A sharp threshold for network reliability

Michael Krivelevich * B

Benny Sudakov †

Van H. Vu[‡]

Abstract

Given a graph G on n vertices with average degree d, form a random subgraph G_p by choosing each edge of G independently with probability p. Strengthening a classical result of Margulis we prove that if the edge connectivity k(G) satisfies $k(G) \gg d/\log n$, then the connectivity threshold in G_p is sharp. This result is asymptotically tight.

1 Introduction

Reliability problems become more and more important as our modern systems of telecommunications, information transmission, transportation become more and more complex (the Internet might be good example to keep in mind). This motivates the theoretical study of network reliability, a topic which has been extensively studied in the past few decades.

One of the most popular abstract models in network reliability problems is the following. Our network can be thought of as a large connected graph where each edge has a certain probability q of failing. We are interested in the probability that the network is still connected. This problem can be formulated in a form which is perhaps more convenient to a graph theorist as follows. Given a graph G with n vertices and m edges and a real p between 0 and 1, where p = 1 - q may depend on G, a random subgraph G_p of G is obtained by keeping each edge of G with probability p, independently. The probability that G_p is connected is obviously then a function of the probability p, which will be denoted by f(G, p), or simply by f(p) when the definition of a graph G is clear from the context. We will sometimes refer to f(p) as to the reliability function of the graph G.

Estimating f(G, p) seems to be very hard and there is a vast literature on this issue. The interested reader may check [2] (Chapter 7) or [3] for a partial list of references. Several special cases

^{*}Department of Mathematics, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel. email: krivelev@math.tau.ac.il. Part of this research was done while visiting Microsoft Research. Supported in part by a USA-Israeli BSF grant and by a Bergmann Memorial Award.

[†]Department of Mathematics, Princeton University, Princeton, NJ 08540, USA and Institute for Advanced Study, Princeton, NJ 08540, USA. Email address: bsudakov@math.princeton.edu. Part of this research was done while visiting Microsoft Research. Research supported in part by NSF grants DMS-0106589, CCR-9987845 and by the State of New Jersey.

[†]Theory Group, Microsoft Research, Redmond, WA 98052, USA. Current address: Department of Mathematics, UCSD, La Jolla, CA, USA; e-mail: vanvu@ucsd.edu; Web: http://www.math.ucsd.edu/~vanvu.

of this problem have been considered in different areas. For instance, if G is the complete graph on n vertices then G_p is the classical random graph G(n,p) and the connectivity problem is discussed in great details in Bollobás' book [2]. Another case is when G is the d-dimensional lattice restricted to a compact domain; in this case the problem has been studied in percolation theory, and we refer the interested reader to [5].

In this paper, we investigate the following aspect of network reliability. For a fixed positive constant $x \leq 1$ and a graph G, let p_x denote the (unique) value of p where $f(G, p_x) = x$. We say that a family $(G_i)_{i=1}^{\infty}$ of graphs satisfies the *sharp threshold* property if for any fixed positive $\epsilon \leq 1/2$

$$\lim_{i \to \infty} \frac{p_{\epsilon}(G_i)}{p_{1-\epsilon}(G_i)} \to 1.$$

The sharp threshold property is very useful from the practical point of view. It implies that the performance of the network is easy to improve. For instance, the fact that $\frac{p_{\epsilon}(G_i)}{p_{1-\epsilon}(G_i)} \to 1$ guarantees that when i is sufficiently large, then to improve the reliability of G_i from .01 (being a very poor network) to .99 (being a rather reliable network), one has to improve the reliability of the edges by only tiny fraction, a nominal cost for a remarkable improvement! In percolation theory, sharp threshold is more commonly known as phase transition and there is an extensive literature on this phenomenon, motivated by questions from statistical physics (see [5] and its references).

We would like to address the following central question:

Which families of graphs possess the sharp threshold property?

A different motivation of our study comes from a paper of Pak and the third author [8]. There the above question was considered from a different aspect in relation with phase transition of random walks. The problems posed in that paper (see Section 13 of [8]) were the starting point of our study.

