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Abstract

A graph is Hamiltonian if it contains a cycle passing through every vertex. One of the cor-

nerstone results in the theory of random graphs asserts that for edge probability p � logn
n ,

the random graph G(n, p) is asymptotically almost surely Hamiltonian. We obtain the follow-

ing strengthening of this result. Given a graph G = (V,E), an incompatibility system F over

G is a family F = {Fv}v∈V where for every v ∈ V , the set Fv is a set of unordered pairs

Fv ⊆ {{e, e′} : e 6= e′ ∈ E, e ∩ e′ = {v}}. An incompatibility system is ∆-bounded if for every

vertex v and an edge e incident to v, there are at most ∆ pairs in Fv containing e. We say that

a cycle C in G is compatible with F if every pair of incident edges e, e′ of C satisfies {e, e′} /∈ Fv.

This notion is partly motivated by a concept of transition systems defined by Kotzig in 1968, and

can be used as a quantitative measure of robustness of graph properties. We prove that there is

a constant µ > 0 such that the random graph G = G(n, p) with p(n) � logn
n is asymptotically

almost surely such that for any µnp-bounded incompatibility system F over G, there is a Hamil-

ton cycle in G compatible with F . We also prove that for larger edge probabilities p(n)� log8 n
n ,

the parameter µ can be taken to be any constant smaller than 1 − 1√
2
. These results imply in

particular that typically in G(n, p) for p� logn
n , for any edge-coloring in which each color appears

at most µnp times at each vertex, there exists a properly colored Hamilton cycle. Furthermore,

our proof can be easily modified to show that for any edge-coloring of such a random graph in

which each color appears on at most µnp edges, there exists a Hamilton cycle in which all edges

have distinct colors (i.e., a rainbow Hamilton cycle).

1 Introduction

A Hamilton cycle in a graph G is a cycle passing through each vertex of G, and a graph is Hamiltonian

if it contains a Hamilton cycle. Hamiltonicity, named after Sir Rowan Hamilton who studied it in

the 1850s, is an important and extensively studied concept in graph theory. It is well known that

deciding Hamiltonicity is an NP-complete problem and thus one does not expect a simple sufficient

and necessary condition for Hamiltonicity. Hence the study of Hamiltonicity has been concerned with

looking for simple sufficient conditions implying Hamiltonicity. One of the most important results in

this direction is Dirac’s theorem asserting that all n-vertex graphs, n ≥ 3, of minimum degree at least
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n
2 contains a Hamilton cycle. Sufficient conditions for Hamiltonicity often provide good indication

towards similar results for more general graphs. For example, Pósa and Seymour’s conjecture on

the existence of powers of Hamilton cycles, and Bollobás and Komlós’s conjecture on the existence

of general spanning subgraphs of small bandwidth, are both (highly non-trivial) generalizations of

Dirac’s theorem (both conjectures have been settled, see [18, 8]).

A binomial random graph G(n, p) is a probability space of graphs on n vertices where each pair

of vertices form an edge independently with probability p. With some abuse of terminology, we

will use G(n, p) to denote both the probability space and a random graph drawn from it. We say

that G(n, p) possesses a graph property P asymptotically almost surely (or a.a.s. in short) if the

probability that G(n, p) has P tends to 1 as n tends to infinity. Early results on Hamiltonicity of

random graphs were proved by Pósa [27], and Korshunov [20]. Improving on these results, Bollobás

[4], and Komlós and Szemerédi [19] proved that if p ≥ (log n + log log n + ω(n))/n for any function

ω(n) that goes to infinity together with n, then G(n, p) is a.a.s. Hamiltonian. The range of p cannot

be improved, since if p ≤ (log n + log log n − ω(n))/n, then G(n, p) a.a.s. has a vertex of degree at

most one. Hamiltonicity of random graphs has been studied in great depth, and there are many

beautiful results on the topic.

Recently there has been increasing interest in the study of robustness of graph properties, aiming

to strengthen classical results in extremal and probabilistic combinatorics. For example, consider the

property of being Hamiltonian. By Dirac’s theorem, we know that all n-vertex graphs of minimum

degree at least n
2 (which we refer to as Dirac graphs) are Hamiltonian. To measure the robustness

of this theorem, we can ask questions such as: “How many Hamilton cycles must a Dirac graph

contain?”, “What is the critical bias of the Maker-Breaker Hamiltonicity game played on a Dirac

graph?”, or “When does a random subgraph of a Dirac graph typically contain a Hamilton cycle?”

(see [10, 22]). Note that an answer to each question above in some sense defines a measure of

robustness of a Dirac graph with respect to Hamiltonicity. Moreover, Dirac’s theorem itself can

be considered as measuring robustness of Hamiltonicity of complete graphs, where we measure the

maximum number of edges one can delete from each vertex of the complete graph while maintaining

Hamiltonicity (see [30] for further discussion).

In this paper, we are interested in yet another type of robustness measure, and study the robust-

ness of Hamiltonicity with respect to this measure.

Definition 1.1. Let G = (V,E) be a graph.
(i) An incompatibility system F over G is a family F = {Fv}v∈V where for every v ∈ V , the set

Fv is a set of unordered pairs Fv ⊆ {{e, e′} : e 6= e′ ∈ E, e ∩ e′ = {v}}.
(ii) If {e, e′} ∈ Fv for some edges e, e′ and vertex v, then we say that e and e′ are incompatible

in F . Otherwise, they are compatible in F . A subgraph H ⊆ G is compatible in F , if all its

pairs of edges e and e′ are compatible.

(iii) For a positive integer ∆, an incompatibility system F is ∆-bounded if for each vertex v ∈ V and

an edge e incident to v, there are at most ∆ other edges e′ incident to v that are incompatible

with e.

The definition is motivated by two concepts in graph theory. First, it generalizes transition

systems introduced by Kotzig [21] in 1968, where a transition system is a 1-bounded incompatibility
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system. Kotzig’s work was motivated by a problem of Nash-Williams on cycle covering of Eulerian

graphs (see, e.g. Section 8.7 of [7]).

Incompatibility systems and compatible Hamiton cycles also generalize the concept of properly

colored Hamilton cycles in edge-colored graphs, The problem of finding properly colored Hamilton

cycles in edge-colored graph was first introduced by Daykin [11]. He asked if there exists a constant

µ such that for large enough n, there exists a properly colored Hamilton cycle in every edge-coloring

of a complete graph Kn where each vertex has at most µn edges incident to it of the same color

(we refer to such coloring as a µn-bounded edge coloring). Daykin’s question has been answered

independently by Bollobás and Erdős [6] with µ = 1/69, and by Chen and Daykin [9] with µ = 1/17.

Bollobás and Erdős further conjectured that all (bn2 c − 1)-bounded edge coloring of Kn admits a

properly colored Hamilton cycle. After subsequent improvements by Shearer [29] and by Alon and

Gutin [2], Lo [24] recently settled the conjecture asymptotically, proving that for any positive ε,

every (1
2 − ε)n-bounded edge coloring of E(Kn) admits a properly colored Hamilton cycle.

Note that a µn-bounded edge coloring naturally defines µn-bounded incompatibility systems,

and thus the question mentioned above can be considered as a special case of the problem of finding

compatible Hamilton cycles. However, in general, the restrictions introduced by incompatibility

systems need not come from edge-colorings of graphs, and thus the results on properly colored

Hamilton cycles do not necessarily generalize easily to incompatibility systems.

In this paper, we study compatible Hamilton cycles in random graphs. We present two results.

Theorem 1.2. There exists a positive real µ such that for p � logn
n , the graph G = G(n, p) a.a.s.

has the following property. For every µnp-bounded incompatibility system defined over G, there exists

a compatible Hamilton cycle.

Our result can be seen as an answer to a generalized version of Daykin’s question. In fact, we

generalize it in two directions. First, we replace properly colored Hamilton cycles by compatible

Hamilton cycles, and second, we replace the complete graph by random graphs G(n, p) for p� logn
n

(note that for p = 1, the graph G(n, 1) is Kn with probability 1). Since G(n, p) a.a.s. has no Hamilton

cycles for p� logn
n , we can conclude that logn

n is a “threshold function” for having such constant µ.

The constant µ we obtain in Theorem 1.2 is very small, and our second result improves this constant

for denser random graphs.

Theorem 1.3. For all positive reals ε, if p � log8 n
n , then the graph G = G(n, p) a.a.s. has the

following property. For every
(

1− 1√
2
− ε
)
np-bounded incompatibility system defined over G, there

exists a compatible Hamilton cycle.

In an edge-colored graph, we say that a subgraph is rainbow if all its edges have distinct colors.

