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Abstract. We prove that the number of Hamilton cycles in the random graph

G(n, p) is n!pn(1 + o(1))n a.a.s., provided that p ≥ ln n+ln ln n+ω(1)
n

. Furthermore, we
prove the hitting-time version of this statement, showing that in the random graph
process, the edge that creates a graph of minimum degree 2 creates

(
ln n

e

)n
(1+o(1))n

Hamilton cycles a.a.s.

1. Introduction

The goal of this paper is to estimate the number of Hamilton cycles in the random
graph G(n, p). To be more formal, we show that the number of Hamilton cycle is
asymptotically almost surely, or a.a.s. for brevity, concentrated around the expectation
up to a factor (1 + o(1))n, provided the minimum degree is at least 2.

It is well known (see e.g. [5]) that the minimum degree of G(n, p) is a.a.s. at most
one for p ≤ lnn+ln lnn−ω(1)

n , and therefore G(n, p) contains no Hamilton cycle in this
range of p a.a.s. Komlós and Szemerédi [23] and Korshunov [24] were the first to show
that this bound is tight, i.e., G(n, p) is a.a.s. Hamiltonian for every p ≥ lnn+ln lnn+ω(1)

n .
Bollobás [6] and independently Ajtai, Komlós, and Szemerédi [1] proved the hitting
time version of the above statement, showing that in the random graph process, the
very edge that increases the minimum degree to two also makes the graph Hamiltonian
a.a.s.

There exists a rich literature about hamiltonicity of G(n, p) in the range when it is
a.a.s. Hamiltonian. Recent results include packing and covering problems (see e.g. [13],
[21], [22], [26], [15], and [18]), local resilience (see e.g. [34], [14], [4] and [28]) and Maker-
Breaker games ([33], [16], [3], and [11]). In this paper, we are interested in estimating
the typical number of Hamilton cycles in a random graph when it is a.a.s. Hamiltonian.
Several recent results about Hamiltonicity ([22],[26], [34],[11]) can be used to show
fairly easily that G(n, p) with p = p(n) above the threshold for Hamiltonicity contains
typically many, or even exponentially many Hamilton cycles. Here we aim however for
(relatively) accurate bounds.

Using linearity of expectation we immediately see that the expected value of the
number of Hamilton cycles in G(n, p) is (n−1)!

2 pn. As the common intuition for random
graphs may suggest, we expect the random variable to be concentrated around its
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mean, perhaps after some normalization (it is easy to see that the above expressions
for the expectation become exponentially large in n already for p inverse linear in n).

The reality appears to confirm this intuition – to a certain extent. Denoting by X
the number of Hamilton cycles in G(n, p), we immediately obtain X <

(np
e

)n a.a.s. by
Markov’s inequality. Janson [20] considered the distribution of X for p = Ω (1/

√
n)

and proved that X is log-normal distributed, implying that X =
(np
e

)n (1 + o(1))n

a.a.s. It is instructive to observe that assuming p = o(1), the distribution of X is in
fact concentrated way below its expectation, in particular implying that X/E(X)

p→ 0.
For random graphs of density p = o

(
n−1/2

)
not much appears to be known about the

asymptotic behavior of the number of Hamilton cycles in corresponding random graphs.
We nevertheless mention the result of Cooper and Frieze [8], who proved that in the
random graph process typically at the very moment the minimum degree becomes two,
not only the graph is Hamiltonian but it has (log n)(1−o(1))n Hamilton cycles.

Our main result is the following theorem, which can be interpreted as an extension
of Janson’s results [20] to the full range of p(n).

Theorem 1. Let G ∼ G(n, p) with p ≥ lnn+ln lnn+ω(1)
n . Then the number of Hamilton

cycles is n!pn(1− o(1))n a.a.s.

Improving the main result of [8], we also show the following statement.

Theorem 2. In the random graph process, at the very moment the minimum degree
becomes two, the number of Hamilton cycles becomes (lnn/e)n(1− o(1))n a.a.s.

We continue with a short overview of related results for other models of random
and pseudorandom graphs. For the model G(n,M) of random graphs with n vertices
and M edges, notice the result of Janson [20] showing in particular that for the regime
n3/2 � M ≤ 0.99

(
n2

m

)
, the number of Hamilton cycles is indeed concentrated around

its expectation. The situation appears to change around M = Θ
(
n3/2

)
, where the

asymptotic distribution becomes log-normal instead. Notice also that the number of
Hamilton cycles is more concentrated in G(n,M) compared to G(n, p); this is not
surprising as G(n,M) is obtained from G(n, p) by conditioning on the number of edges
of G being exactly equal to M , resulting in reducing the variance.

For the probability space of random regular graphs, it is the opposite case of very
sparse graphs that is relatively well understood. Janson [19], following the previous
work of Robinson and Wormald [31], [32], described the asymptotic distribution of the
number of Hamilton cycles in a random d-regular graph G(n, d) for a constant d ≥ 3.
The expression obtained is quite complicated, and we will not reproduce it here. For the
case of growing degree d = d(n), the result of Krivelevich [25] on the number of Hamil-
ton cycles in (n, d, λ)-graphs in addition to known eigenvalue results for Gn,d imply
an estimation on the number of Hamilton cycles in Gn,d with a superpolylogarithmic
lower bound on d.

For an overview of these results as well as of the corresponding results in pseudoran-
dom settings, we refer the interested reader to [25].

1.1. Definitions and notation. The random oriented graph ~G(n, p) is obtained from
G(n, p) by randomly giving an orientation to every edge (every of the two possible
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directions with probability 1/2). Notice that whenever we use the notation ~G for an
oriented graph, there exists an underlying non-oriented graph obtained by omitting
the orientations of the edges of ~G; it is denoted by G. Making the notation consistent,
when omitting the vector arrow above an oriented graph, we refer to the underlying
non-oriented graph.

