
Longest cycles in sparse random digraphs

Michael Krivelevich∗ Eyal Lubetzky† Benny Sudakov‡

Abstract

Long paths and cycles in sparse random graphs and digraphs were studied intensively in the
1980’s. It was finally shown by Frieze in 1986 that the random graph G(n, p) with p = c/n has
a cycle on at all but at most (1 + ε)ce−cn vertices with high probability, where ε = ε(c) → 0 as
c → ∞. This estimate on the number of uncovered vertices is essentially tight due to vertices
of degree 1. However, for the random digraph D(n, p) no tight result was known and the best
estimate was a factor of c/2 away from the corresponding lower bound. In this work we close
this gap and show that the random digraph D(n, p) with p = c/n has a cycle containing all but
(2 + ε)e−cn vertices w.h.p., where ε = ε(c) → 0 as c → ∞. This is essentially tight since w.h.p.
such a random digraph contains (2e−c − o(1))n vertices with zero in-degree or out-degree.

1 Introduction

In this paper we consider long cycles in random directed graphs, aiming to obtain estimates analogous
to those derived for the undirected case. Formally, a random graph G(n, p) is a probability space of
all graphs with vertex set [n], where each pair of vertices 1 ≤ i < j ≤ n is an edge of G ∼ G(n, p)
independently and with probability p. The model of random directed graphs D(n, p) is defined as the
probability space of all directed graphs with vertex set [n] (without loops and without parallel edges,
but possibly with anti-parallel edges), where each ordered pair (i, j), with 1 ≤ i 6= j ≤ n, is a directed
edge of D ∼ D(n, p) independently and with probability p.

The existence of long paths and cycles in sparse random graphs was a subject of very intensive
study in the eighties. Ajtai, Komlós and Szemerédi proved in [1] that with high probability1 in the
random graph G(n, c/n) there is a path of length α(c)n, where α(c) > 0 for c > 1 and limc→∞ α(c) = 1;
a similar but somewhat weaker result was proved independently by Fernandez de la Vega [7]. Then the
attention has shifted to estimating the asymptotic behavior of the number of vertices uncovered by a
longest path/cycle. Improving upon prior results of Bollobás [5] and Bollobás, Fenner and Frieze [6],
Frieze has finally settled this problem: he showed in [9] that w.h.p. G ∼ G(n, c/n) contains a cycle
covering all but at most (1 + ε)ce−cn vertices, where limc→∞ ε(c) = 0. This estimate is easily seen to
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be asymptotically tight as G(n, c/n) w.h.p. contains (1 + o(1))ce−cn vertices of degree at most 1, all
of which have to be missed by a cycle.

For random directed graphs the situation appears to be more complicated. This is to be expected
as the research experience of many years has shown that problems related to long paths and cycles in
directed (random) graphs are usually much more challenging than their undirected counterparts. In
the aforementioned paper [9] Frieze further established that w.h.p. D(n, p) contains a cycle covering
all but at most (1 + ε)ce−cn vertices, where limc→∞ ε(c) = 0. This result was derived by appealing
to a general theorem of McDiarmid [11], coupling between events in G(n, p) and in D(n, p). Unlike
in the undirected case, the above estimate on the number of vertices uncovered by a longest cycle is
no longer asymptotically tight — the unavoidable loss in the directed case are vertices of in-degree
or out-degree zero, whose number is easily seen to be asymptotic to 2e−cn.

In this paper we close the gap left by Frieze’s work and obtain an asymptotically optimal result
about longest cycles in sparse random digraphs.

Theorem 1. Let D ∼ D(n, p) be a random digraph with edge probability p = c/n for fixed c > 1. Then
w.h.p. D contains a directed cycle that covers all but at most (2+ε)e−c n vertices, where ε = ε(c)→ 0
as c→∞, and this is asymptotically tight as w.h.p. (2e−c − o(1))n vertices of D have zero in-degree
or out-degree.

Our proof produces an exponential estimate on ε = ε(c), namely ε(c) ≤ poly(c)e−c.

The proof of the theorem is given in the next section. In certain similarity to Frieze’s argument
in [9] we proceed by first filtering out vertices of zero in-degree or out-degree as well as some vertices
close to them. The so obtained digraph typically retains all but a negligible fraction of the vertices
of positive in-degrees and out-degrees; it is then upgraded to another random digraph, containing an
almost spanning cycle, by sprinkling a few more random directed edges.