In [8] several partial answers to the above question are given in special cases when the graphs in question are highly symmetric. For general graphs, the earliest and most well-known result is probably, a result of Margulis. For a graph G, let k(G) denote the minimum number of edges one needs to remove in order to disconnect G; if k(G) = k we say that G is k-edge-connected. In [7], as a corollary of a more general theorem, Margulis showed:

Theorem 1.1 Consider a family $(G_i)_{i=1}^{\infty}$ of graphs. If $k(G_i) \to \infty$, then for any fixed positive $\epsilon \leq 1/2$

$$\lim_{i \to \infty} (p_{1-\epsilon}(G_i) - p_{\epsilon}(G_i)) = 0.$$

Margulis' theorem implies that a family $(G_i)_{i=1}^{\infty}$ possesses the sharp threshold property if the connectivity $k(G_i)$ of G_i tends to infinity, and $p_{1-\epsilon}(G_i)$ is bounded below by a positive constant. However, this theorem does not provide any information in the case $p_{1-\epsilon}(G_i) \to 0$.

Our main result in this paper is the following:

Theorem 1.2 Let $0 < \epsilon < 1/2$. Then for every $\gamma > 0$ there exist $K(\gamma)$ and $n_0(\gamma)$ so that the following holds. If G is a graph on $n > n_0(\gamma)$ vertices with average degree d and edge-connectivity $k(G) \geq K(\gamma) \frac{d}{\ln n} + 1$, then

$$\frac{p_{\epsilon}(G)}{p_{1-\epsilon}(G)} \ge 1 - \gamma.$$

The above theorem implies immediately the following corollary.

Corollary 1.3 Let $(G_i)_{i=1}^{\infty}$ be a family of distinct graphs, where G_i has n_i vertices, maximum degree d_i and it is k_i -edge-connected. If

$$\lim_{i \to \infty} \frac{k_i \ln n_i}{d_i} = \infty,$$

then the family $(G_i)_{i=1}^{\infty}$ has a sharp connectivity threshold.

We believe that this result is of interest by a number of reasons. First, it gives a fairly general sufficient condition for a family of graphs to satisfy the sharp threshold property. Second, it strengthens Margulis' result in the case $p_{1-\epsilon}(G_i) \to 0$. It also answers a question posed in [8]. Next, our proof makes use of new and powerful results of Bourgain-Friedgut [4] and it is very different from Margulis' proof and the approaches in percolation theory. Finally, the statement of our theorem is in some sense asymptotically tight, as shown by the following proposition.

Proposition 1.4 For any constant a > 1 there is a constant $0 < \epsilon(a) < 1/2$ so that the following holds. For all large enough n there exists a graph G on 2n vertices, with maximal degree d = n and with edge-connectivity $k(G) = a \frac{d}{\ln n}$ so that

$$\frac{p_{\epsilon}(G)}{p_{1-\epsilon}(G)} \le \frac{1}{2}.$$

The rest of the paper is organized as follows. In the next section we prove Theorem 1.2 and Proposition 1.4. In Section 3 we show how our main result can be extended to the case of the random matroid process. Finally, the last section contains some concluding remarks.

2 Main result

In this section we prove our main result. We may and will assume, whenever this is needed, that the number of vertices in our graphs is sufficiently large. To prove Theorem 1.2 it is enough to show that for all $\epsilon \leq \alpha \leq 1 - \epsilon$ the derivative of f(p) satisfies $p_{\alpha} f'(p_{\alpha}) \geq 1/\gamma$. Indeed, in this case

$$1 \ge f(p_{1-\epsilon}) - f(p_{\epsilon}) = f'(p_{\alpha}) \left(p_{1-\epsilon} - p_{\epsilon} \right) \ge \frac{1}{\gamma p_{\alpha}} \left(p_{1-\epsilon} - p_{\epsilon} \right) \ge \frac{1}{\gamma p_{1-\epsilon}} \left(p_{1-\epsilon} - p_{\epsilon} \right) = \frac{1}{\gamma} \left(1 - \frac{p_{\epsilon}}{p_{1-\epsilon}} \right).$$

This implies that $\gamma \geq 1 - p_{\epsilon}/p_{1-\epsilon}$, which is the assertion of the theorem.