Given a graph G, we denote by h(G) the number of Hamilton cycles in G. We call a
spanning 2-regular subgraph of G a 2-factor. Notice that every connected component
of a 2-factor is a cycle. We denote by f(G, s) the number of 2-factors in G with exactly
s cycles. Similarly, a 1-factor of an oriented graph ~G is a spanning 1-regular subgraph,
i.e., a spanning subgraph with all in- and outdegrees being exactly one. Analogously,
the number of 1-factors in ~G with exactly s cycles is denoted by f

(
~G, s
)

. For the
purposes of our proofs, we relax the notion of a 2-factor and call a spanning subgraph
H ⊆ G an almost 2-factor of G if H is a collection of vertex-disjoint cycles and at
most |V (G)|/ ln2(|V (G)|) isolated vertices. We denote the number of almost 2-factors
of G containing exactly s cycles by f ′(G, s). Similarly to the notation for non-oriented
graphs, we call an oriented subgraph ~H of ~G an almost 1-factor of ~G if ~H is a 1-regular
oriented graph on at least |V (~G)|−|V (~G)|/ ln2(|V (~G)|) vertices. The number of almost
1-factors of ~G with exactly s cycles is denoted by f ′

(
~G, s
)

.
As usual, in a graph G for a vertex x ∈ V (G) we denote by dG(x) := |NG(x)| its

degree, i.e., the size of its neighborhood. We denote by δ(G) and respectively ∆(G) its
minimum and maximum degrees. For a set S ⊆ V (G), we denote by NG(S) the set of
all vertices outside S having a neighbor in S. Whenever the underlying graph is clear
from the context we might omit the graph from the index. Similarly, in an oriented
graph ~G for a vertex x ∈ V

(
~G
)

we call din, ~G(x) :=
∣∣∣{y ∈ V (~G) : yx ∈ E

(
~G
)}∣∣∣ the

indegree of x and dout, ~G(x) :=
∣∣∣{z ∈ V (~G) : xz ∈ E

(
~G
)}∣∣∣ the outdegree of x. We

denote by δin
(
~G
)

, ∆in

(
~G
)

, δout
(
~G
)

, and ∆out

(
~G
)

the minimum and maximum in-

and outdegrees of ~G.
In a graph G for two sets A,B ⊆ V (G) we denote by eG(A,B) the number of edges

incident with both sets. In an oriented graph ~G, for two sets A,B ⊆ V (G) the notation
e ~G(A,B) stands for the number of edges going from a vertex in A to a vertex in B. We
write eG(A) := eG(A,A) and e ~G(A) := e ~G(A,A) for short. Similarly to the degrees,
whenever the underlying graph is clear from the context we might omit the graph from
the index.

To simplify the presentation, we omit all floor and ceiling signs whenever these are
not crucial. Whenever we have a graph on n vertices, we suppose its vertex set to be
[n].

1.2. Outline of the proofs. In Section 2, the lower bounds for Theorems 1 and 2 are
proven in the following steps.

• In Lemma 4 we show using the permanent of the incidence matrix that under
certain pseudorandom conditions, an oriented graph contains sufficiently many
oriented 1-factors.
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• In Lemma 6 we prove that the random oriented graph ~G(n, p) a.a.s. contains
a large subgraph with all in- and outdegrees being concentrated around the
expected value. This subgraph then satisfies one of the conditions of Lemma 4.
• In Lemma 7 we show that the random graph G(n, p) contains many almost 2-

factors a.a.s. In the proof, we orient the edges of G(n, p) randomly and apply
Lemma 4 to the subgraph with almost equal degrees whose existence is guaran-
teed by Lemma 6 a.a.s.
• In Lemma 8 we prove that most of these almost 2-factors have few cycles a.a.s.
• We then call a graph p-expander if it satisfies certain expansion properties and

show in Lemma 10 that in the random graph process, the graph G(n, p) has
these properties in a strong way.
• Lemma 11 shows that in any graph having the p-expander properties and min-

imum degree 2, for any path P0 and its endpoint v1 many other endpoints can
be created by a small number of rotations with fixed endpoint v1.
• Lemma 12 contains the main technical statement of the paper. Its states that

in a graph satisfying certain pseudorandom conditions, for almost every almost
2-factor F with few components, there exists a Hamilton cycle with a small
Hamming distance from F . The proof is a straightforward use of Lemma 11.
• The proofs of Theorems 1 and 2 are completed with a double counting argument.

On the one hand, by Lemma 8 there exist many almost 2-factors with few cycles
a.a.s. Furthermore, for each of these almost 2-factors there exists a Hamilton
cycle with small Hamming distance from it a.a.s. by Lemma 12. On the other
hand, for each Hamilton cycle, there are not many almost 2-factors with few
cycles having a small Hamming distance from it. Hence, the number of Hamilton
cycles is strongly related to the number of almost 2-factors with few cycles,
finishing the proof.

1.3. Chernoff bounds. In many estimations we will have to bound the probability
for a random variable to deviate far from its expectation. For this aim, we extensively
use Chernoff bounds. We decided to state them explicitly in the following lemma, see
e.g. Appendix A of [2].

Lemma 3. Let X be a binomially distributed random variable with parameters n and
p. Then the following is true.

• For every ε > 0 there exists a c = c(ε) > 0 such that Pr(|X − np| > εnp) <
2e−cnp.
• For a > 2np, Pr(X > a) <

( enp
a

)a.