Before we embark into the technicalities of the proof, we provide its outline, aiming to help the
reader to parse the proof’s details.

The proof has two components/stages: filtering and factoring. The filtering stage aims to filter out
vertices of in- or out-degree zero and possibly some other vertices and to produce an induced subgraph
D0 of D ∼ D(n, p), containing most of the vertices of positive degree; moreover, D0 is constructed in
a way making it rather straightforward to show that it typically contains a factor of directed cycles.
In order to produce D0, we define the following iterative process. Let Y = {v : dD(v) = 0}, and
let Z = {v : dD(v) ≤ 3}, where dD(v) = min{d+

D(v), d−D(v)}. We start with X0 = ∅, and then
for k ≥ 1 we obtain Xk by including vertices not in

⋃
i<kXi, lying on a short path (of length at

most 4) connecting two vertices x, y ∈
⋃
i<kXi ∪ Z. We repeat this process till it stabilizes and set

X =
⋃
kXk. Finally, the subgraph D0 is defined by D0 = D[V − (X ∪ Y )]. Observe that for a

given vertex v the probability that dD(v) is at most some absolute constant (independent of c) is
at most poly(c)e−c. Thus, for a given v the probability of having two vertices of small degree at a
constant distance from v is poly(c)e−2c. Hence, we can expect to have eventually |X| ≤ poly(c)e−2cn,
and this is indeed what we prove. To facilitate the proof, we first get rid of short cycles (of length
O((1/c) log n)) in the underlying undirected graph G of D — they typically touch very few vertices.
Analyzing the filtering process in a large girth graph is easier — for every v ∈ Xk there should be an
evidence for its association with Xk in the form of a tree Tv rooted at v, of prescribed order, depth
and with ` leaves, where k ≤ ` ≤ 2k. This is proven in Lemma 2.6. Using this lemma we can bound
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the size of the set Xk (or rather of a set X ′k closely related to Xk and defined through an analogous
filtering process) by the number of labeled rooted trees meeting these requirements. This is done by
first truncating unusually deep trees (Lemma 2.7) and then by bounding from above the expected
number of trees of bounded depth. The final argument invokes martingales to show the concentration
of the corresponding random variable around its mean and to bound its upper tail. All this is done
in Theorem 2.2.

The factoring stage takes the induced subgraph D0, the output of the filtering stage, as an input.
By Theorem 2.2 we know that with high probability D0 contains all but a suitably small part of the
vertices of D of positive degree. Moreover, one can prove (Lemma 2.3) that all vertices in D0 have
positive degree, and in addition every two vertices u, v with dD0(u), dD0(v) ≤ 2 are at undirected
distance at least 5. We then form an auxiliary bipartite graph H0 with parts L,R, corresponding to
two copies of the vertices of D0, where a directed edge (x, y) ∈ D0 becomes an edge xLyR ∈ E(H0). It
is quite easy to see that the existence of a perfect matching in H0 implies the existence of a spanning
subgraph of D0 composed of directed cycles. The probable existence of a perfect matching in H0 is
shown in Lemma 2.4 using Hall’s condition and standard density/expansion arguments for random
(di)graphs. The next step is to trade the factor of directed cycles in D0 for one nearly spanning cycle
using extra random edges, about O(n/

√
log n) of them – a negligible quantity easily absorbed into the

original random digraph. This is done using rather standard random graph arguments and extremal
statements guaranteeing the existence of a long cycle in a highly connected digraph (see Lemma 2.5).
The factoring stage is treated in Theorem 2.1.

The next section contains the full details of the proof of the main result, and is followed by
concluding remarks in Section 3.

2 Proof of main result

2.1 Filtering and factoring

If D is a directed graph we use the notation dD(v) to denote min{d+
D(v), d−D(v)}, where as usual

d+
D(v), d−D(v) stand for the out-degree and the in-degree of a vertex v ∈ V (D) in a digraph D.

Similarly, we let ND(v) = N+
D (v)∪N−D (v) and in both cases may omit the subscript D when there is

no danger of confusion.