Let us recall some terminology. Consider a discrete cube $\{0,1\}^m$ with the probability measure defined by $\Pr_p(x) = p^{|x|}(1-p)^{m-|x|}$ for all $x \in \{0,1\}^m$, where $|x| = |\{1 \le i \le n : x_i = 1\}|$. We say

that a vector $x = (x_1, \ldots, x_m) \in \{0, 1\}^m$ contains a vector $y = (y_1, \ldots, y_m) \in \{0, 1\}^m$ if $x_i \geq y_i$ for all $1 \leq i \leq m$, and denote this by $y \subset x$. A subset $A \subset \{0, 1\}^m$ is monotone if whenever $x \in A$ and $x \subset y$, then also $y \in A$. Our proof relies heavily on the following result of Bourgain [4], which provides a sharp-threshold criteria for general monotone properties.

Theorem 2.1 Let $A \subset \{0,1\}^m$ be a monotone property, α be a positive constant and p = o(1) be the value of probability satisfying $\Pr_p(A) = \alpha$. If there exists a constant c > 0 with the property $p \cdot \frac{d \Pr_p(A)}{dp} < c$, then there exists a $\delta = \delta(c)$ such that either

$$\Pr_p(x \in \{0, 1\}^m | x \text{ contains } x' \in A \text{ of size } |x'| \le 10c) > \delta$$

or there exists an $x' \notin A$ of size $|x'| \leq 10c$ so that

$$\Pr_n(x \in A | x' \subset x) > \alpha + \delta.$$

The idea of the proof is as follows. Assuming that a threshold for connectivity is not sharp, we have from Theorem 2.1 that there exists a fixed set of edges whose addition to the random graph G_p changes the probability of connectivity by some constant. On the other hand, the fact that a threshold is not sharp implies that the addition of a large number of random edges to G_p has almost no effect on the connectivity. We show that these two conclusions contradict each other. To do so we first need to establish a lower bound on the threshold probability for the graph connectivity property. This is done in the following lemma.

Lemma 2.2 Let G = (V, E) be a connected graph on n vertices with average degree d and let $0 satisfy <math>(1-p)^d \ge 1/\sqrt{n}$, i.e. $pd \le \ln n/2$. Then for any fixed $0 < \alpha < 1$ and large enough n, the probability that a random subgraph G_p is connected is at most α .

Proof. Let $V_0 = \{v \in V : d(v) \leq \frac{3}{2}d\}$. Then $|V_0| \geq n/3$, as otherwise $\sum_{v \in V \setminus V_0} d(v) \geq |V| \setminus V_0|(3d/2) > (2n/3)(3d/2) = nd = 2|E(G)|$ – a contradiction.

For every vertex $v \in V_0$ let X_v be an indicator random variable for the event that v is an isolated vertex in G_p . Denote by X the total number of such vertices in the random graph G_p . Clearly $X = \sum_{v \in V_0} X_v$ and G_p is connected only if X = 0. It is easy to see that the expected value of X satisfies

$$E[X] = \sum_{v \in V_0} E[X_v] = \sum_{v \in V_0} (1 - p)^{d(v)} \ge |V_0| (1 - p)^{\frac{3d}{2}} \ge \frac{n}{3} \left(\frac{1}{\sqrt{n}}\right)^{\frac{3}{2}} = \frac{n^{\frac{1}{4}}}{3}.$$

Next we need to obtain an upper bound on the variance of X.

$$Var[X] = \sum_{v \in V_0} Var[X_v] + \sum_{v \neq u \in V_0} Cov[X_v, X_u] = \sum_{v \in V_0} Var[X_v] + \sum_{v \neq u \in V_0} (E[X_v X_u] - E[X_v]E[X_u]).$$