There is a vast literature on the branch of Ramsey theory where one seeks rainbow subgraphs in

edge-colored graphs. Note that one can easily avoid rainbow copies by using a single color for all

edges, and hence in order to find a rainbow subgraph one usually imposes some restrictions on the

distribution of colors. In this context, Erdős, Simonovits and Sós [13] and Rado [28] developed anti-

Ramsey theory where one attempts to determine the maximum number of colors that can be used to

color the edges of the complete graph without creating a rainbow copy of a fixed graph. In a different
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direction, one can try to find a rainbow copy of a target graph by imposing global conditions on the

coloring of the host graph. For a real ∆, we say that an edge-coloring of G is globally ∆-bounded

if each color appears at most ∆ times on the edges of G. In 1982, Erdős, Nešetřil and Rödl [12]

initiated the study of the problem of finding rainbow subgraphs in a globally ∆-bounded coloring of

graphs. One very natural question of this type is to find sufficient conditions for the existence of a

rainbow Hamilton cycle in any globally ∆-bounded coloring. Substantially improving on an earlier

result of Hahn and Thomassen [16], Albert, Frieze and Reed [1] proved the existence of a constant

µ > 0 for which every globally µn-bounded coloring of Kn (for large enough n) admits a rainbow

Hamilton cycle. In fact, they proved a stronger statement asserting that for all graphs Γ with vertex

set E(Kn) (the edge set of the complete graph) and maximum degree at most µn, there exists a

Hamilton cycle in Kn which is also an independent set in Γ.

It turns out that the proof technique used in proving Theorem 1.2 can be easily modified to give

the following result, that extends the above to random graphs.

Theorem 1.4. There exists a constant µ > 0 such that for p� logn
n , the random graph G = G(n, p)

a.a.s. has the following property. Every globally µnp-bounded coloring of G contains a rainbow

Hamilton cycle.

Theorem 1.4 is best possible up to the constant µ since one can forbid all rainbow Hamilton

cycles in a globally (1 + o(1))np-bounded coloring by simply coloring all edges incident to some fixed

vertex with the same color.

The proof of the three theorems will be given in the following sections. In Section 2, we prove

Theorems 1.2 and 1.4. Then in Section 3, we prove Theorem 1.3.

Notation. A graph G = (V,E) is given by a pair of its vertex set V = V (G) and edge set E = E(G).

For a set X, let N(X) be the set of vertices incident to some vertex in X. For a pair of disjoint vertex

sets X and Y , let E(X,Y ) = {(x, y) |x ∈ X, y ∈ Y, {x, y} ∈ E}, and define e(X,Y ) = |E(X,Y )|. We

define the length of a path as its number of edges. When there are several graphs under consideration,

to avoid ambiguity, we use subscripts such as NG(X) to indicate the graph that we are currently

interested in.

Throughout the paper, we tacitly assume that the number of vertices n of the graph is large

enough whenever necessary. We also omit floor and ceiling signs whenever they are not crucial. All

logarithms are natural.

2 Proof of Theorems 1.2 and 1.4

To prove Theorem 1.2, we find a compatible Hamilton cycle by first finding a compatible subgraph

that is also a good expander graph.

Definition 2.1. For positive reals k and r, a graph R is a (k, r)-expander if all sets X ⊆ V (R) of

size at most |X| ≤ k satisfy |N(X) \X| ≥ r|X|.

Once we find an expander subgraph, we construct a Hamilton cycle by using Pósa’s rotation-

extension technique, which is a powerful tool exploiting the expansion property of the graph. The

following definition captures the key concept that we will utilize.

4



Definition 2.2. Given a graph R and a path P defined over the same vertex set, we say that an

edge {v, w} is a booster for the pair (P,R) if there exists a path of length |P | − 1 in the graph P ∪R
whose two endpoints are v and w.

The following lemma is a well-known tool that is central to many applications of the Pósa’s

rotation-extension technique (see, e.g., Lemma 8.5 of [5]).

Lemma 2.3. Suppose that R ⊆ Kn is a (k, 2)-expander and P ⊆ Kn is a path that is of maximum

length in the graph P ∪R. Then Kn contains at least (k+1)2

2 boosters for the pair (P,R).

2.1 Proof of Theorem 1.2

In this subsection, we state our main lemmas without proof and prove Theorem 1.2 using these

lemmas. The proofs of the lemmas will be given in the next subsection.

Lemma 2.4. There exist positive constants µ and d such that if p� logn
n , then G = G(n, p) a.a.s.

has the following property. For every µnp-bounded incompatibility system F over G, there exists a

subgraph R ⊆ G with the following properties:

(i) R is compatible with F ,

(ii) R is an (n4 , 2)-expander, and

(iii) |E(R)| ≤ dn.

The previous lemma will be used for ‘rotating’ paths, while our next lemma will be used for

‘extending’ cycles.

Lemma 2.5. For a positive constant d, if p � logn
n , then a.a.s. in G = G(n, p), each pair of

subgraphs (P,R) satisfying the conditions below has at least 1
64n

2p boosters relative to it:

(i) R is an (n4 , 2)-expander with |E(R)| ≤ dn, and

(ii) P is a longest path in P ∪R.

Theorem 1.2 easily follows from the two lemmas above.

Proof of Theorem 1.2. Let µ and d be constants coming from Lemma 2.4. We assume that µ ≤
1

256(d+1) by reducing its value if necessary. Suppose that an instance G of G(n, p) that satisfies the

conclusions of Lemmas 2.4 and 2.5 is given. Let R ⊆ G be an (n4 , 2)-expander whose existence is

guaranteed by Lemma 2.4.

Given an incompatibility system F over G, let P ⊆ G be a path of maximum length among all

paths satisfying the following two conditions: (i) P ∪R is compatible with F , and (ii) P is a longest

path in P ∪R. Note that we are maximizing over a non-empty collection, since a longest path in R

meets the criteria.

By Lemma 2.5, the graph G contains at least 1
64n

2p boosters for the pair (P,R). Among these

boosters, we would like to find a booster e such that P ∪R∪{e} is compatible with F . Towards this

end, for each edge e′ = {u, v} ∈ E(P ∪R) we forbid to use the edges incompatible with e′ as boosters.

Since F is µnp-bounded, each edge of P ∪ R forbids at most 2µnp other edges. Furthermore, since
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the number of edges in P ∪R is at most n+ |E(R)| ≤ (d+ 1)n, the total number of edges forbidden

is at most

(n+ |E(R)|) · 2µnp ≤ 2(d+ 1)µn2p <
1

64
n2p,

which is less than the number of boosters. Therefore, we can find a booster e such that P ∪R ∪ {e}
is still compatible with F .

Since e is a booster for (P,R), we see that there exists a cycle C of length |P | in P ∪ R ∪ {e}.
This cycle is compatible with F , since it is a subgraph of a graph compatible with F . Thus if C is

a Hamilton cycle, then we are done. Otherwise since all (n4 , 2)-expanders are connected, there exists

a vertex v /∈ V (C) and an edge e′ ∈ E(R) connecting v to C. By using this edge, we can extend the

cycle C to a path in P ∪R ∪ {e} that is longer than P . Thus if we define P ′ as the longest path in

P ∪ R ∪ {e}, then since P ′ ∪ R ⊆ P ∪ R ∪ {e}, we see that P ′ ∪ R is compatible with F , and P ′ is

a longest path in P ′ ∪ R. This contradicts the fact that P is chosen as a path of maximum length

subject to these conditions, and shows that C is a Hamilton cycle.

2.2 Proof of lemmas

We first state two well-known results in probabilistic combinatorics. The first theorem is a form of

Chernoff’s inequality as appears in [26, Theorem 2.3].

Theorem 2.6. Let X ∼ Bi(n, p), where Bi(n, p) denotes the binomial random variable with param-

eters n and p. For any s ≤ 1
2np and t ≥ 2np, we have

P(X ≤ s) ≤ e−s/4 and P(X ≥ t) ≤ e−3t/16.

Moreover, for all 0 < ε < 1
2 we have,

P(|X − np| > εnp) ≤ e−Ω(ε2np).

The second theorem is the standard local lemma (see, e.g., [3]).

Theorem 2.7. Let A1, A2, · · · , An be events in an arbitrary probability space. A directed graph

D = (V,E) on the set of vertices V = [n] is called a dependency digraph for the events A1, . . . , An if

for each i ∈ [n], the event Ai is mutually independent of all the events {Aj : (i, j) /∈ E}. Suppose

that D = (V,E) is a dependency digraph for the above events and suppose that there are real numbers

x1, . . . , xn such that 0 ≤ xi < 1 and P(Ai) ≤ xi
∏

(i,j)∈E(1− xj) for all i ∈ [n]. Then P(
⋂n
i=1Ai) ≥∏n

i=1(1− xi). In particular, with positive probability no event Ai holds.

The following lemma establishes several properties of G(n, p) that we need.

Lemma 2.8. If p� logn
n , then G(n, p) a.a.s. satisfies the following properties.

(i) all degrees are (1 + o(1))np,

(ii) for all sets X of size |X| < (np4)−1/3, we have e(X) ≤ 8|X|,

(iii) for all sets X of size |X| = t for (np4)−1/3 ≤ t ≤ n, we have e(X) ≤ t2p ·
(
n
t

)1/2
, and

(iv) for disjoint sets X and Y satisfying |X||Y |p� n, we have e(X,Y ) ≥ 1
2 |X||Y |p.
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Proof. We omit the proofs of Properties (i) and (iv), since they follow easily from direct applications

of Chernoff’s inequality together with the union bound.