2. The proofs

Let G ∼ G(n, p). Since E(h(G)) = (n− 1)!pn/2, we obtain

h(G) < lnn(n− 1)!pn/2 <
(np
e

)n
a.a.s., using just Markov’s inequality. Thus, for the remainder of the section we are
only interested in the lower bound on the typical number of Hamilton cycles in the
random graph.
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We know from [21] and using e.g. the results from [22] and [26] that in G ∼ G(n, p)
there are at least

(
bδ(G)/2c

n

)n
n! 2-factors a.a.s. We now want to give an a.a.s. lower

bound on the number of 2-factors inG, and we want to do it within a multiplicative error
term of at most 2o(n) from the “truth”, basically deleting the 2 from the denominator
in the above expression in the case p � lnn/n, and replacing the term bδ(G)/2c by
asymptotically np.

We first prove a pseudo-random technical statement that will give us the desired
inequality once we show that G (or a large subgraph of it) satisfies the pseudo-random
conditions. The proof is based on the permanent method as used in [12].

Lemma 4. Let r = r(n) = ω(ln lnn), and let ~G be an oriented graph on n vertices
satisfying the following (pseudo-random) conditions:

• δin(~G), δout(~G),∆in(~G),∆out(~G) ∈ (r − 4r/ ln lnn, r + 4r/ ln lnn)
• for any two sets A,B ⊂ V (~G) of size at most |A|, |B| ≤ 0.6n, there are at most

0.8r
√
|A||B| edges going from A to B.

Then ~G contains at least
(
r−100r/ ln lnn

e

)n
oriented 1-factors, provided that n is suffi-

ciently large.

Proof Create an auxiliary bipartite graph G′ from ~G in the following way: take
two copies X and Y of the vertex set [n] by doubling each vertex v ∈ [n] into vX ∈ X
and vY ∈ Y . We put a (non-oriented) edge uv ∈ E(G′) between vertices uX ∈ X and
vY ∈ Y if ~uv ∈ E(~G) is an edge oriented from u to v in ~G. We observe a one-to-one
correspondence between oriented 1-factors in ~G and perfect matchings in G′.

In order to use the permanent to obtain a lower bound on the number of perfect
matchings of G′, we need a (large) spanning regular subgraph of G′. Its existence is
guaranteed by the following claim.

Claim 5. G′ contains a spanning regular subgraph G′′ with regularity at least d =
r − 100r/ ln lnn.

Proof Applying the Ore-Ryser theorem [29] we see that the statement of the
claim is true provided that for every Y ′ ⊆ Y we have

d|Y ′| ≤
∑
x∈X

min{d, eG′(x, Y ′)}.

Suppose to the contrary that this contrition does not hold, i.e., there exists a Y ′ ⊆ Y
s.t.

d|Y ′| >
∑
x∈X

min{d, eG′(x, Y ′)}.

We examine the number of edges incident to Y ′ that can be deleted from G′ without
disturbing the right hand side of the above inequality. Formally, we denote it by
c =

∑
x∈X max{0, eG′(x, Y ′)− d}. Notice that

c = eG′(X,Y ′)−
∑
x∈X

min{d, eG′(x, Y ′)} > eG′(X,Y ′)− d|Y ′|

as supposed above.
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Since (r − 4r/ ln lnn)|Y ′| ≤ δ(G′)|Y ′| ≤ eG′(X,Y ′) < d|Y ′|+ c, we obtain

c >
96r

ln lnn
|Y ′|.

On the other hand, denoting by X ′ the set of vertices that have at least d neighbors in
Y ′, and noticing that ∆(G′) ≤ r + 4r/ ln lnn, we obtain

c ≤ 104r
ln lnn

|X ′|.

Hence,

(1) |X ′| > 0.9|Y ′|.

Notice that by the choices of Y ′ and X ′, we have

(2) d|Y ′| >
∑
x∈X

min{d, eG′(x, Y ′)} = d|X ′|+ eG′(X \X ′, Y ′).

For the number of edges between Y \ Y ′ and X \X ′ we see that

(r + 4r/ ln lnn)|Y \ Y ′| ≥ eG′(X \X ′, Y \ Y ′) = eG′(X \X ′, Y )− eG′(X \X ′, Y ′)
(2)
> δ(G′)|X \X ′| − d(|Y ′| − |X ′|)

≥ 96r
ln lnn

|X \X ′|+ (r − 100r/ ln lnn)|Y \ Y ′|,(3)

leading to

(4) |X \X ′| < 1.1|Y \ Y ′|.

Furthermore, notice that by (2) it holds that

(5) |X ′| < |Y ′|.

We prove the claim by case analysis.

• If |Y ′| ≤ n/2, we obtain for the number of edges between X ′ and Y ′

eG′(X ′, Y ′)
Choice of X′

≥ d|X ′|
(1)
> 0.9d

√
|X ′||Y ′| > 0.8r

√
|X ′||Y ′|,

contradicting the second condition of the lemma.
• If |Y ′| > n/2, then again by the definition of X ′ we obtain eG′(X ′, Y ′) ≥ d|X ′|,

leading to

eG′(X \X ′, Y ′)
(2)
< d(|Y ′|− |X ′|) = d(|X \X ′|− |Y \Y ′|)

(4)
< 0.1d|Y \Y ′|

(5)
< 0.1d|X \X ′|.

Thus, using the fact that δ(G′) > d, we see that

eG′(X \X ′, Y \ Y ′) ≥ 0.9d|X \X ′|
(5)
> 0.8r

√
|X \X ′| · |Y \ Y ′|,

again contradicting the same condition of the lemma, since now both X \ X ′
and Y \ Y ′ have size less than 0.6n by (4).
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�

We observe that the number of perfect matchings in G′′ equals the permanent of the
incidence matrix of G′′. Hence the result of Egorychev [9] and Falikman [10] on the
conjecture of van der Waerden implies that the number of perfect matchings in G′′ is
at least dnn!/nn >

(
d
e

)n
. �

In order to use Lemma 4, we first prove the a.a.s. existence of a large subgraph of
~G(n, p) satisfying the degree-conditions of Lemma 4 a.a.s.