Since X_v is an indicator random variable we obtain that $Var[X_v] \leq E[X_v]$. Note also that if the vertices u and v are nonadjacent, then X_v, X_u are independent random variables and thus $Cov[X_v, X_u] = 0$. On the other hand for adjacent vertices we have

$$E[X_v X_u] - E[X_v]E[X_u] = (1-p)^{d(v)+d(u)-1} - (1-p)^{d(v)+d(u)} = p(1-p)^{d(v)+d(u)-1}$$

Finally the inequality $(1-p)^d \ge 1/\sqrt{n}$ implies that $1 + \frac{3}{2}pd < 2\ln n < \alpha E[X]$. Therefore we conclude that

$$Var[X] = \sum_{v \in V_0} E[X_v] + 2 \sum_{\substack{v, u \in V_0 \\ (v, u) \in E}} p(1-p)^{d(v)+d(u)-1}$$

$$= E[X] + p \sum_{v \in V_0} \sum_{\substack{u \in V_0 \\ (u, v) \in E}} (1-p)^{d(v)+d(u)-1}$$

$$\leq E[X] + p \sum_{v \in V_0} d(v)(1-p)^{d(v)} \leq E[X] + \frac{3}{2}pd \sum_{v \in V_0} (1-p)^{d(v)}$$

$$= E[X] + \frac{3pd}{2}E[X] = \left(1 + \frac{3pd}{2}\right)E[X] < \alpha E^2[X].$$

Now by Chebyshev's inequality the probability that G_p is connected is at most

$$\Pr(X = 0) \le \Pr(|X - E[X]| \ge E[X]) \le \Pr\left(|X - E[X]| \ge \frac{\sqrt{Var[X]}}{\sqrt{\alpha}}\right) \le \alpha.$$

We are now in position to prove Theorem 1.2.

Proof of Theorem 1.2. Let α be a real satisfying $\epsilon \leq \alpha \leq 1 - \epsilon$ and let p_{α} be the value of probability such that $\Pr(G_{p_{\alpha}} \text{ is connected}) = \alpha$. First we consider the case when there exists an α with $0 < p_{\alpha} < 1$ being a constant. Note that, since connectivity is a monotone property, clearly $f(p) = \Pr(G_p \text{ is connected})$ is an increasing function of p. Thus by Lemma 2.2 the threshold probability p_{α} should satisfy $(1 - p_{\alpha})^d < 1/\sqrt{n}$. Since p_{α} is a constant less than 1, the average degree d is at least $\Omega(\ln n)$. In that case by choosing an appropriate constant $K(\gamma)$ we can make the edge-connectivity $k(G) = K(\gamma) \frac{d}{\ln n}$ to be arbitrary large. Therefore we can apply the above mentioned result of Margulis [7] (see also [9]) to derive the assertion of the theorem.

Next we treat the case when $p_{\alpha} = o(1)$. Let us assume by contradiction that $p_{\alpha}f'(p_{\alpha}) < 1/\gamma$. Since clearly no set of edges of a constant size can contain a connected spanning subgraph of G, by Theorem 2.1 we obtain that there exists a constant $\delta(\gamma) > 0$ and a fixed set of edges $e_1, \ldots, e_t, t \le 10/\gamma$, satisfying:

$$\Pr(G_{p_{\alpha}} \text{ is connected} | e_i \in E(G_{p_{\alpha}}), i = 1, \dots, t) > \alpha + \delta.$$
 (1)

Let ϵ' be a positive constant which we specify later, and let $p_1 = p_\alpha + \epsilon'(1 - p_\alpha)p_\alpha$. Then by the Taylor expansion of f together with the fact that $f'(p_\alpha) < 1/(\gamma p_\alpha)$ we obtain

$$f(p_1) = f(p_\alpha) + f'(p_\alpha)(p_1 - p_\alpha) + o(p_1 - p_\alpha) \le \alpha + \frac{1}{\gamma p_\alpha} \epsilon' (1 - p_\alpha) p_\alpha + o(\epsilon') = \alpha + \frac{\epsilon'}{\gamma} (1 - p_\alpha) + o(\epsilon').$$