The probability of a fixed set X of size t to violate Property (ii) is at most((t
2

)
8t

)
p8t ≤

(etp
8

)8t
<
((e

8

)8( t
n

)2)t
.

Hence by the union bound, the probability of Property (ii) being violated is at most

(np4)−1/3∑
t=1

(
n

t

)
·
((e

8

)8( t
n

)2)t
<

n/(logn)4/3∑
t=1

(
e ·
(e

8

)8( t
n

))t
= o(1).

Similarly, the probability of a fixed set X of size t to violate Property (iii) is, by Chernoff’s

inequality, at most e−c·t
2p(n/t)1/2 for some positive constant c. The function

ctp
(n
t

)1/2
− 2 log

(en
t

)
is increasing for t > 0 and for t = (np4)−1/3 equals c(np)1/3−O(log np) > 0. Hence, for t ≥ (np4)−1/3,

we have that

ct2p
(n
t

)1/2
≥ 2t log

(en
t

)
.

Thus by the union bound, the probability of Property (iii) being violated is at most

n∑
t=(np4)−1/3

(
n

t

)
e−ct

2p(n/t)1/2 ≤
n∑

t=(np4)−1/3

et log( en
t

)−ct2p(n/t)1/2 = o(1).

We first prove Lemma 2.4 which we restate here for the reader’s convenience. The proof is based

on a straightforward application of local lemma, but is rather lengthy.

Lemma. There exist positive constants µ and d such that if p� logn
n , then G = G(n, p) a.a.s. has the

following property. For every µnp-bounded incompatibility system F over G, there exists a subgraph

R ⊆ G with the following properties:

(i) R is compatible with F ,

(ii) R is an (n4 , 2)-expander, and

(iii) |E(R)| ≤ dn.

Proof. Throughout the proof, let c0 = e, C1 = C2 = 1
2 , α = 1

2

(
1

20e

)2
, d = 10(20e)2, and µ = 1

25c0d2
<

10−11. Condition on G = G(n, p) satisfying the events of Lemma 2.8. Suppose that we are given a

µnp-bounded incompatibility system F over G. For all v ∈ V (G), independently (with repetition)

choose d random edges in G incident to v, and let F (v) be the set of chosen edges. Let R be the

graph whose edge set is
⋃
v F (v). We claim that R has the properties listed above with positive

probability. Note that Property (iii) trivially holds.
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Let t0 = 1
3(np4)−1/3, t1 = αn, and t2 = n/4 for some constant α to be chosen later. There are

three types of events that we consider. First are events considering compatibility of edges. For a

pair of edges e1 and e2, if e1 6= e2, then let A(e1, e2) be the event that both edges e1 and e2 are in

R, and if e1 = e2 = e, then let A(e, e) be the event that the edge e is chosen in two different trials.

Define

A = {A(e1, e2) : e1, e2 are incompatible, or e1 = e2}.

Second are events considering expansion of small sets. For a set W , let B(W ) be the event that

eR(W ) ≥ d
3 |W |, and define, for t0 ≤ t ≤ t1,

Bt = {B(W ) : |W | = 3t} .

Third are events considering expansion of large sets. For a pair of disjoint subsets X and Y , let

C(X,Y ) be the event that eR(X,Y ) = 0, and define, for t1 ≤ t ≤ t2,

Ct = {C(X,Y ) : X ∩ Y = ∅, |X| = t, |Y | = n− 3t} .

We first prove that Properties (i) and (ii) hold if none of the events in A,Bt, and Ct happen.

Property (i) obviously holds if none of the events in A happens. Note that not having the events

A(e, e) for all edges e implies the fact that we obtain distinct edges at each trial. Hence each set X

has at least d|X| distinct edges incident to it, and in particular, we have |E(R)| = dn. For Property

(ii), consider a set X of size |X| = t and assume that |NR(X) \X| < 2|X|. Let W be a superset of

X ∪NR(X) of size exactly 3|X|. By the fact mentioned above, we see that eR(W ) ≥ d|X| > d
3 |W |.

1. If t < t0, then since d > 24, this contradicts the fact that G(n, p) has e(W ) ≤ 8|W |,
2. if t0 ≤ t ≤ t1, then it contradicts the event B(W ), and

3. if t1 ≤ t ≤ n/4, then we have e(X,V \W ) = 0 and it contradicts the event C(X,V \W ).

Hence in all three cases we arrive at a contradiction. Therefore if none of the events in A,Bt,
and Ct holds, then we obtain all the claimed properties (i), (ii), and (iii).

We will use the local lemma to prove that with positive probability none of the events in A,Bt,
and Ct holds. Towards this end, we define the dependency graph Γ with vertex set V = A∪

⋃t1
t=t0
Bt∪⋃n/4

t=t1
Ct. Note that the graph R is determined by the outcome of n events {F (v)}v∈V (G) (recall that

F (v) is a set of d random edges incident to v). We let V1, V2 ∈ V be adjacent in Γ if there exists a

vertex v ∈ V (G) such that both V1 and V2 are dependent on the outcome of F (v), i.e., if there exist

edges e1 and e2 both incident to v such that V1 depends on e1 and V2 depends on e2. This graph

can be used as the dependency digraph in the local lemma since F (v) and F (w) are independent for

all distinct vertices v, w ∈ V (G).

In order to apply the local lemma, for each event in V, we stimate its probability and the degree

of the corresponding vertex in Γ. In all cases, for the dependency with events in Bt and Ct, we use

the crude bounds |Bt| and |Ct|.

Family A : For a fixed pair of intersecting edges e1 and e2, to bound the probability of the event

A(e1, e2), first, for each e1 and e2, select from which vertex and on which trial that edge was chosen
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(at most 2d choices for each edge), and second, compute the probability that e1 and e2 were chosen

at those trials (probability at most
(

1+o(1)
np

)2
). This gives

P(A(e1, e2)) ≤ (1 + o(1))

(
2d

np

)2

.

Define x = c0

(
2d
np

)2
for some constant c0 ≥ 1 to be chosen later (this parameter will be used in the

local lemma). To compute the number of neighbors of A(e1, e2) in Γ in the set A, note that A(e1, e2)

is adjacent to A(f1, f2) if and only if some two edges ei and fj intersect. There are at most three

vertices in e1 ∪ e2, each vertex has degree (1 + o(1))np in G(n, p), and each edge has at most 2µnp

other edges incompatible with it. Therefore the number of neighbors of A(e1, e2) in A is at most

3 · (1 + o(1))np · 2µnp = 6µ(np)2(1 + o(1)).

Family Bt : Assume that t0 ≤ t ≤ t1 and consider a fixed set W of size |W | = 3t. To bound

the probability of the event B(W ), first, choose d
3 |W | = dt edges among the edges of G(n, p) in

W (
(e(W )

dt

)
choices), second, for each chosen edge, select from which vertex and on which trial that

edge was chosen (at most (2d)dt choices altogether), third, compute the probability that each choice

became the particular edge of interest (probability at most
(

1+o(1)
np

)dt
). This gives

P(B(W )) ≤
(
eG(W )

td

)
· (2d)dt ·

(
1 + o(1)

np

)dt
≤
(
e · eG(W )

td
· (2 + o(1))d

np

)dt
,

which by the assumption that eG(W ) ≤ 9t2p ·
(
n
3t

)1/2
(coming from Lemma 2.8 (iii)) gives

P(B(W )) ≤
(

20e ·
( t
n

)1/2
)dt

.

Define yt = eC1t

(
20e ·

(
t
n

)1/2
)dt

for some positive constant C1, and for later usage, note that

t1∑
t=t0

|Bt| · yt =

t1∑
t=t0

(
n

3t

)
· eC1t

(
20e ·

( t
n

)1/2
)dt
≤

t1∑
t=t0

(
eC1

(en
3t

)3
· (20e)d ·

( t
n

)d/2)t
= o(1), (1)

since α, d, and C1 satisfy eC1( e
3α)3 · (20e)d · αd/2 < 1.

To compute the number of neighbors of B(W ) in A in Γ, note that the event B(W ) is adjacent

to A(e1, e2) if e1 or e2 intersect W . Therefore, the number of neighbors as above is at most

|W | · (1 + o(1))np · µnp = (1 + o(1))3µtn2p2.

Family Ct : Assume that t1 ≤ t ≤ n/4 and consider a fixed pair of sets X and Y of sizes |X| = t and

|Y | = n− 3t. For each vertex v ∈ X, let dG(v, Y ) be the number of neighbors of v in Y in G(n, p).

Then the probability that eR(X,Y ) = 0 is

P(C(X,Y )) =
∏
v∈X

(
1− dG(v, Y )

(1 + o(1))np

)d
≤ e−(1+o(1))deG(X,Y )/(np) ≤ e−dt(n−3t)/(3n),

9



where we used the assumption that eG(X,Y ) ≥ t(n−3t)
2 p. Define zt = eC2ne−dt(n−3t)/(3n) for some

positive constant C2, and for later usage, note that

t2∑
t=t1

|Ct| · zt ≤
t2∑
t=t1

22n · eC2n · e−dt(n−3t)/(3n) = o(1), (2)

since dα(1 − 3α) > 3(C2 + 2) and d/16 > 3(C2 + 2). For the degree of C(X,Y ) in A in Γ, we use

the crude bound

|A| ≤ n · (1 + o(1))np · µnp = (1 + o(1))µn3p2.