For an undirected graph G and a special subset of its vertices Z we define a filtering process which
produces a sequence {Xk} of disjoint subsets of the vertices as follows:

X0 = ∅ ,

Xk =

v /∈
⋃
j<k

Xj :
∃ x, y ∈

(⋃
j<kXj

)
∪ Z such that x 6= y and

v is on a path of length l ≤ 4 between x, y, i.e.
v ∈ {x = u0, u1, . . . , ul = y} with uiui+1 ∈ E(G).

 for k ≥ 1 ,

X =
⋃
k

Xk . (2.1)

The first ingredient in the proof is showing that w.h.p., once we filter the set X from the graph along
with the vertices with zero in/out degree, the remaining vertices may be factored into large cycles
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and thereafter combined into a single long cycle while losing only a negligible number of vertices in
the process. This is shown in the next theorem whose proof appears in Section 2.2.

Theorem 2.1. Let D ∼ D(n, p) where p = c
n for c > 1 fixed and let G be the undirected underlying

graph of D. Let Y = {v : dD(v) = 0}, Z = {v : dD(v) ≤ 3}, and set X(G,Z) as in (2.1). Let
D0 be the induced subgraph of D on V (D) \ (X ∪ Y ) and let D′0 be its union with a random digraph
D(|D0|, (n

√
log n)−1). If |D0| > n/5 then w.h.p. D′0 contains a directed cycle on |D0| − o(n) vertices.

The following theorem, which we prove in Section 2.3, estimates the size of the filtered subset X
w.r.t. vertices of low in/out degree in D.

Theorem 2.2. Let D ∼ D(n, p) be a random digraph with edge probability p = c/n for fixed c > 1.
Let Z = {v : dD(v) ≤ 3} and define X = X(G,Z) as in (2.1) where G is the undirected underlying
graph of D. If c is sufficiently large then with high probability |X| ≤ (2c)10e−2cn.

From the above two theorems we can immediately derive our main result.

Proof of Theorem 1. Let Y = {v : dD(v) = 0}. Note that w.h.p. |Y | = (2e−c + o(1))n since
d+(v), d−(v) ∼ Bin(n − 1, c/n). For a sufficiently large c we obtain from Theorem 2.2 that w.h.p.
|X ∪ Y | ≤ (2e−c + (2c)10e−2c + o(1))n. In particular, for large c and n we have that w.h.p. D0, the
induced subgraph on V (D) \ (X ∪ Y ), has at least n/5 vertices (with room to spare) and we deduce
from Theorem 2.1 that w.h.p. D(n, p′) has a cycle missing at most |X ∪ Y | + o(n) vertices, where
p′ = (c/n) + (n

√
log n)−1 = (c + o(1))/n. This establishes the required result for a choice of, say,

ε(c) = 2(2c)10e−2c, which makes up for |X| with an extra factor of 2 that readily absorbs the additive
o(n)-term in |X ∪ Y | as well as the o(1)-term in p′. �

2.2 Long cycles in the filtered graph

To prove Theorem 2.1 we first need to establish several properties of the graph D0 stemming from
the definition of X and the geometry of the random digraph D.

Lemma 2.3. Let D0 be the induced subgraph on V (D)\(X∪Y ) and let G0 be its undirected underlying
graph. Then

(i) Every u ∈ D0 has dD0(u) ≥ 1.
(ii) Every u, v ∈ D0 with dD0(u), dD0(v) ≤ 2 have distG0(u, v) ≥ 5.

Proof. To prove Part (i) assume that some u ∈ V (D0) has dD0(u) = 0 and assume without loss of
generality that d+

D0
(u) = 0.

First consider the case where d+
D(u) ≥ 2. Observe that in this case there exist distinct x, y /∈ D0

such that (u, x), (u, y) ∈ E(D). Thus u is on a path of length 2 between x, y ∈ X∪Y ⊂ X∪Z, implying
that u ∈ X by definition and contradicting the fact that u ∈ V (D0). The case where d+

D(u) = 1 is
treated similarly: Here there is some vertex v /∈ V (D0) such that (u, v) ∈ E(D), v ∈ X ∪ Y ⊂ X ∪Z,
and furthermore u ∈ Z by definition. Hence, u is on a path of length 1 between two distinct vertices
u 6= v in X ∪ Z and must thus also belong to X, in contradiction to the fact that u ∈ V (D0).
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To prove Part (ii) let u, v be vertices satisfying dD0(u) ≤ 2 and dD0(v) ≤ 2. If dD(u) ≥ 4 then it
necessarily lost at least 2 neighboring (in/out) vertices in X ∪ Y and hence must also belong to X.
We thus conclude that dD(u) ≤ 3 and similarly that dD(v) ≤ 3.