By choosing an appropriate value of ϵ' we can make the probability that G_{p_1} is connected to satisfy $f(p_1) < \alpha + \delta/2$. Note also that, by the definition of p_1 , we can view the edge set of the random graph G_{p_1} as a union of two independent copies of the random graphs $G_{p_{\alpha}}$ and $G_{\epsilon'p_{\alpha}}$. Denote by B

the set of all subgraphs $G' \subset G$ with the property that the graph $G' \cup \{e_1, \ldots, e_t\}$ is connected. It is easy to see that by inequality (1) we have that $\Pr(G_{p_\alpha} \in B) > \alpha + \delta$.

Next we show that for any graph $G' \in B$ the union $G' \cup G_{\epsilon'p_{\alpha}}$ is connected with probability close to one. Indeed, G' becomes connected when adding the edges e_1, \ldots, e_t . Therefore, G' has at most t+1 connected components and thus there exist at most 2^t possible edge cuts of G which separate the vertices of G'. Each such cut contains at least k = k(G) edges. Recall that by Lemma 2.2 we have $p_{\alpha}d = \Omega(\ln n)$. Therefore the probability that at least one of these cuts separates also the vertices of a random graph $G_{\epsilon'p_{\alpha}}$ is at most

$$2^t (1 - \epsilon' p_\alpha)^k < 2^t e^{-\epsilon' p_\alpha k} = 2^t e^{-\Omega\left(\frac{\epsilon' \ln n}{d}\right) k} = 2^t e^{-\Omega(\epsilon' K(\gamma))}.$$

By choosing an appropriate constant $K(\gamma)$ we can make this probability to be at most $\delta/4$. Finally we obtain a contradiction since the probability $f(p_1)$ that the random graph $G_{p_1} = G_{p_{\alpha}} \cup G_{\epsilon' p_{\alpha}}$ is connected is at least

$$\Pr(G_{p_{\alpha}} \in B) \Pr(G_{p_{\alpha}} \cup G_{\epsilon' p_{\alpha}} \text{ is connected} | G_{p_{\alpha}} \in B) \ge \left(1 - \frac{\delta}{4}\right) \Pr(G_{p_{\alpha}} \in B) = \left(1 - \frac{\delta}{4}\right) (\alpha + \delta) > \alpha + \frac{\delta}{2}.$$

The last case is when $1 - p_{\epsilon} = o(1)$. Then clearly both p_{ϵ} and $p_{1-\epsilon}$ are equal to 1 - o(1) and thus their ratio is equal to $1 - o(1) > 1 - \gamma$. This completes the proof of the theorem.

A graph G is called *vertex-transitive* if for every pair of vertices v_1 and v_2 there exists an automorphism $\pi: V(G) \to V(G)$ such that $\pi(v_1) = v_2$. By applying our main theorem we can obtain the following result about the connectivity threshold for vertex-transitive graphs.

Corollary 2.3 Let G be a connected vertex-transitive graph and let G_p is obtained by selecting edges of G randomly and independently with probability p. Then the property " G_p is connected" has a sharp threshold.

Proof. Clearly G is regular. Denote by d its degree. Since G is a vertex-transitive graph, it is also d-edge-connected (see, e.g., [6], Problem 12.14). Then the result follows immediately from Theorem 1.2.

An important family of examples of vertex-transitive graphs is graphs arising from finite groups. Given a finite group H and a set of generators $S = S^{-1}$ of H, the Cayley graph G(H, S) is a graph with vertex set H, in which there is an edge between a and b if and only if $ab^{-1} \in S$. The Cayley graph G(H, S) is easily seen to be connected as S generates H. The above corollary implies then that the connectivity property of a random subgraph of any Cayley graph has a sharp threshold.