To apply the local lemma, we must verify the following three inequalities (for appropriate choices

of t as determined by the sets W , X, and Y ):

P(A(e1, e2)) ≤ x · (1− x)(1+o(1))6µ(np)2

(
t1∏
t=t0

(1− yt)|Bt|
)
·

 n/4∏
t=t1

(1− zt)|Ct|
 ,

P(B(W )) ≤ yt · (1− x)(1+o(1))3µtn2p2 ·

(
t1∏
t=t0

(1− yt)|Bt|
)
·

 n/4∏
t=t1

(1− zt)|Ct|
 ,

P(C(X,Y )) ≤ zt · (1− x)(1+o(1))µn3p2 ·

(
t1∏
t=t0

(1− yt)|Bt|
)
·

 n/4∏
t=t1

(1− zt)|Ct|
 ,

By (1) and (2), we know that(
t1∏
t=t0

(1− yt)|Bt|
)
·

 n/4∏
t=t1

(1− zt)|Ct|
 = 1− o(1).

Recall that yt ≥ eC1tP(B(W )) and zt ≥ eC2nP(C(X,Y )). Thus to have the above three inequalities,

it suffices to prove that

1 ≤ (1 + o(1))c0 · (1− x)(1+o(1))6µ(np)2 ,

∀t0 ≤ t ≤ t1, 1 ≤ (1 + o(1))eC1t(1− x)(1+o(1))3µtn2p2 ,

∀t1 ≤ t ≤ t2, 1 ≤ (1 + o(1))eC2n(1− x)(1+o(1))µn3p2 .

Note that 1 − x = e−(1+o(1))x and x = c0 ·
(

2d
np

)2
. Since C1 ≥ (1 + o(1))12µd2c0 and C2 ≥

(1 + o(1))4µd2c0, the second and the third inequalities hold. Also, the first inequality holds since the

parameters are chosen so that

c0 · (1− x)(1+o(1))6µ(np)2 = c0 · e−(1+o(1))24c0d2µ > 1.

We now prove Lemma 2.5 (restated here).

Lemma. For a positive constant d, if p� logn
n , then a.a.s. in G = G(n, p), each pair of subgraphs

(P,R) satisfying the conditions below has at least 1
64n

2p boosters relative to it:

10



(i) R is an (n4 , 2)-expander with |E(R)| ≤ dn, and

(ii) P is a longest path in P ∪R.

Proof. To prove the lemma, we first fix a pair (P,R) satisfying the conditions given above, and

estimate the probability that G(n, p) contains enough boosters for the pair.

Since R is an (n4 , 2)-expander, Lemma 2.3 implies that Kn contains at least n2

32 boosters for the

pair (P,R). It thus follows that the expected number of boosters for (P,R) in G(n, p) is at least
1
32n

2p. By Chernoff’s inequality, with probability at least 1−e−Ω(n2p), we have at least 1
64n

2p boosters

for (P,R) in G(n, p).

We use this estimate on the probability together with the union bound to prove the lemma. The

total number of paths of all possible length is at most n ·n! ≤ en logn, and the total number of graphs

R that we must consider is at most (
n2

dn

)
≤ edn logn.

Since p� logn
n , we obtain our conclusion by taking the union bound.

To prove Theorem 1.4, given a globally µnp-bounded edge coloring of G(n, p), call a pair of edges

compatible if they are of different color, and a subgraph H ⊆ G compatible if it is rainbow. Re-define

the events A(e1, e2) accordingly. One can easily check that the proof given in this section establishes

Theorem 1.4 after slightly changing the method used in estimating the degree in the dependency

graph. We omit the straightforward details.

3 Proof of Theorem 1.3

In this section we present the proof of our second result which is based on several ideas. First

we use a strategy from [2] to transform the problem of finding a compatible Hamilton cycle into

a problem of finding a directed Hamilton cycle in an appropriately defined auxiliary graph. This

strategy requires a ‘well-behaved’ perfect matching in our graph, which will be taken using a ‘nibble

method’. Finally to complete the proof we use recent resilience-type results on Hamiltonicity of

random directed graphs proved in [17] and [14].

Before we delve into the (rather technical) details of the proof, let us provide a brief outline of

our argument. Let G = G(n, p) with p � log8 n
n . Assume a µnp-bounded incomparability system

F over G is given, and our aim is to find a Hamilton cycle in G compatible with F . Assume for

simplicity n is even. Let V = A ∪ B be a random equipartition of V (G) with |A| = |B| = m = n
2 ,

and let M be a randomly chosen perfect matching between A and B in G. Let M = {e1, . . . , en/2},
with ei = (ai, bi), ai ∈ A, bi ∈ B. We construct a Hamilton cycle by further adding n/2 edges to

M , while obeying compatibility. Define an auxiliary directed graph DG(M) as follows: its vertices

are the edges of M , and (ei, ej) is a directed edge of DG(M) if {bi, aj} ∈ E(G). Since the edges

of DG(M) are in one-to-one correspondence with the edges of G between A and B outside M , we

may consider DG(M) as a random directed graph on m vertices with edge probability p. Observe

that a directed Hamilton cycle in DG(M) translates into a Hamilton cycle in G in an obvious way.

To obtain a Hamilton cycle compatible with F through this correspondence, we remove some edges

from DG(M). Consider an edge ei of M (in its capacity as a vertex of DG(M)). Let us see which

11



directed edges (ei, ej) leaving ei in DG(M) need to be deleted. Those are edges for which {bi, aj}
is incompatible with ei according to F , and the number of such edges should be at most (about)

µmp. In addition, we need to delete (ei, ej) for which {bi, aj} is compatible with ei (about (1 − µ)

proportion of edges) but incompatible with ej – and the proportion of such edges should be about

µ. We expect these heuristic estimates to hold due to our random choice of M . Assuming these

estimates, altogether we need to delete from DG(M) about µmp + (1 − µ)µmp edges leaving ei,

and a similar amount of edges entering ei. As mentioned above, the graph DG(M) is basically a

random directed graph on m vertices with edge probability p. At this stage, we invoke a recent

result of Ferber et al. ([14]; Theorem 3.7 below), stating that if p � log8 n
n then a random directed

graph D = D(n, p) is a.a.s. such that every subgraph of D of minimum in- and out-degrees at least

(1
2 + ε)np contains a directed Hamilton cycle. In order to able to apply this theorem to DG(M) we

need to estimate from above the deleted in- and out-degrees at every vertex ei of DG(M) – as we

indicated above, and then to require that µmp + (1 − µ)µmp ≤ (1
2 − ε)mp. So essentially we need

to solve: µ+ (1− µ)µ = 1
2 – which gives us µ = 1− 1√

2
. It should be mentioned that this approach

borrows some ideas from the argument of Alon and Gutin [2], who also arrived at the same magical

constant 1− 1√
2

(but for the simpler case of the complete graph to start with).

We start with the following two definitions.

Definition 3.1. A perfect matching on n vertices over a partition A∪B (for even n) or A∪B∪{v∗}
(for odd n), with |A| = |B| = bn/2c, is a collection {(ai, bi)}bn/2ci=1 of disjoint pairs of vertices with

ai ∈ A and bi ∈ B with the following property:

(i) if n is even, then {ai, bi} is an edge for every i, and

(ii) if n is odd, then {ai, bi} is an edge for i = 1, 2, · · · , (n − 3)/2, and (a(n−1)/2, v∗, b(n−1)/2) is a

path of length 2.

In most cases, for a given vertex ai, the edge incident to ai in the perfect matching is {ai, bi}.
However, when n is odd and i = (n − 1)/2, the edge incident to a(n−1)/2 is {a(n−1)/2, v∗}. This

distinction is made for technical reasons and we recommend the reader to assume that n is even for

the first time reading.

Definition 3.2. Let G be a graph and let M be a perfect matching {ei}bn/2ci=1 for ei = (ai, bi) (and

ebn/2c = (abn/2c, v∗, bbn/2c) if n is odd).

(i) Define DG(M) as the directed graph over the vertex set {e1, e2, · · · , ebn/2c}, where there is a

directed edge from ei to ej if and only if {bi, aj} ∈ E(G).

(ii) For a given incompatibility system F over G, define DG(M ;F) as the subgraph of DG(M)

obtained by the following process: remove the directed edge (ei, ej) whenever {bi, aj} is incom-

patible with the edge of M incident to bi, or with the edge of M incident to aj. Moreover, if

n is odd and {abn/2c, v∗} and {v∗, bbn/2c} are not compatible, then remove all edges in DG(M)

incident to the vertex ebn/2c.

