0 with probability p. Observe
that we always have that m(G, r) ≤ pC(G, r) · n. In general m(G, r) may be
much smaller than pc(G, r) ·n. For example, for the hypercube over 2n vertices,

m(G, 2) = n whereas pc(G, 2) = Θ(2−2
√
n

n2 ) [9].
Given a vertex v and a set S, the number of neighbors of v in S is denoted by

degS(v). For two sets of vertices A and B let e(A,B) be the number of ordered
pairs of vertices (u, v) with u ∈ A, v ∈ B and (u, v) in E (A,B, need not be
disjoint). We denote by e(A) the set of all edges whose two endpoints belong
to A. For a subset A of vertices, we denote by ∂(A) the set of all vertices in
V \A having a neighbor in A and by N(A) the set of all vertices in V having a
neighbor in A. The adjacency matrix of an n–vertex graph G, AG, is symmetric
hence it has n real eigenvalues. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of
AG. It is known that λ1 = d and for every i > 1, |λi| ≤ d (see for example
[36]). Let λ(G) = max{|λ2|, |λn|}. We say that G is an (n, d, λ)-graph if G is
d-regular and λ(G) ≤ λ. We will focus on the case that λ is smaller than δd
where δ < 1.

The following Lemma relates edge expansion to λ2, the second largest posi-
tive eigenvalue of G. The proof can be found in [6].

Lemma 2.1 Let G = (V,E) be a d-regular graph. Then, for every partition

B,C of V , e(B,C) ≥ (d−λ2)|B||C|
n .

A graph is called an expander graph if for every set of vertices W of size at
most n/2, the set ∂(W ) is of size at least c|W | with c > 0 independent of n. It
can be verified that if G is a (n, d, λ) graph with λ ≤ δd (δ < 1) then G is an
expander with c being at least d−λ

2d (see [6], Corollary 9.2.2).
We shall use Azuma’s inequality to prove concentration results.

Lemma 2.2 Let X0, ..., Xn be a martingale such that for every 1 ≤ k < n it
holds that |Xk − Xk−1| ≤ ck. Then for every nonnegative integer t and real
B > 0

Pr(|Xt −X0| ≥ B) ≤ 2 exp

(
−B2∑t
i=1 c

2
i

)
.

We shall sometimes use the term infected to describe an activated vertex
that is not one of the seeds, but rather became activated by having at least r
active neighbors. When r = 2, the term excited describes a non-active vertex
that has one active neighbor.

3 Contagious sets in graphs with large girth

In this section we focus on the case where the threshold r of every vertex equals
2. We derive upper bounds on m(G, 2) as a function of the girth of G. We do this
by using bounds on bootstrap percolation on d-regular trees. It is known and

12
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easy to see that if one considers an infinite rooted tree in which every vertex
has d children, the following holds. Let p0 = p denote the initial activation
probability, let pi denote the probability that the root becomes activated by
generation at most i of the bootstrap percolation process, and let qi = 1 − pi.
Then for i ≥ 1, qi = q0((qi−1)d + dpi−1(qi−1)d−1). Using this recursive relation
it is not difficult to show that for p = c/d2 (for a sufficiently large value of c)
we have pk = Ω(1) already for some k = log log d+O(1), and pk = 1− o(1/n2)
already for some k = O(logd log n) + log log d + O(1). The following lemma
provides a short proof of these statements in which no attempt was made to
optimize the constants involved. For simplicity, given a finite tree, the lemma
only uses the assumption that the leaves are initially activated with probability
p, ignoring the fact that also internal vertices may be initially activated.

Lemma 3.1 Let Td,k be the complete d-regular tree (e.g., the root being of degree
d and all other nonleaf vertices are of degree d + 1) of depth k, with d being
sufficiently large.

1. Suppose every leaf of the tree is activated independently with probability

p = g(k)
d2 with g(k) = 10d

1

2k−1 . Then the probability the root is activated
once we apply the bootstrap percolation process is at least 1

2e . As a special
case, if k > log log d + 1 then a value of p = O( 1

d2 ) suffices in order to
activate the root with probability at least 1

2e .

2. If k = C logd log n+ log log d+O(1) (for a sufficiently large absolute con-
stant C) then a value of p = O( 1

d2 ) suffices in order to activate the root

with probability at least 1−
(
1
n

)2
.

Proof: A vertex in Td,k is said to be in level ` with 0 ≤ ` ≤ k if its
distance from the root is `. Hence the root is in level 0 whereas the leaves are
in level k. Let pi (0 ≤ i ≤ k) be the probability that a vertex in level k− i gets
activated. Hence p0 = p and pk is the probability of the root being activated
in the bootstrap percolation process. We shall write pi = gi

d2 with g0 = g(k) as
defined in the lemma. An internal vertex w of the tree becomes activated if it
has at least two active children. Hence for j < k, pj+1 ≥ Pr(Bin(d, pj) ≥ 2) ≥(
d
2

)
pj

2(1−pj)d−2 where we used the fact that Bin(k, p) is an increasing function
of p. Hence gj+1 ≥ 1

2 (gj)
2(1 − pj)d−2. As long as pj ≤ 1

d then we have that
gj+1 ≥ 1

3 (gj)
2 1
e ≥

1
10 (gj)

2, and by induction we have that

pi ≥ 10(
g0
10

)2
i

d−2 = 10d
1

2k−1−i d−2.

Substituting i = k − 1, we have that every child of the root is activated
with probability at least 1

d independently of all the other children of the root
implying that pk ≥ 1

2e , proving item 1 of the lemma.
We now prove item 2 of the lemma. By item 1, every vertex v ∈ T in level

k − log log d − 1 gets activated with probability at least 1
2e . We now use the

13
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inequality pj+1 > 1 − (1 − pj)d − pjd(1 − pj)d−1 that holds for every j. Let

qj = 1 − pj . Then qj+1 ≤ qd−1j (d + 1) ≤ q
d/2
j , as for j > log log d + 1 it holds

that qj <
1
2e and assuming d is large enough it holds that q

d/2−1
j < 1

d+1 . We

get by induction that qi ≤ e−(
d
2 )
i

. Now we consider two cases. If d < log n,
then when i = log log d+ C logd log n and C is sufficiently large the probability

the root is not infected is at most
(
1
n

)2
. If d ≥ log n, the same consequence is

obtained by taking i = log log d+O(1). 2

We can now present a proof of Theorem 2:
Proof: Observe that as the girth of G is 2k + 1, every vertex is the root

of a (d − 1)-regular tree of depth k. Activate independently every vertex with

probability p = g(k)
d2 with g(k) = 10d

1

2k−1 . Lemma 3.1 implies that every vertex
is activated with probability at least 1

2e . Applying Corollary 1.1 concludes the
proof of the Theorem. 2

We remark that when G is a d-regular graph of order n and girth Ω(log log n)
then Lemma 3.1 implies that pc(G, 2) = O( 1

d2 ). In other words, in such graphs
the random parallel algorithm will infect all vertices of G with high probability.

