On the asymptotic value of the choice number of complete multi-partite graphs

Nurit Gazit, Michael Krivelevich, September 11, 2006

^{*}School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: perfect@post.tau.ac.il.

[†]School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: krivelev@post.tau.ac.il. Research supported in part by USA-Israel BSF Grant 2002-133, and by grant 64/01 from the Israel Science Foundation.

Abstract

We calculate the asymptotic value of the choice number of complete multi-partite graphs, given certain limitations on the relation between the sizes of the different sides. In the bipartite case, we prove that if $n_0 \leq n_1$ and $\log n_0 \gg \log\log n_1$, then $ch(K_{n_0,n_1}) = (1+o(1))\frac{\log_2 n_1}{\log_2 x_0}$, where x_0 is the unique root of the equation $x-1-x^{\frac{k-1}{k}}=0$ in the interval $[1,\infty)$ and $k=\frac{\log_2 n_1}{\log_2 n_0}$. In the multi-partite case, we prove that if $n_0 \leq n_1... \leq n_s$, and n_0 is not too small compared to n_s , then $ch(K_{n_0,...,n_s}) = (1+o(1))\frac{\log_2 n_s}{\log_2 x_0}$. Here x_0 is the unique root of the equation $sx-1-\sum_{j=0}^{s-1} x^{\frac{k_j-1}{k_j}}=0$ in the interval $[1,\infty)$, and for every $0 \leq i \leq s-1$, $k_i=\frac{\log_2 n_s}{\log_2 n_i}$.

Key words: choice number.

1 Introduction

The choice number ch(G) of a graph G = (V, E) is the minimum number k such that for every assignment of a list S(v) of at least k colors to each vertex $v \in V$, there is a proper vertex coloring of G assigning to each vertex v a color from its list S(v). The concept of choosability was introduced by Vizing in 1976 [5] and independently by Erdős, Rubin and Taylor in 1979 [2]. It is also shown in [2] that the choice number of the complete bipartite graph $K_{n,n}$ satisfies $ch(K_{n,n}) = (1+o(1))\log_2 n$. The choice number of the complete multi-partite graph has been investigated by several researchers. Among the results: Alon [1] proved that the choice number of a complete r-partite graph with parts of size m is $\Theta(r \log m)$, Kierstead [3] proved that the choice number of a complete r-partite graph with parts of size 3 is [(4r-1)/3], and Reed and Sudakov [4] proved that if the number of parts r in the complete r-partite graph on n vertices is very large, i.e. $\frac{r}{n} = c$ for any constant $c > \frac{1}{2}$, then the choice number is r. In this paper we calculate the asymptotic value of the choice number of a general complete bipartite graph K_{n_0,n_1} and then expand the result to the case of a complete multi-partite graph. We begin by proving (note that throughout this paper all logs are binary):

Theorem 1 Let $2 \le n_0 \le n_1$ be integers, and let $n_0 = (\log n_1)^{\omega(1)}$. Denote $k = \frac{\log n_1}{\log n_0}$. Let x_0 be the unique root of the equation $x - 1 - x^{\frac{k-1}{k}} = 0$ in the interval $[1, \infty)$. Then $ch(K_{n_0, n_1}) = (1 + o(1)) \frac{\log n_1}{\log x_0}$.

As usual, $\omega(1)$ stands for a function tending to infinity arbitrarily slowly as its variable tends to infinity. Notice that for the case of equal parts (i.e., when $n_0 = n_1$), we have k = 1, $x_0 = 1$ and thus $ch(K_{n_0,n_0}) = (1+o(1)) \log n_0$, matching (naturally) the above mentioned result of Erdős, Rubin and Taylor [2].

We will prove the theorem in two parts, showing first the upper bound and then the lower bound. In the graph K_{n_0,n_1} we label the group of n_0 vertices by V_0 and the group of n_1 vertices by V_1 .

2 The Upper Bound

Theorem 2 Let $2 \le n_0 \le n_1$ be integers. Denote $k = \frac{\log n_1}{\log n_0}$. Let x_0 be the unique root of the equation $x - 1 - x^{\frac{k-1}{k}} = 0$ in the interval $[1, \infty)$. Then $ch(K_{n_0,n_1}) \le \lceil \frac{\log n_1}{\log x_0} \rceil + 1$.

Proof.

Lemma 2.1 If there exists a $p, 0 \le p \le 1$, s.t. $n_0 p^r + n_1 (1-p)^r \le 1$ then $ch(K_{n_0,n_1}) \le r$.

Proof. We show that given, for each vertex $v \in V(K_{n_0,n_1})$, a set of colors S(v) of size r, there is a proper vertex coloring of the graph, assigning to each vertex v a color from S(v).

We partition the set of all available colors $S = \bigcup_{v \in V} S(v)$ into two subsets S_1 and S_0 in the following manner: each color $c \in S$ is chosen randomly and independently with probability p to be in S_1 , and with probability 1-p to be in S_0 . We will show that with positive probability the sets S_0 and S_1 chosen satisfy the condition: each vertex $v \in V_0$ has a color $c \in S(v)$ s.t. $c \in S_0$, and each vertex $v \in V_1$ has a color $c \in S(v)$ s.t. $c \in S_1$. Given such S_0 and S_1 , we can color each vertex in V_0 with a color from S_0 , and each vertex in V_1 with a color from S_1 , and since $S_0 \cap S_1 = \emptyset$, we get a proper coloring.

For each $v \in V_1$ the probability that a bad event occurs, i.e. that all the colors in S(v) are chosen to be in S_0 , is $(1-p)^r$. For each $v \in V_0$ the probability that a bad event occurs, i.e. that all the colors in S(v) are chosen to be in S_1 , is p^r . Therefore the expectation of the number of bad events that occur is $n_0p^r + n_1(1-p)^r \leq 1$. Since either p > 0 or 1-p > 0, we can assume w.l.o.g. that 1-p > 0. Then since, for example, the case in which all the colors in S are chosen to be in S_0 happens with probability

 $(1-p)^{|S|} > 0$, and gives n_1 bad events, the case in which 0 events occur also happens with positive probability (otherwise the expectation would be greater than 1). Therefore we get the desirable partition.

