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Abstract

Coloring a k-colorable graph using k colors (k ≥ 3) is a notoriously hard problem. Considering
average case analysis allows for better results. In this work we consider the uniform distribution
over k-colorable graphs with n vertices and exactly cn edges, c greater than some sufficiently
large constant. We rigorously show that all proper k-colorings of most such graphs lie in a single
“cluster”, and agree on all but a small, though constant, portion of the vertices. We also describe
a polynomial time algorithm that whp finds a proper k-coloring of such a random k-colorable
graph, thus asserting that most such graphs are easy to color. This should be contrasted with
the setting of very sparse random graphs (which are k-colorable whp), where experimental results
show some regime of edge density to be difficult for many coloring heuristics.

1 Introduction

A k-coloring f of a graph G = (V,E) is a mapping from its set of vertices V to {1, 2, ..., k}. f is a
proper coloring of G if f(u) 6= f(v) for every edge (u, v) ∈ E. The minimal k s.t. G admits a proper
k-coloring is called the chromatic number, commonly denoted by χ(G). In this work we think of
k > 2 as some fixed integer, say k = 3 or k = 100.

1.1 Phase Transitions, Clusters, and Graph Coloring Heuristics

Properly k-coloring a given k-colorable graph is one of the most famous NP-hard problems. The
plethora of worst-case NP-hardness results for problems in graph theory motivates the study of
heuristics that give “useful” answers for “typical” subset of the problem instances, where “useful”
and “typical” are usually not well defined. One way of evaluating and comparing heuristics is by
running them on a collection of input graphs (“benchmarks”), and checking which heuristic usually
gives better results. Though empirical results are sometimes informative, we seek more rigorous
measures of evaluating heuristics. Although satisfactory approximation algorithms are known for
several NP-hard problems, the coloring problem is not amongst them. In fact, Feige and Kilian [15]
prove that for any ε > 0 no polynomial time algorithm approximates χ(G) within a factor of n1−ε

(for all input graphs G on n vertices) unless ZPP=NP.
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When very little can be done in the “worst case”, comparing heuristics’ behavior on “typical”, or
“average”, instances comes to mind. One possibility of rigorously modeling such “average” instances
is to use random models. In the context of graph coloring, the Gn,p and Gn,m models, pioneered
by Erdős and Rényi, might appear to be the most natural candidates. A random graph G in Gn,p

consists of n vertices, and each of the
(
n
2

)
possible edges is included w.p. p = p(n) independently

of the others. In Gn,m, m = m(n) edges are picked uniformly at random. Bollobás [7] and ÃLuczak
[23] calculated the probable value of χ(Gn,p) to be whp 1 approximately n ln(1/(1− p))/(2 ln(np)) for
p ∈ [C0/n, 0.99]. Thus, the chromatic number of Gn,p is typically rather high (roughly comparable
with the average degree np of the random graph) – higher than k, when thinking of k as some fixed
integer, say k = 3, and allowing the average degree np to be arbitrarily large.

Remarkable phenomena occurring in the random graph Gn,m are phase transitions. One such
transition occurs with respect to the property of being k-colorable. More precisely, there exists a
threshold dk such that graphs with average degree 2m/n > (1 + ε)dk do not admit any proper
k-coloring whp, while graphs with a lower average degree 2m/n < (1 − ε)dk will have one whp
[1]. Moreover, experimental results show that random graphs with average degree just below the
k-colorability threshold (which are thus k-colorable whp) are “hard” for many coloring heuristics.
One possible explanation for this, backed up by partially non-rigorous analytical tools from statistical
physics [24], is the surmise that k-colorable graphs with average degree just below the threshold show
a clustering phenomenon of the solution space. That is, typically random graphs with density
close to the threshold dk have an exponential number of clusters of k-colorings. Specifically, it is
believed that any two k-colorings in distinct clusters disagree on at least εn vertices, while in each
cluster there is a linear number of “locally frozen” vertices. Here we say that a vertex v is “locally
frozen in a coloring σ” if there is no proper k-coloring τ such that σ(v) 6= τ(v) at Hamming distance
less than εn from σ, and a vertex is “locally frozen” in a cluster if it is frozen in all colorings σ of
that cluster. Recently some supporting evidence for this theory was proved rigorously for random
k-CNF formulas, k ≥ 8 [3, 13].

The algorithmic difficulty with such a clustered solution space seems to be that local algorithms
do not survey the (long-range) correlations implied by the existence of frozen variables. Hence, in the
course of constructing a k-coloring these algorithms may assign “impossible” colors to frozen vertices,
and will therefore fail to find a proper k-coloring. The recent Survey Propagation algorithm is based
on an attempt to avoid this problem. The basic idea is to compute the marginal distributions of
the colors assigned to any vertex in a uniformly random cluster of solutions, pick a vertex that has
a maximum bias towards one color, and decimate the instance accordingly (cf. [9]). Experimental
evidence suggests that Survey Propagation succeeds for “small” values of k for densities close to the
k-colorability threshold but no rigorous analysis is known.

In this work we consider the regime of denser graphs, i.e. the average degree will be by a constant
factor higher than the k-colorability threshold. In this regime, almost all graphs are not k-colorable,
and therefore we shall condition on the event that the random graph is k-colorable. Thus, we consider
probably the most natural distribution on k-colorable graphs with given numbers n of vertices and
m of edges, namely, the uniform distribution Gn,m,k. For m/n ≥ C0(k), C0(k) a sufficiently large
number depending on k only, we are able to rigorously prove that the space of all proper k-colorings
of a typical graph in Gn,m,k has the following structure: an exponential number of proper k-colorings
arranged in a single cluster. We also describe a polynomial time algorithm that whp k-colors Gn,m,k

with m ≥ C0(k)n edges .

Thus, our result shows that when a k-colorable graph has a single cluster of k-colorings (its
1When writing whp (“with high probability”) we mean with probability tending to 1 as n goes to infinity.
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volume may be exponential) then typically the problem is easy. This in some sense complements in a
rigorous way the results in [24, 10] (where it is conjectured that when the clustering is complicated,
more sophisticated algorithms are needed). Furthermore, standard probabilistic calculations show
that when m ≥ Cn log n, C a sufficiently large constant, a random k-colorable graph will have whp
only one proper k-coloring; indeed, it is known that such graphs are even easier to color than in the
case m = O(n), which is the focus of this paper. A further appealing implication of our result is the
fact that almost all k-colorable graphs, sparse or dense, can be efficiently colored. This extends a
previous result [26] (whose title we adopted) concerning dense graphs (i.e., m = Θ(n2)).

1.2 Results and Techniques

In this section we state our main results precisely. First, we discuss the structure of the solution
space (i.e., the set of all proper k-colorings) of Gn,m,k. Formally we prove:

Theorem 1.1. (clustering phenomenon) Let G be random graph from Gn,m,k, m ≥ C0(k)n, C0(k) a
sufficiently large number that depends on k only. Then whp G enjoys the following properties:

1. All but e−Θ(m/n)n vertices are frozen. That is, G has a uniquely k-colorable induced subgraph
H on at least (1− e−Θ(m/n))n vertices.

2. The graph induced by the non-frozen vertices decomposes into connected components of at most
logarithmic size.

3. Letting β(G) be the number of proper k-colorings of G, we have 1
n log β(G) = e−Θ(m/n).

Notice that property 1 implies in particular that any two proper k-colorings differ on at most
e−Θ(m/n)n vertices. The above characterization of the solution space of Gn,m,k leads to the following
algorithmic result:

Theorem 1.2. (algorithm) There exists a polynomial time algorithm that whp properly k-colors a
random graph from Gn,m,k, m ≥ C1(k)n, C1(k) a sufficiently large number that depends on k only.

Specifically, we prove that the polynomial time algorithm in Theorem 1.2 is the one presented by
Alon and Kahale [4] (more details in Section 4). Our analysis gives for C0, C1 = Θ(k10), but no
serious attempt was made to optimize the power of k.

The Erdős-Rényi graph Gn,m and its sibling Gn,p are both very well understood and have received
much attention during the past years. However, the event of a random graph in Gn,m being k
colorable, when k is fixed and the average degree 2m/n is above the k-colorability threshold, is very
unlikely. Therefore, the distribution Gn,m,k differs from Gn,m significantly. In effect, many techniques
that have become standard in the study of Gn,m just do not carry over to Gn,m,k – at least not directly.
In particular, the contriving event of being k-colorable causes the edges in Gn,m,k to be dependent.
The inherent difficulty of Gn,m,k has led many researchers to consider the more approachable, but
possibly less natural, planted distribution introduced by Kučera [22] and denoted throughout by
Pn,m,k. The planted distribution is defined as follows.

Fix an arbitrary partition V1, . . . , Vk of the vertex set V = {1, . . . , n}; call a set e =
{v, w} ⊂ V compatible with V1, . . . , Vk if there exist 1 ≤ i < j ≤ k such that v ∈ Vi and
w ∈ Vj . Construct a k-colorable graph by picking uniformly at random a set of m edges
{e1, . . . , em} that are compatible with V1, . . . , Vk.
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Due to the “constructive” definition of Pn,m,k, the techniques developed in the study of Gn,m can
be applied to Pn,m,k immediately, whence the model is rather well understood. Specifically, Alon
and Kahale [4] suggest a polynomial time algorithm, based on spectral techniques, that whp properly
k-colors a random graph from Pn,m,k, m/n ≥ C0k

2, C0 a sufficiently large constant. Combining
techniques from [4] and [11], Böttcher [8] suggests an expected polynomial time algorithm for Pn,p,k

based on SDP (semi-definite programming) for the same m values.

Much work was done also on semi-random variants of Pn,m,k, e.g. [6, 11, 16, 21]. On the other
hand, very little is known on non-planted distributions over k-colorable graph, such as Gn,m,k. In
this context one can mention the work of Prömel and Steger [25] who analyze Gn,m,k but with a
parameterization which causes Gn,m,k and Pn,m,k to coincide, thus not shedding light on the setting
of interest in this work. Similarly, Dyer and Frieze [14] deal with very dense graphs (of average
degree Ω(n)).

1.2.1 Techniques

Devising new ideas for analyzing Gn,m,k we show that Gn,m,k and Pn,m,k actually share many structural
graph properties such as the existence of a single cluster of solutions. As a consequence, we can
prove that a certain algorithm, designed with Pn,m,k in mind, works for Gn,m,k as well. To obtain
these results, we use two main techniques. Pn,m,k (and the analogous Pn,p,k in which every edge
respecting the planted k-coloring is included with probability p) is already very well understood,
and in particular the probability of some graph properties that interest us can be easily estimated
for Pn,m,k using standard probabilistic calculations. It then remains to find a reasonable “exchange
rate” between Pn,m,k and Gn,m,k. We use this approach to estimate the probability of “complicated”
graph properties, which hold with extremely high probability in Pn,m,k.

This approach relates to the more general question about the difference between the planted
model Pn,m,k and the uniformly random k-colorable graph Gn,m,k. The main difference between the
two models lies in the fact that Pn,m,k favors graphs with “many” colorings. More precisely, in Pn,m,k

the probability assigned to a graph is (basically) proportional to its number of proper k-colorings.
Thus, the answer to the question how closely Pn,m,k and Gn,m,k are related basically depends on the
upper tail of the number of proper k-colorings. Indeed, bounding this upper tail is the basis of our
“exchange rate” argument.

The exchange rate argument will allow us to show that events that hold in Pn,m,k with probability
1 − exp(−Ω(n)) hold in Gn,m,k with high probability. However, this argument does not suffice to
extend any statements that just hold in Pn,m,k with high probability to Gn,m,k. Hence, in addition
we will apply combinatorial arguments directly to Gn,m,k, mostly in order to investigate “local”
properties that involve only a “small” (e.g., O(log n)) number of vertices. The crucial issue with this
type of argument is that the edges of Gn,m,k are mutually dependent. In effect, this second method
tends to be more complicated than the first one, as it involves intricate counting arguments.

1.3 Paper’s Structure

The rest of the paper is structured as follows. We first discuss in Section 2 some general properties
that a random graph in Gn,m,k typically possesses. Then in Section 3 we discuss some more properties
that correspond to the clustering phenomenon – this in turn will imply Theorem 1.1. The algorithmic
perspective is discussed in Section 4 along with a proof of Theorem 1.2. Sections 5 and 6 complete
the technical details missing in Sections 2, 3 and 4. Concluding remarks are given in Section 7.
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2 General Properties of Gn,m,k

In this section we discuss general properties that a random graph in Gn,m,k typically possesses. These
properties are not particular to Gn,m,k, rather are common (maybe in a slightly different formulation)
to many graph distributions, for example Gn,p and Gn,m.

We start by discussing the discrepancy property (such discussions are ample for Gn,p and Pn,p,k,
e.g. [4, 18, 19]). This discussion may be of interest of its own, as generally discrepancy properties
play a fundamental role in the proof of many important graph properties such as expansion, the
spectra of the adjacency matrix, etc, and indeed the discrepancy property plays in our case a major
role both in the algorithmic perspective and in the analysis of the clustering phenomenon. Therefore,
the new approach taken here in establishing the discrepancy property may be of use in other settings
where edges are dependent. For another example of proving discrepancy in a model where edges are
dependent the reader is referred to [5].

Proposition 2.1. Let G be a random graph in Gn,m,k,m ≥ C0k
10n,C0 a sufficiently large constant.

Then whp the following holds for every proper k-coloring ϕ of G. Let V1, . . . , Vk be the k color classes
of ϕ, and set p = p(ϕ) s.t. m =

(∑
i<j |Vi||Vj |

)
p holds. Let G′ be the graph obtained from G by

removing vertices with degree greater than 10np. There exists a constant c s.t. for every two sets of
vertices A,B ⊂ V (G′), |A| = a ≤ |B| = b, at least one of the following two conditions holds for G′:

• e(A,B) ≤ c · µ(A,B),

• e(A,B) · ln( e(A,B)
µ(A,B)) ≤ c · b · ln n

b ,

where µ(A,B) = |A||B|p and e(A,B) is the number of edges between the sets A and B in G.

If A and B are disjoint then µ(A,B) is the expected number of edges between A and B had the
underlying probability space been Pn,m,k. Otherwise, µ(A,B) is an upper bound on that value. The
second estimate is basically the bound that Chernoff bounds yield in the case of a random graph
Gn,p. Thus, Proposition 2.1 claims that the same bound holds in the random graph Gn,m,k with its
edge dependencies.

The proof of this proposition is an example of the direct analysis approach. That is, overcoming
the edge-dependency issue, using an intricate counting argument, we directly analyze Gn,m,k.