4 Bounds for m(G, 2) in spectral expanders

In this section we concentrate on (n, d, λ)-graphs. Our main goal is to derive
upper bounds on m(G, 2) in terms of λ(G). We start by proving Lemma 1.1.

Proof: Consider a set S of size |S| that is not contagious. We can assume
without loss of generality that S is inclusion-maximal with respect to being
active (namely, every vertex not belonging to S is not active). For every u ∈
V \ S it holds that degS(u) ≤ 1. Thus e(S, V \ S) ≤ |V \ S| = n− |S|. On the
other hand, by Lemma 2.1

e(S, V \ S) ≥ (1− δ)d|S|(n− |S|)
n

.

Combining these inequalities we have that

(1− δ)d|S|(n− |S|)
n

≤ n− |S|.

Hence |S| ≤ n
(1−δ)d . As required. 2

Using Lemma 1.1 we first prove Proposition 1.2.
Proof: Activate independently every vertex with probability p (where p will

be chosen later). Let A1 denote the set of non-seed vertices that have at least
two seed neighbors (and hence become active), and let p1 denote the probability
that a vertex belongs to A1. Then

p1 ≥ (1− p)
(
d

2

)
p2(1− p)d−2.

14
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Assuming d is sufficiently large and p is smaller than 1
d we get that p1 ≥ (dp)2

4 .

By Lemma 1.1, every set of size cn
d , where c > 1

1−δ , is contagious. If p > 4
√
c

d
3
2

we get that the expected number of vertices in A1 is at least 2cn
d . We proceed

and show that w.h.p. |A1| > cn
d vertices. Define the familiar Doob exposure

martingale, e.g., exposing the set of seeds according to some predetermined
order and considering the expected number of vertices in A1. Observe that
whether an exposed vertex is a seed or not can effect at most d neighboring
vertices. We get using Lemma 2.2 (Azuma’s inequality) that for such p with
high probability |A1| ≥ cn

d . The Lemma follows. 2

We now turn to prove Theorem 1. The proof of Theorem 2 can be generalized
to the case where every vertex is contained in a regular tree of degree Ω(l) and
sufficiently large depth (even if the tree is not induced). There is a long line of
research concerned with embedding trees in expanders, starting with the works
of Pósa [40] and Friedman and Pippenger [28]. We will use the recent result of
Balogh, Csaba, Pei and Samotij [11], building on the work of Haxell [30].

Theorem 9 (Theorem 5 in [11]) Let l ≥ 2 and ε ∈ (0, 12 ). If λ < εd√
8l

then

every (n, d, λ)-graph contains every tree of order at most (1− ε)n and maximum
degree l. Furthermore, for every vertex v ∈ G, fixing a (rooted) tree T satisfying
these conditions, T can be embedded into G with v being the root of T .

We now prove Theorem 1.
Proof: By Theorem 9 every vertex is the root of a regular tree of degree

Ω(d) of depth k = Ω(logd log n + log log d). The proof of Lemma 3.1 then
implies that if every vertex in G is activated independently with probability
p ≥ Ω( 1

d2 ), then for every vertex v in G the probability v is not activated by
the bootstrap percolation process is O( 1

n2 ). Hence the entire graph is activated
with high probability by taking union bounds over all vertices. Furthermore,
it is immediate that the number of generations until complete activation is
O(logd log n+ log log d). 2

Note: By applying Theorem 9, Theorem 1 can be generalized without much
difficulty to the case where λ < O( d√

l
) when l <

√
d. In this case, m(G, 2) ≤

O( nl2 ) and when vertices are activated independently with probability p = Ω( 1
l2 ),

the number of generations until complete activation is O(logl log n+ log log d).

The proof of Proposition 1.1 is based on elementary probabilistic arguments.
Proof: Consider an arbitrary d-regular graph. For a fixed vertex v there are

at most d(d− 1)logd logn−1 < log n vertices of distance logd log n from v. Vertex
v is activated within logd log n generations only if at least one vertex (possibly v
itself) within its logd log n neighborhood is initially activated. A simple greedy
argument shows that there is a set U of at least n/(log n)2 vertices in G such
that the distance between any two vertices of U is at least 2 logd log n. Hence
for every two vertices in U , the events that they are activated within logd log n

15
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generations are independent. It follows that if every vertex is initially activated
independently with probability 1/4, the probability that all vertices of U are
activated in logd log n generations is at most:(

1− (
3

4
)logn

)n/(logn)2
= o(1).

2

We now turn to Theorem 3, exhibiting d-regular expanders for whichm(G, 2) =
Ω( n

d2 log d ). Our lower bound on m(G, 2) is based on the following lemma.

Lemma 4.1 Suppose an n-vertex graph G = (V,E) has a contagious set of size
t0. Then for every t such that t0 ≤ t ≤ n there is a subgraph of G induced by t
vertices, spanning at least 2(t− t0) edges.

Proof: Let A0 be a contagious set of size t0. Then there exists an ordering of
the vertices of V \A0, v1, ..., vn−t such that ∀i, 1 ≤ i ≤ n−t0, vi is connected to at
least two vertices in A0∪{v1, ..., vi−1}. Given t0 ≤ t, let Bt be A0∪{v1, ..., vt−t0}.
Then 2(t− t0) ≤ |E(Bt)|. As required. 2

Lemma 4.1 implies that in order to prove lower bounds on m(G, 2) it suffices
to exhibit graphs that do not have small subgraphs of average degree nearly 4.
To exhibit expander graphs that do not have small subgraphs of average degree
nearly 4 we apply the probabilistic method. For the expansion property, we
shall use the following theorem of Friedman [27].

Theorem 10 (Friedman [27]) For arbitrary δ > 0, a random d-regular graph
G has probability 1 − o(1) (the o(1) term tends to 0 as n grows) of satisfying
λ(G) ≤ 2

√
d− 1 + δ.

We remark that the bound in Theorem 10 matches (up to low order terms)
the lower bound on λ for arbitrary d-regular graphs (see for example, [6]).

We now find it convenient to temporarily switch to the configuration model
G∗(n, d) of random d-regular multigraphs (see for example [44]). Let nd be even,
the vertex set of the sampled graph be [n], and let d be a constant independent
of n. Let W = [n]× [d]. Elements of W are called cells. For i ∈ [n] we define Wi,
as the set {i}× [d]. Now we generate G by choosing a uniform perfect matching
over all matchings of all cells in W . Suppose a cell from Wi is matched to a
cell in Wj : in this case we add an edge between two vertices i, j ∈ [n]. Observe
that the resulting graph need not be simple and may contain multiple edges and
self loops. However, we shall use the following known theorem (see for example
[44]).