Lemma 2.2 Given r s.t. $\left(\frac{1}{n_0}\right)^{\frac{1}{r-1}} + \left(\frac{1}{n_1}\right)^{\frac{1}{r-1}} \ge 1$, let $p = \frac{\left(\frac{1}{n_0}\right)^{\frac{1}{r-1}}}{\left(\frac{1}{n_0}\right)^{\frac{1}{r-1}} + \left(\frac{1}{n_1}\right)^{\frac{1}{r-1}}}$. Then $n_0 p^r + n_1 (1-p)^r \le 1$.

Proof. If
$$p = \frac{(\frac{1}{n_0})^{\frac{1}{r-1}}}{(\frac{1}{n_0})^{\frac{1}{r-1}} + (\frac{1}{n_1})^{\frac{1}{r-1}}}$$
 then $(\frac{p}{1-p})^{r-1} = \frac{n_1}{n_0}$. Therefore

$$n_0 p^r + n_1 (1 - p)^r = n_0 p^r + n_1 (\frac{n_0}{n_1}) p^{r-1} (1 - p) = n_0 p^{r-1}$$

$$= n_0 \left(\frac{(\frac{1}{n_0})^{\frac{1}{r-1}}}{(\frac{1}{n_0})^{\frac{1}{r-1}} + (\frac{1}{n_1})^{\frac{1}{r-1}}} \right)^{r-1} = \left(\frac{1}{(\frac{1}{n_0})^{\frac{1}{r-1}} + (\frac{1}{n_1})^{\frac{1}{r-1}}} \right)^{r-1}$$

$$\leq 1.$$

All that remains now is to choose $r = r(n_0, n_1)$ satisfying the condition of Lemma 2.2. Let $r = \lceil \frac{\log n_1}{\log x_0} \rceil + 1$. Then $r - 1 \ge \frac{\log n_1}{\log x_0}$, and hence $x_0 \ge n_1^{\frac{1}{r-1}}$. Since the function $f_k(x) = x - 1 - x^{\frac{k-1}{k}}$, where $k \ge 1$, is a monotonely increasing function in the interval $[1, \infty)$, and since $f_k(x_0) = 0$, it follows that $n_1^{\frac{1}{r-1}} \le 1 + n_1^{\frac{1}{r-1} \frac{k-1}{k}} = 1 + (\frac{n_1}{n_0})^{\frac{1}{r-1}}$ as required.

3 The Lower Bound

Theorem 3 If $2 \leq n_0 \leq n_1$ are integers, and $n_0 = (\log n_1)^{\omega(1)}$, then $ch(K_{n_0,n_1}) \geq (1-o(1))\frac{\log n_1}{\log x_0}$, where x_0 is the unique root of the equation $x-1-x^{\frac{k-1}{k}}=0$ in the interval $[1,\infty)$ and $k=\frac{\log n_1}{\log n_0}$.

Proof.

A cover of a hypergraph H is a subset M of the vertices of the hypergraph such that every hyperedge of H contains at least one vertex of M. A minimum cover is a cover which has the least cardinality among all covers.

Let us generate the hypergraph H_0 created by the color lists of the vertices in V_0 , i.e. the hypergraph whose vertices are the colors $\bigcup_{v \in V_0} S(v)$, and whose edges are the lists S(v) for each $v \in V_0$. In the same way, we generate the hypergraph H_1 created by the color lists of the vertices in V_1 .

For any r, if we wish to prove $ch(K_{n_0,n_1}) > r$, it is enough to show that there are parameters $t \ge r$ and $0 \le l \le t$ s.t. it is possible to choose for each vertex in K_{n_0,n_1} a list of r colors from $\{1, 2, ...t\}$, and the lists chosen satisfy:

- 1. The minimum cover of the hypergraph H_0 created by the color lists of the vertices in V_0 (i.e. the minimum size of a set L of colors s.t. for every $v \in V_0$, S(v) contains at least one of the colors in L) is of cardinality at least l.
- 2. The minimum cover of the hypergraph H_1 created by the color lists of the vertices in V_1 is of cardinality at least t l + 1.

If these conditions are satisfied, then when these color lists are assigned to the vertices of K_{n_0,n_1} , the graph cannot be properly colored. This is because at least l colors are needed to color one side, and at least t-l+1 to color the other. Since there are only t colors in all, at least one color will be chosen by both sides – i.e., at least two vertices on opposite sides must be given the same color, implying that a proper coloring is not possible. Therefore, the choice number of the graph is greater than r.

Lemma 3.1 If there exist parameters t and l such that $t \ge r, 0 \le l \le t$ and

$$2^{t}e^{-\frac{(l)_{r}}{(t)_{r}}n_{1}} + 2^{t}e^{-\frac{(t-l)_{r}}{(t)_{r}}n_{0}} \le 1 \tag{1}$$

then $ch(K_{n_0,n_1}) > r$.

Proof. It is easy to see that at least l colors are required for a cover of the hypergraph H_0 created by the color lists of the vertices in V_0 if and only

if for each subset C of size t-l+1 of $\{1,2,...t\}$ there is at least one $v \in V_0$ for which $S(v) \subset C$. In the same way, the minimum cover of the hypergraph H_1 created by the color lists of the vertices in V_1 is at least t-l+1 if and only if for each subset C of size l of $\{1,2,...t\}$ there is at least one $v \in V_1$ for which $S(v) \subset C$.

For each vertex v in K_{n_0,n_1} , let S(v) be a random subset of cardinality r of $\{1,2,...t\}$, chosen uniformly and independently among all $\binom{t}{r}$ subsets of cardinality r of $\{1,2,...t\}$. We wish to find an r that guarantees that with positive probability:

- 1. For every subset C of size t-l+1 there is a vertex $v \in V_0$ s.t. $S(v) \subset C$, and
- 2. For every subset C of size l there is a vertex $v \in V_1$ s.t. $S(v) \subset C$.