Lemma 6. Let ~G ∼ ~G(n, p) with p ≥ lnn/n. Then there exists a set V ′ ⊆ [n]
of at least n − n/ ln2 n vertices of ~G such that the graph ~C := ~G[V ′] satisfies
δin(~C), δout(~C),∆in(~C),∆out(~C) ∈

(
np−3np/ ln lnn

2 , np+np/ ln lnn
2

)
a.a.s.

Proof We observe using Lemma 3 that for p � lnn(ln lnn)2/n the statement
holds for V ′ = [n] a.a.s. Hence, from now on we assume np = O(lnn(ln lnn)2).

Let L be the set of all vertices whose in- or outdegree is at most np−np/ ln lnn
2 + 1.

For every y ∈ [n], we can estimate using Lemma 3

Pr(y ∈ L) = exp
(
−Ω

(
lnn/(ln lnn)2

))
.

Thus, by Markov’s inequality we obtain

|L| ≤ lnn ·E(|L|) = lnn · (n− 1) exp
(
−Ω

(
lnn/(ln lnn)2

))
= n exp

(
−Ω

(
lnn/(ln lnn)2

))
(6)

a.a.s.
Fix an arbitrary vertex x ∈ [n]. We denote

Lx =
{
y ∈ [n] \ {x} : din, ~G−x(y) ≤ np− np/ ln lnn

2
or dout, ~G−x(y) ≤ np− np/ ln lnn

2

}
.

Notice that Lx ⊆ L, and thus (6) bounds |Lx| as well.
Since for every y ∈ [n] \ {x} the events “xy ∈ E(G)” and “y ∈ Lx” are independent,

we obtain using Lemma 3 again

Pr
[(
|NG(x) ∩ Lx| ≥

np

2 ln lnn

)
|
(
|Lx| = n exp

(
−Ω

(
lnn/(ln lnn)2

)))]
≤ exp

(
− np

2 ln lnn
Ω
(
lnn/(ln lnn)2

))
= o(1/n).(7)

Similarly, we let R be the set of all vertices whose in- or outdegree is at least
np+np/ ln lnn

2 − 1 and obtain

(8) |R| ≤ n exp
(
−Ω

(
lnn/(ln lnn)2

))
a.a.s.

We define analogously

Rx =
{
y ∈ [n] \ {x} : din, ~G−x(y) ≥ np+ np/ ln lnn

2
− 1 or dout, ~G−x(y) ≥ np+ np/ ln lnn

2
− 1
}
,
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and observe analogously to (7) that Rx ⊆ R and

Pr
[(
|NG(x) ∩Rx| ≥

np

2 ln lnn

)
|
(
|Rx| = n exp

(
−Ω

(
lnn/(ln lnn)2

)))]
= o(1/n).

(9)

We denote by V ′ the set of all vertices from [n] whose in- an outdegrees in ~G lie in(
np−np/ ln lnn

2 , np+np/ ln lnn
2

)
. Notice that [n]\V ′ ⊆ Lx∪Rx for every x ∈ [n]. Hence, we

see that |V ′| > n− n
ln2 n

a.a.s. by (6) and (8). Furthermore, from (7) and (9) we obtain

that all in- an outdegrees in ~G[V ′] lie in
(
np−3np/ ln lnn

2 , np+np/ ln lnn
2

)
a.a.s., completing

the proof of the lemma. �

From now on, whenever we have n and p chosen, we denote

d = d(n, p) = np− 100np/ ln lnn .

In the following lemma, we show that the random graph contains a.a.s. many 2-
factors.

Lemma 7. The random graph G ∼ G(n, p) with p ≥ lnn/n satisfies∑
s∈[n/3]

2sf ′(G, s) ≥ d−n/ ln2 n(d/e)n

a.a.s.

Proof In order to use Lemma 4, we orient G at random to obtain ~G (as always
in this paper, for every edge each of the two possible orientations gets probability 1/2
independently of the choices of other edges).

First we show that the second condition of Lemma 4 holds a.a.s. for ~G with the
intuitive choice r = np/2. Since the maximum degree of G is at most 3np a.a.s. (see
e.g. [5]), we obtain that in G a.a.s. for any two sets A and B with |A| > 100|B| the
number of edges between them is at most 3np|B| < 0.4np

√
|A||B|. Hence, e ~G(A,B) ≤

0.4np
√
|A||B| and e ~G(B,A) ≤ 0.4np

√
|A||B|. Thus, we are left with the case of sets

A and B of sizes |A| ≤ 100|B| and |B| ≤ 100|A|.
For small disjoint sets, we obtain using Lemma 3

Pr
(
∃A′, B′ ⊂ [n], A′ ∩B′ = ∅, |A′||B′| ≤ n2

ln lnn
, |A| ≤ 100|B| ≤ 104|A| : e ~G(A′, B′) ≥ 0.4np

√
|A′||B′|

)
≤

∑
a,b=o(n), a=Θ(b)

(
n

a

)(
n− a
b

)
exp

(
−Ω

(
np
√
ab ln

(
np
√
ab

pab

)))

≤
∑

a,b=o(n)

(ne
a

)a (ne
b

)b
exp

(
−Ω

(
a lnn ln

(
Ω
(n
a

)))
− Ω

(
b lnn ln

(
Ω
(n
b

))))
≤

∑
a,b=o(n)

exp
(
a ln

(ne
a

)
+ b ln

(ne
b

)
− Ω

(
a ln

(n
a

)
lnn

)
− Ω

(
b ln

(n
b

)
lnn

))
= o(1).
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Similarly, for large disjoint sets we obtain using Lemma 3

Pr
(
∃A′, B′ ⊂ [n], A′ ∩B′ = ∅, |A′||B′| > n2

ln lnn
, |A|, |B| ≤ 0.6n : e ~G(A′, B′) ≥ 0.4np

√
|A′||B′|

)
≤

∑
a,b≤n, ab> n2

ln ln n

(
n

a

)(
n− a
b

)
exp (−Ω (abp))

≤ 4n exp
(
−Ω

(
n lnn
ln lnn

))
= o(1).