Next we show that the result of Theorem 1.2 is nearly tight.

Proof of Proposition 1.4. Set $\epsilon = e^{-4a}$. Let G be a graph which consists of two disjoint copies of a complete graph K_n on n vertices, connected by a matching of size $a\frac{n}{\ln n}$. The maximal degree of G is d = n and its edge-connectivity is $k(G) = a\frac{n}{\ln n}$. Let G_p be obtained by selecting edges of

G randomly and independently with probability p. It is easy to see that the probability that G_p is connected is at most $1-(1-p)^{a\frac{n}{\ln n}}$, since we need to choose at least one edge connecting two copies of K_n . One can easily check that $1-t \ge e^{-t-t^2}$ for small enough t > 0. Therefore, for $p = 3 \ln n/n$ the probability that G_p is connected is at most:

$$1 - (1 - p)^{\frac{a \ln n}{n}} \leq 1 - e^{(-p - p^2) \frac{a \ln n}{n}}$$

$$= 1 - e^{\left(-\frac{3 \ln n}{n} - \frac{9 \ln^2 n}{n^2}\right) \frac{a \ln n}{n}} = 1 - e^{-3a - \frac{9a \ln n}{n}} = 1 - \epsilon^{\frac{3}{4} + \frac{9 \ln n}{4n}}$$

$$< 1 - \epsilon$$

for large enough n. This implies $p_{1-\epsilon} \geq \frac{3 \ln n}{n}$.

On the other hand, if $p = \frac{3 \ln n}{2n}$, it is well known (see, e.g., [2]) that the random subgraph of K_n , where each edge is chosen independently and with probability p, is connected with probability tending to one. Therefore is this case the probability that G_p is connected equals to

$$(1 - o(1)) \left(1 - (1 - p)^{a \frac{n}{\ln n}} \right) \ge (1 - o(1)) \left(1 - e^{-\frac{pa \ln n}{n}} \right)$$

$$= (1 - o(1)) \left(1 - e^{-\frac{3a}{2}} \right) = (1 - o(1)) \left(1 - e^{\frac{3}{8}} \right) \ge \epsilon$$

as $\epsilon \leq e^{-4}$. Hence $p_{\epsilon} \leq \frac{3 \ln n}{2n}$. Thus $\frac{p_{\epsilon}}{p_{1-\epsilon}} \leq \frac{1}{2}$.

3 Random matroid process

In this section we sketch how our results can be extended to the case of random matroid processes. Let us first introduce some terminology. We define a $matroid\ M$ to be a finite set X and a collection \mathcal{F} of subsets of X, called independent sets, satisfying the following properties.

- 1. $\emptyset \in \mathcal{F}$, and if $A \in \mathcal{F}$ and $B \subseteq A$ then $B \in \mathcal{F}$.
- 2. If U, V are members of \mathcal{F} , with |U| = |V| + 1 then there exist an $u \in U V$ such that $V \cup u \in \mathcal{F}$.

(For the theory of matroids see, e.g., [10]). A base of a matroid M is an independent set of a maximal size in it and a subset of X is called spanning if and only if it contains a base. One of the main examples of matroids which we have already discussed in the previous section is the cycle matroid of graph M(G). Given a graph G, let X = E(G) and let $A \in \mathcal{F}$ if and only if A is an edge set of an acyclic subgraph of G. This defines a matroid M(G). Clearly if G is connected then the bases of M(G) are the spanning trees of G and the spanning sets of this matroid are all connected subgraphs of G. The rank function of a matroid is a function $r: 2^X \to \mathbb{Z}$, where r(A) is a size of maximal independent subset of A. The rank of the matroid r(M) is just the rank of the set X. Finally, denote by $\eta(M)$ the size of the smallest subset $Y \subset X$ such that r(X - Y) < r(M). This

parameter is an extension of the notion of edge-connectivity number of a graph, since for the case of the cycle matroid of a graph G it is equal to its edge-connectivity.