To simplify the calculations, we will change Condition 1 above to the stronger condition that:

1. For every subset C of size t-l there is a vertex $v \in V_0$ s.t. $S(v) \subset C$.

For each fixed subset C of cardinality l of $\{1,2,...t\}$ and each $v \in V_1$, the probability that $S(v) \not\subseteq C$ is $1 - \frac{l \cdot ... \cdot (l-r+1)}{t \cdot ... \cdot (t-r+1)} = 1 - \frac{(l)_r}{(t)_r}$. Since there are n_1 vertices in V_1 and $\binom{t}{l}$ subsets of cardinality l of $\{1,...t\}$, and since the color groups of the vertices were chosen independently, the probability that there is a subset C of size l that does not contain S(v) for any $v \in V_1$ is at most $\binom{t}{l} \left(1 - \frac{(l)_r}{(t)_r}\right)^{n_1} < 2^t e^{-\frac{(l)_r}{(t)_r}n_1}$. In a similar fashion, the probability that there is a subset C of size t - l that does not contain S(v) for any $v \in V_0$ is at most $\binom{t}{t-l} \left(1 - \frac{(t-l)_r}{(t)_r}\right)^{n_0} < 2^t e^{-\frac{(t-l)_r}{(t)_r}n_0}$.

We are looking for an r that guarantees that the probability that at least one of Conditions 1 and 2 does not hold is smaller than 1. Therefore it is enough to show the sum of these probabilities is smaller than 1, i.e., it is enough to show: $2^t e^{-\frac{(l)_r}{(t)_r}n_1} + 2^t e^{-\frac{(t-l)_r}{(t)_r}n_0} \leq 1$.

Before proceeding to find t and l that fit Lemma 3.1, we derive bounds on x_0 that will be useful at later stages of the proof.

Lemma 3.2 $2 \le x_0(k) < \max(k, e+2)$

Proof. We begin by showing that if k > e + 1, then $x_0(k) < k$. Since $f_k(x) = x - 1 - x^{\frac{k-1}{k}}$ is monotonely increasing, we need to show that $f_k(k) > 0$, or $k - k^{\frac{k-1}{k}} - 1 > 0$, or $(k-1)^{\frac{1}{k-1}} > k^{\frac{1}{k}}$. But the function $h(x) = x^{\frac{1}{x}}$ is monotonely decreasing for x > e. So if k > e + 1 then k - 1 > e and therefore $(k-1)^{\frac{1}{k-1}} > k^{\frac{1}{k}}$.

It can easily be seen that x_0 increases monotonely as a function of k (i.e. if $k_2 \ge k_1$, $x_0(k_2) \ge x_0(k_1)$). Therefore if $k \le e+2$, then $x_0(k) \le x_0(e+2) < e+2$.

To prove the lower bound on x_0 , observe that $f_k(2) = 2 - 1 - 2^{\frac{k-1}{k}} = 1 - 2^{\frac{k-1}{k}} \le 0$ for every $k \ge 1$.

Lemma 3.3 Let $n_0 = (\log n_1)^{\omega(1)}$. Define $r_0 = \frac{\log n_1}{\log x_0}$, $u = \frac{4 \log \log n_1}{\log n_0} r_0$ and $r = r_0 - u$. Then $r = (1 - o(1))r_0$, and for $t = (\frac{n_1}{n_0})^{\frac{1}{r}} r^2$ and $l = t \frac{1}{(\frac{n_1}{n_0})^{\frac{1}{r}} + 1}$, $2^t e^{-\frac{(l)_r}{(l)_r} n_1} + 2^t e^{-\frac{(t-l)_r}{(l)_r} n_0} \le 1$.

Proof. If $n_0 = (\log n_1)^{\omega(1)}$ then $\log \log n_1 \ll \log n_0$, and therefore $u = o(r_0)$, and $r = (1 - o(1))r_0$, as required. From the fact that $r = (1 - o(1))r_0$, it also follows that $r = \omega(1)$. This is because $x_0 < \max(k, e + 2)$, and therefore, if $k \le e + 2$ then $r_0 = \frac{\log n_1}{\log x_0} > \frac{\log n_1}{\log (e+2)} = \omega(1)$, and otherwise $r_0 = \frac{\log n_1}{\log x_0} > \frac{\log n_1}{\log k} = \frac{\log n_1}{\log \log n_1} = \frac{\log n_1}{\log \log n_1 - \log \log n_0} \ge \frac{\log n_1}{\log \log n_1} = \omega(1)$. Hence $r = (1 - o(1))r_0 = \omega(1)$.

Let us denote $l_0=l$ and $l_1=t-l$. Then $t-l_i=t\frac{(\frac{n_1}{n_i})^{\frac{1}{r}}}{(\frac{n_1}{n_0})^{\frac{1}{r}}+1}$, and $2^t e^{-\frac{(l)_r}{(t)_r}n_1}+2^t e^{-\frac{(t-l)_r}{(t)_r}n_0}=\sum_{i=0}^1 2^t e^{-\frac{(t-l)_r}{(t)_r}n_i}$. In order for this sum to be not greater than 1, it is enough to show that $\frac{(t-l_i)_r}{(t)_r}n_i\gg t$ for i=0,1. We begin by estimating $\frac{(t-l_i)_r}{(t)_r}n_i$.

Claim 3.4
$$\frac{(t-l_i)_r}{(t)_r} n_i > \frac{1}{2e^2} \frac{n_1}{\left(\left(\frac{n_1}{n_0}\right)^{\frac{1}{r}}+1\right)^r}$$
 for $i = 0, 1$.

Proof. $\frac{(t-l_i)_r}{(t)_r} > \left(\frac{t-l_i-r}{t-r}\right)^r = \left(\frac{t-l_i}{t}\right)^r \left(\frac{t(t-l_i-r)}{(t-l_i)(t-r)}\right)^r = \left(\frac{t-l_i}{t}\right)^r \left(1 - \frac{l_i r}{(t-l_i)(t-r)}\right)^r > \left(\frac{t-l_i}{t}\right)^r \left(1 - \frac{2l_i r}{(t-l_i)t}\right)^r, \text{ where the last inequality is a result of } r < \frac{t}{2}.$