We may also writeD(M) orD(M ;F), whenG is clear from the context. The following proposition

explains the motivation behind the definition given above.
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Proposition 3.3. Let G be a graph with an incompatibility system F , and let M be a perfect matching

in G. If DG(M ;F) contains a directed Hamilton cycle, then G contains a Hamilton cycle compatible

with F .

Proof. Let M be given as e1, e2, . . . , ek, and without loss of generality let (e1, e2, . . . , ek, e1) be the

Hamilton cycle in DG(M ;F).

If G has an even number of vertices, then by the definition of DG(M ;F), we see that

(a1, b1, a2, b2, . . . , ak, bk, a1)

is a Hamilton cycle in G. Moreover, the edge {ai, bi} is compatible with both {bi, ai+1} and {ai, bi−1}
(addition and subtraction of indices are modulo k) by the definition of DG(M ;F). Therefore, we

found a Hamilton cycle in G compatible with F .

If G has an odd number of vertices, then as before, we see that (a1, b1, a2, b2, . . . , ak, v∗, bk, a1)

is a Hamilton cycle in G. If {ak, v∗} and {v∗, bk} were not compatible, then by the definition of

DG(M ;F), the vertex ek must be isolated in DG(M ;F), contradicting the fact that DG(M ;F) is

Hamiltonian. Therefore, the pair is compatible. All other pairs are compatible as seen above.

We prove the Hamiltonicity of DG(M ;F) by carefully choosing a perfect matching M so that it

satisfies the following two properties.

Definition 3.4. Let ε be a fixed positive real, let G be a given graph with incompatibility system F ,

and let M be a perfect matching in G.

(i) The pair (G,M) is ε-di-ham-resilient if every subgraph of DG(M) of minimum in- and out-

degrees at least (1
2 + ε) δ(G)

2 contains a directed Hamilton cycle.

(ii) The triple (G,M,F) is ε-typical if DG(M ;F) has minimum in- and out-degrees at least(
1
2 + ε

) δ(G)
2 .

The following lemma is the key ingredient of our proof, asserting the a.a.s. existence of a perfect

matching in G(n, p) for which (G,M) is ε-di-ham-resilient, and (G,M,F) is ε-typical.

Lemma 3.5. Let ε be a fixed positive real, and p = ω log8 n
n for some function ω = ω(n) ≤ log n that

tends to infinity. Then G = G(n, p) a.a.s. has the following property: for every
(

1 − 1√
2
− 2ε

)
np-

bounded incompatibility system F over G, there exists a perfect matching M ⊆ G such that

(i) (G,M) is ε-di-ham-resilient and

(ii) (G,M,F) is ε-typical.

Next lemma allows us to restrict our attention to small values of p as in Lemma 3.5. Its proof

will be given in the following subsection.

Lemma 3.6. Suppose that p1 and p2 satisfying 1 ≥ p1 ≥ p2 � logn
n are given. If there exist

positive real numbers α and ε such that G(n, p2) a.a.s. contains a compatible Hamilton cycle for every

(α+2ε)np2-bounded incompatibility system, then G(n, p1) a.a.s. contains a compatible Hamilton cycle

for every (α+ ε)np1-bounded incompatibility systems.

The proof of Theorem 1.3 easily follows from Lemma 3.5.
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Proof of Theorem 1.3. It suffices to prove the statement for p = ω log8 n
n for some ω = ω(n) ≤ log n

that tends to infinity since larger edge probabilities can be handled by Lemma 3.6 below. Let ε be a

given positive real and suppose that G = G(n, p) satisfies the properties guaranteed by Lemma 3.5:

for every (1− 1√
2
− 2ε)n-bounded incompatibility system F over G, there exists a perfect matching

M for which the pair (G,M) is ε-di-ham-resilient and (G,M,F) is ε-typical. These two properties

imply that DG(M ;F) contains a directed Hamilton cycle, which by Proposition 3.3 implies that G

contains a Hamilton cycle compatible with F .

3.1 Preliminaries

Before proceeding to the proof of Lemma 3.5, we state some results needed for our proof. Let D(n, p)

be a random directed graph on n vertices, in which for every pair i 6= j the edge i → j appears

independently with probability p. The first theorem is a resilience-type result for Hamiltonicity of

D(n, p) which extends a classical result of Ghouila-Houri [15]. It was first proved by Hefetz, Steger,

and Sudakov [17] (for edge probabilities p ≥ n−1/2+o(1)) and then strengthened by Ferber, Nenadov,

Noever, Peter, and Skoric [14] to much smaller values of p(n).

Theorem 3.7. For all fixed positive reals ε, if p � log8 n
n then D(n, p) a.a.s. has the following

property: every spanning subgraph of D(n, p) of minimum in- and out-degrees at least (1
2 + ε)np

contains a directed Hamilton cycle.

We will often be considering events defined over the product of two probability spaces, and the

following simple lemma will be handy.

Lemma 3.8. Let X1 and X2 be two random variables, and suppose that there exists a set A such

that P((X1, X2) ∈ A) = 1− x for some positive real x. Let

A1 =
{
a
∣∣∣ P((X1, X2) ∈ A |X1 = a) ≥ 1−

√
x
}
.

Then P(X1 ∈ A1) ≥ 1−
√
x.

Proof. Since

x = P
(

(X1, X2) /∈ A
)
≥ P(X1 /∈ A1) ·

√
x,

we have P(X1 /∈ A1) ≤
√
x, or equivalently P(X1 ∈ A1) ≥ 1−

√
x.

We prove Lemma 3.6 which, as seen in the previous subsection, allows us to restrict our attention

to sparse random graphs. For two graphs G1 ⊇ G2 and an incompatibility system F defined over

G1, we define the incompatibility system induced by F on G2 as the incompatibility system where

two edges e, e′ ∈ E(G2) are incompatible if and only if they are in F .

Proof. Let G1 = G(n, p1) and let G2 be a random subgraph of G1 obtained by retaining every edge

independently with probability p2
p1

. Note that the distribution of the subgraph G2 is identical to that

of G(n, p2).
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Let R be the collection of graphs that contain a compatible Hamilton cycle for every (α+2ε)np2-

bounded incompatibility system. By the assumption of the lemma, we know that

P(G2 ∈ R) = 1− o(1).

Let R1 be the collection of graphs Γ such that P(G2 ∈ R |G1 = Γ) ≥ 1
2 . By Lemma 3.8, we see that

P(G1 ∈ R1) = 1− o(1).

On the other hand, for each fixed (α+ε)np1-bounded incompatibility system F over G1, by Chernoff’s

inequality and the union bound, with probability greater than 1
2 , the incompatibility system induced

by F on G2 is (α+ 2ε)np2-bounded.

Therefore, if G1 ∈ R1, then for every (α+ε)np1-bounded incompatibility system F over G1, there

exists a subgraph G′2 ⊆ G1 such that F induces an (α+ 2ε)np2-bounded incompatibility system over

G′2, and G′2 ∈ R. These two properties imply that G′2 contains a Hamilton cycle compatible with F ,

which in turn implies that G1 also contains such Hamilton cycle.

3.2 Proof of Lemma 3.5

In this subsection, we prove Lemma 3.5. The perfect matching M in the statement of the lemma

will be chosen according to some random process that we denote by Φ, i.e., M = Φ(G). In fact we

prove the following strengthening of Lemma 3.5.

Lemma 3.9. If p = ωn log8 n
n for some ωn ≤ log n that tends to infinity, then G = G(n, p) a.a.s.

has the following property. For every
(

1− 1√
2
− 2ε

)
np-bounded incompatibility system F over G, a

random perfect matching M = Φ(G) satisfies each of the following properties with probability 1−o(1),

(i) (G,M) is ε-di-ham-resilient, and

(ii) (G,M,F) is ε-typical.

Note that Lemma 3.5 immediately follows from Lemma 3.9, since the latter implies the a.a.s. ex-

istence of a particular instance of M for which both Properties (i) and (ii) hold.

Throughout the section, we assume that ε is a given fixed positive real (we may assume that ε is

small enough by decreasing its value if necessary), and let δ = e−22ε−1 ln ε−1
. Given G = G(n, p), we

construct a perfect matching Φ(G) by the following algorithm (we first give a description for even

n).

1. Take a random bipartite subgraph H of G by choosing a uniform bisection A ∪ B and then

taking each edge crossing the bisection independently with probability ε
4 . Initialize H0 := H,

A0 := A, B0 := B.

2. Repeat the following steps T = ln(4/ε)
− ln(1−δ) ≈

ln(4/ε)
δ times (start from i = 0).

2-1. Given a bipartite graph Hi with bipartition Ai ∪ Bi satisfying ni := |Ai| = |Bi| and

mi := e(Hi), choose each edge of Hi independently with probability δni
mi

to form a set of

edges M
(0)
i .
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2-2. Let Mi ⊆M (0)
i be the set of edges incident to no other edges in M

(0)
i .

2-3. Remove the vertices incident to the edges in Mi from Hi to obtain Hi+1.

3. Take an arbitrary perfect matching MT in the remaining graph HT and define Φ(G) as the

union of the matchings M0, . . . ,MT .