Theorem 11 A graph G sampled from G∗(n, d) is simple (has no parallel edges

and no self loops) with probability tending to e−(d
2−1)/4 (which is bounded away

16
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from 0 for a constant d) as n tends to infinity. Conditioned on being simple, G
is distributed as G(n, d). Namely, G is a uniform sample of a d-regular n-vertex
graph.

As edges in G∗(n, d) are not independent, we shall use the following known
lemma:

Lemma 4.2 Let G = (V,E) be a graph sampled from G∗(n, d). Let E0 be a
set of k distinct unordered pairs e1, .., ek where each pair consists of two distinct
vertices in V where k < nd−1

4 . Then the probability that e1, ..., ek simultaneously

belong to E is bounded by (2d
n )k.

Proof: In the configuration model, fix ẽ1, .., ẽk with ẽi being an edge con-
necting a fixed cell in Wr to a fixed cell in Ws where it is assumed that ei is
between the vertices r and s (r, s ∈ V ). Then the probability that ẽ1, .., ẽk
all exist in the configuration model is exactly 1

nd−1 ·
1

nd−3 · ... ·
1

nd−2k+1 which

is bounded by ( 2
nd )k. The lemma follows as for each i ≤ k, conditioned on

e1, .., ei−1 chosen there are at most d2 choices for cells realizing ei. 2

In our analysis, we shall include two parameters α and β that can simulta-
neously be optimized to give the best possible lower bound provable with our
current approach. For simplicity of the presentation, rather than optimizing α
and β, we shall fix α = 6 and β = 2− 1

log d , where log is in base 2.

Let G be a random graph sampled from G∗(n, d). Let t = n
αd2 , though note

that this equality will be used as n = αd2t. We assume that d is bounded from
below by some sufficiently large constant (that can be computed explicitly from
the proof of Lemma 4.3), and bounded from above by o(

√
n).

Lemma 4.3 For the setting above, w.h.p. G does not have a subgraph with t
vertices and βt edges.

Proof: There are
(
n
t

)
' (eαd2)t possible choices of a set T of t vertices

in G. There are
((t2)
βt

)
' ( et2β )βt ways of choosing βm edge locations in T . By

Lemma 4.2, the probability that all these locations are indeed edges is at most
( 2d
n )βt = ( 2

αdt )
βt. Hence the probability that G has a subgraph with t vertices

and βt edges is upper bounded by roughly:

(eαd2)t(
et

2β
)βt(

2

αdt
)βt =

(
eβ+1d2−β

αβ−1ββ

)t
Now in the exponent for d substitute β = 2 − 1

log d , obtaining d2−β = 2.
For the other terms we can substitute an approximation β ' 2, because for
sufficiently large d, the error introduced by this is offset by our choice of α that

is larger than needed for the proof. The expression eβ+1d2−β

αβ−1ββ
is then roughly

2e3

4α and is strictly smaller than 1 for α = 6. Raising to the power of t, the
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probability that G has a subgraph with t vertices and βt edges, tends to 0 as n
grows. As desired. 2

Corollary 4.1 For the parameters as above, m(G, 2) ≥ n
12d2 log d w.h.p.

Proof: Suppose otherwise. Then for t = n
6d2 , the set of t0 = n

12d2 log d
seeds and first t − t0 infected vertices induces a subgraph with t vertices and
2(t− t0) = (2− 1

log d )t edges, contradicting Lemma 4.3. 2

We can proceed and prove Theorem 3:
Proof: Sample at random a graph G from G∗(n, d). By Theorem 4.1 we

have that m(G, 2) ≥ Ω( n
d2 log d ) with probability 1 − o(1). By Theorem 11,

G is simple with probability bounded away from 0. Hence conditioned on G
being simple, the probability that it fails to have m(G, 2) ≥ Ω( n

d2 log d ) is still

o(1). Conditioned on being simple, Theorem 10 implies that G fails to have
λ(G) = O(

√
d) with probability o(1). For a fixed integer k it is known, that

with probability p(d, k) > 0 (where p(d, k) depends only on d, k but not on n) a
random d-regular graph has girth at least k (see for example, [44]). Hence there
is positive probability that G is simultaneously simple, of girth at least k, has
λ(G) = O(

√
d), and moreover, m(G, 2) ≥ Ω( n

d2 log d ). Plugging k = P (log log d)
proves Theorem 3. 2

5 Contagious sets in graphs with no 4-cycles

We have seen that for d-regular graphs m(G, 2) may be at least 2n
d+1 . It is not

hard to construct triangle free graphs with m(G, 2) at least n
d (take n

2d disjoint
copies of complete bipartite d-regular graphs). In this section we show that
situation is different for graphs without 4-cycles, proving Theorem 4.

Given a graph G of minimum degree at least d + 1 (for notational reasons,
we find it easier in this section to work with degree d + 1 as opposed to d), a
vertex v and and a parameter k ≥ 0, a (d, k)-tree rooted at v is a d-ary tree
of depth k that can be defined by induction on k as follows. A (d, 0)-tree is v
itself. A (d, 1) tree has v as its root, and d distinct neighbors of v as its leaves.
Thereafter, a (d, k + 1)-tree is obtained from a (d, k)-tree as follows: every leaf
of the (d, k)-tree gets d of its neighbors in G (excluding its parent node in the
tree) as children in the (d, k + 1)-tree. Hence for every node in a (d, k)-tree, all
its tree neighbors are distinct vertices of G. However, the same node of G may
appear multiple times in the (d, k)-tree.

For a vertex v and k ≥ 0, a k-witness is a (2, k)-tree rooted at v in which
all its leaves are seeds. A k-witness implies that v is activated, by propagating
activations from the leaves to the root. Observe that we do not require the
leaves to represent distinct vertices of G, or to represent vertices different from
internal nodes of the tree. Observe also that v might be activated without there
being any k-witness to its activation (for example, by having one neighbor of v
as a seed and another neighbor of v activated by two of its seed neighbors).
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Proposition 5.1 Consider a (d, k)-tree T rooted at v. Then the number of

(2, k)-trees rooted at v that T contains is
(
d
2

)2k−1
.

Proof: A (2, k)-tree has 2k − 1 non-leaf nodes. Every non-leaf node has
(
d
2

)
ways of choosing two children different from its parent node. 2

Proposition 5.2 Let v be the root of a (d, k)-tree T in G. Suppose we activate
every vertex in G independently with probability p. Then the expected number

of k-witnesses for v in T is at least
(
d
2

)2k−1
p2
k

.