Now since
$$\frac{l_0 r}{(t-l_0)t} = \frac{lr}{(t-l)t} = \frac{t \frac{1}{(\frac{n_1}{n_0})^{\frac{1}{r}} + 1}}{t^2 \frac{(\frac{n_1}{n_0})^{\frac{1}{r}}}{(\frac{n_1}{n_0})^{\frac{1}{r}} + 1}} = \frac{r}{t(\frac{n_1}{n_0})^{\frac{1}{r}}} \le \frac{r(\frac{n_1}{n_0})^{\frac{1}{r}}}{t} = \frac{1}{r} = o(1)$$
, and

$$\frac{l_1r}{(t-l_1)t} = \frac{(t-l)r}{lt} = \frac{r(\frac{n_1}{n_0})^{\frac{1}{r}}}{t} = \frac{1}{r} = o(1) \text{ we get (recalling that } 1 - x \ge e^{-x}/2$$
 for $0 \le x \le 1/2$) $\frac{(t-l_i)_r}{(t)_r} > (\frac{t-l_i}{t})^r \frac{1}{2e^2}$. Therefore $\frac{(t-l_i)_r}{(t)_r} n_i > (\frac{t-l_i}{t})^r n_i \frac{1}{2e^2} = \left(\frac{(\frac{n_1}{n_i})^{\frac{1}{r}}}{(\frac{n_1}{n_0})^{\frac{1}{r}}+1}\right)^r n_i \frac{1}{2e^2} = \frac{1}{2e^2} \frac{n_1}{\left((\frac{n_1}{n_0})^{\frac{1}{r}}+1\right)^r}.$

Hence in order to prove that (1) holds it is now enough to prove that $\frac{n_1}{\left(\left(\frac{n_1}{n_0}\right)^{\frac{1}{r}}+1\right)^r}\gg t.$

Claim 3.5
$$\frac{n_1}{\left(\frac{n_1}{n_0}\right)^{\frac{1}{r}}+1\right)^r} \gg t$$
.

$$\begin{aligned} & \textbf{Proof.} \ \frac{n_1}{\left((\frac{n_1}{n_0})^{\frac{1}{r}}+1\right)^r} = \left(\frac{n_1^{\frac{1}{r}}}{(\frac{n_1}{n_0})^{\frac{1}{r}}+1}\right)^r = \left[\frac{n_1^{\frac{1}{r_0}}}{(\frac{n_1}{n_0})^{\frac{1}{r_0}}+1} \frac{n_1^{\frac{1}{r_0}-\frac{1}{r_0}}}{(\frac{n_1}{n_0})^{\frac{1}{r_0}}+1} ((\frac{n_1}{n_0})^{\frac{1}{r_0}}+1)\right]^r. \\ & \textbf{Since} \ \frac{n_1^{\frac{1}{r_0}}}{\left((\frac{n_1}{n_0})^{\frac{1}{r_0}}+1\right)} = \frac{n_1^{\frac{\log x_0}{\log n_1}}}{(\frac{n_1}{n_0})^{\frac{\log x_0}{\log n_1}}+1} = \frac{x_0}{\frac{x_0}{\log n_0}} = 1, \text{ we get} \\ & \frac{n_1}{\left((\frac{n_1}{n_0})^{\frac{1}{r}}+1\right)^r} = \left(n_1^{\frac{1}{r}-\frac{1}{r_0}} \frac{(\frac{n_1}{n_0})^{\frac{1}{r_0}}+1}{(\frac{n_1}{n_0})^{\frac{1}{r_0}}+1}\right)^r > \left(n_1^{\frac{1}{r}-\frac{1}{r_0}} \frac{(\frac{n_1}{n_0})^{\frac{1}{r_0}}}{(\frac{n_1}{n_0})^{\frac{1}{r_0}}}\right)^r, \text{ where the last inequality follows from } r < r_0. \text{ So } \frac{n_1}{\left((\frac{n_1}{n_0})^{\frac{1}{r}}+1\right)^r} > \left(n_1^{\frac{1}{r}-\frac{1}{r_0}} \frac{(\frac{n_1}{n_0})^{\frac{1}{r_0}}}{(\frac{n_1}{n_0})^{\frac{1}{r}}}\right)^r = n_0^{(\frac{1}{r}-\frac{1}{r_0})^r} = n_0^{(\frac{1}{r}-\frac{1}{r_0})^r} = n_0^{\frac{1-r}{r_0}} = n_0^{\frac{1}{r_0}} = n_0^{\frac{4\log\log n_1}{\log n_0}} = \log^4 n_1. \end{aligned}$$

Let us now estimate $t = \left(\frac{n_1}{n_0}\right)^{\frac{1}{r}} r^2$. Observe that $r^2 < r_0^2 = \left(\frac{\log n_1}{\log x_0}\right)^2 \le \log^2 n_1$. Also,

$$\left(\frac{n_1}{n_0}\right)^{\frac{1}{r}} = 2^{\frac{\log n_1 - \log n_0}{r}} = 2^{\frac{\log n_1 - \log n_0}{\left(1 - \frac{4\log\log\log n_1}{\log n_0}\right) \frac{\log n_1}{\log x_0}}} = x_0^{\frac{\log n_1 - \log n_0}{\log\log n_1}} \le x_0^{1 + o(1)}$$

where the last inequality stems from the assumption that $n_0 = (\log n_1)^{\omega(1)}$. Since $x_0 = O(k)$, $(\frac{n_1}{n_0})^{\frac{1}{r}} \le x_0^{1+o(1)} = (O(k))^{1+o(1)} = O((\log n_1)^{1+o(1)})$. Therefore $t = (\frac{n_1}{n_0})^{\frac{1}{r}} r^2 = O((\log n_1)^{3+o(1)}) \ll \log^4 n_1$.

This also ends the proof of Lemma 3.3, and therefore of the lower bound and of Theorem 1.

4 Generalization - Multi-Partite Graphs

We wish to estimate the choice number of a general (s + 1)-partite graph $K_{n_0,n_1,...,n_s}$. In the graph $K_{n_0,n_1,...,n_s}$ we label the group of n_i vertices by V_i , for each $0 \le i \le s$. Using a proof similar to that of the bipartite case, we will prove:

Theorem 4 Let $s \geq 1$ be a fixed integer. Let $2 \leq n_0 \leq n_1 \dots \leq n_s$, and assume that $n_0 = (\log n_s)^{\alpha}$, where $\alpha \geq 2\sqrt{\frac{\log n_s}{\log \log n_s}}$. For every $0 \leq i \leq s-1$ denote $k_i = \frac{\log n_s}{\log n_i}$. Let x_0 be the unique root of the equation $sx-1 - \sum_{j=0}^{s-1} x^{\frac{k_j-1}{k_j}} = 0$ in the interval $[1, \infty)$. Then $ch(K_{n_0, \dots, n_s}) = (1+o(1))\frac{\log n_s}{\log x_0}$.