Remark. If n is odd, then for each i = 0, 1, . . . , T , the bipartite graphs Hi will have bipartition

Ai∪Bi with |Ai| = ni+ 1 and |Bi| = ni for all i = 0, 1, . . . , T . In this case, in Step 3, first choose an

edge {v∗, a(n−1)/2} within AT , and then choose b(n−1)/2 ∈ BT so that {v∗, a(n−1)/2} and {v∗, b(n−1)/2}
are compatible. Afterwards, find a perfect matching between AT \ {v∗, a(n−1)/2} and BT \ {b(n−1)/2}.

Since each Mi forms a matching, the algorithm above produces a sequence of balanced bipartite

graphs Hi with vertex partition Ai ∪ Bi for i = 0, 1, . . . , T , where H0 = H and A0 = A,B0 = B.

Note that the algorithm might fail to produce a perfect matching of H, as there is no guarantee on

HT containing a perfect matching in the final step. However, in Lemma 3.14 we will prove that such

‘bad event’ rarely happens.

Proof of Lemma 3.9 (i). We view the probability space generated by the pair (G(n, p), H) from a

slightly different perspective. Let p1 = ε
4p, and define p2 by p = p1 + p2 − p1p2. Let G1 = G(n, p1)

and G2 = G(n, p2), and note that G = G1 ∪ G2 has the same distribution as G(n, p). The random

algorithm Φ can equivalently be defined by first taking a random subgraph G1, and then applying

a random algorithm Ψ, i.e. Φ(G) = Ψ(G1). Further note that all events in the probability space

P(G,G1) generated by the pair of graphs G and G1 are measurable in the probability space P(G1, G2)

generated by the pair of graphs G1 and G2. Therefore, since the event that we would like to study lies

in the probability space P(G,G1,Φ) we may as well compute its probability in the space P(G1, G2,Ψ).

Since G1 and G2 are independent, conditioned on Ψ(G1) = M , the graph DG2(M) has the

distribution of the random directed graph D(bn2 c, p2). We thus know by Theorem 3.7 that a.a.s. every

subgraph of DG2(M) of minimum in- and out-degrees at least
(

1
2 + ε

2

)
np2 is Hamiltonian, i.e.

P
(

(G2,Ψ(G1)) is
ε

2
-di-ham-resilient

∣∣∣Ψ succeeds
)

= 1− o(1).

Hence as long as Ψ outputs a perfect matching with high probability (this fact will be proved in

Lemma 3.14),

P
(

(G2,Φ(G)) is
ε

2
-di-ham-resilient

)
= 1− o(1).

Observe that if G1 has maximum degree at most ε
2np, then every subgraph of DG(M) of minimum

in- and out-degrees at least
(

1
2 + ε

)
np contains a subgraph of DG2(M) of minimum in- and out-

degrees at least
(

1
2 + ε

2

)
np. Hence in this case, (G2,Φ(G)) being ε

2 -di-ham-resilient implies (G,Φ(G))

being ε-di-ham resilient. Let E be the event that (G,Φ(G)) is ε-di-ham-resilient. Since G1 a.a.s. has

maximum degree at most ε
2np, the observations above imply P(E) = 1−o(1). Let R be the collection

of graphs Γ such that P(E |G = Γ) = 1 − o(1). Then by P(E) = 1 − o(1) and Lemma 3.8, we have

P(G ∈ R) = 1− o(1), thus proving the lemma.

It thus remains to prove Lemma 3.9 (ii). Before proceeding further, we establish some simple

properties of G(n, p) and H in the following two lemmas. Let

q =
ε

4
p .
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Thus q is the probability that a pair of vertices in A×B forms an edge in H.

Lemma 3.10. If p ≤ log9 n
n , then G(n, p) a.a.s. has the following property. For every fixed vertex v,

there exists at most one vertex having codegree 2 with v, and all other vertices have codegree at most

1 with v.

Proof. The claim follows immediately from the easily established (say, through the first moment

method) fact that for such values of p(n), the random graph G(n, p) a.a.s. does not contain two

cycles of length 4 sharing a vertex.

The following lemma involves two layers of randomness; first of G(n, p) and then of the graph

H. It asserts that G(n, p) a.a.s. is chosen so that H (which is determined by another random event)

a.a.s. has the listed properties.

Lemma 3.11. For p � logn
n and fixed reals µ, ξ > 0, G = G(n, p) has the following property with

probability 1 − o(1). For every µnp-bounded incompatibility system F over G, the random graph H

and the partition A ∪B a.a.s. have the following properties:

(i) In H, all vertices have degree (1 + o(1))n0q, and in G, all vertices have degree (1 + o(1))n0p

across the partition A ∪B.

(ii) For all A′ ⊆ A and B′ ⊆ B, eH(A′, B′) = |A′||B′|q + o(n2q).

(iii) All pairs of sets A′ ⊆ A and B′ ⊆ B of sizes |A′| = |B′| ≤ e−2ξn0 satisfy eH(A′, B′) ≤ |A′|·ξn0q.

(iv) F induces a (µ + ε
5)n0q-bounded incompatibility system on H, and F induces a (µ + ε

5)n0p-

bounded incompatibility system on the bipartite subgraph of G between A and B.

Proof. Note that the distribution of H is identical to that of the random bipartite graph with parts

of sizes |A| = |B| = n0 obtained by taking each edge independently with probability q. Hence

Properties (i) and (ii) follow from Chernoff’s inequality, the union bound, and Lemma 3.8. Similarly,

Property (iv) follows from Chernoff’s inequality, the concentration of hypergeometric distribution,

and the union bound.

To prove Property (iii), note that the probability of a fixed pair of sets A′ and B′ of size |A′| =
|B′| = k ≤ e−2ξn0 to satisfy eH(A′, B′) > kξn0q is at most(

k2

kξn0q

)
qkξn0q ≤

(
ek

ξn0

)kξn0q

≤ e−kξn0q � n−3k,

where the last inequality follows since p � logn
n and q = ε

4p. By taking the union bound over all

choices of A′ and B′, we see that the probability of the existence of a pair of sets A′ and B′ violating

(iii) is at most
∑e−2ξn0

k=1

(
n
k

)2
n−3k � 1.

Throughout the proof, we will often use the phrase ‘condition on the outcome of Lemmas 3.10

and 3.11’, to indicate that we first condition on G = G(n, p) satisfying Lemmas 3.10 and 3.11, and

then given a µnp-bounded incompatibility system F over G, condition on H satisfying Lemma 3.11.

For i = 0, 1, . . . , T − 1, let M
(1)
i = M

(0)
i \Mi be the set of edges that were first chosen but then

removed at the i-th stage. For a set of vertices X, we use the notation X ∩Mi to denote the set
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of vertices in X that intersect an edge in Mi (similarly define X ∩M (0)
i and X ∩M (1)

i ). We also

use the notation x ± α to denote a quantity between x − α and x + α. A combination of two such

estimates x ± α = x ± α′ means that |α′| ≥ |α|, i.e., that the estimate on the right hand side is

rougher than that on the left hand side. The following lemma gives estimate on the number of edges

in Mi intersecting a fixed given set.

Lemma 3.12. Condition on the outcome of Lemmas 3.10 and 3.11. For an integer i with 0 ≤ i ≤
T − 1 and a positive real ξi satisfying δ ≤ ξi ≤ ε

32 , suppose that all vertices x ∈ V (Hi) have degree

dHi(x) = ((1− δ)i ± ξi)n0q. For a vertex v ∈ V (Hi) and a set X ⊆ NHi(v) satisfying |X| ≥ 4δ−2,

(i) If Γ is a fixed subset of edges incident to X, then |Γ ∩ M (0)
i | = (1 ± 9ε−1ξi)

δ|Γ|
(1−δ)in0q

with

probability 1− e−Ω(|Γ|δ3/n0q).

(ii) |X ∩M (1)
i | ≤ 5δ2|X| with probability 1− e−Ω(δ2|X|).

(iii) |X ∩Mi| = (1± (15ε−1ξi + 5δ))δ|X| with probability 1− e−Ω(δ3|X|).

Proof. The following estimate deduced from (1−δ)i ≥ (1−δ)T = ε
4 will be repeatedly used throughout

the proof:

(1− δ)i ± ξi = (1± 4ε−1ξi)(1− δ)i. (3)

Since mi = ni((1− δ)i ± ξi)n0q, by linearity of expectation, we have

E[|Γ ∩M (0)
i |] = |Γ|δni

mi
=

δ

((1− δ)i ± ξi)n0q
|Γ| = (1± 8ε−1ξi)

δ

(1− δ)in0q
|Γ|,

where the last equality follows from (3). Part (i) follows by Chernoff’s inequality since |Γ ∩M (0)
i | is

a sum of independent random variables (each indicating whether an edge is chosen or not).