Proof: By Proposition 5.1 the number of (2, k)-trees rooted at v that T

contains is
(
d
2

)2k−1
. Each one of them has 2k leaves, and all its leaves are seeds

with probability p2
k

if these leaves are distinct, and higher probability otherwise.
2

To show that a vertex v is likely to be activated, we shall view it as a root
of a (d, k)-tree, and show that this tree is likely to contain a (2, k)-witness for v.
A necessary condition for this is that the expected number of (2, k)-witnesses

will exceed 1. By Proposition 5.2, this will happen when p > d
2

2k
−2. To make

this into a sufficient condition, we develop tools for bounding the variance of
this random variable.

Definition 5.1 A (d, k)-tree T in a graph G is proper if all its nodes correspond
to distinct vertices of V . Equivalently, the subgraph of G induced by the edges of
T does not contain a cycle. The tree T is t-proper if the subgraph of G induced
by the edges of T does not contain a t-cycle in G. (Edges of T that correspond
to the same edge in G are counted only once.)

Proposition 5.3 Let G be a graph with no 4-cycles. Then every (d, k)-tree in
G is 4-proper.

Proof: By definition. 2

Lemma 5.1 Let v be the root of a 4-proper (d, 2)-tree T , and let ω(d−2) ≤
p ≤ o(d−3/2). Then the probability that v has a 2-witness in T is at least

(1− o(1))
(
d
2

)3
p4.

Proof: All d2 leaves in T are distinct, because T is 2-proper. Let Wi denote
the indicator random variable for the event that the ith (2, 2)-tree in T is a
2-witness for v. Then Pr[Wi = 1] = p4. Let W =

∑
Wi be a random variable

that counts the number of 2-witnesses in T for v. Then E[W ] =
(
d
2

)3
p4 (which

is the same as substituting k = 2 in Proposition 5.2).
Consider an arbitrary (2, 2)-tree in T , and suppose that it happens to be a

witness. W.l.o.g we can assume T is the ith tree, that is, Wi = 1 (all its leaves
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are seeds). We compute an upper bound on E[W |Wi = 1]. Hence conditioned
on Wi = 1, we only know of four leaves that are seeds. The number of (2, 2)-
trees that share three leaves with T is 4(d − 2) (each of the four leaves of Wi

can be replaced by d − 2 alternative leaves). The number of (2, 2)-trees that
share two leaves with T is at most 2(d− 2)

(
d
2

)
+ 4(d− 2)2 (either one of the two

children of v in Wi is replaced by a different child with two leaves, or each of
the children of v has one of its leaves replaced). The number of (2, 2)-trees that
share one leaf with T is at most 4(d− 2)2

(
d
2

)
(one child of v replaces a leaf, and

another child of v is placed completely). Hence

E[W |Wi = 1] ≤ 1 + 4dp+ (d3 + 4d2)p2 + 2d4p3 +

(
d

2

)3

p4 ≤ 1 +O(d3p2),

where the last inequality used ω(d−2) ≤ p ≤ o(d−3/2). It follows that

E[W 2] =
∑
i

Pr[Wi]E[W |Wi = 1] ≤ (1+O(d3p2))
∑
i

Pr[Wi = 1] = (1+O(d3p2))E(W ).

Observe that by definition 1 =
∑∞
i=0 Pr[W = i], that E[W ] =

∑∞
i=0 iPr[W = i],

and that E[W 2] =
∑∞
i=0 i

2Pr[W = i]. Hence (see [18], Theorem 1.16)

Pr[W = 0] ≤ 1− 2E[W ] + E[W 2] ≤ 1− (1−O(d3p2))E(W ),

implying that Pr[W > 0] ≥ (1−O(d3p2))E(W ) = (1− o(1))
(
d
2

)3
p4 ≥ Ω(d6p4).

2

Lemma 5.2 Let v be the root of a 4-proper (d, 3)-tree T . Then v has probability
at least 1/2 of being activated when p = 4d−7/4. (The leading constant 4 was
chosen for concreteness. A smaller constant suffices.)

Proof: Let v1, . . . , vd denote the neighbors of v in T . Let Xi be an indicator
random variable for the event that vi has a 2-witness in the subtree of T rooted at

vi. Lemma 5.1 implies that Pr[Xi = 1] = (1−o(1))
(
d
2

)3
p4. LetX =

∑
Xi. Then

E[X] = (1
8 − o(1))d7p4 ' 32. Observe that when X ≥ 2 at least two neighbors

of v are activated, and then v is activated as well. Hence if X behaves similar
to its expectation, we expect v to be activated. To show that X is concentrated
around its expectation, we compute E[X2].

Let us compute Pr[Xi ∧Xj ] for i 6= j. The fact that T is 4-proper implies
the following useful facts:

1. All d2 leaves in the subtree of T rooted at vi are distinct. All d2 leaves in
the subtree of T rooted at vj are distinct.

2. All children of vi in T are distinct from all children of vj in T .

3. No child of vi in T has two common children with a child of vj in T .
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The probability Pr[Xi ∧Xj ] depends on the pattern of common grandchil-
dren that the vertices vi and vj has. The above facts show that every child of
vi and every child of vj have at most one common neighbor. We consider two
cases.

In the first case every child of vi and every child of vj have exactly one
common neighbor. This case can be visualized as a d by d table M of distinct
grandchildren. The rows are indexed by the children of vi and the columns
are indexed by the children of vj . Every child of vi is a neighbor of those
grandchildren in its respective row, and every child of vj is a neighbor of those
grandchildren in its respective column. Each entry of the table is a seed with
probability p and not a seed otherwise. For the event Xi ∧ Xj we need two
rows to have two seed entries, and two columns to have two seed entries. This
requires between four to eight seed entries, depending on where the seeds are
located within the table. We compute the number of possibilities for each case
separately.

1. Four seed entries. One needs to choose the two rows and two columns
that contain them, giving

(
d
2

)2
possibilities.

2. Five seed entries. There are Θ(d6) possibilities. (Details omitted.)

3. Six seed entries. There are Θ(d8) possibilities. (Details omitted.)

4. Seven seed entries. There are Θ(d10) possibilities. (Details omitted.)

5. Eight seed entries. One needs to choose two rows and two locations within

these rows, and likewise for the columns. This gives at most
(
d
2

)6
possi-

bilities.