As a corollary of Proposition 2.1 we get the following fact – Corollary 2.2. This fact (in a
somewhat different formulation) is proved e.g. in [4] for the planted setting, and is common in the
study of random graphs in general.

Corollary 2.2. Let δ ∈ (0, 1] be some positive number. Let G be a random graph in Gn,m,k,
m ≥ C0k

10n, C0 = C0(δ) a sufficiently large constant. Then whp every subgraph of G on at most
δn/(1000k) vertices has average degree at most δm/(nk).

The next property, whose proof builds upon the discrepancy property just stated, concerns the
spectral properties of the adjacency matrix of a typical graph in Gn,m,k. Let us start by giving
notations. Let G = (V, E) be distributed according to Gn,m,k. Let davg = 2m/n be the average
degree in G, G′ = (V ′, E′) be the graph obtained from G by deleting all vertices of degree greater
than 2davg, and A′ be the adjacency matrix of G′. For a symmetric matrix M ∈ Rq×q, denote by
λ1 ≥ λ2 ≥ . . . ≥ λq the eigenvalues of M , by e1, e2, . . . , eq the corresponding eigenvectors, chosen so
that they form an orthonormal basis of Rq, and ‖M‖ = maxi |λi|. Given a n × n matrix M that
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corresponds in some way to a n-vertexed graph, we usually index the rows and columns of M by
the vertices of the graph. For example, given two vertex sets Vi, Vj ⊆ V , we let JVi×Vj be the n× n
matrix whose entries are Ju,v = 1 if (u, v) ∈ Vi × Vj , and Ju,v = 0 otherwise.

Proposition 2.3. Let G be a random graph in Gn,m,k,m ≥ C0k
10n,C0 a sufficiently large constant.

G′ has whp a k-coloring V1, . . . , Vk such that the following holds. Let A′ be the adjacency matrix of
G′, p = m−1 ·∑i<j |Vi| · |Vj |, and M ′ =

(∑
i6=j pJVi×Vj

)
−A′. Then ‖M ′‖ ≤ (davg/k)0.9. Moreover,

|V \ V ′| ≤ n/davg.

Let us discuss the algorithmic use of Proposition 2.3. For a k-coloring V1, . . . , Vk of G we let
1Vi ∈ Rn denote the vector whose entries are 1 on Vi and 0 otherwise, we let 1 be the all-one vector,
and ξ(i,j) = 1Vi −1Vj . Let us assume for a moment that every vertex in G has exactly d neighbors in
every color class other than its own. Then a direct computation shows that the ξ(i,j)’s are eigenvectors
of A(G) with eigenvalue −d, and that 1 is an eigenvector with eigenvalue (k − 1)d. Furthermore,
together 1 the vectors ξ(i,j) span a k-dimensional subspace K ⊆ Rn. Another straight computation
shows that the matrix M ′ from Proposition 2.3 satisfies M ′η = 0 for all η ∈ K. Therefore, M ′ is a shift
of A′ so that the k eigenvectors comprised by K are projected out. Moreover, if ‖M ′‖ ≤ (davg/k)0.9,
then the eigenvalues of A that are perpendicular to K are “negligible” in comparison to the ones
in K. Hence, if we just compute the eigenspace of A′ corresponding to the k largest eigenvalues
in absolute value (which we can in polynomial time), the result will be precisely K. Thus, we can
obtain the vectors ξ(i,j), which represent the coloring V1, . . . , Vk perfectly.

However, in the random graph Gn,m,k it is not true that there is a coloring V1, . . . , Vk such that
every vertex has exactly d neighbors in every color class other than its own. Nonetheless, as we shall
see the vectors ξ(i,j) are still “sufficiently close” to being eigenvectors that the bound on ‖M ′‖ given
by Proposition 2.3 allows us to get a good “approximation” to the coloring V1, . . . , Vk.

3 The Clustering Phenomenon

In this section we analyze the solution space (proper k-colorings) of a typical random graph in
Gn,m,k, m ≥ Ckn, Ck a sufficiently large constant, and prove Theorem 1.1. Our techniques should be
contrasted with the techniques used to analyze the solution space of near-threshold (both above and
below) instances. In this context one can mention the work in [2, 3, 13], where the structure of the
solution space was analyzed directly (mainly using second moment calculations). This is possible
due to the fair simpleness of the In [13] and the first part of [3] the proofs are (essentially) based
on 2nd or 4th moment calculations; these are feasible, because in random k-SAT the clauses are
independent random objects. The second part of [3] relies on the (large deviations) analysis of a
process that remotely resembles the concept of cores to be introduced below. This analysis is carried
out in the “planted model” with independent clauses, and then transferred to the uniform random
k-SAT model via a (crude) “exchange rate” argument.

The main difference is that [2, 3, 13] deal with below-threshold instances, whereas here we need
to condition on the existence of a solution (i.e., a proper k-coloring). Therefore the constraints
(edges) do not occur independently anymore. Hence, on the one hand we shall relate the planted
model Pn,m,k and the uniform conditional model Gn,m,k in order to use the latter model (with its
independent edges) as a proof device. This approach is similar to the second part of [3], except that
in our case the “exchange rate” is much more favorable and the proof is more involved. On the
other hand, we shall use combinatorial (counting) arguments to analyze Gn,m,k directly; this type of
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argument does not occur in [2, 3, 13].

We describe a subset of the vertices, referred to as the core vertices, which plays a crucial role
in understanding the structure of Gn,m,k, and the algorithmic approach to solve it. To get intuition,
first consider the distribution Pn,m,k, and the case k = 3 (that is, 3-colorable graphs with exactly m
edges). Every vertex v is expected to have m/n neighbors in every color class other than its own.
Suppose indeed that this is the case. To complete the discussion we need two extra facts.

Fact 3.1. Let G be a random graph in Pn,m,3, m/n ≥ C0, C0 a sufficiently large constant. Then
whp every subgraph of G containing at most n/1000 vertices has average degree at most m/n.

Before stating the second fact we establish the notion of distance between colorings.

Definition 3.2. (Distance) Let G be a graph with two proper k-colorings ϕ = (V1, V2, ..., Vk) and
ψ = (U1, U2, ..., Uk). Let Sk be the group of permutations over the numbers {1, .., k}. The distance
between ψ and ϕ is defined by

dist(ψ, ϕ) = min
σ∈Sk

∑

v∈V

Iv(ψ, ϕσ),

ϕσ(v) = σ(i) for v ∈ Vi, ψ(v) = j for v ∈ Uj, and

Iv(ψ, ϕσ) =
{

1, ϕσ(v) 6= ψ(v).
0, otherwise.

,

Put in words, dist(ψ,ϕ) is the number of vertices which belong to different color classes under ψ
and ϕ, when taking the minimum over all possible k! permutations of the color classes in ϕ.

Fact 3.3. Let G be a random graph in Pn,m,3, m/n ≥ C0, C0 a sufficiently large constant. Then
whp there exists no two proper 3-colorings of G at distances at least n/1000 from each other.

Fact 3.1, with somewhat different constants is proven in [4] (and also in this paper – Corollary 2.2
for the uniform setting), and Fact 3.3 is proven using first moment calculations (similar arguments
to Lemma 6.16 ahead).

Now suppose that these two facts are indeed true (which is typically the case), and further assume
that every vertex has the expected number of neighbors in every color class (which is typically not
the case when m/n is constant). Then we claim that the graph is uniquely 3-colorable. If not, then
let ψ be a proper 3-coloring of the graph, not equal to the planted 3-coloring ϕ. Let U be the set
of vertices that are colored differently in ϕ and ψ. Every u ∈ U , say ψ(u) = c, must have at least
m/n neighbors in G[U ] – the neighbors of u in G which are colored c according to ϕ. However,
|U | ≤ n/1000 due to Fact 3.3, but the minimal degree in G[U ] is at least m/n, contradicting Fact
3.1.

In what we just described all vertices of the graph are frozen. When m/n ≥ C0 log n, then whp
every vertex in G has roughly m/n neighbors in every color class other than its own, and combined
with the two facts, one derives that typically such graphs in Pn,m,3 are uniquely 3-colorable. However,
when m/n = O(1) this is whp not the case. In particular, whp e−Θ(m/n)n vertices will be isolated
(degree 0). Nevertheless, in the case m/n = O(1) there exists a large subgraph of G showing a very
similar behavior to the aforementioned one, both in the planted and the uniform setting. The set
of vertices inducing this subgraph is called a core. A similar notion of core, though in a different
context, was first introduced by Alon and Kahale [4].
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Definition 3.4. A set of vertices C is called a δ-core of G = (V,E) w.r.t. a proper k-coloring ψ of
the vertices of G with color classes V1, . . . , Vk, if the following properties hold for every v ∈ C:

• v has at least (1− δ)|Vi|pi neighbors in C ∩ Vi for every i 6= ψ(v).

• v has at most δr neighbors from V \ C,

where pi = 2m
n · 1

n−|Vi| and r = maxi |Vi|pi.

We proceed by asserting some properties that a core typically possesses. Before doing so, we
assert two facts that do not concern directly the core, but play an important role in proving the
core’s properties. A graph G is said to be ε-balanced if it a admits a proper k-coloring in which
every color class is of size (1± ε)n

k . We say that a graph is balanced if it is 0-balanced.

In the common definition of Pn,m,k all color classes of the planted k-coloring are of the same
cardinality, namely n/k. Therefore, all graphs in Pn,m,k have at least one balanced k-coloring (the
planted one). In the uniform setting this need not be the case, at least not a-priori. However, as the
following proposition asserts, this is basically the case whp.

Proposition 3.5. Let m ≥ (10k)4, then whp a random graph in Gn,m,k is 0.01-balanced.

A graph G is c-concentrated w.r.t. a proper k-coloring ψ of G if every coloring at distance at
least n/c from ψ leaves at least m/c2 monochromatic edges.

Proposition 3.6. Let δ ∈ [0, 1] be some positive number. Let G be a random graph in Gn,m,k,
m ≥ C0k

4n, C0 = C0(δ) a sufficiently large constant. Then whp there exists a proper k-coloring ϕ
of G w.r.t. which G is δ/(1000k)-concentrated.

We now proceed with the core’s properties.

Proposition 3.7. Let δ ∈ (0, 1) be some positive number. Let G be a random graph in Gn,m,k,
m ≥ C0k

10n, C0 = C0(δ) a sufficiently large constant. Then there exist two constants a0(δ), a1(δ) > 0
(independent of m,n) so that whp there exists a proper k-coloring ϕ of G w.r.t. which there exists a
δ-core C satisfying:

• |C| ≥ (1− e−m/(a0nk9))n.

• The number of edges spanned by C is at least (1− e−m/(a1nk9))m.

• Every color class Vi of ϕ satisfies 0.99n/k ≤ |Vi| ≤ 1.01n/k.

As discussed above for the planted model, if the average degree is sufficiently high (at least
logarithmic), then typically C = V . This is also typically the case in Gn,m,k with m/n ≥ C0 log n.
When m/n = O(1), this is no longer true (in either model), as for example whp there is a linear
number of vertices with degree r for every constant r (in particular r = 0).

In our analysis we shall assume δ = 0.99, but this choice is rather arbitrary, and in fact any fixed
δ would suffice (maybe causing a change in the constants used in the proofs/algorithm accordingly).
We chose δ = 0.99 to be consistent with [4].

Proposition 3.8. Let G be a random graph in Gn,m,k,m ≥ C0k
10n,C0 a sufficiently large constant.

Let C be some δ-core of G for which Proposition 3.7 holds, and let ϕ be the underlying k-coloring. If
G satisfies Proposition 3.6 w.r.t. ϕ, and in addition G satisfies Corollary 2.2, then G[C] is uniquely
k-colorable.
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Here and throughout we consider two k-colorings to be the same if one is a permutation of the
color classes of the other.

Proposition 3.9. If C, C ′ are δ-cores of G, and both are uniquely k-colorable, then C∪C ′ is a δ-core
as well. Hence, whp there is a unique maximal δ-core.

Proof. Let C, C ′ be two δ-cores of G with corresponding colorings V1, . . . , Vk and V ′
1 , . . . , V

′
k. By

the uniqueness of the coloring every Vi ∩ C intersects exactly one V ′
j . Therefore, w.l.o.g. we may

assume that Vi ∩C ⊆ V ′
i for every i. Hence, it is easily verified that C ∪C ′ meets the definition of a

core (Definition 3.4) w.r.t. V ′
1 , . . . , V

′
k (and also V1, . . . Vk). ¥

For the rest of the paper, when we refer to a δ-core w.r.t. some coloring, we mean the maximal
(unique) one.

Proposition 3.10. Fix δ ∈ (0, 1) and let G be a random graph in Gn,m,k, m ≥ C0k
10n, C0 a

sufficiently large constant. Let C be a δ-core of G, and let G[V \C] be the graph induced by the non-
core vertices. If |C| ≥ (1− e−Θ(m/(nk9)))n, then whp the largest connected component in G[V \C] is
of size O(log n).

Some of the properties discussed in this section were proved in the planted setting Pn,m,k, e.g. in
[4, 8]. Nevertheless, these proofs use the fact that the edges are chosen uniformly at random. This
is of course not the case in the uniform setting (as most choices of m edges uniformly at random
at our density shall result in a graph which is not k-colorable). Therefore, a different approach is
needed. One proof technique that we use to prove the core’s properties is similar in some sense to
the union bound. We first bound the probability that a graph in Pn,m,k does not have the desired
property, then we find an exchange rate between the probability of a certain “bad” event occurring in
Pn,m,k vs. Gn,m,k. This technique can be applied to “bad” properties that occur with extremely low
probability in Pn,m,k (in the order of e−Θ(n)), as the exchange rate that we establish is exponential
in n. A detailed exposition of the exchange rate technique is given in Section 5. Unfortunately, some
properties, for example Proposition 3.10, hold only with probability 1 − 1/poly(n) in Pn,m,k. For
those properties the exchange rate technique is of no use. Crucially overcoming the edge-dependency
issue we directly analyze the uniform distribution. This proof technique, employed e.g. in the proof
of Proposition 2.1 and Proposition 3.10, is technically involved, and exemplifies an analysis of a
distribution where the events (edge-choice in our case) are dependent, and this dependency seems
rather difficult to quantify (and therefore none of the “standard” probabilistic method tools are
applicable, at least not immediately).