Hence, a.a.s. for every pair of disjoint sets A′ and B′, the number of edges going from
A′ to B′ satisfies

(10) e ~G(A′, B′) < 0.4np
√
|A′||B′|.

Analogously, we see that a.a.s. for every M ⊆ [n] of size at most 0.6n,

(11) eG(M) < 0.4np|M |.

Thus, a.a.s. for every A,B ⊂ [n] of size |A|, |B| ≤ 0.6n, the number of edges going
from A to B in ~G is bounded by

e ~G(A,B) = e ~G(A \B,B \A) + eG(A ∩B)
(10), (11)
< 0.4np

√
|A \B||B \A|+ 0.4np|A ∩B|

≤ 0.4np
√
|A||B|,

establishing that the second condition of Lemma 4 holds a.a.s. for every subgraph of
~G.

Hence, by Lemma 6 the graph G ∼ G(n, p) a.a.s. is such that for a random orienta-
tion ~G, there a.a.s. exists a vertex set V ′ ⊆ [n] of size at least n−n/ ln2 n such that the
induced subgraph ~G[V ′] satisfies the conditions of Lemma 4 with r = np/2. Applying
Lemma 4 to this induced subgraph, we obtain

∑
s∈[n/3]

f
(
~G[V ′], s

)
≥
(
d

2e

)n−n/ ln2 n

a.a.s. Thus, we obtain

∑
s∈[n/3]

E
(
f ′
(
~G, s
))
≥ (1− o(1))

(
d

2e

)n−n/ ln2 n

a.a.s., where the expectation is taken over the random choice of orienting the edges of
G, the process creating ~G from G.

On the other hand, when we orient the edges, an almost 2-factor of G with exactly
s cycles becomes an almost 1-factor of ~G with probability at most 2

n
ln2 n

−n+s, implying∑
s∈[n/3]

2sf ′(G, s) ≥
∑

s∈[n/3]

2n−
n

ln2 n E
(
f ′
(
~G, s
))

.



10 R. GLEBOV AND M. KRIVELEVICH

Putting these two facts together, we obtain∑
s∈[n/3]

2sf ′(G, s) ≥ (1 + o(1))
(
d

e

)n−n/ ln2 n

≥ d−n/ ln2 n(d/e)n

a.a.s., completing the proof of the lemma. �

We show now that there are typically many almost 2-factors in G with a small
number of cycles. We denote

s∗ = s∗(n) =
n

lnn
√

ln lnn
.

Lemma 8. For every p ≥ lnn/n, the random graph G ∼ G(n, p) satisfies
s∗∑
s=1

f ′(G, s) ≥ (np/e)n (1− o(1))n

a.a.s.

Proof By Lemma 7 we know that
∑

s∈[n/3] 2sf ′(G, s) ≥ d−n/ ln2 n(d/e)n a.a.s.
We show now that the contribution of almost 2-factors with too many cycles is

negligible. We use the estimate (5) of [21]: in the random graph H ∼ G(n′, p), for
every s ≥ lnn′,

E(f(H, s)) ≤ (n′ − 1)! (lnn′)s−1 pn
′

(s− 1)!2s
.

We obtain
n/3∑
s=s∗

E(2sf ′(G, s)) ≤
∑

`≤n/ ln2 n

(
n

`

) n/3∑
s=s∗

n! (lnn)s pn−`

s!

≤ n!pn
(
n

p

)n/ ln2 n n/3∑
s=s∗

( s

e lnn

)−s
= (d/e)neO(n/ ln lnn)

(
s∗

e lnn

)−s∗
= o

(
d−n/ ln2 n (d/e)n

)
.

Hence, using this estimate together with Markov’s inequality, we see that the number
of almost 2-factors of G with at most s∗ cycles is

s∗∑
s=1

f ′(G, s) ≥ 1
2

2−s
∗
d−n/ ln2 n (d/e)n = (np/e)n (1− o(1))n

a.a.s. �

The next technicality we need to prove in order to be ready to prove the main
theorem is the expansion of G(n, p).
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To collect all but one expansion properties that we need, we make the following
definition.

Definition 9. We call a graph G with the vertex set [n] a p-expander, if there exists a
set D ⊂ [n] such that G and D satisfy the following properties:

• |D| ≤ n0.09.
• The graph G does not contain a non-empty path of length at most 2 lnn

3 ln lnn such
that both of its (possibly identical) endpoints lie in D.
• For every set S ⊂ [n] \ D of size |S| ≤ 1

p , its external neighborhood satisfies
|N(S)| ≥ np

1000 |S|.

The following lemma shows that these properties are pseudo-random.

Lemma 10. Consider the two-round expansion of the random graph and fix G ∼
G(n, p) with lnn/n ≤ p ≤ 1− 2 ln lnn/n and G ⊆ Ĝ ∼ G(n, p̂) with p̂ = p+ 2 ln lnn/n.
Then it is a.a.s. true that every graph G′ satisfying G ⊆ G′ ⊆ Ĝ is a p-expander.

Proof We first expose G and fix D = {v ∈ [n] : dG(v) < np/100} to be the
set of all vertices of G with degree less than np/100 in G. Since for a fixed set D the
second property is decreasing and the third property is increasing, it suffices to prove
the second statement for Ĝ and the third statement for G.

The first property is satisfied by Claim 4.3 from [4] a.a.s. The second property can
be proven to hold in Ĝ a.a.s. similarly to Claim 4.4 from [4] (there it is proven to hold
for G a.a.s.)