As d2p � 1, the dominating term is
(
d
2

)6
p8, giving Pr[Xi ∧ Xj ] = (1 +

o(1))Pr[Xi]Pr[Xj ]. It follows that

E[X2] =
∑
i

∑
j

Pr[Xi∧Xj ] ≤
∑
i

Pr[Xi](1+(1+o(1))E[X]) = E[X]+(1+o(1))(E[X])2,

Hence var[X] = E[(X − E[X])2] = E[X2]− (E[X])2 = E[X] + o((E[X])2).
Now Chebyschev’s inequality implies that Pr[X ≥ 2] > 1/2.
The remaining case to consider is the one in which some pairs of children,

one child of vi and one child of vj , have no common neighbors at all. In this
case, some entries of the table M referred to above are empty, and instead
the vertices representing the corresponding rows and columns have additional
children not accounted for in M (and not shared by other vertices). Imitating
the analysis performed for the first case, the number of possibilities for eight

seed entries remains at most
(
d
2

)6
, and

(
d
2

)6
p8 remains the dominating term

(the nondominating terms can easily be seen not to increase by more than a

21

1973 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

01
/1

8/
15

 to
 1

32
.6

6.
40

.1
04

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



constant factor). Hence the bounds proven for the first case above apply also
in the current case. 2

We can now prove Theorem 4.
Proof: As the minimum degree of G is d+ 1, every vertex v in G is a root

of a (d, 3)-tree. By Proposition 5.3 this (d, 3)-tree is proper. By Lemma 5.2, if
p = 4d−7/4 then v is activated with probability at least 1/2. By Corollary 1.1,
there is a contagious set of size 2pn. 2

6 Contagious sets in graphs of girth at least 7

Before proving Theorem 5, let us present a lemma that summarizes the only
property of d-regular graphs of girth at least 7 that will be used in the proof.
Given a graph G(V,E), for a set S of vertices, recall that N(S) denote the set
of those vertices that are neighbors of some vertex in S, and let N2(S) denote
the set of those vertices that are at distance exactly 2 from some vertex in S.
Observe that we do not require the sets S, N(S) and N2(S) to be disjoint.

Lemma 6.1 Let G be a d-regular graph of girth at least 7. Then for every

1 ≤ k < d and every set S of k vertices it holds that |N2(S)| ≥ kd2

2 .

Proof: Given a d-regular graph G(V,E) of girth at least 7, consider an
arbitrary set S of k vertices. For every vertex v ∈ S we have that |N2(v)| = d(d−
1), because otherwise G has a cycle of length at most 4. Hence

∑
v∈S |N2(v)| =

kd(d − 1). To provide a lower bound on |N2(S)|, we use the first two terms of
the inclusion exclusion formula. Namely:

|N2(S)| ≥ kd(d− 1)−
∑
u,v∈S

|N2(u) ∩N2(v)|

We now claim that for every u, v ∈ V it holds that |N2(u) ∩ N2(v)| ≤ d.
Suppose otherwise that |N2(u)∩N2(v)| > d. Then by the pigeon-hole principle,
and least one vertex x ∈ N(u) has at least two neighbors x1, x2 in N2(v).
Suppose first that x 6∈ N(v). Then x1 and x2 cannot have a common neighbor
y in N(v), because then x, x1, y, x2 would form a 4-cycle. Hence there are two
vertex disjoint paths from x to v (one through x1, the other through x2). This
forms a 6-cycle, which contradicts the girth assumption.

The other case to consider is that x ∈ (N(u) ∩N(v)). (Note that it cannot
be that x = v because in that case neighbors of x will not be in N2(u)∩N2(v).)
Observe that then there cannot be any other vertex y that is in N(u) ∩ N(v),
because x, u, y, v would form a 4-cycle. Observe also that |N2(u) ∩N2(v)| > d
implies that there is a vertex z 6∈ N(x) that is in N2(u) ∩ N2(v). This z has
two vertex disjoint paths of length 3 to x, one through u and the other through
v. This forms a 6-cycle, contradicting the girth assumption.
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If follows (using also k < d) that:

|N2(S)| ≥ kd(d− 1)− d
(
k

2

)
= kd(d− 1− k − 1

2
) ≥ kd2

2

2

Remark. The proof of Lemma 6.1 only requires the graph not to have 4-
cycles and 6-cycles. Having arbitrarily short odd cycles does not matter, up to
some minimal changes in the parameters, such as the allowed range of k, or the
leading term of 1

2 for the expression kd2. Consequently, the proof of Theorem 5
only uses the absence of 4-cycles and 6-cycles, and not the full requirement of
girth at least 7. More generally, existence of odd cycles can have only limited
effect on upper bounds on m(G, 2), as long as these upper bounds are expressed
as function of the degree and do not require the graph being exactly regular.
This can be seen by recalling that every d-regular graph has a maximal cut in
which every vertex has between d/2 and d edges crossing the cut. Removing
all edges except for cut edges leaves us with a bipartite graph G′, which has no
odd cycles. Furthermore, all degrees are between d/2 and d. Upper bounds on
m(G′, 2) trivially apply to G as well. Finally, observe that Lemma 6.1 is no
longer true if we only require the graph to have no four-cycles (or girth 5) as
there are d regular graphs with girth 5 and O(d2) vertices.

We now prove Theorem 5.
Proof: We present an algorithm that is partly random and partly greedy

for selecting a contagious set in G(V,E). Let p = 4 ln d
d2 . Let A be an initial

set of seeds, where every vertex of G in included in A independently at random
with probability p. Given A, consider the following sets of vertices.

1. Set A of seeds.

2. Set B of excited vertices: vertices in V \A that have at least one neighbor
in A. Observe that under our definition of B, a vertex in B may have
two or more neighbors in A and hence be activated, but we still refer to
it as excited. Consider the subgraph G(B) of G induced on the vertices
of B. Call a connected component in G(B) large if it contains at least d
vertices, and small otherwise. Based on this distinction, we partition B
into two disjoint subsets.

(a) The set BL of vertices that are in large connected components in
G(B).

(b) The set BS of vertices that are in small connected components in
G(B).

3. Set C of those vertices in V \ (A ∪ B) that have at least one neighbor in
BL.
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As a memory aid, one may think of A as representing activated, B as repre-
senting boundary, and C as representing close.

Consider an arbitrary vertex v ∈ V . We analyze the probability of the event
that v ∈ C. This event can be broken into several other events that all need to
happen simultaneously.

Event Āv, which holds if v 6∈ A. This happens with probability 1− p.
Event B̄v, which holds if v 6∈ B. This happens with probability at least

1− dp, because v has d neighbors.
Event NBv, which holds if v has at least one neighbor in B. Consider the

vertices at distance 2 from v. As G has no 4-cycles, these are d(d− 1) distinct
vertices. The expected number of these vertices that are in A is pd(d−1) ' 4 ln d.
Hence the probability that at least one of them is in A is roughly 1− e−4 ln d >
1 − 1

d . Let w ∈ A be a vertex at distance 2 from v, and let u be the common
neighbor of v and w. If u is not in A (which happens with probability 1−p) then
u is in B. Hence event NBv holds with probability at least 1− 1

d − p ≥ 1− 2
d .

Event NSv, which holds if v has no neighbor in BS .

Lemma 6.2 The Event NSv holds with probability 1−O(1/d).

Proof: Consider an arbitrary vertex u ∈ N(v), and for k < d, let K be a
connected set of k vertices that contains u. Consider the event K̄ that K forms
one of the connected components in B. This event involves two requirements:
one is that K ⊂ B and the other is that no vertex in ∂(K) is in B. Observe that
by considering all possible connected K that contain u, exactly one of the events
K̄ needs to happen in order for k to be the size of the connected component
of u in G(B). Given that G is of degree d and that u ∈ K, there are at most(
(k−1)d
k−1

)
' (ed)k−1 ways of choosing the k vertices of K.