Observe that in the most basic case of equally sized parts (i.e. whenever $n_0 = \ldots = n_s$), we have $x_0 = (s+1)/s$, and thus $ch(K_{n_0,n_0,\ldots,n_0}) = (1+o(1))\log n_0/\log((s+1)/s)$. Since $\log((s+1)/s) = \Theta(1/s)$, we recover the result of Alon [1] mentioned in the introduction.

Again we divide the proof into two parts – the upper bound and the lower bound.

5 The Upper Bound for Multi-Partite Graphs

Theorem 5 Let $2 \le n_0 \le ... \le n_s$ be integers, and let $0 < \epsilon < 1$ be a constant. For every $0 \le i \le s - 1$ denote $k_i = \frac{\log n_s}{\log n_i}$. Let x_0 be the unique

root of the equation $(s+\epsilon) \cdot x - 1 - \sum_{j=0}^{s-1} x^{\frac{k_j-1}{k_j}} = 0$ in the interval $[1, \infty)$. Define $r = \lceil \frac{\log n_s}{\log x_0} \rceil + 1$. Then $ch(K_{n_0,\dots,n_s}) \leq r$, for n_s large enough.

Proof.

Lemma 5.1 If there exist $p_0, ...p_s$ such that $0 \le p_i \le 1$ for every $0 \le i \le s$, $\sum_{i=0}^s p_i = 1 \text{ and } \sum_{i=0}^s n_i (1-p_i)^r \le 1, \text{ then } ch(K_{n_0,n_1,...,n_s}) \le r.$

Proof. The proof is identical to that of the bipartite case (Lemma 2.1), only this time we partition the set of all available colors into s+1 sets, using the probabilities p_i . A bad event for a vertex $v \in V_i$ is one in which all the colors in S(v) are chosen to be in color groups other than S_i , and it happens with probability $(1-p_i)^r$.

Lemma 5.2 Given r s.t. $\sum_{i=0}^{s} n_i^{-\frac{1}{r-1}} \ge s^{\frac{r}{r-1}}$, let $p_i = 1 - \frac{sn_i^{-\frac{1}{r-1}}}{\sum_{j=0}^{s} n_j^{-\frac{1}{r-1}}}$ for $0 \le i \le s$. Then $0 \le p_i \le 1$ for each $0 \le i \le s$, $\sum_{i=0}^{s} p_i = 1$, and $\sum_{i=0}^{s} n_i (1-p_i)^r \le 1$.

Proof. In order for p_i to be non-negative, we must demand that for every $0 \le i \le s$, $\frac{sn_i^{-\frac{1}{r-1}}}{\sum_{j=0}^s n_j^{-\frac{1}{r-1}}} \le 1$, or $s \le \sum_{j=0}^s \left(\frac{n_i}{n_j}\right)^{\frac{1}{r-1}}$. But if $s^{\frac{r}{r-1}} \le \sum_{j=0}^s n_j^{-\frac{1}{r-1}}$, then for every $0 \le i \le s$, $s < s^{\frac{r}{r-1}} \le \sum_{j=0}^s n_j^{-\frac{1}{r-1}} \le \sum_{j=0}^s \left(\frac{n_i}{n_j}\right)^{\frac{1}{r-1}}$. Also,

$$\sum_{i=0}^{s} p_i = s + 1 - \sum_{i=0}^{s} (1 - p_i) = s + 1 - \sum_{i=0}^{s} \frac{s(n_i^{-\frac{1}{r-1}})}{\sum_{i=0}^{s} n_i^{-\frac{1}{r-1}}} = s + 1 - s = 1.$$

If
$$1 - p_i = \frac{sn_i^{-\frac{1}{r-1}}}{\sum_{i=0}^s n_i^{-\frac{1}{r-1}}}$$
 then $\left(\frac{1-p_i}{1-p_j}\right)^{r-1} = \frac{n_j}{n_i}$. Therefore, for any i ,

$$\sum_{j=0}^{s} n_j (1 - p_j)^r = n_i (1 - p_i)^{r-1} \sum_{j=0}^{s} (1 - p_j) = s \cdot n_i (1 - p_i)^{r-1}$$

$$= s \cdot n_i \left(\frac{s n_i^{-\frac{1}{r-1}}}{\sum_{j=0}^{s} n_j^{-\frac{1}{r-1}}} \right)^{r-1} = \left(\frac{s^{\frac{r}{r-1}}}{\sum_{j=0}^{s} n_j^{-\frac{1}{r-1}}} \right)^{r-1}$$

$$\leq 1.$$

Let $r = \lceil \frac{\log n_s}{\log x_0} \rceil + 1$. Then $r - 1 \ge \frac{\log n_s}{\log x_0}$, and thus $x_0 \ge n_s^{\frac{1}{r-1}}$.

Since the function $g_{k_0,\dots k_{s-1},\epsilon}(x)=(s+\epsilon)\cdot x-1-\sum_{j=0}^{s-1}x^{\frac{k_j-1}{k_j}}$, where $k_j\geq 1$ for each j, is a monotonely increasing function in the interval $[1,\infty)$, and since $g_{k_0,\dots k_{s-1},\epsilon}(x_0)=0$, it follows that for r large enough, or for n_s large enough (see Lemma 6.2 below, and the beginning of the proof of Lemma 3.3), $s^{\frac{r}{r-1}}n_s^{\frac{1}{r-1}}\leq (s+\epsilon)n_s^{\frac{1}{r-1}}\leq 1+\sum_{j=0}^{s-1}n_s^{\frac{1}{r-1}\frac{k_j-1}{k_j}}=1+\sum_{i=0}^{s-1}(\frac{n_s}{n_i})^{\frac{1}{r-1}}$ as required.

6 The Lower Bound for Multi-Partite Graphs

Theorem 6 Let $2 \leq n_0 \dots \leq n_s$ be integers, and let $n_0 = (\log n_s)^{\alpha}$, where $\alpha \geq 2\sqrt{\frac{\log n_s}{\log \log n_s}}$. For every $0 \leq i \leq s-1$ denote $k_i = \frac{\log n_s}{\log n_i}$. Let x_0 be the unique root of the equation $s \cdot x - 1 - \sum_{j=0}^{s-1} x^{\frac{k_j-1}{k_j}} = 0$ in the interval $[1, \infty)$. Then $ch(K_{n_0,\dots,n_s}) \geq (1-o(1))\frac{\log n_s}{\log x_0}$.