Given a matroid $M = (X, \mathcal{F})$, let X_p is obtained by choosing elements of X randomly and independently with probability p. Consider the property " X_p is spanning". Clearly this property is monotone and we denote by p_{α} the value of p such that $\Pr(X_{p_{\alpha}} \text{ is } spanning) = \alpha$. Note that in the case when M is the cycle matroid of a connected graph the property of being spanning corresponds to the property that a random subgraph G_p is connected. Therefore a natural extension of the result of the previous section is to determine when the property " X_p is spanning" has a sharp threshold. This is done in the following theorem, whose proof we only sketch, since it is rather similar to the proof of Theorem 1.2.

Theorem 3.1 Let $M = (X, \mathcal{F})$ be a matroid and let X_p is obtained by choosing the elements of X randomly and independently with probability p. If r(M) tends to infinity and $(1 - p_{\alpha})^{\eta(M)} = o(1)$ for any constant α then the property " X_p is spanning" has a sharp threshold.

Sketch of the proof. First consider the case when $0 < p_{\alpha} < 1$ is a constant. Then $\eta(M) \to \infty$ and therefore we can apply the result of Margulis [7] to derive the sharpness of the threshold.

Now, suppose that $p_{\alpha} = o(1)$ and that the property does not have a sharp threshold. This implies that for $p = p_{\alpha}$ the value of the derivative of $f(p) = \Pr(X_p \text{ is spanning})$ is bounded by c/p_{α} for some constant c. Since the size of a base of M tends to infinity, by Theorem 2.1 we obtain that there exist a constant $\delta(c) > 0$ and a fixed set of elements $Y \subset X, |Y| = y$ such that $\Pr(X_{p_{\alpha}} \text{ is spanning}|Y \subset X_{p_{\alpha}}) > \alpha + \delta$. On the other hand, the fact that the derivative is bounded by c/p_{α} implies that there exists a constant $\beta > 0$ with the property that for $p_1 = (1 + \beta)p_{\alpha}$, one has $\Pr(X_{p_1} \text{ is spanning}) < \alpha + \delta/2$. Denote by \mathcal{S} the family of all subsets $X' \subset X$ with the property that $X' \cup Y$ is spanning. Then we have that $\Pr(X_{p_{\alpha}} \in \mathcal{S}) > \alpha + \delta$. In addition, we can view X_{p_1} as a union of $X_{p_{\alpha}}$ with y independent copies of $X_{\epsilon'p_{\alpha}}$ for some appropriate constant ϵ' which depends on β . Denote these copies by $X_{\epsilon'p_{\alpha}}^{(1)}, \ldots, X_{\epsilon'p_{\alpha}}^{(y)}$.

Now we prove that for any non-spanning subset $T \subset X$, $r(T \cup X_{\epsilon'p_{\alpha}}) > r(T)$ with probability 1-o(1). First we show that there exist at least $\eta(M)$ elements in X whose addition to T will increase its rank. Indeed, let $T_0 \subseteq T$ be an independent set satisfying $r(T_0) = r(T)$ and let U be the set of all elements of M such that $r(T_0 \cup \{u\}) > r(T_0)$ for every $u \in U$. Obviously $U \cap T = \emptyset$, and for every element of U its addition to T will increase its rank. As $r(T_0) < r(M)$, for every base B_i of M there is an element $b_i \in B_i \setminus T_0$ so that $r(T_0 \cup \{b_i\}) > r(T_0)$. Then $b_i \in U$. This shows that the set U meets every base of M and has thus cardinality at least $\eta(M)$. The probability that $X_{\epsilon'p_{\alpha}}$ misses all the elements of U is at most $(1 - \epsilon'p_{\alpha})^{\eta(M)} = (1 - p_{\alpha})^{\Theta(\epsilon')\eta(M)} = o(1)$. Also note that when $X_{p_{\alpha}} \cup Y$ is spanning, the rank of $X_{p_{\alpha}}$ is at least r(M) - y. Finally we obtained a contradiction, since

$$\Pr(X_{p_1} \text{ is spanning}) \geq$$

$$\Pr(X_{p_{\alpha}} \in \mathcal{S}) \Pr(X_{p_{\alpha}} \cup \bigcup_{i=1}^{y} X_{\epsilon' p_{\alpha}}^{(i)} \text{ is spanning} | X_{p_{\alpha}} \in \mathcal{S}) \ge (1 - o(1))(\alpha + \delta) > \alpha + \delta/2. \qquad \Box$$