3.1 Proof of Theorem 1.1

Theorem 1.1 is now an easy consequence of the above discussion. Proposition 3.7 asserts that
whp a graph in Gn,m,k, with the suitable parametrization, will have a big 0.99-core (containing
(1 − e−Ω(m/n))n vertices) w.r.t. some proper k-coloring. namely, all but e−Θ(m/n)n vertices belong
to the core. Proposition 3.9 then entails that the core is uniquely k-colorable. Namely, in all proper
k-colorings, the core vertices are frozen. Furthermore, this also implies that there is only one cluster
of proper k-colorings, in which every two colorings differ on the color of at most e−Θ(m/n)n vertices.
Also, the number of different proper k-colorings is bounded by exp{e−Θ(m/n)n} (all the possibilities
to color the non-core vertices). Finally, Proposition 3.10 asserts the “simpleness” of the subgraph
induced by the non-core vertices.
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4 The Algorithmic Perspective

In Sections 2 and 3 we implicitly proved that a typical graph in Gn,m,k and in Pn,m,k share many
structural properties: spectral properties of the adjacency matrix, the existence of a core, and some
properties that it typically enjoys, the non-existence of small yet unexpectedly dense subgraphs
(Corollary 2.2), and so on. In effect, it will turn out that coloring heuristics that prove efficient for
Pn,m,k (e.g. [4, 11]) are useful in the uniform setting as well. In particular we shall prove that the
coloring algorithm given in [4], designed with the planted distribution in mind, also works in the
uniform case. Thus, one merit of our work is justifying the usage of planted-solution distributions in
average case analysis.

For the sake of completeness we give a short description of Alon and Kahale’s algorithm (Figure 1),
and discuss the outline of their proof. When describing the algorithm we have a sparse graph in mind,
namely m/n = c, c = c(k) some sufficiently large constant (in the denser setting, m/n = Ω(log n),
matters actually get much simpler). Also note that [4] describe their algorithm for k = 3, and we
describe it for general k. The generalization from k = 3 to general k is not given in their paper, and
in fact is not straightforward. Thus as a side result we, for the first time, explicitly present (and
analyze) the generalized Alon-Kahale algorithm.

In the description of the algorithm we use the subprocedure SpectralApprox(G, k), which is given
in Figure 2 and motivated in Section 4.1.

Alon-Kahale(G, k):
step 1: spectral approximation.
1. SpectralApprox(G, k).
step 2: recoloring procedure.
2. for i = 1 to log n do:

2.a simultaneously for all v ∈ V color v with the least popular color amongst its neighbors.
step 3: uncoloring procedure.
3. while ∃v ∈ V with less than m/(n(k − 1)) neighbors colored in some other color do:

3.a uncolor v.
step 4: Exhaustive Search.
4. let U ⊆ V be the set of uncolored vertices.
5. consider the graph G[U ].

5.a if there exists a connected component of size at least log n – fail.
5.b otherwise, exhaustively extend the coloring of V \ U to G[U ].

Figure 1: Alon and Kahale’s coloring algorithm

The following theorem is given in [4] (there it is stated with k = 3 but the authors point out that it
generalizes to any constant k):

Theorem 4.1. The algorithm Alon-Kahale whp properly k-colors a random graph from Pn,m,k, m ≥
C0k

2n, C0 a sufficiently large constant.

The algorithm and Theorem 4.1 are originally presented for Pn,p,k, however as pointed out by
the authors one can safely state it for Pn,m,k (for m ≥ C0k

2n).
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The proof of Theorem 4.1 (according to [4]) proceeds as follows. First, four graph properties
are described, and claimed to hold whp for a random graph in Pn,m,k with the parametrization of
Theorem 4.1. The graph properties are:

P1. The matrix M ′ defined as in Proposition 2.3 satisfies ‖M ′‖ ≤ d0.9, where d = 2m/(nk).

P2. Every subgraph of G on at most n/(1000k) vertices has average degree at most m/(nk).

P3. There exists a 0.99-core C (w.r.t. the planted coloring) whose size is (1− e−Ω(m/n))n

P4. The largest connected component in the the subgraph induced by the non-core vertices is of
size O(log n).

P2 is stated in [4] in a slightly different formulation, and arguably the proof of Theorem 4.1 is a
bit simpler when using P2 in our formulation.

Now call a graph that possesses P1-P4 typical. Alon and Kahale [4] first prove that indeed whp
a graph sampled from Pn,m,k is typical. Therefore, one may restrict oneself to typical graphs when
proving Theorem 4.1. The proof of the theorem is composed of the following assertions, which are
also to be found in [4]. For a planted graph G, we denote by ϕ its planted k-coloring, and the set
“core” referred to in the propositions below is some fixed 0.99-core (in the planted case, the core is
defined w.r.t. ϕ).

Proposition 4.2. Assuming G is typical, SpectralApprox(G, k) produces a k-coloring which differs
from ϕ on at most n/(1000k) vertices.

Proposition 4.3. Assuming G is typical and Proposition 4.2 holds, after the recoloring step ends,
the core is colored according to the planted k-coloring ϕ.

Proposition 4.4. Assuming G is typical and Proposition 4.3 holds, the core vertices survive the
uncoloring step, and every vertex that survives the uncoloring step is colored according to ϕ.

Proposition 4.5. Assuming G is typical and Proposition 4.4 holds, the exhaustive search completes
in polynomial time with a proper k-coloring of the entire graph.

The proof of Propositions 4.2-4.5, given of course in [4], relies only on P1-P4. Therefore to prove
Theorem 1.2 it suffices to prove that whp a graph in Gn,m,k enjoys properties P1-P4. One delicate
point that needs to be discussed is the fact that an instance from Gn,m,k does not have a planted
coloring. Nevertheless, it suffices to show that there exists a proper k-coloring w.r.t. which P1-P4
hold (as the algorithm is not required to find any particular coloring, just a proper one).

P1 is given by Proposition 2.3, P2 by Corollary 2.2, P3 by Proposition 3.7, and P4 by Proposition
3.10. Propositions 3.7 and 2.3, as stated, do not guarantee a-priori that P1 and P3 should correspond
to the same proper k-coloring (which is required to prove Theorem 4.1). Nevertheless, going through
the proofs of these propositions it is easily verified that indeed this is the case.

4.1 The procedure SpectralApprox(G, k).

Before presenting the procedure SpectralApprox(G, k) let us give some motivation. Suppose that
G has only one proper k-coloring with color classes V1, . . . , Vk, and let E =

∑
i6=j pJVi×Vj and p

satisfies m =
(∑

i<j |Vi||Vj |
)

p (Recall that JVi×Vj is the n× n matrix whose entries are Ju,v = 1 if
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(u, v) ∈ Vi×Vj , and Ju,v = 0 otherwise). The matrix E just reflects the coloring V1, . . . , Vk. Namely,
if we think of p as the “edge density” of the bipartite graph consisting of the Vi-Vj-edges (i 6= j), then
E reflects the expected edge distribution of the k-partite graph G. In fact, if we could compute E
efficiently then we could easily obtain the coloring V1, . . . , Vk of G using the following simple greedy
rule: u and v belong to the same color class iff ‖Ev − Eu‖ = 0, where ‖x‖ denotes the `2 norm of
a vector x ∈ Rn, and Ev denotes the vth column of the matrix E . Though we are not given E we
can obtain a fair approximation of it. Specifically, let Â signify the rank k approximation of A(G),
obtained as follows. Let λ1, . . . , λk be the largest eigenvalues of A(G) in absolute value, and let
e1, . . . , ek be corresponding eigenvectors. Then Â =

∑k
i=1 λie

T
i ei. As we shall prove in Section 6.3,

Â approximates E in some sense and therefore one can use Â to compute a good approximation of
a proper k-coloring of G. Recall that for a graph G we use G′ to denote the graph obtained from G
by deleting all vertices of degree greater than 2davg (davg = 2m/n is the average degree in G).

SpectralApprox(G, k):

1. Compute Â for A(G′).

2. For each v ∈ V ′ determine the set Sv = {w ∈ V : ‖Âv − Âw‖2 ≤ 0.01np2/k}.
3. Let X = ∅.
4. For i = 1, . . . , k find a vertex xi such that Xi = |Sxi \X| ≥ (1− 10−10)n

k ; add Xi to X.

5. Output the classes X1, . . . , Xk.

Figure 2: SpectralApprox(G, k)

5 The Exchange Rate Technique

Let A be some graph property (it would be convenient for the reader to think of A as a ”bad”
property). We start by determining the exchange rate for Pr[A] between the different distributions.
Recall that in the uniform distribution there need not be a balanced k-coloring, as opposed to the
common definition of the planted distribution where the planted k-coloring is balanced (i.e. all color
classes are of size n/k). Therefore more refined definitions are needed. In addition to the “regular”
parameters m,n (or p, n) of the planted/uniform distribution, we introduce k additional parameters
ε1, ε2, . . . , εk ∈ (−1, k − 1],

∑
εi = 0, which characterize the sizes of the different color classes of a

proper k-coloring. Specifically, we denote by Pn,p,k,ε̄, ε̄ = (ε1, ε2, . . . , εk), the distribution where first
the vertices are partitioned in to k color classes so that |Vi| = (1 + εi)n/k for every i. Then, every
Vi − Vj edge is included w.p. p. Similarly we define Pn,m,k,ε̄. We define Gn,m,k,ε̄ to be the uniform
distribution over k-colorable graphs that have at least one proper k-coloring where the color classes
satisfy |Vi| = (1 + εi)n/k.

We use the following notation to denote the probability of A under the various distributions:
Pruniform,m,ε̄[A] denotes the probability of property A occurring under Gn,m,k,ε̄, Prplanted,m,ε̄[A] for
Pn,m,k,ε̄, and Prplanted,n,p,ε̄[A] for Pn,p,k,ε̄.

We shall be mostly interested in the case m =
(∑

i<j |Vi||Vj |
)

p, namely m is the expected
number of edges in Pn,p,k,ε̄. The following lemma, which is proved using rather standard probabilistic
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calculations, establishes the exchange rate for Pn,p,k,ε̄ → Pn,m,k,ε̄.

Lemma 5.1. (Pn,p,k,ε̄ → Pn,m,k,ε̄) Let A be some graph property. The following is true when m and

p satisfy m =
(∑

i<j |Vi||Vj |
)

p:

Prplanted,m,ε̄[A] ≤ O(
√

m) · Prplanted,n,p,ε̄[A].

Proof.(Outline) Let G be a random graph sampled according to Pn,p,k,ε̄. G has property A w.p.
Prplanted,n,p,ε̄[A]. Since the distribution of edges in Pn,p,k,ε̄ is binomial, and m is chosen to be the
expected number of edges, standard calculations show that w.p. Ω(1/

√
m), G has exactly m edges.

Also observe that Pn,m,k,ε̄ = Pn,p,k,ε̄| {The graph has exactly m edges}. Therefore Prplanted,m,ε̄[A] =
Prplanted,n,p,ε̄[A]/Ω(1/

√
m) = O(

√
m) · Prplanted,n,p,ε̄[A]. ¥

Next, we obtain Pn,m,k,ε̄ → Gn,m,k,ε̄, which is rather involved technically and whose proof contains
results of own interest – for example, bounding the expected number of proper k-colorings of a graph
in Gn,m,k,ε̄. The passage Pn,m,k,ε̄ → Gn,m,k,ε̄ is composed of the following two lemmas.

Lemma 5.2. Let C1(n, k, ε̄) be the expected number of proper k-colorings that a random graph in
Gn,m,k,ε̄ has. Let A be some graph property, then

Pruniform,m,ε̄[A] ≤ C1(n, k, ε̄) · Prplanted,m,ε̄[A],

Lemma 5.3. Let ε̄ = (ε1, ε2, . . . , εk) s.t. ∀i |εi| ≤ 0.01, then

C1(n, k, ε̄) ≤ eke−m/(10nk9)n.

The following proposition formulates the exchange rate technique in a “practical” way.

Proposition 5.4. Let A be some graph property. Then

Pruniform,m[A] ≤ o(1) + nk · eke−m/(10nk9)n · max
ε̄:∀i,|εi|≤0.01

Prplanted,m,ε̄[A]

Proof. Let K be set of all k-colorable graphs with exactly m edges, and let Kε̄ be all k-colorable
graphs that have at least one proper k-coloring with color classes according to ε̄. Set

K∗ =
⋃

ε̄:∀i,|εi|≤0.01

Kε̄,

Proposition 3.5 asserts that
|K∗| = (1− o(1))|K|.

Set
αε̄ = eke−m/(10nk9)n · Prplanted,m,ε̄[A],

α = max
ε̄:∀i,|εi|≤0.01

αε̄.

Lemmas 5.2 and 5.3 ensure that at most αε̄–fraction of the graphs in Kε̄ have property A. Therefore,
the number of graphs in K that have property A is at most

(
o(1) + nk · α

)
|K|.

The nk factor comes from the fact that there are at most nk ways to choose ε̄ (that is, at most nk

different Kε̄’s). ¥
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5.1 Proof Lemma 5.2

Fix ε̄ = (ε1, ε2, . . . , εk) and let B(n, k, ε̄) be the total number of proper k-colorings on n vertices with
the prescribed sizes of the color classes (when we consider two colorings to be the same if one is just a
permutation of the color classes of the other). Throughout the proof, when referring to a k-coloring
we mean a coloring with the prescribed sizes of the color classes, when ε̄ is clear from the context.
Recall that C1(n, k, ε̄) is defined to be the expected number of proper k-colorings that a random
graph in Gn,m,k,ε̄ has, and C2(n, k, ε̄) is defined similarly for Pn,m,k,ε̄. Let ti be the number of graphs
on n vertices and m edges which have exactly i proper k-colorings. Let pi be the probability that
a graph with exactly i proper k-colorings is sampled from Gn,m,k,ε̄, and let qi be defined similarly
for Pn,m,k,ε̄. For a k-coloring ϕ, let ∆n,m,ϕ be the number of graphs on n vertices with m edges for
which ϕ is a proper k-coloring. Observe that due to symmetry ∆n,m,ϕ is the same for all ϕ having
the same ε̄-vector – thus we omit the ϕ subscript. In the above notation

pi =
ti∑kn

j=1 tj
, qi =

i · ti
B(n, k, ε̄) ·∆n,m

.

The explanation for qi is the following: fix a graph G that has exactly i proper k-colorings. With
probably i/B(n, k, ε̄) one of G’s colorings will be the planted one, and then G is sampled with
probability 1/∆n,m. Now multiply everything by ti – the number of ways to choose G. Further
observe that

B(n, k, ε̄) ·∆n,m =
kn∑

j=1

j · tj .

This is because every graph with j proper k-colorings was counted exactly j times in the product
B(n, k, ε̄) ·∆n,m. Therefore qi can be rewritten as

qi =
i · ti∑kn

j=1 j · tj
.