For the third property, assume to the contrary that there exists a set S ⊂ [n]\D of size
at most |S| ≤ 1

p such that its external neighborhood in G satisfies |NG(S)| < np
1000 |S|.

By the definition of D, the number of edges incident to S in G is

eG(S,NG(S) ∪ S) ≥ |S|np/200.

But Lemma 3 tells us that

Pr
(
∃A,B ⊆ [n], |A| ≤ 1

p
, |B| < np

1000
|A| : eG(A,B ∪A) ≥ |A|np/200

)
<

∑
A,B⊂[n], |A|≤1/p, |B|<|A|np/1000

(
e · E (|eG(A,B ∪A)|)

|A|np/200

)|A|np/200

<
∑

A,B⊂[n], |A|≤1/p, |B|<|A|np/1000

(
200e|A||A ∪B|p

|A|np

)|A|np/200

<
∑
a≤1/p

anp

(
n

a

)(
n
anp
1000

)(
3ap
5

)anp/200

<
∑
a≤1/p

anp

(
3ap
5

)anp/400

= o(1),
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providing that the third property holds in G a.a.s. �

The proof of the next lemma is based on the ingenious rotation-extension technique,
developed by Pósa [30], and applied later in a multitude of papers on Hamiltonicity,
mostly of random or pseudorandom graphs (see for example [7], [12], [23], [27]).

Let G be a graph and let P0 = (v1, v2, . . . , vq) be a path in G. If 1 ≤ i ≤ q − 2 and
(vq, vi) is an edge of G, then there exists a path P ′ = (v1v2 . . . vivqvq−1 . . . vi+1) in G
with the same set of vertices. The path P ′ is called a rotation of P0 with fixed endpoint
v1 and pivot vi. The edge (vi, vi+1) is called the broken edge of the rotation. We say
that the segment vi+1 . . . vq of P0 is reversed in P ′. In case the new endpoint vi+1 has a
neighbor vj such that j /∈ {i, i+2}, then we can rotate P ′ further to obtain more paths
of the same length. We will use rotations together with the expansion properties from
Lemma 10 and the necessary minimum degree condition to find a path on the same
vertex set as P0 with large rotation endpoint sets.

The next lemma shows that in any graph having the p-expander property and min-
imum degree 2, for any path P0 and its endpoint v1, after a small number of rotations
with fixed endpoint v1, we either create many other endpoints or extend the path. Its
proof has certain similarities to the proofs of Lemma 8 from [15] and of Claim 2.2
from [17].

Lemma 11. Let n be a sufficiently large integer and G be an n-vertex p-expander with
minimum degree δ(G) ≥ 2 and np ≥ lnn. Let P0 be a v1w-path in G. Denote by
B(v1) ⊂ V (P0) the set of all vertices v ∈ V for which there is a v1v-path on the vertex
set V (P0) which can be obtained from P0 by at most 3 lnn

ln(np) rotations with fixed endpoint
v1. Then B(v1) satisfies one of the following properties:

• there exists a vertex v ∈ B(v1) with a neighbor outside V (P0), or
• |B(v1)| ≥ n/3000.

Proof Assume that B(v1) does not have the first property (i.e., for every v ∈
B(v1) it holds that N(v) ⊆ V (P0)).

Let t0 be the smallest integer such that
( np

3000

)t0−1 ≥ 1
p ; note that t0 ≤ 2 lnn

ln(np) . Since
G is a p-expander, there is a corresponding vertex set D as in Definition 9.

At the first step, we find a neighbor u 6∈ D ∪N(D) of w that is not a neighbor of w
along P0. Its existence is guaranteed since w has at least two neighbors along P0, and
by the second p-expansion property, at most one of them can have a neighbor in D.
We rotate the initial path P0 with pivot u and call the resulting path P ′ = (v1, . . . , vq).
Notice that this way, vq is guaranteed not to belong to D.

We construct a sequence of sets S0, . . . , St0 ⊆ B(v1) \D ⊆ V (P0) \ {v1} of vertices,
such that for every 0 ≤ t ≤ t0 and every v ∈ St, v is the endpoint of a path which can
be obtained from P ′ by a sequence of t rotations with fixed endpoint v1, such that for
every 0 ≤ i < t, the non-v1-endpoint of the path after the ith rotation is contained in
Si. Moreover, |St| =

( np
3000

)t for every t ≤ t0 − 2, |St0−1| = 1
p , and |St0 | ≥ n

3000 .
We construct these sets by induction on t. For t = 0, one can choose S0 = {vq} and

all requirements are trivially satisfied.
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Let now t be an integer with 0 < t ≤ t0 − 1 and assume that the sets S0, . . . , St−1

with the appropriate properties have already been constructed. We will now construct
St. Let

T =

vi ∈ N(St−1) : vi−1, vi, vi+1 6∈
t−1⋃
j=0

Sj ∪D


be the set of potential pivots for the tth rotation, and notice that T ⊂ V (P0) due to our
assumption, since T ⊆ N(St−1) and St−1 ⊆ B(v1). Assume now that vi ∈ T , y ∈ St−1

and (vi, y) ∈ E(G). Then, by the induction hypothesis, a v1y-path Q can be obtained
from P ′ by t − 1 rotations such that after the jth rotation, the non-v1-endpoint is in
Sj for every 0 ≤ j ≤ t − 1. Each such rotation breaks an edge which is incident with
the new endpoint, obtained in that rotation. Since vi−1, vi, vi+1 are not endpoints after
any of these t− 1 rotations, both edges (vi−1, vi) and (vi, vi+1) of the original path P ′

must be unbroken and thus must be present in Q.
Hence, rotating Q with pivot vi will make either vi−1 or vi+1 an endpoint (which of

the two, depends on whether the unbroken segment vi−1vivi+1 is reversed or not after
the first t− 1 rotations). Assume without loss of generality that the endpoint is vi−1.
We add vi−1 to the set Ŝt of new endpoints and say that vi placed vi−1 in Ŝt. The only
other vertex that can place vi−1 in Ŝt is vi−2 (if it exists).