Proof. Similarly to the bipartite case, in order to prove $ch(K_{n_0,...,n_s}) > r$, it is enough to show that there are a $t \geq r$ and a sequence of $0 \leq l_i \leq t$ for which $\sum_{i=0}^{s} l_i = t$, s.t. it is possible to choose for each vertex in $K_{n_0,...,n_s}$ a list of r of colors from $\{1,2,...t\}$, and the lists chosen satisfy the following s conditions: For each $0 \leq i \leq s-1$ the minimum cover of the hypergraph created by the color lists of the vertices in V_i is of cardinality at least l_i , and the additional condition: the minimum cover of the hypergraph created by the color lists of the vertices in V_s is of cardinality at least $l_s + 1$.

As in the bipartite case, if these conditions are satisfied, then by the pigeonhole principle at least 2 vertices in different groups must be given the same color, so the choice number is greater than r.

Lemma 6.1 If there exist a parameter $t \ge r$ and a sequence of $0 \le l_i \le t$ for which $\sum_{i=0}^{s} l_i = t$ and

$$\sum_{i=0}^{s} 2^{t} e^{-\frac{(t-l_{i})_{r}}{(t)_{r}} n_{i}} \le 1 \tag{2}$$

then $ch(K_{n_0,\ldots,n_s}) > r$.

Proof. Similar to the bipartite case.

As in the bipartite case, we calculate bounds on x_0 that will help us later on.

Lemma 6.2 $\frac{s+1}{s} \le x_0 < \max(k_0, e+2)$

Proof. Since for every $0 \le i \le s$, $n_0 \le n_i$, it follows that $k_0 = \frac{\log n_s}{\log n_0} \ge \frac{\log n_s}{\log n_i} = k_i$. Therefore, for a given x in the range $[1, \infty)$, $x^{\frac{k_0-1}{k_0}} \ge x^{\frac{k_i-1}{k_i}}$ for all i, and $f_{k_0,\dots k_{s-1}}(x) = sx - 1 - \sum_{i=0}^{s-1} x^{\frac{k_i-1}{k_i}} \ge sx - 1 - sx^{\frac{k_0-1}{k_0}} = s(x-x^{\frac{k_0-1}{k_0}})-1 \ge x-x^{\frac{k_0-1}{k_0}}-1$ (note all these functions increase monotonely as functions of x). Therefore the root x_0 in the range $[1,\infty)$ of the first equation $sx - 1 - \sum_{i=0}^{s-1} x^{\frac{k_i-1}{k_i}} = 0$, which is our equation, is not greater than the root x_1 of the equation $x - x^{\frac{k_0-1}{k_0}} - 1 = 0$.

But the last equation is $f_{k_0}(x) = 0$, and we already know from the bipartite case that its root is smaller than $\max(k_0, e + 2)$.

To prove the lower bound observe that $f_{k_0,\dots,k_{s-1}}(\frac{s+1}{s}) = s+1-1-\sum_{j=0}^{s-1} \left(\frac{s+1}{s}\right)^{\frac{k_j-1}{k_j}} \le s-s=0$, and thus by monotonicity $x_0 \ge \frac{s+1}{s}$.

Lemma 6.3 Let $n_0 = (\log n_s)^{\alpha}$, where $\alpha \geq 2\sqrt{\frac{\log n_s}{\log \log n_s}}$. Define $r_0 = \frac{\log n_s}{\log x_0}$, $u = \frac{4\log \log n_s}{\log n_0} r_0$ and $r = r_0 - u$. Then $r = (1 - o(1))r_0$, and for $t = (\frac{1}{s}\sum_{j=0}^{s} (\frac{n_s}{n_j})^{\frac{1}{r}} - 1)r^2$ and $t - l_i = t \frac{s(\frac{n_s}{n_i})^{\frac{1}{r}}}{\sum_{j=0}^{s} (\frac{n_s}{n_j})^{\frac{1}{r}}}$, one has: $0 \leq l_i \leq t, \sum_{i=0}^{s} l_i = t$, and $\sum_{i=0}^{s} 2^t e^{-\frac{(t-l_i)_r}{(t)_r} n_i} \leq 1$, i.e., the assumptions of Lemma 6.1 are satisfied.

Proof. Since $n_0 = (\log n_s)^{\omega(1)}$, it follows that $r = (1 - o(1))r_0$, as in the bipartite case. Also, again as in the bipartite case, from $x_0 < \max(k_0, e + 2)$ it follows that $r_0 = \omega(1)$, and therefore $r = \omega(1)$.

We need to show that for every $i, 0 \le l_i \le t$, or $0 \le t - l_i \le t$. Since $t - l_i$ is obviously non-negative, we need to prove that $t - l_i \le t$, or $\frac{s(\frac{n_s}{n_i})^{\frac{1}{r}}}{\sum_{j=0}^s (\frac{n_s}{n_j})^{\frac{1}{r}}} \le 1$, or $s \le \sum_{j=0}^s \left(\frac{n_i}{n_j}\right)^{\frac{1}{r}}$. Since $n_0 \le n_i$ for every i, it is enough to show $s \le \sum_{j=0}^s \left(\frac{n_0}{n_j}\right)^{\frac{1}{r}}$.

Since $r_0 = \frac{\log n_s}{\log x_0}$, we have: $x_0 = n_s^{\frac{1}{r_0}}$, and so $sn_s^{\frac{1}{r_0}} = 1 + \sum_{j=0}^{s-1} n_s^{\frac{1}{r_0} \frac{k_j-1}{k_j}} = \sum_{j=0}^s \left(\frac{n_s}{n_j}\right)^{\frac{1}{r_0}}$, or $s = \sum_{j=0}^s \left(\frac{1}{n_j}\right)^{\frac{1}{r_0}}$. But

$$\sum_{j=0}^{s} \left(\frac{n_0}{n_j}\right)^{\frac{1}{r}} = \sum_{j=0}^{s} \left(\frac{1}{n_j}\right)^{\frac{1}{r_0}} \frac{n_0^{\frac{1}{r}}}{n_j^{\frac{1}{r}-\frac{1}{r_0}}} \geq \frac{n_0^{\frac{1}{r}}}{n_s^{\frac{1}{r}-\frac{1}{r_0}}} \sum_{j=0}^{s} \left(\frac{1}{n_j}\right)^{\frac{1}{r_0}} = s \frac{n_0^{\frac{1}{r}}}{n_s^{\frac{1}{r}-\frac{1}{r_0}}} \,,$$