Finally,

C1(n, k, ε̄) =
kn∑

i=1

i · pi =
∑kn

i=1 i · ti∑kn

i=1 ti
,

C2(n, k, ε̄) =
kn∑

i=1

i · qi =
∑kn

i=1 i2 · ti
B(n, k, ε̄) ·∆n,m

=
∑kn

i=1 i2 · ti∑kn

i=1 i · ti
.

Next we obtain the following bound:

Pruniform,m,ε̄[A]
Prplanted,m,ε̄[A]

≤ max
i

pi

qi
.

This is established in the following discussion. Let KA be the set of graphs in Gn,m,k,ε̄ for which
property A holds.

Pruniform,m,ε̄[A] =
∑

G∈KA
Pruniform,m,ε̄[G], P rplanted,m,ε̄[A] =

∑

G∈KA
Prplanted,m,ε̄[G].

Now let b = maxi
pi
qi

, and fix some G with exactly i colorings.

Pruniform,m,ε̄[G]
Prplanted,m,ε̄[G]

=
pi

qi
≤ max

i

pi

qi
= b ⇒ Pruniform,m,ε̄[G] ≤ b · Prplanted,m,ε̄[G].
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Therefore,
∑

G∈KA
Pruniform,m,ε̄[G] ≤

∑

G∈KA
b · Prplanted,m,ε̄[G] = b ·

∑

G∈KA
Prplanted,m,ε̄[G].

It now remains to estimate maxi
pi

qi
.

Pruniform,m,ε̄[A]
Prplanted,m,ε̄[A]

≤ max
i

pi

qi
= max

i

(
ti∑kn

j=1 tj

)
·
(

B(n, k, ε̄) ·∆n,m

i · ti

)

= max
i

(
1
i
·
∑kn

j=1 j · tj∑kn

j=1 tj

)
=

(∑kn

j=1 j · tj∑kn

j=1 tj

)
·
(

max
i

1
i

)
= C1(n, k, ε̄).

5.2 Proof of Lemma 5.3

Our goal is to upper bound C1(n, k, ε̄). A direct calculation seems to be a hard task, therefore the
following lemma is very useful.

Lemma 5.5. C1(n, k, ε̄) ≤ C2(n, k, ε̄).

Proof. To prove C1(n, k, ε̄) ≤ C2(n, k, ε̄), one needs to prove that

(
kn∑

i=1

i · ti
)2

≤
(

kn∑

i=1

ti

)
·
(

kn∑

i=1

i2 · ti
)

.

This is just Cauchy-Schwartz, (
∑

ai · bi)
2 ≤ (∑

a2
i

) · (∑ b2
i

)
, with ai =

√
ti and bi = i · √ti. ¥

The following lemma then finishes the proof of Lemma 5.3.

Lemma 5.6. Let ε̄ = (ε1, ε2, . . . , εk) s.t. ∀i |εi| ≤ 0.01, then

C2(n, k, ε̄) ≤ eke−m/(10nk9)n.

The main key to proving Lemma 5.6 lies in the following observation:

Lemma 5.7. Let cr be the probability that a fixed k-coloring (with color classes according to ε̄) at
distance r from ϕ is also a proper coloring of G. If ε̄ = (ε1, ε2, . . . , εk) is s.t. ∀i |εi| ≤ 0.01 then
cr ≤ e−mr/(10nk9).

Proof.(Lemma 5.6)

C2(n, k, ε̄) ≤
n∑

r=0

(
n

r

)
krcr =

n∑

r=0

(
n

r

)
kre−mr/(10nk9) =

n∑

r=0

(
n

r

)(
ke−m/(10nk9)

)r
1n−r

=
(
1 + ke−m/(10nk9)

)n
≤ eke−m/(10nk9)·n

¥

Before proving Lemma 5.7 we establish two more facts.
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Lemma 5.8. Let ψ = (U1, U2, ..., Uk) be some k-coloring at distance r from ϕ. Then there exist
i, j, j′ s.t. |Ui ∩ Vj |, |Ui ∩ Vj′ | ≥ r

3k·(k−1) .

Proof. If not, then for every i there exists some j = j(i) s.t.

|Ui ∩ Vj | ≥ |Vj | − (k − 1) · r

3k · (k − 1)

The last inequality is due to r ≤ n. Observe that this mapping is a bijection, since if i 6= i′

and j(i) = j(i′) then |Ui ∩ Vj | ≥ 0.99n
k − r

3k ≥ 0.6n
k and also |Ui′ ∩ Vj | ≥ 0.6n

k , but this implies
Ui∩Ui′ 6= ∅, contradicting the definition of ψ. Let σ be the permutation j(·) that was just defined, and
consider ϕσ (namely, ϕ with color-classes permuted according to σ). Since |Ui ∩ Vσ(i)| ≥ |Vσ(i)| − r

3k ,
dist(ψ, ϕ) ≤ k · r

3k = r
3 , contradicting the choice of r. ¥

Lemma 5.9. Fix δ, |δ| ≤ 0.01, and let r1 ≥ r2 ≥ ... ≥ rk ≥ 0 be a sequence of k integers satisfying∑k
i=1 ri = (1+δ)n

k and r2 ≥ r
3k·(k−1) . Then

∑

1≤i<j≤k

ri · rj ≥
(

(1 + δ)n
k

− r

3k · (k − 1)

)
· r

3k · (k − 1)
.

Proof. Let r = (r1, r2, ...rk), and f(r) =
∑

1≤i<j≤k ri ·rj . Assuming ri ≤ rj , define a new sequence r′

by r′i = ri−1, r′j = rj+1 and r′q = rq for q 6= i, j. One can verify that f(r′) = f(r)+ri−rj−1. Since we
chose ri ≤ rj , f(r′) < f(r). It follows that f(r) takes its minimum (under the conditions r2 ≥ r

3k·(k−1)

and
∑k

i=1 ri = (1+δ)n
k ) when r3 = r4 = ... = rk = 0, r2 = r

3k·(k−1) and r1 = (1+δ)n
k − r

3k·(k−1) . The
minimum is then (

(1 + δ)n
k

− r

3k · (k − 1)

)
· r

3k · (k − 1)
,

as promised. ¥

Proof.(Lemma 5.7) Let ψ be a proper k-coloring at distance r from ϕ. Let i0 be the index promised
in Lemma 5.8 (the one indexing Ui). Let ri = |Ui0 ∩ Vi|, and let f(r) =

∑
1≤i<j≤k ri · rj . The

conditions of Lemma 5.9 hold due to Lemma 5.8 and
∑k

i=1 ri =
∑k

i=1 |Ui0 ∩ Vi| = |Ui0 | = (1+δ)n
k (for

some |δ| ≤ 0.01). Lemma 5.9 then implies that

f(r) ≥
(

(1 + δ)n
k

− r

3k · (k − 1)

)
· r

3k · (k − 1)
≥ n

2k
· r

3k2
.

The last inequality is due to r ≤ n and |δ| ≤ 0.01. Further observe that f(r) counts exactly the
number of edges in {Ui0 ∩ Vi} × {Ui0 ∩ Vj} for i 6= j, which are all proper under ϕ but not under ψ.
Set e =

∑
i<j |Vi||Vj |, and observe that e ≥ (

k
2

) (
0.99n

k

)2. Therefore,

cr ≤
(

e− f(r)
m

)
·
(

e

m

)−1

≤
(

e− nr
6k9

m

)
·
(

e

m

)−1

≤ e−0.992mr/(6k9n) ≤ e−mr/(10k9n). (1)

in the third inequality we used (
a−x

b

)
(
a
b

) ≤
(

1− b

a

)x

≤ e−bx/a.

¥
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6 Complete Proofs for Sections 2, 3 and 4

6.1 Proof of Proposition 2.1 (Discrepancy)

Discrepancy properties for random graphs was proven in several occasions. We follow the proof given
in [18] (Section 2.2.5 in that paper) for Gn,p. We do not give the complete details, just point out how
to adjust that proof to fit Gn,m,k. For the sake of clarity of presentation we consider the case where
the graph has a proper k-coloring where all color classes are of size n/k. The case where all color
classes are nearly balanced is treated very similarly (see discussion at the end of this subsection).
We do not state anew in every proposition that we assume that the graph has a balanced k-coloring,
but suffice with this statement here.

The proof branches according to the sizes of the sets A and B. For “big” sets we prove that
the first property holds, and for “small” sets – we prove that the second one holds. Throughout the
discussion we assume p satisfies m =

(
k
2

) (
n
k

)2
p.

Fix two sets of vertices A and B, and first consider the case |B| ≥ n/e. Observe that e(A, B) ≤
|A| · 10np by the bounded-degree property of G′. Therefore,

e(A,B) ≤ |A| · 10np = (|A||B|p) · (10n/|B|) ≤ 30|A||B|p.

Thus, the first property holds. Now consider the case |B| ≤ n/e. The proof in [18] uses some
variant of the Chernoff bound to bound the number of edges between A and B. Since the edges in
the uniform setting are not independent, one needs to reprove the Chernoff bound, or some variant
thereof, in Gn,m,k (for the case where the random variables are edge indicators). This will be our
goal in the next few paragraphs. The crucial step in the proof of the Chernoff bound is restating the
expectation of a product of r.v. (random variables) as the product of their expectations (which is
possible in the original proof due to independence, but in our setting this is not the case as the edges
are not chosen independently of each other). Lemmas 6.1 and 6.3 establish this fact in our setting.

Lemma 6.1. Let X1, X2, . . . , Xd be d non-negative random variables taking values in Ω, |Ω| < ∞.
Then the following holds:

E[X1 ·X2 · · ·Xd] ≤ max
i1,i2,...,id−1∈Ω

E[X1] · E[X2|X1 = i1] · · ·E[Xd|X1 = i1, . . . , Xd−1 = id−1].

Proof. The proof is by induction on d – the number of random variables. The case d = 1 is
immediate. Now to prove the induction step,

E[X1 ·X2 · · ·Xd] =
∑

i1∈Ω

Pr[X1 = i1] · E[X1 ·X2 · · ·Xd|X1 = i1] =
∑

i1∈Ω

i1E[X2 · · ·Xd|X1 = i1] · Pr[X1 = i1].

(2)

To apply the induction hypothesis we define for every i1 ∈ Ω a set of d random variables Y
(i1)
j of the

form Y
(i1)
j = Xj |(X1 = i1), j ≥ 2, . Thus we can rewrite E[X2 · · ·Xd|X1 = i1] = E[Y (i1)

2 · · ·Y (i1)
d ]

and apply the induction hypothesis to the latter. Therefore (2) reduces to
∑

i1∈Ω

i1Pr[X1 = i1] · max
i2,...,id−1∈Ω

E[Y (i1)
2 ] · · ·E[Y (i1)

d |Y (i1)
2 = i2, . . . , Y

(i1)
d−1 = id−1]. (3)
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Now observe for example that Y
(i1)
3 |(Y (i1)

2 = i2) is simply X3|(X1 = i1, X2 = i2). Therefore (3) can
be rewritten as
∑

i1∈Ω

i1Pr[X1 = i1] · max
i2,...,id−1∈Ω

E[X2|X1 = i1] · · ·E[Xd|X1 = i1, . . . , Xd−1 = id−1]

≤
(

max
i1,i2,...,id−1∈Ω

E[X2|X1 = i1] · · ·E[Xd|X1 = i1, . . . , Xd−1 = id−1]
)
·
∑

i1∈Ω

i1Pr[X1 = i1]

= E[X1] ·
(

max
i2,...,id−1∈Ω

E[X2|X1 = i1] · E[X3|X1 = i1, X2 = i2] · · ·E[Xd|X1 = i1, . . . , Xd−1 = id−1]
)

= max
i1,i2,...,id−1∈Ω

E[X1] · E[X2|X1 = i1] · E[X3|X1 = i1, X2 = i2] · · ·E[Xd|X1 = i1, . . . , Xd−1 = id−1].

¥

Let Xe be an indicator random variable which is 1 iff the edge e = (i, j) is present in G′. We let
X̂e = etXe , where t is some fixed positive number. Observe that X̂e can take two possible values, et

or 1. The next lemma quantifies in some useful sense the dependency between the edges. We defer
its proof to the end of this section.

Lemma 6.2. Let G be a random graph in Gn,m,k,m ≥ C0k
10n,C0 a sufficiently large constant. Fur-

ther, assume that m = o(n2) and p satisfies m =
(
k
2

) (
n
k

)2
p. Let Xe1 , . . . , Xed

be d edge-indicator
random variables. Let b1, . . . , bd−1 take arbitrary values in {1, et}. Then

Pr[X̂e1 = et|X̂e1 = b1, . . . , X̂ed−1
= bd−1] ≤ 2p.

The assumption m = o(n2) is just for the sake of technical issues. Recall that if for example
m = ω(n log n), then the graph has whp only one proper k-coloring, in which case Gn,m,k and Pn,m,k

are statistically close.

The next lemma shows how to move from expectation of product to product of expectations.

Lemma 6.3. Let G be a random graph in Gn,m,k,m ≥ C0k
10n,C0 a sufficiently large constant. Let

p be s.t. m =
(
k
2

) (
n
k

)2
p. Let Xe1 , . . . , Xed

be d edge-indicator random variables. Let X̂ej = etXej ,
let µ = p · d. Then

E[X̂e1 · · · X̂ed
] ≤ exp{2µ(et − 1)}.

Proof. By Lemma 6.1,

E[X̂e1 · · · X̂ed
] ≤ max

b1,...,bd−1∈{1,et}
E[X̂e1 ] · E[X̂e2 |X̂i1 = b1] · · ·E[X̂ed

|X̂e1 = b1, . . . , X̂ed−1
= bd−1]

Therefore,

E[X̂ej = et|X̂e1 = b1, . . . , X̂ej−1 = bj−1] ≤ 2pet + (1− 2p) = 1 + 2p(et − 1) ≤ exp{2p(et − 1)}.
The last inequality is due to 1 + x ≤ ex (Taylor of ex around 0). Finally,

E[X̂e1 · · · X̂ed
] ≤ max

b1,...,bd−1∈{1,et}
E[X̂e1 ] · E[X̂e2 |X̂e1 = b1] · · ·E[X̂ed

|X̂e1 = b1, . . . , X̂ed−1
= bd−1]

≤
∏

j=1,...,d

exp{2p(et − 1)} = exp{2p · d(et − 1)} = exp{2µ(et − 1)}.

¥

Now we are ready to re-prove (the variant of) the Chernoff bound in the uniform setting.
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Proposition 6.4. Let G be a random graph in Gn,m,k,m ≥ C0k
10n,C0 a sufficiently large constant.

Let p be s.t. m =
(
k
2

) (
n
k

)2
p. Let Xe1 , . . . , Xed

be d edge-indicator random variables, and X =∑
1,...,d Xei. Let µ = pd as before. Then

Pr[X > (1 + λ)µ] ≤
(

e2λ

(1 + λ)(1+λ)/2

)µ

.