To prove part (ii), recall that X ⊆ NHi(v) for some vertex v. Let H ′i be the subgraph of Hi

obtained by removing all edges incident to v. For each vertex x ∈ X, let 1x be the indicator random

variable of the event that (a) there exist two edges in M
(0)
i ∩E(H ′i) incident to x, or (b) there exists

a path of length two that has x as its endpoint and consists of edges in M
(0)
i ∩E(H ′i). Let Γv be the

set of edges of Hi incident to v, and note that

|X ∩M (1)
i | ≤ |Γv ∩M

(0)
i |+

∑
x∈X

1x. (4)

A bound on the first term can be obtained from union bound as follows:

P

(
|Γv ∩M (0)

i | >
δ2

2
|X|
)
≤

∞∑
k=δ2|X|/2

(
dHi(v)

k

)(
δni
mi

)k
<

∞∑
k=δ2|X|/2

(
eδnidHi(v)

mik

)k
.

Since mi = ni((1− δ)i ± ξi)n0q and dHi(v) = ((1 − δ)i ± ξi)n0q, it follows from the estimates given

above that

P

(
|Γv ∩M (0)

i | >
δ2

2
|X|
)
≤

∞∑
k=δ2|X|/2

(
2eδ

k

)k
< e−Ω(δ2|X|), (5)
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where the last inequality follows since 2eδ/k < 4e/(δ|X|) ≤ eδ ≤ 1
2 .

For the second term on the right-hand-side of (4), even though the events {1x}x∈X are not

necessarily independent, we claim that there exists a large subset X ′ ⊆ X for which they are inde-

pendent. To see this, note that since X ⊆ NHi(v) for some vertex v, and G(n, p) satisfies the event

in Lemma 3.10, there exists at most one vertex w 6= v for which |X ∩ NHi(w)| = 2 and all other

vertices w′ 6= w, v have |X ∩ NHi(w
′)| ≤ 1. Define X ′ = X \ NHi(w) if such vertex w exists, and

X ′ = X otherwise (note that |X| − |X ′| ≤ 2). Note that 1x depends only on the set of edges in H ′i
that intersect {x} ∪NH′i

(x). Since the sets {x} ∪NH′i
(x) are disjoint and H ′i is bipartite, the events

1x are independent for x ∈ X ′ (conditioned on G(n, p) satisfying the event in Lemma 3.10). For a

fixed x ∈ X ′, the probability of event (a) is at most(
dHi(x)

2

)(δni
mi

)2
≤ ((1− δ)i ± ξi)2(n0q)

2

2

( δ

((1− δ)i ± ξi)n0q

)2
≤ δ2,

by (3) and ξi ≤ ε
32 . Similarly, the probability of event (b) is at most

∑
y∈NHi

(x)

dHi(y)
(δni
mi

)2
≤ ((1− δ)i ± ξi)2(n0q)

2
( δ

((1− δ)i ± ξi)n0q

)2
≤ 2δ2.

Therefore E[1x] ≤ 3δ2, and by Chernoff’s inequality we obtain

P

(∑
x∈X′

1x ≤ 4δ2|X ′|

)
≥ 1− e−Ω(δ2|X′|). (6)

Since |X| ≤ |X ′|+ 2 and |X| ≥ 4δ−2, part (ii) follows from (4), (5), and (6).

To prove part (iii), let ΓX be the set of edges incident to X, and note that |ΓX | = ((1 − δ)i ±
ξi)n0q|X|. By part (i), we have |ΓX ∩M (0)

i | = (1± 15ε−1ξi)δ|X| with probability 1− e−Ω(δ3|X|). By

part (ii), we have |X ∩M (1)
i | ≤ 5δ2|X| with probability 1− e−Ω(δ2|X|). Now part (iii) follows since

|ΓX ∩M (0)
i | − |X ∩M

(1)
i | ≤ |X ∩Mi| ≤ |ΓX ∩M (0)

i |.

In order to prove Lemma 3.9 (ii), we need to understand how the edges of DG(M) get removed

in DG(M ;F). In particular, we need to track these changes with each iteration of the random

algorithm. The following technical definitions are made with this purpose in mind.

Suppose that an instance G of G(n, p) and a µnp-bounded incompatibility system F over G are

fixed. Let e = {a, b} ∈ E(G) and e′ = {a′, b′} ∈ E(G) be two edges such that a, a′ ∈ A and b, b′ ∈ B.

We say that e′ is A-bad for e if {a, b′} ∈ E(G) is an edge compatible with e, but incompatible with

e′. Similarly, we say that e′ is B-bad for e if {b, a′} ∈ E(G) is an edge compatible with e, but

incompatible with e′.

For an edge e = {a, b} with a ∈ A and b ∈ B, define

A(G)
e = {x ∈ A : {b, x} ∈ E(G), {b, x} and {a, b} are compatible} and

B(G)
e = {y ∈ B : {a, y} ∈ E(G), {a, y} and {a, b} are compatible}.

Similarly define A
(H)
e and B

(H)
e by considering the edges of H instead of the edges of G in the

definition above.
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Remark. For odd n, we need to extend the definitions above to edges whose both endpoints are in

A. In this case, for an edge e = {a1, a2} with a1, a2 ∈ A, we consider the edge as an ordered pair

(a1, a2) to distinguish (a1, a2) and (a2, a1), and define an edge e′ = {a′, b′} (where a′ ∈ A and b′ ∈ B)

to be A-bad for (a1, a2) if {a1, b
′} ∈ E(G) is compatible with e but incompatible with e′ (there is no

need to consider B-bad edges for e). Also, instead of having a pair of sets A
(G)
e and B

(G)
e as above,

we define two sets B
(G)
(a1,a2) and B

(G)
(a2,a1) as

B
(G)
(a1,a2) = {y ∈ B : {a1, y} ∈ E(G), {a1, y} and {a1, a2} are compatible} and

B
(G)
(a2,a1) = {y ∈ B : {a2, y} ∈ E(G), {a2, y} and {a2, a1} are compatible}.

Similarly define the sets B
(H)
(a1,a2), B

(H)
(a2,a1). As this modified definition becomes relevant only in few

places, we will abuse notation and use A-bad edges and B
(G)
e , B

(H)
e to denote both ordered pairs

(a1, a2) and (a2, a2).

Define

ξi = δ(1 + 21ε−1δ)i.

For each i = 0, 1, . . . , T , we say that Hi = H[Ai ∪Bi] is normal if

(i) ni = |Ai| = |Bi| =
(

(1− δ)i ± ξi
)
n0.

(ii) For all vertices v ∈ V (Hi), dHi(v) =
(

(1− δ)i ± ξi
)
n0q.

(iii) For all vertices v ∈ V (G), |NG(v)∩Ai| =
(

(1−δ)i±ξi
)
n0p and |NG(v)∩Bi| =

(
(1−δ)i±ξi

)
n0p.

(iv) For all edges e ∈ E(G), |A(G)
e ∩ Ai| =

(
(1 − δ)i ± ξi

)
|A(G)

e |, and a similar estimate holds for

the sets B
(G)
e , A

(H)
e , B

(H)
e .

(v) If i 6= 0, then for all edges e ∈ E(G), there are at most
(
µ+ ε

3

)
δ(1− δ)i−1|B(G)

e | A-bad edges

for e in Mi−1 (a similar estimate for B-bad edges).

Note that since T = ln(4/ε)
− ln(1−δ) ≤

ln(4/ε)
δ and δ = e−22ε−1 ln ε−1

, the error parameter ξi satisfies

ξi ≤ ξT ≤ δ(1 + 21ε−1δ)T ≤ δe21ε−1 ln(4/ε) ≤ e−ε−1
. (7)

The following lemma asserts that with high probability all Hi are normal (for i = 0, 1, . . . , T ).

Lemma 3.13. Conditioned on the outcome of Lemmas 3.10 and 3.11, the graph Hi is a.a.s. normal

for all i = 0, 1, . . . , T .

Proof. We proceed by induction on i. For i = 0, the statement follows immediately since we con-

ditioned on Lemma 3.11. For i ≥ 0, suppose that Hi is normal. For each vertex v ∈ V (Hi), since

dHi(v) = ((1− δ)i ± ξi)n0q, by applying Lemma 3.12 (iii) with X = NHi(v), we see that

|NHi(v) ∩Mi| = (1± (15ε−1ξi + 5δ))δ((1− δ)i ± ξi)n0q

= (1± (15ε−1ξi + 5δ))δ(1± 4ε−1ξi)(1− δ)in0q

= (1± 20ε−1ξi)δ(1− δ)in0q
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with probability 1− e−Ω(δ3(1−δ)in0q) = 1− n−ω(1). Since

dHi+1(v) = dHi(v)− |NHi(v) ∩Mi| = ((1− δ)i ± ξi)n0q − (1± 20ε−1ξi)δ(1− δ)in0q

= (1− δ)i+1n0q ± (1 + 20ε−1δ)ξin0q = ((1− δ)i+1 ± ξi+1)n0q,

by taking the union bound over all vertices, we see that Property (ii) of Hi+1 being normal a.a.s.

holds. Properties (iii) and (iv) follow by the same argument applied to the corresponding sets.

Furthermore, if Property (ii) holds, then Hi+1 is a balanced bipartite graph with ni+1 vertices in

each part whose number of edges is

mi+1 = ni+1

(
(1− δ)i+1 ± (1 + 20ε−1δ)ξi

)
n0q.