Remark. This theorem is less powerful than Theorem 1.2 since one needs to have a lower bound on the threshold probability p_{α} to apply it. In the case of the cycle matroid of graph this bound can be derived from Lemma 2.2.

4 Concluding remarks

We have provided a fairly general condition for the sharpness of the threshold connectivity in random subgraphs of arbitrary graphs. This condition can be applied to many families of graphs. Combined with known results of the value of the connectivity threshold, our result can be used to estimate from above the width of the threshold interval for connectivity. Putting it somewhat informally, we say that the width of the connectivity threshold interval of a random subgraph G_p is the difference $p_{.99} - p_{.01}$. Alon proved in [1] that if G is a k-connected graph of n vertices and the edge probability p(n) satisfies $p(n) \ge c \log n/k$ for large enough absolute constant c > 0, then a.s. the random subgraph G_p is connected. It follows therefore from Theorem 1.2 that the width of the connectivity threshold interval is $o(\log n/k)$. In many instances this conclusion compares favorably with a conclusion of a more general result of Talagrand [9], asserting that the width of the connectivity threshold interval of a k-connected graph G is at most $O(1/\sqrt{k})$.

It is clear intuitively that Bourgain's general threshold sharpness criteria can and should be used to establish the sharpness of the threshold of other graph theoretic functions in random subgraphs of arbitrary graphs. Potential applications include the appearance of a cycle in G_p , of a perfect matching, of a Hamiltonian cycle, to mention just a few. While for the classical random graph G(n,p) those questions have been studied very extensively (see, e.g., [2] for a detailed account), nothing or almost nothing appears to be known for the case when the ground graph G is different from the complete graph K_n . The task of obtaining such results for various graphs G seems quite appealing. Also, it would be interesting to get further threshold sharpness results for the random matroid process.

Acknowledgement. We would like to thank the referee for careful reading, and also for pointing out that the assumption on the maximal degree in Theorem 1.2 (as it was in the original version of the paper) can be replaced by a weaker assumption on the average degree.

References

- [1] N. Alon, A note on network reliability, in: Discrete Probability and Algorithms, D. Aldous et al., eds., IMA Volumes in mathematics and its applications, Vol. 72, Springer Verlag (1995), 11–14.
- [2] B. Bollobás, Random Graphs, Academic Press, London, 1985.

- [3] Reliability of Computer and Communication Networks, F. Roberts, F. Hwang and C. Monma eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 5, 1989.
- [4] E. Friedgut, Sharp thresholds of graph properties, and the k-sat problem. With an appendix by Jean Bourgain, *Journal Amer. Math. Soc.* 12 (1999), 1017–1054.
- [5] G. Grimmett, **Percolation**, Springer-Verlag, 1989.
- [6] L. Lovász, Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1993.
- [7] G. Margulis, Probabilistic characteristics of graphs with large connectivity, *Problems Info. Transmission* 10 (1974), 101–108.
- [8] I. Pak and V. Vu, On mixing of certain random walks, cutoff phenomenon and sharp threshold of random matroid processes, *Discrete Applied Math.* 110 (2001), 251–272.
- [9] M. Talagrand, Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and Margulis' graph connectivity theorem. *Geometric and Functional Analysis* 3 (1993), 295–314.
- [10] D. J. A. Welsh, Matroid Theory, Lond. Math. Soc. Monogr. No. 8, Academic Press, London, 1976.