Corollary 6.5. For r ≥ 200, the above inequality reads

Pr[X > rµ] ≤ e−µ(r ln r)/30.

Proof.(Corollary)

e2λ

(1 + λ)(1+λ)/2
= exp{2λ− (1/2)(1 + λ) ln(1 + λ)} ≤ exp{λ(2− lnλ/2)} ≤ exp{−(λ lnλ)/20}.

The last inequality is true for λ = 199 for example. Now set r = 1 + λ. ¥

Proof.(Proposition 6.4) Let p∗ be the probability that an edge (i, j) is present in G, then

p∗ = m

(
n

2

)−1

. (4)

To see this first observe that indeed p∗ is well defined, namely it is the same for every edge e = (i, j)
(due to symmetry). Let Xe be an edge-indicator variable. Observe that

m =
∑

i<j,e=(i,j)

Xe ⇒ m = E[m] = E[
∑

i<j,e=(i,j)

Xe] =
∑

i<j,e=(i,j)

E[Xe] =
(

n

2

)
p∗,

which implies (4).

Let µ∗ = E[
∑

j=1..d Xej ] be the expected number of edges under the uniform distribution. We
now establish the following connection between µ∗ and µ (recall µ = p · d):

µ∗ = p∗d ≥ pd/2 = µ/2, µ∗ ≤ µ (5)

This is true since p/p∗ = (1 + o(1))(k/(k − 1)), and for k ≥ 2 it holds that 1 ≤ p/p∗ ≤ 2.

We now reconstruct the original proof of the Chernoff bound. By (5) (the fact that µ∗ ≤ µ),

Pr[X > (1 + λ)µ] ≤ Pr[X > (1 + λ)µ∗].

For any t ≥ 0, the following is then an equivalent form:

Pr[X > exp{t(1 + λ)µ}] ≤ Pr[X > exp{t(1 + λ)µ∗}].

Using Markov’s inequality,

Pr[X > exp{t(1 + λ)µ∗}] ≤ E[exp{tX}]
exp{t(1 + λ)µ∗} .
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Noticing that E[exp{tX}] is exactly E[X̂e1 · · · X̂ed
], and using Lemma 6.3, the latter is upper bounded

by
exp{2µ(et − 1)}
exp{t(1 + λ)µ∗} .

Using the fact that µ∗ ≥ µ/2,

exp{2µ(et − 1)}
exp{t(1 + λ)µ∗} ≤

exp{2µ(et − 1)}
exp{t(1 + λ)µ/2} .

This is true for any t, and in particular for t = ln(1 + λ), which gives the desired result. ¥

Proof.(Lemma 6.2) Recall that we need to bound Pr[X̂ej = et|X̂e1 = b1, . . . , X̂ej−1 = bj−1]. The
fact that X̂e1 = b1, . . . , X̂ej−1 = bj−1 basically implies some constellation of the edges e1, . . . , ej−1,
according to the b-values (if bj = 1 then the edge ej was not included since Xej = 0). Consider this
constellation of edges, and let s be the number of edges that are present. If s > m − 1, then such
a graph cannot be sampled, and therefore Pr[X̂ej = et|X̂e1 = b1, . . . , X̂ej−1 = bj−1] = 0 ≤ 2p. Thus
we are left with the case s ≤ m− 1.

For a fixed edge e, a graph G is said to be e-bad if it contains e. Furthermore, let Pe signify the set
of all e-bad (balancedly) k-colorable graphs with exactly m edges that also contain the constellation
implied by the bi values at hand. In addition, denote by G the set of all (balancedly) k-colorable
graphs with exactly m edges that contains this constellation as well. Our objective is to establish
the following:

Pe ≤ (2p)|G|. (6)

Observe that this immediately implies that the probability of an e-bad graph in Gn,m,k given the
above constellation is at most 2p. To prove Equation (6) we shall set up an auxiliary bipartite
graph A with vertex set V (A) = Pe ∪ G. This graph will have the property that the average degree
of vertices in Pe is ∆, while for G the average degree is ∆′, where ∆′/∆ ≤ 2p = 2m/E, where
E =

(
k
2

) (
n
k

)2. Since ∆|Pe| = ∆′|G|, by double counting, we thus obtain Equation (6). We describe
a procedure that receives a graph G ∈ Pe and produces a new graph G′ ∈ G. In our auxiliary graph
A, we connect a right-side node G with a left-side one G′, if G′ can be obtained from G by this
procedure. The procedure is the following simple one. Given an e-bad graph G, remove the edge e,
and place it instead of a non-edge of G, while respecting at least one balanced proper k-coloring of
the graph. The number of possible graphs G′ that can be obtained via the above procedure is at
least E −m − s ≥ E/2 (here we use the assumption m = o(n2)), thus ∆ ≥ E/2. This is because
we have to choose a place for the displaced edge amongst all possible ones. Conversely, consider the
following procedure to recover a graph G from G′. Out of m possible edges, choose one, remove it
and return e. Therefore ∆′ ≤ m (there at most m possibilities to guess that edge). ¥

This concludes the proof of the discrepancy property. Let us briefly mentions what happens if the
proper k-coloring is just, say, 0.01 balanced. The main point then is that the value of p (which in
our proof satisfies m =

(
k
2

) (
n
k

)2
p) shifts slightly. This change is accommodated for in the slackness

we have in the constants we chose in the proof, for example the ratio between p and p∗ asserted after
Equation (5).

6.2 Proof of Corollary 2.2

Assume that Proposition 2.1 holds with c ≤ 30 (which is the case whp, as implied by the proof of
Proposition 2.1), and suppose in contradiction that there exists a subgraph H (on h ≤ δn/(1000k)
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vertices) of G violating the condition of the corollary. Then for such a graph H, e(H, H) ≥
hδm/(2nk). However,

cµ(H,H) = ch2p ≤ δn

1000k
cph =

δn

1000k
· (1 + o(1))2mk

n2(k − 1)
· ch < hδm/(2nk). (7)

In the equality we used the fact that p satisfies m =
(
k
2

) (
n
k

)2
p. Equation (7) however contradicts the

first condition of Proposition 2.1. As for the second condition, we need to estimate e(H, H) ln e(H,H)
µ(H,H) .

Using our contradiction assumption on e(H,H) and plugging in µ(H, H) = h · h · p we obtain

e(H, H) ln
e(H, H)
µ(H, H)

≥ δhm

2nk
ln

(
δhm

2nk
· n2

2mh2

)
.

Using the assumption m ≥ C0k
9n we get

δhm

2nk
ln

(
δhm

2nk
· n2

2mh2

)
≥ δhC0k

8

2
ln

(
n

h
· 4k

δ

)
.

The latter equals

δhC0k
8

2

(
ln

n

h
− ln

4k

δ

)
= hc ln

n

h
+ h

(
δC0k

8

2
− c

)
ln

n

h
− δhC0k

8

2
ln

δ

4k
.

Rearranging the terms and using again the fact that h ≤ δn/(1000k), the latter is at least

hc ln
n

h
+ h ln(1000k/δ)

δC0k8

2
−c − h ln(4k/δ)

δC0k8

2 .

Using simple manipulations, this in turn equals

hc ln
n

h
+ h ln

(
1000kδ

4kδ

) δC0k8

2

·
(

δ

1000k

)c

= hc ln
n

h
+ h ln

250
δC0k8

2

(1000kδ−1)c
.

However, since 250
δC0k8

2

(δ/(1000k))c > 1 for a sufficiently large constant C0, the following inequality holds:

hc ln
n

h
+ h ln

250
δC0k8

2

(1000kδ−1)c
> hc ln

n

h
,

contradicting the second condition of Proposition 2.1.

6.3 Proof of Propositions 2.3 and 4.2 (Spectral Analysis)

We start by analyzing the procedure SepctralApprox – that is proving Proposition 4.2. We assume
that Proposition 2.3 holds, which is the case whp, and using this fact we show that Â, the rank-k
approximation of A(G′) (see Section 4.1) approximates E in some useful sense. Of course, we know
the adjacency matrix A(G′). Furthermore, we know that ‖M ′‖ = ‖E−A(G′)‖ is “small” (Proposition
2.3). That is, A(G′) is a good approximation of E in the operator norm. However, we can’t exploit
this fact directly in order to obtain a good entry-wise approximation of E . Indeed, instead of getting
a matrix that approximates E in the operator norm, an approximation B of E in the Frobenius norm

‖E −B‖F =
√ ∑

v,w∈V ′
(Bvw − Evw)2
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would be more useful.

The analysis of SpectralApprox is based on the following lemma, which shows that for most
vertices v the v-column Âv of Â is close to the v-column Ev of E .

Lemma 6.6. Let Z = {v ∈ V ′ : ‖Âv − Ev‖2 ≥ 10−10np2/k}. Then |Z| ≤ nd−0.1, where d = davg/k,
davg = 2m/n.

Proof.
∑

v∈V ′
‖Ev − Âv‖2 = ‖E − Â‖2

F ≤ 2k‖E − Â‖2 ≤ 2k(‖E −A(G′)‖2 + ‖Â(G′)− Â‖2) ≤ 4k‖E −A(G′)‖2

= 4k‖M ′‖2 ≤ 4kd1.8 ≤ d1.81.

The first inequality is by the fact that for a matrix B of rank q it holds that ‖B‖2 ≤ q‖B‖2
F , and the

fact that both E , Â have rank k and therefore E − Â has rank at most 2k. The second inequality is
just the triangle inequality, and the third inequality is by the fact that ‖Â(G′)− Â‖ ≤ ‖E − A(G′)|
because Â is a rank-k approximation of A(G′), and therefore minimizes ‖Â(G′)−B‖ over all matrices
B of rank k. The next-to-last inequality is due to Proposition 2.3.

Finally we derive that |Z| · 10−10np2/k ≤ d1.81, so that |Z| ≤ 1010 d1.81k
np2 ≤ nd−0.1. Here we

assume that the coloring V1, . . . , Vk is nearly balanced. That is, for every i, |Vi − n/k| ≤ 0.01n/k,
and therefore p = Θ(m/n2). ¥

Lemma 6.6 implies that for most vertices v, w belonging to the same color class Vi the difference
‖Âv−Âw‖ is small, whereas for most u ∈ Vj , j 6= i, the distance ‖Âv−Âu‖ is large. This implies that
the classes X1, . . . , Xk provide a good approximation of the coloring V1, . . . , Vk (up to a permutation
of the indices, of course).

Proposition 6.7. There is a permutation σ of {1, . . . , k} such that Xi4V ′
i ≤ 10−9n/k2 for all

1 ≤ i ≤ k.

Proof. We show by induction on i that in each step there is a vertex vi such that |Svi | \ X ≥
(1−10−10)n

k . Moreover, we shall prove that for the vertex vi chosen by the algorithm there is a class
V ′

σ(i) such that Xi \ V ′
σ(i) ⊂ Z. Let 1 ≤ i ≤ k, and suppose that these statements are true for all

1 ≤ i′ < i.

Let j ∈ {1, . . . , k} \ {σ(1), . . . , σ(i − 1)}. Then by Lemma 6.6 there is a vertex v∗ ∈ V ′
j \ Z.

Moreover, since all u ∈ V ′
j \ Z we have

‖Âv∗ − Âu‖2 ≤ 2(‖Âv∗ − Ev∗‖2 + ‖Eu − Âu‖2) ≤ 0.01
np2

k
.

Hence, Sv∗ ⊃ V ′
j \ Z. Furthermore, V ′

j ∩X ⊂ Z by the induction hypothesis. Therefore, |Sv∗ | \X ≥
|V ′

j | \ Z ≥ (1 − 10−10)n
k . Thus, it is possible for the algorithm to choose a vertex vi such that

|Svi | \X ≥ (1− 10−10)n
k .

Now, let vi be the vertex with this property chosen by the algorithm, and pick some w ∈ Svi \
(X ∪ Z); such a vertex w exists due to the upper bound on |Z| from Lemma 6.6. Then we have

‖Âvi − Ew‖2 ≤ ‖Âvi − Âw‖2 + 2‖Âvi + Âw‖ · ‖Ew − Âw‖+ ‖Ew − Âw‖2 ≤ 0.02np2

k
.
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Further, we have w 6∈ ⋃
1≤j<i V

′
σ(j). For assume that w ∈ V ′

σ(j) for some 1 ≤ j < i. Then for all
u ∈ Svi \ V ′

σ(j) we have

‖Âu − Ew‖2 ≤ (‖Âv − Ew‖+ ‖Âu − Âv‖)2 ≤ 0.1np2

k
. (8)

However, since u,w belong to different color classes, we have ‖Eu − Ew‖2 ≥ np2/k. Thus, (8) entails
that ‖Âu − Eu‖2 ≥ 0.1np2

k , whence u ∈ Z. Consequently, if w ∈ V ′
σ(j) for some 1 ≤ j < i, then

Svi \ V ′
σ(j) ⊂ Z. As by induction |V ′

σ(j) \ Xj | ≤ 0.1n
k and |Svi | ≥ 0.6n

k , this implies that |Z| ≥ n
2k ,

which contradicts Lemma 6.6.

Hence, we have established that w 6∈ ⋃
1≤j<i V

′
σ(j), and we let σ(i) be such that w ∈ V ′

σ(i).

Finally, we claim that Svi \ V ′
σ(i) ⊂ Z. For let u ∈ Svi \ V ′

σ(i). Then ‖Âu−Ew‖2 ≤ 0.1np2

k (cf. (8)).

Hence, as ‖Eu − Ew‖2 ≥ np2/k, we conclude that ‖Âu − Eu‖2 ≥ 0.1np2/k. Thus, u ∈ Z. ¥

This completes the proof of Proposition 4.2.

6.3.1 Proof of Proposition 2.3 (Outline)

The proof of Proposition 2.3 is based on a proper modification of techniques developed by Kahn and
Szemerédi in [19], where the authors show that the second largest eigenvalue in absolute value of a
random d-regular graph is almost surely O(

√
d). Since in our case the graph is not regular, and the

edges are not chosen independently, a few modifications are needed.

In what follows, we let V̂1, . . . , V̂k be a partition of V = {1, . . . , n} such that |V̂i− n
k | < 0.1n

k for all
1 ≤ i ≤ k. Moreover, let 0 < p̂ < 1 be such that

∑
1≤i<j≤k |V̂i||V̂j |p̂ = m, and set d̂ = np̂/k. Further,

let Ĝ signify a random graph with planted coloring V̂1, . . . , V̂k in which each possible edge compatible
with this coloring is present with probability p̂ independently. That is, Ĝ is a random graph with
the planted coloring V̂1, . . . , V̂k. In order to prove Proposition 2.3, we shall first analyze the spectral
properties of Ĝ. Then, we will combine this information with Proposition 5.4 and the discrepancy
property established in Proposition 2.1 in order to obtain the desired result on the spectrum of a
uniformly distributed k-colorable graph. We assume throughout that m ≥ C0k

10n for a sufficiently
large constant C0 > 0.