so it is enough to show $\frac{n_0^{\frac{1}{r}}}{n_s^{\frac{1}{r}-\frac{1}{r_0}}} \ge 1$. But $\frac{1}{r} - \frac{1}{r_0} = \frac{1}{r} \frac{u}{r_0}$, so $\frac{1}{n_s^{\frac{1}{r}-\frac{1}{r_0}}} = 2^{-\frac{1}{r} \log n_s \frac{u}{r_0}} = 2^{-\frac{1}{r} \log n_s \frac{4}{n_0}}$. Also $n_0^{\frac{1}{r}} = (\log n_s)^{\alpha \frac{1}{r}} = 2^{\frac{1}{r} \alpha \log \log n_s}$. Therefore

$$\frac{n_0^{\frac{1}{r}}}{n_s^{\frac{1}{r} - \frac{1}{r_0}}} = \left(2^{\alpha \log \log n_s - \log n_s \frac{4}{\alpha}}\right)^{\frac{1}{r}} \ge 1,$$

where the last inequality stems from the condition on α . Also,

$$\sum_{i=0}^{s} l_i = (s+1)t - \sum_{i=0}^{s} (t-l_i) = (s+1)t - \sum_{i=0}^{s} t \frac{s(\frac{n_s}{n_i})^{\frac{1}{r}}}{\sum_{j=0}^{s} (\frac{n_s}{n_i})^{\frac{1}{r}}} = st + t - st = t.$$

All that is left for us to verify is that Condition (2) is fulfilled. The proof is, again, similar to the bipartite case.

Claim 6.4
$$\frac{(t-l_i)_r}{(t)_r} n_i > \frac{s^r n_s}{\left(\sum_{j=0}^s (\frac{n_s}{n_j})^{\frac{1}{r}}\right)^r} \frac{1}{2e^2} \text{ for } 0 \leq i \leq s.$$

Proof. We have: $\frac{(t-l_i)_r}{(t)_r} > \left(\frac{t-l_i-r}{t-r}\right)^r = \left(\frac{t-l_i}{t}\right)^r \left(1 - \frac{l_i r}{(t-l_i)(t-r)}\right)^r > \left(\frac{t-l_i}{t}\right)^r \left(1 - \frac{2l_i r}{(t-l_i)t}\right)^r$ where the last inequality is a result of $r < \frac{t}{2}$. By definition $t-l_i = t \frac{s(\frac{n_s}{n_i})^{\frac{1}{r}}}{\sum_{j=0}^s \left(\frac{n_s}{n_i}\right)^{\frac{1}{r}}}$,

so
$$l_i = \frac{t\left(\sum_{j=0}^s \left(\frac{n_s}{n_j}\right)^{\frac{1}{r}} - s\left(\frac{n_s}{n_i}\right)^{\frac{1}{r}}\right)}{\sum_{j=0}^s \left(\frac{n_s}{n_j}\right)^{\frac{1}{r}}}$$
, and $\frac{l_i}{t-l_i} = \frac{\sum_{j=0}^s \left(\frac{n_s}{n_j}\right)^{\frac{1}{r}} - s\left(\frac{n_s}{n_i}\right)^{\frac{1}{r}}}{s\left(\frac{n_s}{n_i}\right)^{\frac{1}{r}}} = \frac{1}{s}\sum_{j=0}^s \left(\frac{n_i}{n_j}\right)^{\frac{1}{r}} - 1$.

Now since $\frac{l_i r}{(t-l_i)_t} = (\frac{1}{s} \sum_{j=0}^s (\frac{n_i}{n_j})^{\frac{1}{r}} - 1) \frac{r}{t} \le (\frac{1}{s} \sum_{j=0}^s (\frac{n_s}{n_j})^{\frac{1}{r}} - 1) \frac{r}{t} = \frac{1}{r} = o(1)$, we get $\frac{(t-l_i)_r}{(t)_r} > (\frac{t-l_i}{t})^r \frac{1}{2e^2}$.

Hence
$$\frac{(t-l_i)_r}{(t)_r} n_i > \left(\frac{t-l_i}{t}\right)^r n_i \frac{1}{2e^2} = \left(\frac{s(\frac{n_s}{n_i})^{\frac{1}{r}}}{\sum_{j=0}^s \left(\frac{n_s}{n_j}\right)^{\frac{1}{r}}}\right)^r n_i \frac{1}{2e^2} = \frac{s^r n_s}{\left(\sum_{j=0}^s \left(\frac{n_s}{n_j}\right)^{\frac{1}{r}}\right)^r \frac{1}{2e^2}}$$

Therefore in order to prove that (2) holds it is now enough to prove that $\frac{s^r n_s}{\left(\sum_{j=0}^s \left(\frac{n_s}{n_j}\right)^{\frac{1}{r}}\right)^r} \gg t \text{ (assuming } s \text{ is constant)}.$

Claim 6.5
$$\frac{s^r n_s}{\left(\sum_{j=0}^s \left(\frac{n_s}{n_j}\right)^{\frac{1}{r}}\right)^r} \gg t$$
.

Proof. We have:

$$\frac{s^r n_s}{\left(\sum_{j=0}^s \left(\frac{n_s}{n_j}\right)^{\frac{1}{r}}\right)^r} = \left(\frac{s n_s^{\frac{1}{r}}}{\sum_{j=0}^s \left(\frac{n_s}{n_j}\right)^{\frac{1}{r}}}\right)^r = \left[\frac{s n_s^{\frac{1}{r_0}}}{\sum_{j=0}^s \left(\frac{n_s}{n_j}\right)^{\frac{1}{r_0}}} \frac{n_s^{\frac{1}{r} - \frac{1}{r_0}}}{\sum_{j=0}^s \left(\frac{n_s}{n_j}\right)^{\frac{1}{r}}} \sum_{j=0}^s \left(\frac{n_s}{n_j}\right)^{\frac{1}{r_0}}\right]^r.$$