Let G be the underlying undirected graph of D. Recalling that u, v ∈ Z by the definition of Z,
there cannot be a path of length at most 4 between u, v in G, as such a path would imply that u, v
must both belong to X. In particular, the induced subgraph G0 ⊂ G also satisfies distG0(u, v) ≥ 5,
completing the proof. �

We now define an auxiliary bipartite graph H0. Its parts L and R are two copies of V (D0):
L = {xL : x ∈ V (D0)}, R = {yR : y ∈ V (D0)}, and for each directed edge (x, y) ∈ E(D0) we put an
undirected edge xLyR in H0.

Lemma 2.4. Let H0 be as defined above. Then w.h.p. H0 has a perfect matching.

Proof. Recall that by Part (i) of Lemma 2.3 there are no isolated vertices in H0 (neither in L nor
in R). Furthermore, by Part (ii) of that lemma we know that if x, y ∈ L have degree 1 in H0 then
N(x)∩N(y) = ∅ (otherwise D0 would have two vertices with out-degree 1 and an undirected distance
of at most 2 between them) and similarly for x, y ∈ R with degree 1 in H0. It follows that the set
M0 of edges of H0 touching vertices of degree 1 in H0 forms a matching in H0. Let H1 denote the
bipartite graph obtained by deleting the vertices of M0 from H0, i.e. H1 = H0 \V (M0). We now claim
that H1 has minimum degree at least 2. To see this, suppose that dH1(u) ≤ 1 and argue as follows.

First, we must have dH0(u) > 1 otherwise u ∈ V (M0) and hence it does not belong to H1. If
dH0(u) = 2 then there must be some w ∈ V (M0) such that uw ∈ E(H0). In particular, either w has
degree 1 in H0 or it is a neighbor of such a vertex, and either way we have that there exists some
degree-1 vertex v ∈ H0 whose distance from u is at most 2. The vertices corresponding to u and v in
D0 thus satisfy dD0(u) ≤ 2 and dD0(v) ≤ 1 while the undirected distance between them is at most 2,
contradicting Part (ii) of Lemma 2.3.

It thus remains to treat the case dH0(u) ≥ 3. In this case u has two neighbors w1, w2 ∈ V (M0),
giving rise to v1, v2 ∈ V (M0) whose distance from u is at most 2 and with dH0(v1) = dH0(v2) = 1.
These correspond to two vertices v1, v2 in D0 satisfying d(v1), d(v2) ≤ 1 while the undirected distance
between them is at most 4, again contradicting Part (ii) of Lemma 2.3.

We have thus obtained that H1 has minimum degree of 2, and will now derive from this fact the
existence of a perfect matching on H1. It suffices to show that w.h.p. every set S ⊂ V (H1)∩L of size at
most n/2 has |N(S)| ≥ |S|, as the same conclusion will carry by symmetry to all sets S ⊂ V (H1)∩R
of size at most n/2, which would in turn imply Hall’s condition for sets S ⊂ V (H1) ∩L of size larger
than n/2.

Let S be a subset of V (H1) ∩ L of size s ≤ n/5 let T = N(S) in H1 and assume that T has size
t < s. Identifying these vertices with those of the original digraph D we have that e(S, T ) ≥ 2s by
the definition of H1 and the fact that it has minimum degree 2.

Moreover, observe that every u ∈ S has at most 2 neighbors in V (D)\T . Indeed, since T includes
all the neighbors of S corresponding to vertices of H1, any other neighbor v ∈ N+

D (u)\T must belong
either to X ∪ Y or to the vertices corresponding to V (M0), and these satisfy:
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1. The vertex u cannot have two distinct neighbors in X ∪ Y otherwise it would belong to X by
definition and hence would be excluded from D0.

2. The vertex u cannot have two distinct neighbors in V (M0) otherwise there would exist some
x, y with dD0(x) = dD0(y) = 1 and distG0(x, y) ≤ 4, contradicting Part (ii) of Lemma 2.3.