As the indicator vectors ~1V̂1
, . . . ,~1V̂k

corresponding to the k planted color classes of Ĝ play a
distinguished role, we shall first analyze the spectral properties of Ĝ on the orthogonal complement
of the space spanned by these vectors.

Lemma 6.8. With probability ≥ 1 − exp(−n) the adjacency matrix Â = (âvw)v,w∈V of Ĝ satisfies
the following.

Suppose that ξ, η ∈ Rn are unit vectors perpendicular to (~1V̂i
)1≤i≤k. Let

L(ξ, η) =
{

(v, w) ∈ V × V : |ξvηw| ≤
√

p̂/n
}

. (9)

Then
∣∣∣∑(v,w)∈L âvwξvηw

∣∣∣ ≤ (np̂)3/4.

Proof. Alon and Kahale [4] established the following estimate.
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Let 1 ≤ i < j ≤ k. Then with probability ≥ 1− exp(−2n) the following holds.

Suppose that ξ ∈ RV̂i , η ∈ RV̂j are unit vectors such that ξ ⊥ ~1V̂i
, η ⊥ ~1V̂j

. Let

Lij =
{

(v, w) ∈ V̂i × V̂j : |ξvηw| ≤
√

p̂/n
}

.

Then
∣∣∣∑(v,w)∈Lij

âvwξvηw

∣∣∣ ≤ c
√

np̂ for a certain constant c > 0.

To prove Lemma 6.8, we just apply this bound to each pair 1 ≤ i, j ≤ k, i 6= j. Thus, let ξ, η ∈ RV

be such that ξ, η ⊥ ~1V̂i
for all 1 ≤ i ≤ k. Then with probability ≥ 1 − k2 exp(−2n) ≥ 1 − exp(−n)

we have
∣∣∣∣∣∣

∑

(v,w)∈L

âvwξvηw

∣∣∣∣∣∣
≤

∑

1≤i,j≤k, i 6=j

∣∣∣∣∣∣
∑

(v,w)∈Lij

âvwξvηw

∣∣∣∣∣∣
≤ ck2

√
np̂ ≤ (np̂)3/4,

where the last estimate is due to our assumption that m ≥ C0k
10n.

Furthermore, regarding the vectors ~1V̂1
, . . . ,~1V̂k

, we prove the following in Section 6.3.2.

Lemma 6.9. Let Ĝ′ be the graph obtained from Ĝ by removing all vertices of degree > 2np̂. Let
Â′ be the adjacency matrix of Ĝ′. Then with probability ≥ 1 − exp(−nd̂−10) the matrix M̂ ′ =∑

i 6=j p̂JV̂i×V̂j∩V (Ĝ′)2 − Â′ satisfies ‖M̂ ′~1V̂i∩V (Ĝ′)‖ ≤ d̂0.66√n.

Furthermore, we employ the following result, which was established by Kahn and Szemeredi [19]
for regular graphs. A proof of the present setting can be found in [18].

Lemma 6.10. Suppose that H = (V, E) is a graph of maximum degree ≤ 2np that satisfies the
discrepancy property stated in Proposition 2.1. Let AH = (aH

vw)v,w∈V be the adjacency matrix of H.
Then for all unit vectors ξ, η ∈ Rn we have

∑

(v,w)∈V 2\L(ξ,η)

aH
vw |ξvηw| ≤ C

√
np, where L(ξ, η) =

{
(v, w) ∈ V × V : |ξvηw| ≤

√
p/n

}

for some constant C > 0.

Proof of Proposition 2.3. Lemmas 6.8 and 6.9 imply that with probability at least 1−2 exp(−nd̂−10)
the random graph Ĝ (with the planted coloring V̂1, . . . , V̂k) has the following property.

There exists a coloring V̂1, . . . , V̂k with ||V̂i|−n/k| < 0.1n/k for all 1 ≤ i ≤ k such that for
any unit vectors ξ, η ⊥ {~1V̂1

, . . . ,~1V̂k
} we have

∣∣∣∑(v,w)∈L âvwξvηw

∣∣∣ ≤ (np̂)3/4. Moreover,

the matrix M̂ ′ from Lemma 6.9 satisfies ‖M̂ ′~1V̂i∩V (Ĝ′)‖ ≤ d̂0.66√n.

Proposition 3.5 and Lemmas 5.1 and 5.2 imply that whp a uniformly random k-colorable graph
G = Gn,m,k has a coloring V1, . . . , Vk such that this property holds, too. Thus, let 0 < p < 1 be
such that

∑
i<j |Vi||Vj |p = m, let G′′ signify the subgraph obtained by removing all vertices of degree

> 2np, set V ′′ = V (G′′), and let A′′ = (avw)v,w∈V ′′ be the adjacency matrix of G′′. Then whp the
following is true.
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• All unit vectors ξ, η ∈ RV ′′ that are perpendicular to {~1Vi∩V ′′ : 1 ≤ i ≤ k} satisfy
∣∣∣∣∣∣

∑

(v,w)∈L(ξ,η)

avwξvηw

∣∣∣∣∣∣
≤ (np)3/4, (10)

where L(ξ, η) =
{

(v, w) ∈ V ′′ × V ′′ : |ξvηw| ≤
√

p/n
}

.

• Let M ′′ =
∑

i6=j pJVi×Vj∩V (G′′)2 −A′′. Then

∀1 ≤ i ≤ k : ‖M ′′~1Vi∩V (G′′)‖ ≤ ‖~1Vi‖(np)3/4. (11)

In addition, combining Proposition 2.1 and Lemma 6.10, we conclude that
∣∣∣∣∣∣

∑

(v,w)∈(V ′′×V ′′)\L(ξ,η)

avwξvηw

∣∣∣∣∣∣
≤ (np)3/4 (12)

for all unit vectors ξ, η ∈ RV ′′ such that ξ, η ⊥ {~1Vi∩V ′′ : 1 ≤ i ≤ k}.
Combining (10) and (12) and denoting the canonical inner product by 〈·, ·〉, we conclude that for

any two unit vectors ξ, η ⊥ {~1Vi∩V ′′ : 1 ≤ i ≤ k}

|〈M∗ξ, η〉| ≤ p
∑

i6=j

∣∣∣
〈
JVi×Vj∩(V ′′)2ξ, η

〉∣∣∣
︸ ︷︷ ︸
=0, as ξ,η⊥{~1Vi∩V ′′}

+
∣∣〈A′′ξ, η〉∣∣

=

∣∣∣∣∣∣
∑

(v,w)∈V ′′×V ′′
avwξvηw

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

(v,w)∈L(ξ,η)

avwξvηw

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(v,w)6∈L(ξ,η)

avwξvηw

∣∣∣∣∣∣
≤ 2(np)3/4.

Hence,

∀ξ, η ∈ RV ′′ , ‖ξ‖ = ‖η‖ = 1, ξ, η ⊥ {~1Vi∩V ′′ : 1 ≤ i ≤ k} :
∣∣〈M ′′ξ, η

〉∣∣ ≤ 2(np)3/4. (13)

Finally, combining (11) and (13), we obtain ‖M ′′‖ ≤ 8(np)3/4. Hence, if we let davg = 2m/n, then
‖M ′′‖ ≤ (davg/k)0.9 by our assumption that m ≥ C0k

10n. Moreover, note that davg < np. Therefore,
if we let M ′ signify the minor of M ′′ obtained by deleting all rows and columns corresponding to
vertices of degree > 2davg then ‖M ′‖ ≤ ‖M ′′‖ ≤ (davg/k)0.9.

6.3.2 Proof of Lemma 6.9

The proof is based on the following Chernoff bound.

Theorem 6.11. Suppose that X is a binomially distributed random variable with mean µ. Let
ϕ(x) = (1 + x) ln(1 + x)− x. Then

P (X ≥ µ + t) ≤ exp
(
−µϕ

(
t

µ

))
≤ exp

(
− t2

2(µ + t/3)

)
(0 < t), (14)

P (X ≤ µ− t) ≤ exp
(
−µϕ

(−t

µ

))
≤ exp

(
− t2

2µ

)
(0 < t < µ). (15)
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The Chernoff bound entails the following result on the degree distribution of G.

Lemma 6.12. Let Wij = {v ∈ V̂i : |eĜ(v, V̂j) − |V̂j |p| > d̂0.51}, where 1 ≤ i, j ≤ k and i 6= j. Then

P
[
∃i, j : |Wij | > nd̂−10

]
≤ exp(−nd̂−10).

Proof. Since E(eĜ(v, V̂j)) = |V̂j |p̂, Theorem 6.11 entails that for any i 6= j and any v ∈ V̂i we

have P
[
|eĜ(v, V̂j)− |V̂j |p̂| > d̂0.51

]
≤ exp(−d̂Ω(1)) ≤ d̂−100. Therefore, E(|Wij |) ≤ nd̂−100. Further-

more, the random variables (eĜ(v, V̂j))v∈V̂i
are mutually independent, and thus |Wij | is binomially

distributed. Hence, invoking the first inequality of (14), we conclude that P
[
|Wij | > nd̂−10

]
≤

exp(−2nd̂−10). Finally, the union bound entails that with probability ≥ 1 − k2 exp(−2nd̂−10) ≥
1− exp(−nd̂−10) the bound |Wij | ≤ nd̂−10 holds for all i, j simultaneously. ¥

Corollary 6.13. With probability ≥ 1−exp(−nd̂−10) the random graph G has at most nd̂−9 vertices
of degree > 2np̂.

Proof. Any vertex of degree > 2np̂ belongs to
⋃

i6=j Wij , and by Lemma 6.12 with probability
≥ 1− exp(−nd̂−10) this set has cardinality ≤ k2nd̂−10 ≤ nd̂−9. ¥

Lemma 6.14. With probability ≥ 1− exp(−nd̂−10) the random graph Ĝ has the following property.
For any two disjoint sets S, T ⊂ V , |S| ≤ nd̂−9 ≤ |T | there is a vertex in T that has fewer than 100
neighbors in S.

Proof. Let s ≤ nd̂−9 ≤ t. Since each of the possible
(
n
2

)
possible edges occurs in Ĝ with probability

≤ p̂ independently, for any set S of size s and any T ⊂ V \ S of size t the probability that all v ∈ T

have 100 neighbors in S is at most
[(

s
100

)
p̂100

]t ≤ (sp̂)100t. Moreover, there are
(
n
s

)
ways to choose

S, and then at most
(
n
t

)
ways to choose T . Hence, the probability Ps,t that there exist sets S, T of

sizes s resp. t such that eĜ(v, S) ≥ 100 for all v ∈ T is at most

Ps,t ≤
(

n

s

)(
n

t

)
(sp̂)100t ≤ exp(−t).

Furthermore, as there are at most n2 ways to choose s and t, we conclude that the probability of the
event stated in the lemma is at most n2 exp(−t) ≤ exp(−nd̂−10). ¥

Combining Corollary 6.13 with Lemma 6.14, we obtain the following.

Corollary 6.15. With probability ≥ 1−exp(−nd̂−10) the random graph Ĝ has at most nd̂−9 vertices
v of degree ≤ 2np̂ that have at least 100 neighbors of degree > 2np̂.

Proof of Lemma 6.9. Let Ĝ′ be the subgraph of Ĝ obtained by removing all vertices of degree > 2np̂.
Moreover, let V̂ ′ = V (Ĝ′) and V̂ ′

i = V̂i ∩ V̂ ′. Let 1 ≤ i ≤ k and set η = M̂ ′~1V̂ ′i
. Then ηv = 0 for all

v ∈ V̂ ′
i , and ηv = |V̂ ′

i |p− eĜ(v, V̂ ′
i ) for all v ∈ V̂ ′ \ V̂i. Hence,

‖η‖2 =
∑

j 6=i

∑

v∈V̂ ′j

(|V̂i|p̂− eĜ(v, V̂ ′
i ))2

≤ 2
∑

j 6=i

∑

v∈V̂ ′j

(|V̂i|p̂− eĜ(v, V̂i))2 + 2
∑

v∈V̂ ′

eĜ(v, V \ V̂ ′)2. (16)
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Due to Lemma 6.12, the first sum on the r.h.s. can be estimated as follows:
∑

j 6=i

∑

v∈V̂ ′j

(|V̂i|p̂− eĜ(v, V̂i))2 ≤ d̂1.2n + 4(np̂)2
∑

j 6=i

|Wji|

≤ d̂1.2n + 4d̂−10kn(np̂)2 ≤ 2d̂1.2n, (17)

because all vertices in V̂ ′ have degree ≤ 2np̂. Furthermore, as by Corollary 6.15 there are at
most nd̂−9 vertices v ∈ V̂ ′ that have > 100 neighbors in V \ V̂ ′, and since all v ∈ V̂ ′ satisfy
eĜ(v, V̂ \ V̂ ′) ≤ 2np̂, we have

∑

v∈V̂ ′

eĜ(v, V \ V̂ ′)2 ≤ 104n + 4d̂−9n(np̂)2 ≤ 105n. (18)

Finally, plugging (16) and (17) into (18), we obtain the assertion.

6.4 Proof of Proposition 3.6 (Concentration)

To prove the proposition we employ the exchange rate technique, introduced in Section 5. The
first step is to prove the analogue of Proposition 3.6 in the planted model, and show that it holds
with extremely high probability, then use Proposition 5.4. Therefore we first consider Pn,m,k,ε̄ for
ε̄ = (ε1, ε2, . . . , εk) s.t. ∀i |εi| ≤ 0.01.

Lemma 6.16. Let δ ∈ (0, 1] be some positive number. Let G be a random graph in Pn,m,k,ε̄, m ≥
C0k

10n C0 = C0(δ) a sufficiently large constant. Then with probability at most e−n every k-coloring
at distance δn/(1000k) from ϕ leaves at least δm/(1000k)2 monochromatic edges.

Proof. The basic idea of the proof is to first calculate the expected number of monochromatic edges
induced by a k-coloring at distance at least δn/(1000k) from ϕ, and show that this number is “much”
higher than δm/(1000k)2, then show a concentration result.