By Lemma 3.11 (iii), we have that ni+1 is linear in n. Then part (ii) of the same lemma implies that

ni+1 = ((1− δ)i+1 ± ξi+1)n0, proving Property (i).

For a fixed edge e = {a, b} ∈ E(G) with a ∈ A and b ∈ B, let Γe,A be the set of A-bad edges for e

in Hi. Each A-bad edge in Hi can be accounted for by first taking a vertex x ∈ B(G)
e ∩Bi, and then

counting the number of edges {x, y} ∈ E(Hi) that are incompatible with {a, x}. This gives

|Γe,A| =
∑

x∈B(G)
e ∩Bi

(
dHi(x)− |A(H)

{x,a} ∩Ai|
)

= ((1− δ)i ± ξi)
∑

x∈B(G)
e ∩Bi

(
n0q − |A(H)

{x,a}|
)
.

By Lemma 3.11 (i) and (iv), we have n0q − |A(H)
{x,a}| ≤ (µ+ ε

4)n0q, which in turn gives

|Γe,A| ≤ ((1− δ)i ± ξi)
∑

x∈B(G)
e ∩Bi

(
µ+

ε

4

)
n0q = ((1− δ)i ± ξi)2

(
µ+

ε

4

)
n0q|B(G)

e |.

By Lemma 3.12 (i), with probability 1− n−ω(1),

|Γe,A ∩Mi| ≤ |Γe,A ∩M (0)
i | ≤ (1 + 9ε−1ξi)

δ|Γe,A|
(1− δ)in0q

≤ (1 + 20ε−1ξi)
(
µ+

ε

4

)
δ(1− δ)i|B(G)

e |.

Equation (7) implies (1 + 20ε−1ξi)(µ + ε
4) ≤ µ + ε

3 , and thus Property (v) for A-bad edges follows

by taking the union bound over all edges. The conclusion for B-bad edges follows by a similar

argument.

We show that Φ successfully terminates as long as the final iteration is normal.

Lemma 3.14. Conditioned on the outcome of Lemmas 3.10 and 3.11, if HT is normal, then it

contains a perfect matching.

Proof. If n is odd, then we must first choose the vertices v∗, a(n−1)/2 from AT and b(n−1)/2 from BT .

Property (iii) of normality implies the existence of an edge {v∗, a(n−1)/2} ∈ E(G) within AT . Then

by Properties (ii) and (iv) of normality, we can find a vertex b(n−1)/2 ∈ BT for which {v∗, a(n−1)/2}
and {v∗, b(n−1)/2} ∈ E(HT ) are compatible. Remove the vertices v∗, a(n−1)/2 from AT and b(n−1)/2

from BT and update nT as the size of the new sets AT and BT .
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Now consider both even and odd n, and consider the graph HT with bipartition AT ∪ BT . By

Hall’s theorem it suffices to prove that

∀A′ ⊆ AT , |A′| ≤
1

2
nT |NHT

(A′)| ≥ |A′| and ∀B′ ⊆ BT , |B′| ≤
1

2
nT |NHT

(B′)| ≥ |B′|.

Suppose that there exists a set A′ ⊆ AT for which |NHT
(A′)| < |A′|, and let X be a superset of

NHT
(A′) of size exactly |A′|. Since HT is normal, by Property (ii) of normality, we see that

eHT
(A′, X) = eHT

(A′, BT ) ≥ |A′|((1− δ)T − ξi)n0q ≥ |A′|
ε

8
n0q.

By Lemma 3.11 (iii), this implies |A′| > ε
8e2
n0. Let Y = BT −X. Then |Y | ≥ 1

2nT and by definition

eHT
(A′, Y ) = 0. On the other hand, by Lemma 3.11 (ii), eHT

(A′, Y ) = |A′||Y |q + o(n2q) > 0. This

contradiction proves that no such set A′ can exist. Similarly, we can show that no such set B′

exists.

We conclude this section with the proof of the second part of Lemma 3.9.

Proof of Lemma 3.9 (ii). Let µ = 1− 1√
2
− 2ε and condition on G = G(n, p) satisfying Lemmas 3.10

and 3.11. Since G(n, p) satisfies these lemmas with probability 1− o(1), it suffices to prove that for

every µnp-bounded incompatibility system F over G, the probability that (G,Φ(G),F) is ε-typical

is 1− o(1). This will be achieved by proving that (G,Φ(G),F) is ε-typical if H satisfies Lemma 3.11

and all Hi are normal (note that all events have probability 1− o(1)).

Since HT is normal, Lemma 3.14 implies that our algorithm produces a perfect matching M =

Φ(G). By Lemma 3.11 (i), each vertex in DG(M) has in- and out-degrees (1 + o(1))n0p. Take

a vertex e = {a, b} ∈ DG(M) . An out-neighbor f = {a′, b′} of e in DG(M) can be removed in

DG(M ;F) for two reasons: first, if {b, a′} is an edge incompatible with e, and second, if {b, a′} is an

edge compatible with e but incompatible with f (i.e. f is a B-bad edge for e). By the definition of

the set B
(G)
e , we see that there are at most (1 + o(1))n0p − |B(G)

e | edges of the first type. Since all

Hi are normal, by conditions (iii) and (v) of normality, the number of edges of the second type is at

most

|NG(a) ∩BT |+
T−1∑
i=0

(
µ+

ε

3

)
δ(1− δ)i|B(G)

e | ≤ ((1− δ)T + ξT )n0p+
(
µ+

ε

3

)
|B(G)

e |.

Therefore, since (1− δ)T = ε
4 , the total number of out-edges removed from e is at most(

(1 + o(1))n0p− |B(G)
e |
)

+
εn0p

3
+
(
µ+

ε

3

)
|B(G)

e |,

which by |B(G)
e | ≥ (1− µ− o(1))n0p and µ = 1− 1√

2
− 2ε is at most

(1 + o(1))n0p+
εn0p

3
+
(
− 1 + µ+

ε

3

)
(1− µ− o(1))n0p

≤
(

1 +
ε

3
− (1− µ)2 +

ε

3
(1− µ) + o(1)

)
n0p ≤

(
1

2
− 2ε

)
n0p.

Hence the minimum out-degree of DG(M ;F) is at least (1 + o(1))n0p− (1
2 − 2ε)n0p ≥ (1

2 + ε)n0p. A

similar bound on the minimum in-degree of DG(M ;F) holds.
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4 Concluding remarks

In this paper, we proved the existence of a positive real µ such that if p � logn
n , then G = G(n, p)

a.a.s. has the following property. For every µnp-bounded incompatibility system F defined over G,

there exists a Hamilton cycle in G compatible with F . The value of µ that we obtained in Theorem 1.2

is very small, but for p� log8 n
n we improved it in Theorem 1.3 to 1− 1√

2
− o(1) (roughly 0.29). The

bound of log8 n
n came from Theorem 3.7, and in fact, any improvement in the range of probability

for Theorem 3.7 will immediately imply Theorem 1.3 for the extended range of probabilities. It is

not clear what the best possible value of µ should be. The example of Bollobás and Erdős [6] of a

b1
2nc-bounded edge-coloring of Kn with no properly colored Hamilton cycles implies that the optimal

value of µ is at most 1
2 , since it provides an upper bound for the case p = 1.

The concept of incompatibility systems seems to give an interesting new take on robustness of

graphs properties. Further study of how various extremal results can be strengthened using this

notion appears to be a promising direction of research. For example in a companion paper [23], we

show that there exists a constant µ > 0 such that for any µn-bounded system F over a graph G

on n vertices with minimum degree at least n/2, there is a compatible Hamilton cycle in G. This

establishes in a very strong sense an old conjecture of Häggkvist from 1988.

Acknowledgments. We thank Asaf Ferber for calling our attention to the problem of rainbow

Hamilton cycles in random graphs. A major part of this work was carried out when Benny Sudakov

was visiting Tel Aviv University, Israel. He would like to thank the School of Mathematical Sciences

of Tel Aviv University for hospitality and for creating a stimulating research environment.

References

[1] M. Albert, A. Frieze, and B. Reed, Multicoloured Hamilton cycles. Electron. J. Combin. 2,

R10.

[2] N. Alon and G. Gutin, Properly colored Hamilton cycles in edge-colored complete graphs,

Random Structures and Algorithms, 11 (1997), 179–186.

[3] N. Alon and J. H. Spencer, The probabilistic method, 3rd ed., Wiley, New York (2008).

[4] B. Bollobás, The evolution of sparse graphs, in Graph Theory and Combinatorics, Academic

Press, New York (1984), 35–57.

[5] B. Bollobás, Random graphs, 2nd ed., Cambridge University Press, Cambridge (2001).

[6] B. Bollobás and P. Erdős, Alternating hamiltonian cycles, Israel Journal of Mathematics, 23

(1976), 126–131.

[7] J. Bondy, Paths and cycles, in: Handbook of Combinatorics, Vol. 1 (edited by R. Graham,

M. Grotschel, and L. Lovász), Elsevier, Amsterdam (1995), 5–110.

23
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