Since
$$\frac{sn_s^{\frac{1}{r_0}}}{\sum_{j=0}^{s}(\frac{n_s}{n_j})^{\frac{1}{r_0}}} = \frac{sn_s^{\frac{\log x_0}{\log n_s}}}{\sum_{j=0}^{s-1}(\frac{n_s}{n_j})^{\frac{\log x_0}{\log n_s}} + 1} = \frac{sx_0}{\sum_{j=0}^{s-1}\frac{k_j-1}{k_j}} = 1, \text{ we get } \frac{s^rn_s}{\left(\sum_{j=0}^{s}(\frac{n_s}{n_j})^{\frac{1}{r}}\right)^r} = \left(n_s^{\frac{1}{r}-\frac{1}{r_0}}\frac{\sum_{j=0}^{s}(\frac{n_s}{n_j})^{\frac{1}{r_0}}}{\sum_{j=0}^{s}(\frac{n_s}{n_j})^{\frac{1}{r}}}\right)^r = \left(\frac{\sum_{j=0}^{s}(\frac{1}{n_j})^{\frac{1}{r_0}}}{\sum_{j=0}^{s}(\frac{1}{n_j})^{\frac{1}{r}}}\right)^r. \text{ Now,}$$

$$\frac{\sum_{j=0}^{s} \left(\frac{1}{n_{j}}\right)^{\frac{1}{r_{0}}}}{\sum_{j=0}^{s} \left(\frac{1}{n_{j}}\right)^{\frac{1}{r}}} = \frac{\sum_{j=0}^{s} \left(\frac{1}{n_{j}}\right)^{\frac{1}{r}} \left(\frac{1}{n_{j}}\right)^{\frac{1}{r_{0}} - \frac{1}{r}}}{\sum_{j=0}^{s} \left(\frac{1}{n_{j}}\right)^{\frac{1}{r}}} = \frac{\sum_{j=0}^{s} \left(\frac{1}{n_{j}}\right)^{\frac{1}{r}} n_{j}^{\frac{1}{r} - \frac{1}{r_{0}}}}{\sum_{j=0}^{s} \left(\frac{1}{n_{j}}\right)^{\frac{1}{r}}} \ge \frac{\sum_{j=0}^{s} \left(\frac{1}{n_{j}}\right)^{\frac{1}{r}} n_{0}^{\frac{1}{r} - \frac{1}{r_{0}}}}{\sum_{j=0}^{s} \left(\frac{1}{n_{j}}\right)^{\frac{1}{r}}},$$

where the last inequality is a result of $n_i \ge n_0$ for all $1 \le i \le s$ and of $r < r_0$.

So
$$\frac{\sum_{j=0}^{s}(\frac{1}{n_{j}})^{\frac{1}{r_{0}}}}{\sum_{j=0}^{s}(\frac{1}{n_{j}})^{\frac{1}{r}}} \ge n_{0}^{\frac{1}{r}-\frac{1}{r_{0}}}$$
, and $\frac{s^{r}n_{s}}{\left(\sum_{j=0}^{s}(\frac{n_{s}}{n_{j}})^{\frac{1}{r}}\right)^{r}} \ge \left(n_{0}^{\frac{1}{r}-\frac{1}{r_{0}}}\right)^{r} = n_{0}^{\frac{1-\frac{r}{r_{0}}}{r_{0}}} = n_{0}^{\frac{u}{r_{0}}} = n_{0}^{\frac{4\log\log n_{s}}{\log n_{0}}} = \log^{4}n_{s}.$

Let us now estimate $t = (\frac{1}{s} \sum_{j=0}^{s} (\frac{n_s}{n_j})^{\frac{1}{r}} - 1)r^2$. First, $r^2 < r_0^2 = (\frac{\log n_s}{\log x_0})^2 \le (\frac{\log n_s}{\log \frac{s+1}{s}})^2 = C \log^2 n_s$ where C = C(s) is a constant. Second,

$$\left(\frac{n_s}{n_0}\right)^{\frac{1}{r}} = 2^{\frac{\log n_s - \log n_0}{r}} = 2^{\frac{\frac{\log n_s - \log n_0}{\log \log n_s}}{\left(1 - \frac{4\log\log n_s}{\log n_0}\right) \frac{\log n_s}{\log x_0}}} = x_0^{\frac{\frac{\log n_s - \log n_0}{\log n_s}}{1 - \frac{4\log\log n_s}{\log n_0}}} \le x_0^{1 + o(1)},$$

where the last inequality stems from the assumption that $n_0 = (\log n_s)^{\omega(1)}$. Since $x_0 = O(k_0)$, we get: $\left(\frac{n_s}{n_0}\right)^{\frac{1}{r}} \leq x_0^{1+o(1)} = \left(O(k_0)\right)^{1+o(1)} = O((\log n_s)^{1+o(1)})$. Therefore

$$t = \left(\frac{1}{s} \sum_{j=0}^{s} \left(\frac{n_s}{n_j}\right)^{\frac{1}{r}} - 1\right) r^2 = \left(\frac{1}{s} \sum_{j=0}^{s-1} \left(\frac{n_s}{n_j}\right)^{\frac{1}{r}} - \frac{s-1}{s}\right) r^2$$

$$\leq \left(\frac{1}{s} \sum_{j=0}^{s-1} \left(\frac{n_s}{n_j}\right)^{\frac{1}{r}}\right) r^2 \leq \frac{1}{s} s \left(\frac{n_s}{n_0}\right)^{\frac{1}{r}} r^2 = \left(\frac{n_s}{n_0}\right)^{\frac{1}{r}} r^2 = O((\log n_s)^{3+o(1)})$$

$$\ll \log^4 n_s.$$

This also ends the proof of Lemma 6.3, and therefore of the lower bound of the multi-partite case and of Theorem 4.

References

- [1] Alon, N., Choice numbers of graphs: a probabilistic approach, Combin. Probab. Comput. 1, no. 2 (1992), 107-114.
- [2] Erdős P., Rubin A. L. and Taylor H., *Choosability in Graphs*, Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXVI, 1979, 125-157.
- [3] Kierstead H., On the choosability of complete multipartite graphs with part size 3, Discrete Math. 211 (2000), 255-259.
- [4] Reed B. and Sudakov B. List colouring of graphs with at most $(2-o(1))\chi$ vertices, Proc. Intern. Congress Math., Vol. III (Beijing, 2002), 587-603.
- [5] Vizing V. G., Coloring the vertices of a graph in prescribed colors (in Russian), Diskret. Analiz. No. 29, Metody Diskret. Anal. v. Teorii Kodov i Shem 101 (1976), 3-10.