Let ψ be an arbitrary k-coloring at distance r ≥ δn/(1000k) from ϕ. A very similar argument
to Lemma 5.7 gives that the probability that a random edge is monochromatic under ψ is at least
1− e−r/(100nk9) ≥ r/(100nk9) (if ψ is nearly-balanced then this is exactly the same argument – just
set m = 1 in equation (1), if ψ is “far” from being balanced, then in particular it is “far” from ϕ,
then this fact is used to lower bound the value f(r) in (1)).

Let Xr be a random variable counting the number of monochromatic edges in G induced by ψ.
Then we have:

E[Xr] ≥ mr/(100nk9)

Set α = 0.9 (for r = n/(1000k), m/(1000k)2 ≤ (1− α)E[Xr]).

Pr[Xr ≤ m/(1000k)2] ≤Pr[Xr ≤ (1− α)mr/(100nk9)] ≤ Pr[Xr ≤ (1− α)E[Xr]].

Now apply Chernoff’s bound to obtain (Chernoff is applicable since it is known that Xr is more
concentrated than the corresponding quantity if the draws were made with replacement [20] – and
then they would have been independent)

Pr[Xr ≤ (1− α)E[Xr]] ≤ e−α2E[Xr]/3 ≤ e−mr/(400nk9).
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Taking the union bound over all possible k-colorings, the probability of a k-coloring at distance
greater than δn/(1000k) from ϕ leaving less than δm/(1000k)2 monochromatic edges is at most

n∑

r=δn/(1000k)

(
n

r

)
kre−mr/(400nk9) ≤

n∑

β=δn/(1000k)

(
enk

r

)r

e−mr/(400nk9).

Recalling that m ≥ C0k
10, the latter is at most

1∑

r=δn/(1000k)

(
enk · e−C0k/400

r

)r

≤
1∑

r=δn/(1000k)

(
3000k2 · δ−1 · e−C0k/400

)r
≤

n∑

r=δn/(1000k)

(
e−C0k/500

)r
≤ e−n.

The last inequality is due to the fact that the last sum is a geometric series with quotient e−C0k/500,
and the fact that we can take C0 to be a sufficiently large constant (recall that δ is fixed w.r.t. C0).
¥

We now use Proposition 5.4 to complete the proof of Proposition 3.6. Let A be the bad event that
the sampled graph G is not δ/(1000k)-concentrated for some δ ∈ (0, 1].

Pruniform,m[A] ≤ o(1) + nk · eke−m/(10nk9)n · e−n = o(1).

In the latter we use the fact that k is constant.

6.5 Proof of Proposition 3.7 (Core size)

To prove this proposition we again employ the exchange rate technique. Thus we first consider
Pn,m,k,ε̄ for ε̄ = (ε1, ε2, . . . , εk) s.t. ∀i |εi| ≤ 0.01.

Lemma 6.17. Let δ ∈ (0, 1] be some positive number. Let G be a random graph in Pn,p,k,ε̄, m ≥
C0k

10n, C0 = C0(δ) a sufficiently large constant. Then there exist a constant g0 = g0(δ) > 0

(independent of m,n) so that for every g ≥ g0 with probability (1 − ee−m/(gnk9)n) there exists a δ-
core C w.r.t. the planted assignment. Furthermore, |C| ≥ (1 − e−m/(a0nk9))n and the number of
edges spanned by C is at least (1− e−m/(a1nk9))m, where a0(g), a1(g) are two positive monotonically
increasing functions of g.

This lemma, formulated somewhat differently, is proven in [8] for the case k = 3, and ε̄ = 0. The
proof easily generalizes to any constant k, and ε̄ as above. We give its outline here for the sake of
completeness.

Proof.(Outline) Recall the definitions pi = 2m
n · 1

n−|Vi| and r = maxi |Vi|pi, where Vi is the ith

color class of the planted k-coloring ϕ.

Consider the following iterative procedure for defining a δ-core w.r.t. ϕ. Set H(0) to be all vertices
that have degree at least (1− δ/2)|Vi|pi in every color class Vi of ϕ other than their own. Iteratively,
remove a vertex v from H(i) if either v has less than (1 − δ)|Vj |pj neighbors in Vj ∩ H(i) for some
j 6= ϕ(v), or v has more than δr neighbors in G[V \H(i)], to receive H(i+1). Let t be the iteration
where H(t) = H(t+1), and set C = H(t).
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First observe that the set C indeed meets the requirements in Definition 3.4. It now remains to
prove that the set C is large. The main idea of the proof is to observe that to begin with very few
vertices are eliminated (the degree of a vertex v in every other color class is on average pi|V i|, and
using large-deviation inequalities one can bound the number of vertices that were removed before
the iterative step began). If too many vertices were removed in the iterative step then a small yet
dense subgraph exists (as every vertex that is removed contributes at least δ|Vi|pi/2 edges to the
subgraph induced on V \C). Corollary 2.2 (which can also be stated in the context of Pn,p,k) bounds
the probability of the latter occurring.

As for the number of edges spanned by the core. Assume that |C| ≥ (1 − e−m/(a0nk9))n. Using
the Chernoff bound for example one can prove that there exits a d0 (specifically, d0 = O(m/n)) s.t.
for d ≥ d0, Pr[deg(v) ≥ d] ≤ e−d/100. Therefore, the expected number of edges spanned by the
non-core vertices is at most

e−m/(a0nk9)n · d0 + n

n∑

d=d0

de−d/100 = e−m/(b0nk9)n + e−d/200n ≤ e−m/(c0nk9)n,

where b0, c0 are some monotonically increasing functions of a0. The first inequality uses the fact that
d0 = O(m/n), and the fact that the sum is smaller than the sum of a decreasing geometric series
with q = e−d/150 (for a sufficiently large m/n). Now using large-deviation inequalities one can prove
that with sufficiently high probability, this is indeed the case.

Finally, observe that the cardinalities of the color classes of ϕ meet the third requirement in
Proposition 3.7 (that is, they are of size (1± 0.01)n/k, by the choice of ε̄). ¥

We now use Proposition 5.4 to assert this fact in the uniform case. Let g be s.t. ee−m/(gnk9)n ·nk ·
eke−m/(10nk9)n = o(1). Let A be the event that there exists some δ so that the sampled graph G has
no proper k-coloring w.r.t. which there exists a δ-core of size at least (1− e−m/(a0nk9))n that spans
at least (1− e−m/(a1nk9))m edges (where a0, a1 are chosen according to this g).

Pruniform,m[A] ≤ o(1) + nk · eke−m/(10nk9)n · ee−m/(gnk9)n = o(1).

The last equality is by the choice of g.

6.6 Proof of Proposition 3.8 (Uniqueness of Coloring)

Let C be some δ-core of G with ϕ the underlying k-coloring, and assume that C meets the require-
ments of Proposition 3.7. First observe that the k-coloring w.r.t. which G is c-concentrated (in the
proof of Proposition 3.6) is the same as the k-coloring w.r.t. which there exists a large core (in the
proof of Proposition 3.7) – this is because the proof of both propositions uses the exchange rate
technique, and in the planted setting this assignment is the planted one in both cases. Therefore we
may assume that G is (1 − δ)/(1000k)-concentrated w.r.t. ϕ (Proposition 3.7 concerns δ ∈ (0, 1),
and therefore 1− δ ∈ (0, 1) as well).

Let ψ be a proper k-coloring of G[C] so that ψ differs from ϕ on C (if no such ψ exists then we
are done). By the conditions of Proposition 3.8, G[C] spans at least (1−e−Θ(m/(nk9)))m edges. Thus
it must be that ψ differs from ϕ on the coloring of at most (1 − δ)n/(1000k) vertices (otherwise,
ψ leaves at least (1 − δ)m/(1000k)2 >> (1 − e−Θ(m/(nk9)))m monochromatic edges in G – due to
concentration, and in particular it does not properly k-color G[C]).
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Let v ∈ C be some vertex on whose assignment ϕ and ψ disagree, and w.l.o.g assume that v is
colored i in ϕ and j in ψ. Now consider the neighbors of v in C which are colored j under ϕ. It
must be that these vertices are not colored j under ψ, but rather some other color j′. Now one can
consider the neighbors of a vertex in N(v) which are colored by j′ in ϕ, on which again, ψ and ϕ
must disagree. Put differently, let U be the set of vertices in the core on which ψ and ϕ disagree.
By the discussion above and the first requirement in Definition 3.4 it holds that every vertex v ∈ U
has at least

min
i

(1− δ)pi|Vi| ≥ (1− δ)
2m

n

0.99n/k

n− 0.99n/k
≥ (1− δ)m/(nk)

neighbors in U (pi was defined in Definition 3.4). By our assumption on U , |U | ≤ (1− δ)n/(1000k),
this however contradicts Corollary 2.2 (when plugging in 1− δ in Corollary 2.2).

6.7 Proof of Proposition 3.10 (Connected Components)

Let d = 2m
kn . Let us say that G is bounded if the following conditions hold.

B1. For all X ⊂ V such that |X| ≤ n/d2 we have e(X) ≤ 10|X|.
B2. The maximum degree of G is ≤ ln2 n.

B2. If H is a subgraph of G on |V (H)| ≥ (1− d−10)n vertices, and if H has a k-coloring V1, . . . , Vk

such that e(v, Vj) ≥ 0.9d for all v ∈ Vi and all 1 ≤ i, j ≤ k, i 6= j, then H is uniquely k-colorable.

Moreover, we call G ε-feasible if G has an induced subgraph H with the following properties.

F1. |V (H)| ≥ (1− ε exp(−
√

d))n and |E(H)| ≥ (1− d−1)m.

F2. There is a k-coloring V1, . . . , Vk of G such that |H ∩ Vi| ≥ (1− 10−8ε)n/k for all i.

F3. Every vertex v ∈ H ∩ Vi satisfies e(v, Vj ∩H) ≥ (1− ε)d for all j 6= i.

F4. All v ∈ H satisfy e(v, V \H) ≤ εd.

F5. H is uniquely k-colorable.

If H, K are two induced subgraphs of G that satisfy F1–F5, then the same is true for H ∪ K.
Therefore, G has a unique maximal induced subgraph that enjoys F1–F5; this subgraph will be
denoted by Gε in the sequel.

Lemma 6.18. Let δ ∈ (0, 1] be some positive number. Let G be a random graph in Gn,m,k, m ≥
C0k

4n, C0 = C0(δ) a sufficiently large constant. Then whp G is bounded and δ-feasible.

This lemma is a direct consequence of Propositions 2.1, 3.7, 3.8.

Let T ⊂ V be a set of size t = dlog ne, and let τ be a tree with vertex set T . Moreover, let us
call G (T, τ)-poor if

• G is bounded,

• G is 0.01-feasible, 0.015-feasible, and 0.02-feasible,

30



• G contains τ as a subgraph,

• T does not intersect G0.02.

Denote by G the set of all k-colorable graphs with vertex set V = {1, . . . , n} and exactly m edges,
and let P(T, τ) signify the set of all (T, τ)-poor k-colorable graphs G ∈ G. Below we shall establish
the following.

Lemma 6.19. We have
(
n
t

)
tt−2|P(T, τ)| = o(|G|).

Before we prove Lemma 6.19, let us note that it implies Proposition 3.10 immediately.

Proof of Proposition 3.10. Since there are
(
n
t

)
ways to choose a vertex set T of size t, and then tt−2

ways to place a tree into that set, Lemmas 6.18 and 6.19 entail that

P [Gn,m,k violates the property stated in Proposition 3.10]
≤ P [Gn,m,k is not ε-feasible for some ε ∈ {0.01, 0.015, 0.02} or not bounded]

+P [∃T, τ : Gn,m,k is (T, τ)-poor] ≤ o(1) +
∑

T,τ

|P(T, τ)|
|G| = o(1),

as claimed.

Thus, the remaining task is to prove Lemma 6.19. To this end, we fix a set T and a tree τ and
set up a bipartite auxiliary graph A = A(T, τ) with vertex set V (A) = P(T, τ) ⊕ G; for brevity we
set P = P(T, τ). The auxiliary graph will enjoy the following property.

In A every vertex G ∈ P has degree at least ∆, while every vertex G′ ∈ G has degree
at most ∆′, where

(
n
t

)
tt−2∆′ = o(∆). (19)

Since ∆|P(T, τ)| ≤ |E(A)| ≤ ∆′|G|, Lemma 6.19 follows directly from (19).

To describe the construction of G, we let I be the set of all v ∈ T that have degree ≤ 4 in τ ;
then |I| ≥ t/2, because τ is a tree. Furthermore, for each G ∈ P we let V1(G), . . . , Vk(G) signify the
lexicographically first k-coloring of G, and we set

I1(G) = {v ∈ I : eG(v, V \G0.02) ≥ 0.001d},
I2(G) = {v ∈ I : ∃j : v 6∈ Vj(G) ∧ eG(v, Vj(G) ∩G0.02) ≤ 0.999d} \ I1(G).

If G is (T, τ)-poor, then all vertices v ∈ I are outside of the 0.02-core G0.02; hence, due to F3 and F4
we have I = I1(G) ∪ I2(G). Thus, we decompose P into two parts P1 = {G ∈ P : |I1(G)| ≥ 0.15t},
P2 = P \ P1

As a next step, we will construct two subgraphs A1, A2 of A, both of which consist of the
Pi-G-edges of A. Thus, A = A1 ∪A2, so that (19) will be a consequence of the following statement.

In Aj every vertex G ∈ Pj has degree at least ∆j , while every vertex G′ ∈ G has
degree at most ∆′

j , where
(
n
t

)
tt−2∆′

j = o(∆j) (j = 1, 2). (20)

In the remainder of this section, we present the constructions of A1,A2 and establish (20). To
facilitate these constructions, we say that a pair {x, y} of vertices is compatible if {x, y} 6∈ E(G), x, y
lie in G0.01, and x, y belong to different classes of the unique coloring of G0.01. Moreover, we say
that a set F of pairs of vertices is compatible if every pair in F is compatible and no vertex v ∈ V
occurs in more than one pair.

31



Lemma 6.20. Let G ∈ P and let 1 ≤ s ≤ n0.1. Then there exist
(
n2/4

s

)
compatible sets F of size s.

Proof. Let Z1, . . . , Zk signify the unique k-coloring of G0.01, and let C be a complete k-partite
graph with the color classes Z1, . . . , Zk. Since G satisfies F2, C has at least

∑
1≤i<j≤k |Zi||Zj | ≥

(0.9− k−1)
(
n
2

)
edges. Furthermore, let S be a set of s edges of C chosen uniformly at random. Then

the probability that S does not contain an edge of G is
(|E(C)| −m

s

)(|E(C)|
s

)−1

=
s−1∏

j=0

1− m

|E(C)| − j
= 1− o(1),

because |E(C)| = Ω(n2), while ms = o(n2). Moreover, the probability that a specific vertex v occurs
twice in S is at most

n2

(|E(C)|
s− 2

)(|E(C)|
s

)−1

≤ O(s2n−2) = o(n−1).