Given K, we now upper bound the probability of event K̄. For this, it suffices
to upper bound the probability that no vertex in ∂(K) is in B (while ignoring
the requirement that K ⊂ B). This event fails if a vertex z at distance 2 from a
vertex of x ∈ K is violating, namely, z ∈ A, and there is a vertex y ∈ N(x)∩N(z)
such that y 6∈ (A∪K). This y is in B and can be used to enlarge K. Lemma 6.1

implies that N2(K) ≥ kd2

2 . Using this, we now estimate the probability that no
violating vertices exist.

For every vertex z ∈ N2(K), designate one vertex in N(z) ∩ N(K) to be
the link l(z) to K. Observe that every vertex in N(K) can serve as a link to
at most d vertices in N2(K) (because the graph has degree d). At most k of
the links are in K (N(K) may not be disjoint from K). Ignore those vertices in

N2(K) whose link is in K. This still leaves at least kd2

2 − kd vertices in N2(K)
whose link is not in K. With each link l that is not in K, associate a 0/1
random variable yl whose value is 1 if and only if the following two conditions
hold: z ∈ A for at least one z ∈ N2(K) for which l(z) = l, and l 6∈ A. Let
dl ≤ d denote the number of z ∈ N2(K) for which l(z) = l. We get that
Pr[yl = 1] ≥ (1− p)dlp(1− p)dl−1 ' pdl (where the near equality holds because
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for our choice of p and d, (1 − p)d ' 1). If yl = 1 then there is a violating
vertex. Let Y =

∑
l yl. There is no violating vertex only if Y = 0. Note that

the expectation of Y is roughly
∑
pdl ≥ p(kd

2

2 − kd) ' 2k ln d. Observe that
the random variables yl are independent, and each of them is a 0/1 variable,
hence standard concentration results imply that Pr[Y = 0] ≤ e−2k ln d ' d−2k.

Taking a union bound over all choices of K, it follows that the size of
the connected component of u in G(B) is exactly k with probability at most
d−2k(ed)k−1 ≤ ( ed )k+1. Summing over all values of 1 ≤ k < d, the probability
that u ∈ BS is O(1/d2). Taking a union bound over all neighbors of v, we get
that Pr[NSv] = 1−O(1/d). 2

For a given vertex v, if all four events listed above hold simultaneously
then v ∈ C (observe that the combination of NBv and NSv imply that v has a
neighbor in BL). Hence v ∈ C with probability at least 1−p−pd−O(1/d) > 3/4
(for our choice of p and sufficiently large d).

Within every large component (in BL), chose at random one vertex to be a
seed. Observe that the probability that v becomes a seed by this is at most p
(probability of pd for being in B, times probability at most 1/d of being selected
as seed in his large component). Observe also that this activates the whole large
component. Hence by now every vertex of C has at least one active neighbor.

Let us repeat the above experiment of selecting a random A twice, each time
with fresh randomness. Call a vertex lucky if it is in C in both experiments.
Hence the probability that a vertex v is lucky is at least (34 )2 = 9

16 . If the
two active neighbors of v are distinct, then v is infected as well. What is the
probability that these two active neighbors are not distinct? For this, v would
have to have a neighbor that is in B in both experiments. This happens with
probability at most d(pd)2 ≤ 1

16 (for our choice of parameters). Hence v has
probability at least 1/2 of becoming infected. Note also that v had probability at
most 4p of becoming a seed in at least one of the experiments. Hence Lemma 1.2
implies that G has a contagious set of size 8pn = O(n log d

d2 ). 2

7 Contagious sets in expanders with no 4-cycles

In this section we prove Theorem 6.
Our strategy in building a small contagious set for expanders with no 4-

cycles will be to choose the seeds (the vertices we activate) one by one in rounds
in a greedy manner, where for a given round t, st will denote the seed chosen
in round t, and St will denote the set of all t seeds chosen up to and including
round t. Given a set St of seeds, an activation cascade may activate additional
vertices. We let At denote the set of all activated vertices after round t, with
St ⊂ At. We shall be concerned also with neighbors of vertices in At, and denote
Bt = At ∪ ∂(At). The set of remaining vertices in V \Bt will be denoted by Rt.
Initially, S0, A0 and B0 are empty, and Rt = V .

Our greedy algorithm has two phases, each employing a different greedy
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rule. It switches between phases once Bt becomes the majority of the graph.
Specifically, at round t ≥ 1, if At−1 6= V , the greedy algorithm proceeds as
follows:

1. If |Bt−1| < n/2, select as seed st a vertex v ∈ (V \ At−1) such that
St = St−1

⋃
{v} maximizes |Bt| (after applying the activation cascade).

2. If |Bt−1| ≥ n/2, select as seed st a vertex v ∈ (V \ At−1) such that
St = St−1

⋃
{v} maximizes |At| (after applying the activation cascade).

We let T denote the total number of rounds until AT = V . We now estab-
lish that T = O(n log d

ε2d2 ). The following lemma does not require any expansion
properties.

Lemma 7.1 Let G(V,E) be an arbitrary d-regular graph. Then for t ≤ n
d the

above greedy algorithm can maintain |Bt| ≥ d
2 t.

Proof: By induction on t. For t = 1 we have A1 = {s1} and hence |A1| = 1,
∂(A1) = d, and |B1| = d + 1 ≥ d/2. Assume now that the lemma holds for
t < n

d and prove for t+ 1. If |Bt| ≥ d
2 (t+ 1) there is nothing to prove. Hence we

may assume that |Bt| < d
2 (t + 1) ≤ n/2, implying that |Rt| ≥ n/2. Therefore∑

v∈V degRt(v) ≥ nd
2 , and a random vertex has in expectation at least d/2

neighbors in Rt. Hence there is at least one vertex v with at least d/2 neighbors
in Rt. It cannot be that v ∈ At because vertices in At have no neighbors in
Rt. Hence taking this vertex v as st we have |Bt+1 \ Bt| ≥ d/2, proving the
inductive step. 2

The weakness of Lemma 7.1 is that the rate of growth of Bt is limited to
O(dt). To reach BT linear in n will require T ≥ Ω(n/d), which we cannot afford.
Hence we shall want to establish that Bt grows at a rate significantly larger than
d per round. This is clearly not true in the first set of rounds (in particular,
|B1| = d+ 1), but we shall show that it becomes true after t exceeds n/d2. Our
next lemma does use expansion properties of G.