Observe now that if t < 0.1 lnn/ ln lnn, the distance between any vertex from St−1

and vq is at most 2t−2 < 0.2 lnn/ ln lnn by the way the sets were constructed. Hence,
between any two vertices from N(St−1)∪N(N(St−1)), there is a path of length at most
0.5 lnn/ ln lnn. Thus at most one vertex from D can be in N(St−1) ∪ N(N(St−1)).
On the other hand, it t ≥ 0.1 lnn/ ln lnn, then |D| ≤ n0.09 = o(|St−1|) = o(|N(St−1)|).
Thus, in both cases |D ∩ (N(St−1) ∪N(N(St−1)))| = o(|N(St−1)|).

Combining all this information together, we obtain

|Ŝt| ≥
1
2
|T |

≥ 1
2

(|N(St−1)| − 3(1 + |S1|+ . . .+ |St−1|+ |D ∩ (N(St−1) ∪N(N(St−1)))|))

≥
( np

3000

)t
.

Clearly we can delete arbitrary elements of Ŝt to obtain St of size
( np

3000

)t if t ≤ t0 − 2
and of size 1

p if t = t0 − 1. So the proof of the induction step is complete and we have
constructed the sets S0, . . . , St0−1.

To construct St0 we use the same technique as above, only the calculations are
slightly different.

|Ŝt0 | ≥
1
2
|T |

≥ 1
2

(|N(St0−1)| − 3(1 + |S1|+ . . .+ |St0−2|+ |St0−1|+ |D ∩ (N(St−1) ∪N(N(St−1)))|))

≥ n/3000.
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The set St0 := Ŝt0 is by construction a subset of B(v1), and the number of rotations
needed to make any of its vertices an endpoint of the current path is at most t0 + 1,
concluding the proof of the lemma. �

The proof of the following lemma relies on the final part of the proof of Theorem 1
from [25] and uses Lemma 11. It shows that under certain pseudorandom conditions
in a graph G for every almost 2-factor, after adding few random edges, there exists a
Hamilton cycle within a small Hamming distance from it a.a.s.

Lemma 12. Let G be a connected n-vertex p-expander with minimum degree 2 and S
be a set of vertices of G of size |S| = o(n) such that there exist at least n non-edges in
G not incident to S. Let F be an almost 2-factor of G with at most s∗ cycles. Choose
n non-edges e1, . . . , en of G i.a.r. under the condition that none of them is incident to
S and denote by G′ the (random) graph obtained from G by turning them into edges.
Then, if it is a.a.s. true that every graph G ⊆ Ĝ ⊆ G′ is a p-expander, then G′ a.a.s.
contains a Hamilton cycle H with Hamming distance at most 17s∗ lnn/ ln(np) from F .

Proof Fix an arbitrary component C ⊆ F . Since G is connected, there exists
an edge in G connecting a vertex v ∈ V (C) and y 6∈ V (C) - unless of course C is
already Hamiltonian. We denote by C ′ the component of y in F . Opening C up by
deleting an edge of C incident to v (no need to do so if C is just one isolated vertex),
we get a path P . We append the edge vy to P , go through it to C ′, and if C ′ is a
cycle, then we open it up by deleting an edge of C ′ incident to y to get a longer path P ′

and repeat the argument. If at some point there are no edges between the endpoints
of the current path P ′′ and other components from F , then we can fix one endpoint x
of P ′′ and rotate P ′′ using Lemma 11 to extend it outside or to obtain a set B(x) of
size at least |B(x)| ≥ n/3000 of potential other endpoints. For every vertex z ∈ B(x),
we can rotate the resulting path fixing z as one endpoint to obtain a set A(z) of size
at least |A(z)| ≥ n/3000 of potential other endpoints or to extend the path outside. If
the path still cannot be extended outside and we can still not close it to a cycle, we
have a set E′ of at least 10−8n2 non-edges of G not incident to S, so that turning any
of them into an edge would close the path to a cycle. We add pairs e1, e2, . . . to E(G),
until one of them falls inside E′. Notice that for every i ∈ [n], the pair ei falls into E′

with at least some constant positive probability. This means that considering events
“ei ∈ E′”, every event has probability Θ(1) regardless of the previous events. Notice
that in a successful round, the number of components gets reduced or a Hamilton
cycle is created, since the edge that appeared in E′ closed the path into a cycle or
extended the path directly. To reduce the number of components by one, we do at
most lnn/ ln(np) rotations by Lemma 11, therefore increasing the Hamming distance
from F by at most 4+12 lnn/ ln(np). Since it is enough to have s∗+n/ ln2 n successful
events to obtain a Hamilton cycle, the expected number of needed turns of non-edges
into edges is at most O(1) · (s∗+ n/ ln2 n) = o(n). Hence the n additional edges suffice
to create a Hamilton cycle H from F by Markov’s inequality a.a.s., replacing at most
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8 lnn/ ln(np) edges for every component of F . Thus, the Hamming distance between
F and H is at most 2 · 8 lnn

ln(np)(s∗ + n/ ln2 n) ≤ 17s∗ lnn/ ln(np). �

We are now ready to prove Theorem 1.
Proof Notice that only the lower bound is of interest for us. We expose G in

two rounds.
We choose a function p1 = p1(n) such that lnn+ln lnn+ω(1)

n ≤ p1 ≤ p − ω(1)
n , p1 ≤

1− 2 ln lnn/n, and p1 = (1− o(1))p. In the first round, we expose G1 ∼ G(n, p1). We
determine D := {v ∈ [n] : dG1(v) < np1/100}.