Hence, by the union bound with probability 1 − o(1) a randomly chosen S will touch no vertex v
more than once. Thus, with probability 1 − o(1) a randomly chosen S is compatible, so that the
number of compatible sets is ≥ (1− o(1))

(|E(C)|
s

) ≥ (
n2/4

s

)
. ¥

Construction of A1. The construction of A1 is based on the following observation.

Lemma 6.21. Suppose that G ∈ P1. There exist sets U ⊂ I1(G), |U | = d0.1te, and W ⊂ V \ (τ ∪
G0.02) such that e(v, W ) ≥ 10−4d for all v ∈ U , and e(w, U) ≤ 104 for all w ∈ W .

Proof. Let J ⊂ I1(G) be a set of size 0.15t, and let K be the set of all vertices w ∈ V \ (G0.02 ∪ τ)
that are adjacent with a vertex in J . Moreover, let L ⊂ K be the set of all w ∈ K such that
e(v, J) ≥ 104. Then the boundedness property of G implies that |L| ≤ 0.01t. Furthermore, letting
Q = {v ∈ J : e(v, L) > 104}, we have |Q| ≤ 0.001t (once more due to the boundedness of G). Now,
let U = J \ Q and W = K \ L. Then each w ∈ W has ≤ 104 neighbors in U . Moreover, if v ∈ U ,
then e(v,W ) ≥ e(v, V \ (G0.02 ∪ τ))− e(v, L) ≥ 0.001d− 10− 104 ≥ 10−4d. ¥

Our objective is to associate to each G ∈ P1 a large number of “target graphs” G′ ∈ G such that no
G′ occurs as a target graph too frequently. To this end, we consider the following nondeterministic
procedure that maps G to a target graph G′. For each possible outcome G′ we include the edge
{G,G′} into A1. Set γ = d10−4de and u = d0.1te.
C1. Choose a compatible set F of size t− 1 + γu.

C2. Choose sets U and W as in Lemma 6.21.

C3. For each v ∈ U choose a set {w1(v), . . . , wγ(v)} of neighbors of v in W .

C4. Obtain G′ from G by removing the edges of τ along with the edges {v, wi(v)} (v ∈ U, 1 ≤ i ≤ γ)
and adding the edges F .

Lemma 6.20 entails that the number of graphs G′ that can be obtained from each G via the above
procedure is at least

∆1 =
(

n2/4
t− 1 + γu

)
(21)

(because there are at least this many choices in step C1). Conversely, to recover G from G′, we
consider the following nondeterministic procedure.
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R1. Choose a set F ′ of t− 1 + γu edges of G′.

R2. Choose a set U ′ ⊂ T of size u.

R3. For each such v ∈ U ′ choose a set N ′
v of γ vertices outside of the 0.015-core of G′.

R4. Output the graph G′′ obtained from G′ by removing the edges F ′ and adding the edges {v, w},
v ∈ U ′, w ∈ N ′

v along with the edges of τ .

Lemma 6.22. If {G,G′} is an edge of A1, then G′ is 0.015-feasible and the process R1–R4 applied
to G′ can yield the output G′′ = G.

Proof. Let F , U , W , and ({w1(v), . . . , wγ(v)})v∈U be the sets chosen by C1–C4 to obtain G′ from G.
If R1–R4 chooses F ′ = F , U ′ = U , N ′

v = {w1(v), . . . , wγ(v)} for all v ∈ U , then the outcome will be
G′′ = G. Thus, we just need to show that it is feasible for R1–R4 to choose N ′

v = {w1(v), . . . , wγ(v)},
i.e., that G′ is 0.015-feasible and the vertices wj(v) do not belong to the 0.015-core of G′.

To see that G′ is 0.015-feasible, let X be the vertex set of G0.01. We claim that X satisfies
F1–F5 with respect to G′ with ε = 0.01. For F1 is an immediate consequence of the fact that G
is 0.01-feasible. Moreover, as C4 adds a compatible set F and only removes edges that contain a
vertex outside of X, the unique k-coloring of G0.01 remains the unique k-coloring of the set X in G′,
whence F2–F5 follow. Thus, G′ is indeed 0.01-feasible, and hence 0.015-feasible as well.

Finally, to show that the vertex set Y of G′
0.015 is contained in that of G0.02, we show that Y

is 0.02-feasible in G. For the induced subgraph G [Y ] is uniquely k-colorable, because all edges in
E(G′) \E(G) lie in the uniquely k-colorable subgraph G0.01 of G. Hence, Y satisfies F5, and F1–F2
just follow from the fact that Y is 0.015-feasible in G′. Moreover, as no vertex v ∈ V occurs in the
set E(G) \ E(G′) of edges removed in C4 more than γ times, Y also satisfies F3 and F4 in G with
ε = 0.02. ¥

Lemma 6.23. If G′ is an outcome of C1–C4 for some G ∈ P1, then the number of possibles
nondeterministic choices in the steps R1–R4 is at most ∆′

1 = 2t
(

m
t−1+γu

)(
exp(−

√
d)n

γ

)u
.

Proof. The first factor accounts for the number of ways to choose F ′. Moreover, there are clearly
at most 2t ways to choose U ′. To bound the number of choices of R3, note that for each v ∈ U ′

there are at most
(
n−|V (G′0.015)|

γ

)
ways to choose the set N ′

v. As the construction C1–C4 ensures
that G′

0.015 contains the 0.01-core G0.01 of G, our assumption that G is 0.01-feasible entails that
|V (G′

0.015)| ≥ n(1− exp(−
√

d)). ¥

Finally, combining (21) with Lemmas 6.22 and 6.23, and observing that
(
n
t

)
tt−2∆′

1 = o(∆1), we
obtain (20) for j = 1.

Construction of A2. Let G ∈ P2, and let V1(G), . . . , Vk(G) be the lexicographically first k-coloring
of G. We split the set I2(G) into k subsets

I2j(G) = {v ∈ I2 : v 6∈ Vj(G) ∧ e(v, Vj(G) ∩G0.02) ≤ 0.999d} (1 ≤ j ≤ k).

Moreover, we split P2 into subsets

P2j = {G ∈ P2 : |I2j(G)| ≥ 0.1t/k} \
⋃

1≤i<j

P2i (1 ≤ j ≤ k).
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Without loss of generality, we shall just consider the case G ∈ P21 in the sequel.

As in the construction of A1 we consider a nondeterministic procedure that maps G ∈ P2 to
G′ ∈ G. Let u = d0.1t/ke and γ = d10−9de.

C1. Choose a compatible set F of size t− 1.

C2. Choose a subset U ⊂ I21(G) of size u.

C3. Choose a matching M ⊂ E(G0.01) of size γu such that no vertex v is adjacent to more than 100
vertices that occur in M . Moreover, for each v ∈ U choose a set Nv ⊂ V1 ∩G0.01 of size γ such
that the sets (Nv)v∈U are pairwise disjoint, e(v, Nv) = 0, and no vertex of Nv occurs in M .

C4. Obtain G′ from G by removing the edges of τ and the matching M , adding the edges F , and
connecting each v ∈ U with all w ∈ Nv.

For each G ∈ P21 and each possible outcome G′ of C1–C4 we include the edges {G, G′} into A2.
The following lemma provides a lower bound on the degree of G ∈ P21 in A2.

Lemma 6.24. Each G ∈ P21 has at least ∆21 = 1
2

(
n2/4
t−1

)(
(1−10−9)m

γu

)(
(1−10−9)n/k

γ

)u
images G′.

Proof. By Lemma 6.20 there are
(
n2/4
t−1

)
ways to choose F . Furthermore, F1 implies that G0.01

contains at least (1 − 10−9)m edges. Moreover, since the maximum degree of G is ≤ ln2 n by B2,
G0.01 has at least (1− o(1))

((1−10−9)m
0.1δdt/k

)
matchings of size 0.1δdt/k. Finally, since |V1| ≥ (1− 10−9)n

k

by F2, there are (1− o(1))
((1−10−9)n/k

δd

)0.1t/k
ways to choose the sets (Nv)v∈U . ¥

Conversely, we consider the following nondeterministic procedure for obtaining a graph G′′ from
an outcome G′ of C1–C4.

R1. Choose a set F ′ ⊂ E(G′) of size t− 1.

R2. Determine the unique coloring V ′
1 , . . . , V

′
k of G′

0.015. Then, choose a set U ′ ⊂ T of size u and
an index l such that each v ∈ U ′ has at most 0.9999d neighbors in V ′

l . Moreover, choose a set
M ′ of γu pairs of vertices such that each e ∈ M ′ consists of two vertices belonging to different
classes of V ′

1 , . . . , V
′
k.

R3. For each v ∈ U ′ choose a set N ′
v of neighbors of v in V ′

l such that |N ′
v| = γ.

R4. Obtain a graph G′′ from G′ by removing F ′ and all edges {v, w} with v ∈ U ′, w ∈ N ′
v, and

adding the edges of τ and M ′.

Lemma 6.25. If {G,G′} is an edge of A2, then G′ is 0.015-feasible and the process R1–R4 applied
to G′ can yield the output G′′ = G.

Proof. Suppose that G′ has been obtained from G by choosing the matching M , the set U , the sets
(Nv)v∈U , and the feasible set F . To recover G′′ = G′, we shall prove that G′ is 0.15 feasible and that
the process R1–R4 can choose M ′ = M , F ′ = F , and N ′

v = Nv.

To show that G′ is 0.15 feasible, let Z be the set of all vertices that occur in M and H =
V (G0.01) \ Z. We claim that H is 0.015-feasible in G′. For H satisfies the assumption of condition
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B3 in G, whence G [H] = G′ [H] is uniquely k-colorable. Moreover, since |Z| = O(lnn), H satisfies
F1, F2, F3, and F5. Further, since the sets Nv are pairwise disjoint, we have eG′(v, V \ H) ≤
eG(v, V \H) + 1 ≤ eG(v, V \G0.01) + 101, because no vertex of G has more than 100 neighbors in Z.
Therefore, H is 0.015-feasible in G′.

Indeed, we have shown that V (G′
0.015) ⊃ V (G0.01) \ Z. Hence, as G′

0.015 is uniquely k-colorable,
for a suitable value of l we have V ′

l ⊃
⋃

v∈U Nv. Moreover, since V (G′
0.015) ⊂ V (G0.02), all v ∈ U

satisfy e(v, V ′
l ) ≤ 0.9999d. Therefore, it is feasible for R1–R4 to choose M ′ = M , F ′ = F , and

N ′
v = Nv, thereby recovering G′′ = G. ¥

In the light of Lemma 6.25 we can bound the degrees of G′ ∈ G in A2 as follows.

Lemma 6.26. If G′ has been obtained from G via C1–C4, then during R1–R4 there are at most
∆′

2 =
(

m
t−1

)
2t

(
(1−k−1)(n

2)
γu

)(
0.9999d

γ

)u
ways to choose F ′, the sets N ′

v, and M ′. Hence, the degree of any
G′ ∈ G in A2 is ≤ k∆′

2.

Proof. There are exactly
(

m
t−1

)
ways to choose F ′ and at most 2t ways of choosing U ′. Furthermore,

by Turan’s theorem there are at most
(
(1−k−1)(n

2)
γu

)
ways to choose M ′. Finally, since each v ∈ U ′ has

at most 0.9999d neighbors in V ′
1 , there are at most

(
0.9999d

γ

)
ways to choose N ′

v. ¥

Combining the bounds from Lemmas 6.24 and 6.26, we obtain

∆3

∆′
3

≥ Ω(n−1)
( n

4dk

)t−1
(

(1− 10−9)2mn/k

0.9999(1− k−1)n2d/2

)0.1δdt/k

≥
( n

4dk

)t−1
(

(1− 10−9)2

0.9999

)γu

≥ exp(Ω(γu))
(

n

t

)
tt−2

Thus, we have established (20) for j = 3.

7 Conclusion

In this work we consider the uniform distribution over k-colorable graphs, Gn,m,k, with average degree
greater than some sufficiently large constant. We characterize the typical structure of the solution
space of such graphs to show that typically there exists only one cluster of proper k-colorings, whose
size may be exponential in n, in which almost all vertices are frozen. We also prove that a relatively
simple efficient algorithm recovers whp a proper k-coloring of such graphs, thus asserting that almost
all k-colorable graphs are easy to color.

To obtain our results we had to come up with new analytical tools that apply to a number of
further NP-hard problems, including the satisfiability problem. Specifically, similar arguments to
what we had here imply that the algorithmic techniques developed for random formulas from the
planted distribution, e.g. [8, 4], can be extended to the uniform distribution [12].

Combining Theorems 1.1 and 1.2 rigorously supports the following common thesis: the main key
to understanding the (empirical) hardness of a certain distribution over k-colorable graphs lies in
the structure of the solution space of a typical graph in that distribution. Specifically, our results
show (at least in our setting) that typically when a graph has a single cluster of proper k-colorings,
though its volume may be exponential in n, then the problem is “easy”. On the other hand, when
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the clustering is complicated, for example in the near threshold regime, experimental results pre-
dict that many “simple” heuristics fail, while “heavy machinery” such as Survey Propagation works.
Heightening this last point, regard the recent work in [17] which considers the planted 3SAT dis-
tribution. There it is proved that the näıve Warning Propagation algorithm works whp for planted
3CNF formulas with a suitable parametrization which, amongst other characteristics, typically have
one cluster of satisfying assignments. Fitting the result into our perspective – when the clustering is
simple, then a simple message passing algorithm works (Warning Propagation), when the clustering
is complicated, then only a much more complicated message passing algorithm is known (and even
this only experimentally) to work (Survey Propagation).

We conclude with two open research questions. We have shown that the planted and uniform
distributions share many structural properties. Is it true that those two distribution are also statis-
tically close (in the regular sense of distance between two distributions)? A positive answer to this
question will in particular provide an efficient algorithm for sampling the uniform distribution (up to
the statistical difference). The only case where the planted and uniform distributions are known to
be statistically close is the regime m ≥ c log n, c a sufficiently large constant. In that case there whp
exists only one satisfying assignment (in both models). However the case m/n = O(1) is completely
unknown.

Another intriguing question is what happens when m/n = O(1) but not necessarily sufficiently
large? Can one prove that there still exists a polynomial time algorithm that works whp? For starters
answer this question in the planted distribution. Also, what is the typical geometry of the solution
space? Does the same “degenerated” single-cluster structure remains all the way to the k-colorability
threshold?

Acknowledgements: we thank Uriel Feige for useful discussions.
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