Lemma 7.2 For 0 < ε < 1, let G(V,E) be an (n, d, λ)-graph with λ ≤ (1− ε)d
and without 4-cycles. Let 4

ε2d ≤ c ≤ d
2 . Let A be an arbitrary set of activated

vertices in G, let B = A ∪ ∂(A) and let R = V \B. If |B| = cn
d then there is a

vertex u ∈ R such that |R ∩N(B ∩N(u))| ≥ cε2d/2.

Proof: Three vertices u, v ∈ R and w ∈ B will be called a triplet if
(u,w) ∈ E and (v, w) ∈ E. Let f denote the number of triplets in G. For

w ∈ B, let dR(w) = |N(w) ∩ R|. Then f =
∑
w∈B

(
dR(w)

2

)
. Using Lemma 2.1,∑

w∈B dR(w) = e(B,R) ≥ εd|B||R|
n . Hence the average value of dR(w) is at least

εd|R|
n , implying by convexity that
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f ≥ |B|
(
εd|R|/n

2

)
' |R|

2|B|ε2d2

2n2
.

Every triplet involves two vertices from R. Hence on average, a vertex from
R is involved in 2f/|R| triplets. This together with the lower bound on f implies

that there is some u ∈ R involved in at least |R||B|ε
2d2

n2 triplets. In any two such
triplets, (u,w1, v1) and (u,w2, v2) (v1, v2 ∈ R), the vertices v1 and v2 must be
distinct, because G has no 4-cycles. This implies that |R ∩ N(B ∩ N(u))| ≥
|R||B|ε2d2

n2 . Substituting |B| = cn/d and noting that |R| ≥ n/2, the lemma
follows. 2

We now proceed to prove Theorem 6:
Proof: Lemma 7.1 implies that for t = 8n

ε2d2 the greedy algorithm reaches
|Bt| ≥ 4n

ε2d . Thereafter, in every O( n
ε2d2 ) iterations of the algorithm, Lemma 7.2

implies that Bt grows by a multiplicative factor of 2 (in every iteration choose
the vertex u whose existence is guaranteed by Lemma 7.2). It follows that for
T ≤ O(n log d

ε2d2 ) the greedy algorithm manages to achieve |BT | ≥ n
2 , and the first

phase of the greedy algorithm ends.
We now analyze the second phase of the greedy algorithm. We may assume

that |At| ≤ n
εd , because otherwise the whole graph is activated, by Lemma 1.1.

Moreover, we may assume that d > 10
3ε , as otherwise the statement of Theorem

6 only requires m(G, 2) ≤ O(n log d) which is trivially true. For this range of
parameters, |∂(At)| = |Bt| − |At| ≥ n

2 −
n
εd > 2n

5 . Each vertex in ∂(At) has

exactly one neighbor in At, and hence e(∂(At), V \ At) ≥ (d − 1) 2n
5 ≥

dn
3 .

This implies that there is some vertex in V \ At whose activation will activate
at least d/3 new vertices. Hence the greedy algorithm activates at least d/3
vertices in each step of the second round, implying that in O( n

εd2 ) rounds of the
second phase |At| exceeds n

εd . Lemma 1.1 then implies that the whole graph is
activated. 2

8 Bounds for m(G, r): r > 2

In this section we give upper bounds for m(G, r) where r is a small constant
(e.g., 3,4) not depending on d. The ideas are similar to Section 4, hence our
proofs are less detailed.

Lemma 8.1 Let G be an (n, d, λ)-graph such that λ < δd and δ < 1. Suppose
that the activation threshold of every vertex is r which is independent of d. Then

every set of size larger than (r−1)n
(1−δ)d is contagious.

Proof: Consider a set S of size |S| that is not contagious. We can assume
without loss of generality that S is inclusion-maximal with respect to being
active (namely, every vertex not belonging to S is not active). For every u ∈
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V \ S it holds that degS(u) ≤ r − 1. Thus e(S, V \ S) ≤ (r − 1)(n − |S|). On
the other hand, by Lemma 2.1

e(S, V \ S) ≥ (1− δ)d|S|(n− |S|)
n

.

Combining these inequalities we have that

(1− δ)d|S|(n− |S|)
n

≤ (r − 1)(n− |S|)

Hence |S| ≤ (r−1)n
(1−δ)d . 2

Theorem 12 Let G be a d-regular graph with girth Ω(log log d). Then there is
a contagious set of size C(r)nd−

r
r−1 where C(r) is a constant depending only

on r.

Proof: The proof is similar to the proof of Lemma 3.1. Again, we consider
Td,k the complete d-regular tree of depth k. Recall that a vertex in Td,k is said
to be at level ` with 0 ≤ ` ≤ k if its distance from the root is `. Activate
all the leafs of Td,k independently with probability h(k)d−

r
r−1 where h(k) =

(2e · r!) 2
r d

1

rk−1 Let pi (0 ≤ i ≤ k) be the probability that a vertex in level
k − i gets activated. Hence p0 = p and pk is the probability of the root being
activated in the bootstrap percolation process. We shall write pi = hid

− r
r−1

with h0 = h(k). An internal vertex w of the tree becomes activated if it has
at least r active children. Hence for j < k, using the Poisson approximation
Pr(Bin(d, q) = r) ∼ e−qd(qd)r/r! we get

pj+1 ≥ Pr(Bin(d, pj) ≥ r) ∼ e−pjd(pjd)r/r!.

As long as pj ≤ 1
d then we have that hj+1 ≥ 1

2·e·r! (hj)
r, and by induction we

have that

pi ≥ (2e · r!) 2
r (

h0

(2e · r!) 2
r

)r
i

d−
r
r−1 = (2e · r!) 2

r d
1

rk−1−i d−
r
r−1 .

Substituting i = k − 1, the children of the root have probability at least 1
d to

become active, implying that pk ≥ B where B > 0 is a constant independent of
d. The theorem now follows from Corollary 1.1. 2

Theorem 13 Given an integer l, let G be an (n, d, λ) graph such λ ≤ 1√
l
d, and

l is sufficiently large. Then m(G, r) = O( n

l
r
r−1

). In particular if λ = O(
√
d)

then m(G, r) = O( n

d
r
r−1

).
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Proof: Follows from Theorem 12, the proof of Theorem 9, and Lemma 8.1.
2

Let us comment that similar ideas to the r = 2 case, can be used to show
our upper bounds are nearly best possible. Namely the ideas in [26] imply that
for a fixed ε > 0, there exist d0 such that for every d > d0, if G is a random
d-regular graph then w.h.p.

m(G, r) ≥ nd−(
r
r−1+ε).

9 Hardness of target set selection in regular graphs

We set the activation threshold r to be 2 throughout this section. Recall that
it is known that m(G, 2), the size of the smallest contagious set, is hard to
approximate within any constant factor (and even for factors that depend on
n) [22]. The following theorem implies that approximating m(G, 2) in regular
graphs is roughly as hard as doing so in arbitrary graphs.