In the second round, we expose the binomial random graph G2 by including every
edge from Kn \G1 into E(G2) with probability p2 := p−p1

1−p1 . Since (1− p1)(p2) = 1− p,
we obtain a graph G := G1 ∪G2 ∼ G(n, p). We know by Lemma 10 that a.a.s. every
graph between G1 and G including them both is a p1-expander. Furthermore, notice
that the expected number of edges in G2 is

(
n
2

)
p2 ≥

(
n
2

)
(1 − p1) = ω(n), hence a.a.s.

at least n additional random edges appeared in the second round of expansion by
Markov’s inequality. Since these edges were chosen i.a.r., and G1 is a.a.s. connected
with minimum degree at least 2 (see e.g. [5]), the conditions of Lemma 12 are satisfied
for G1 and the first n edges exposed in the second round with S = ∅.

Now, we put all we know together:
• By Lemma 8 we obtain

∑s∗

s=1 f
′(G1, s) ≥ (np1/e)

n (1− o(1))n a.a.s.
• For every almost 2-factor F of G1 with at most s∗ cycles, there a.a.s. exists a

Hamilton cycle in G with Hamming distance at most k := 17s∗ lnn/ ln(np1) =
17n

ln(np1)
√

ln lnn
= o(n) from F by Lemma 12.

• On the other hand, for every Hamilton cycle H in G, to obtain an almost 2-
factor of G1 of distance at most k from H, we can first delete at most k edges of
H, thus obtaining a collection of at most k paths. These paths should then be
tailored into an almost 2-factor, and the choices here are for each of the at most
2k endpoints of the paths to be connected to one of its ∆(G1) neighbors in G1

or to stay isolated. Thus, there are at most
(
n
k

)
(∆(G1) + 1)2k almost 2-factors

of G with Hamming distance at most k from H.
• Hence, by double counting almost 2-factors of G with at most s∗ cycles, we

obtain

h(G) ≥
∑s∗

s=1 f
′(G′, s)(

n
k

)
(∆(G1) + 1)2k

≥ (np1/e)
n (1− o(1))n

2o(n)(4 ln(np1))2k
= (np/e)n (1− o(1))n

a.a.s. �

To strengthen the result of Cooper and Frieze [8], we now prove Theorem 2.
Proof The proof goes along the argument of Theorem 1, but now we expose

the graph in three rounds. We first expose G1 ∼ G(n, lnn/n) and fix the set D of
vertices of degree at most lnn/100. Notice that similarly to the argument in the proof
of Lemma 10, Claim 4.3 from [4] implies that |D| ≤ n0.09. In the second round of
exposure, in addition to G1 we expose those edges that are incident to D one by one,
until the minimum degree becomes two; the resulting graph is called G′. In the third
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round of exposure we consider the binomial random graph G2 by including every edge
of Kn \G1 not incident to D with probability p2 := ln lnn

2n .
Let us denote by G the graph obtained by stopping the random graph process at

the moment the minimum degree becomes two. Notice first that since in the random
graph process δ

(
G
(
n, lnn+0.5 ln lnn

n

))
= 1 a.a.s., we obtain G′ ∪ G2 ⊆ G a.a.s., where

by the union of two graphs with vertex sets [n] we denote the graph on the same
vertex set where the union is taken over the edge sets. Furthermore, observe that since
in the random graph process δ

(
G
(
n, lnn+2 ln lnn

n

))
≥ 2 a.a.s., we obtain G′ ∪ G2 ⊆

G
(
n, lnn+2 ln lnn

n

)
a.a.s. (The two statements above can be found e.g. in [5].) Finally,

G′ is connected a.a.s. because of the expansion properties and the fact that the edge
set between two linearly large sets is not empty (see e.g. [17]).

Since p2 = ω(1/n) and |D| = o(n) a.a.s., we obtain |E(G2)| = ω(n) a.a.s. Further-
more, these edges are random under the only conditions of being non-edges of G1 and
being not incident to D. Hence, the conditions of Lemma 12 are satisfied for G′ and
the first n edges exposed in the third round.

Thus, following the lines of the proof of Theorem 1, we obtain the desired estimate.
�

3. Concluding remarks

In this paper we have proven that for any value of the edge probability p = p(n), for
which the random graph GG(n, p) is a.a.s. Hamiltonian, the number of Hamilton cycles
in G is n!pn(1+o(1))n a.a.s., thus being asymptotically equal to the expected value – up
to smaller order exponential terms. Of course, it would be very nice to extend Janson’s
result [20] to smaller values of p and to understand more accurately the distribution
of the number of Hamilton cycles in relatively sparse random graphs. However, given
that the machinery used in [20] is rather involved, and the result (limiting distribution)
is somewhat surprising, this will not necessarily be an easy task.

Our bound on the number of Hamilton cycles in G(n, p) can be used to bound
the number of perfect matching similarly to [25]. Let m(G) denote the number of
perfect matchings in the graph G. Since every Hamilton cycle is a union of two perfect
matchings, we obtain h(G) ≤

(
m(G)

2

)
. Hence, for G ∼ G(n, p) the a.a.s. lower bound

on h(G) from Theorem 1 provides the a.a.s. lower bound m(G) ≥ (np/e)n/2(1−o(1))n.
Since the upper bound is easily obtained from the expected value by Markov’s inequality
similarly to the first paragraph of Section 2, we have m(G) = (np/e)n/2(1−o(1))n. The
corresponding hitting time statement is obtained by a straightforward modification of
the proof of Theorem 2: In the random graph process, the edge that makes the graph
connected a.a.s. creates (lnn/e)n/2(1− o(1))n perfect matchings.
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