Theorem 14 There is a polynomial time reduction that for every n and every
2 ≤ ∆ ≤ n−1, given an arbitrary graph G with n vertices and maximum degree
∆, transforms G into a ∆-regular graph H on O(n∆2) vertices, such that

m(G, 2) ≤ m(H, 2) ≤ 6m(G, 2)

Proof: Given ∆, we introduce a certain graph that we call a ∆-regularizer,
which will be used as a gadget in our reduction. The ∆-regularizer is a complete
graph on ∆+1 vertices, but with three of its edges removed. The removed edges
are picked in such a way that they form a triangle. Hence three vertices, that we
call connector vertices, have degree ∆−2, and the remaining vertices have degree
∆. Observe that if the three connector vertices are activated, this activates the
remaining vertices in the ∆-regularizer. (In fact, when ∆ ≥ 4, any two vertices
are a contagious set for the ∆-regularizer, but this fact is not needed for our
proof.)

Given a graph G(V,E) on n vertices and with maximum degree ∆, our reduc-
tion works as follows. Make six independent copies of G (with no edges between
different copies). Hence now every vertex v ∈ V has six copies, v1, . . . , v6. Let
dv denote the degree of v in G. If dv < ∆, we wish to raise the degrees of each
of the vertices of v1, . . . , v6 to ∆. To do this we introduce ∆ − dv fresh copies
of the the ∆-regularizer gadget. For every copy of these ∆-regularizers, we in-
troduce edges between its three connector vertices and the six copies of v, such
that each copy of v gets one new edge, and each connector vertex gets two new
edges. Hence all vertices of the ∆-regularizer become of degree ∆, and every
copy of v gets ∆− dv new edges, making it of degree ∆ as well. Repeating this
process for every vertex u ∈ V (each time with fresh copies of ∆-regularizers)
completes the description of the ∆-regular graph H.

29

1981 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

01
/1

8/
15

 to
 1

32
.6

6.
40

.1
04

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



To see that m(H, 2) ≤ 6m(G, 2), consider an arbitrary contagious set in G,
and observe that taking six copies of this set, one in each copy of G, will also
activate all of H.

To see that m(G, 2) ≤ m(H, 2), consider an arbitrary contagious set S in H,
and observe that the following set S′ is contagious in G: include vertex v in S′

if and only if at least one of its six copies or at least one of the vertices in its
∆-regularizers is in S.

Further details are omitted from the proof. 2

In the statement and proof of Theorem 14 we preferred simplicity, and hence
made no attempt to minimize the size of H or to tighten the relation between
m(G, 2) and m(H, 2).

10 Contagious sets in non-regular expanding graphs

Our work in this manuscript is concerned with contagious sets in regular graphs,
and in nearly regular random graphs. In this section we discuss how insights
obtained from these results extend to graphs that are not regular. Rather than
attempt to formally define expansion in non-regular graphs (there are several
alternative definitions that one may consider), we shall limit our discussion
to random graphs (under various models), which would qualify as very good
expanders under any reasonable definition of expansion.

Let us set the activation threshold r to be 2 throughout this section. A
natural model for random irregular graphs is as follows. Given the number of
vertices n, one first fixes a degree sequence d1 ≤ d2 . . . ,≤ dn ≤ n − 1, where∑
i di is even. We shall assume that d1 ≥ 2, because the activation threshold

is 2. Thereafter one draws a multigraph at random using the configuration model
with this degree sequence. Namely, a vertex i corresponds to di endpoints of
edges, and the multi-graph is generated by selecting a random matching between
all endpoints. Thereafter, self loops are removed, and among parallel edges, only
one edge is maintained. For degree sequences that will interest us, self loops
and parallel edges will be rare and their removal will not significantly change
the degree sequence.

Rather than study the configuration model directly, it would be simpler
to consider an alternative process for generating a random non-regular graph,
which we illustrate by the following example. Let d be roughly n1/4 for con-
creteness. Generate a random graph G of average degree roughly d using the
Erdos-Renyi random graph model Gn,p with p = d

n−1 . By the results of [33], a

random subset of (1+δ)n
2d2 vertices is almost surely contagious. By our Theorem 7,

the smallest contagious set is of size Ω
(

n
d2 lognp

)
. Now modify G to become a

non-regular expander G′ as follows: pick at random two disjoint sets of vertices
A and B, each of size k = n

d2 , and within every set, unite all vertices of the set
to get a single vertex, thus obtaining vertices a and b. Removing parallel edges
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and self loops that might be generated by this process, each of the vertices a
and b has degree roughly n

d , whereas the degrees of the remaining vertices re-
main roughly d. In G′, the set {a, b} is almost surely contagious. (Had we not
removed parallel edges, each of a or b by itself would be contagious, and the
fact that we take both a and b compensates for the removal of parallel edges.
Details are omitted.) Moreover, a and b have multiple common neighbors, and
any set of two such common neighbors is contagious as well (because it activates
a and b).

Returning to the configuration model, the above argument shows that for a
degree sequence that has n−2 vertices of degree roughly n1/4 and two vertices of
degree roughly n3/4, the size of the smallest contagious set in the corresponding
random graph is almost sure the minimum possible, namely, two. Moreover,
the contagious set need not contain the high degree vertices. Observe that the
average degree d̄ of G′ is roughly n1/4, and hence though an upper bound of
O
(
n/(d̄)2

)
on the size of the contagious set holds, this upper bound is very far

from being tight.
Let us now modify the degree sequence by scaling all degrees by a factor

of 1/ log n. Namely, there are n − 2 vertices of degree roughly n1/4/ log n and
two vertices of degree roughly n3/4/ log n. Observe that for the original nearly
regular graph G, such a scaling would increase the size of the smallest conta-
gious set by a modest polylogarithmic factor. However, this has a dramatic
effect regarding G′. The vertices a and b no longer correspond to sets that are
sufficiently large to be contagious, and hence the size of the smallest contagious

set jumps to at least Ω
(

n
d2 logn

)
= Ω(

√
n log n).

The example above was presented so as to convey two messages.

• Understanding contagious sets in regular graphs leads us a long way to-
wards understanding contagious sets in irregular graphs. Specifically, in
the example above, the non-regular graph G′ could be analyzed as a graph
derived from a nearly regular graph G.

• Results regarding irregular graphs are much more sensitive to a change in
the underlying parameters than the results for regular graphs. Multiplying
the degree sequence by a small factor has only a small effect on the size
of contagious sets in regular graphs, but a dramatic effect in non-regular
graphs. Hence for non-regular graphs, even for random ones, we should
not expect to have a single simple parameter (such as average degree) that
roughly characterizes the size of contagious sets. This is unlike the case
of random nearly regular graphs for which the average degree provides a
rough characterization.

Further discussion of contagious sets in irregular graphs is beyond the scope
of the current paper.
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