Combining these arguments we conclude that |N+
D (u) \ T | ≤ 2, and note that for a given vertex u

and subset T the probability of this event is at most

P(Bin(n− t, p) ≤ 2) ≤ 3
(
n− t

2

)
p2(1− p)n−t−2 ≤ 2c2e−

4
5
np ,

where the last inequality used the fact t < s ≤ n/5 and holds for any sufficiently large n as the
(1 +O(p))-factor was absorbed into the leading constant. Further note that the event that |N+

D (u) \
T | ≤ 2 depends only on the edges from u to T and therefore for distinct vertices these events are
independent.

At this point, the following straightforward first moment argument shows that w.h.p. D cannot
contain sets S, T of the above sizes where S has at least 2|S| edges going to T and every u ∈ S has
at most 2 edges going elsewhere. Indeed, the probability that such sets exist in D for any given such
s, t is at most(

n

s

)(
n

t

)(
st

2s

)
p2s
(

2c2e−
4
5
np
)s
≤
[
en

s

(en
t

)t/s(et
2

)2 c2

n2
2c2e−4pn/5

]s
≤
[
(e4/2)c4e−4c/5(t/n)1−

t
s

]s
≤
[
(e4/2)c4e−4c/5

]s s− 1
n

=: ∆(s, t) ,

where we used the inequality
(
a
b

)
≤ (ea/b)b and the fact that t < s ≤ n/5. For large enough c we

have c4e−4c/5 < 2e−5 and so
∆(s, t) < e−s(s− 1)/n ,

and summing over the possible values of s, t now gives that∑
t<s≤n/5

∆(s, t) =
∑

t<s≤2 logn

∆(s, t) +
∑

2 logn≤s≤n/5
t<s

∆(s, t)

≤ (2 log n)2
2 log n
n

+ (n/5)2e−10 logn = o(1) .

It remains to treat sets S of size n/5 < s ≤ n/2. Verifying Hall’s condition for such sets follows
immediately form that the fact that w.h.p. every two sets S, T of size n/5 in D have an edge from
S, T , as the following calculation shows:(

n

n/5

)2

(1− p)(n/5)2 ≤
[
(5e)2e−c/5

]n/5
= o(1) ,

where the last inequality holds for a sufficiently large c. �

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. The edges of the matching provided w.h.p. by Lemma 2.4 correspond to a
spanning subgraph of D0 comprised of disjoint directed cycles. Our first step is to delete from D0 all
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cycles of length less than 1
2 logc n. Note that the number of vertices participating in such cycles in

the original digraph D is w.h.p. at most∑
l< 1

2
logc n

nlpl ≤ (logc n)
∑

l< 1
2

logc n

cl = O(n1/2 log n) = o(n) .

The remaining disjoint directed cycles, denoted by C1, . . . , Cm, thus contain |D0|−o(n) vertices. Note
also that the total number of cycles m satisfies: m ≤ n/(1

2 logc n) = O(n/ log n).

Let P = {Pi}ti=1 be a maximum collection of vertex disjoint directed paths, each of length precisely
dlog0.9 ne, formed from the edges of {Ci}mi=1. Since the number of vertices uncovered by P in each
Ci is at most blog0.9 nc it follows that P covers all but at most m log0.9 n = O(n/ log0.1 n) vertices of
D0. Furthermore, recalling that n/5 ≤ |D0| ≤ n, this implies that

(1
5 − o(1))n/ log0.9 n ≤ t ≤ n/ log0.9 n . (2.2)

For each path Pj ∈ P define its prefix Aj and suffix Bj to be its first L = blog0.8 nc vertices and
last L vertices, respectively. Consider now the digraph D1 = D(|D0|, (n

√
log n)−1). We will use the

edges of D1 to weave most of the vertices covered by P into a long directed cycle, using the edges
of the paths Pj as a backbone. Define an auxiliary digraph H where the vertex set [t] corresponds
to the paths P1, . . . , Pt and (i, j) ∈ E(H) iff D1 contains an edge from Bi to Aj . Notice that if
H contains a directed cycle C = (i1, . . . , il) then D0 ∪ D1 contains a directed cycle of length at
least l(log0.9 n− 2 log0.8 n), obtained as follows: Start at the last vertex of Ai1 and proceed with the
vertices/edges along Pi1 ; use an edge from Bi1 to Ai2 to jump to Pi2 , then traverse the vertices/edges
along Pi2 till an edge from Bi2 to Ai3 and so on; finally use an edge from Bil to Ai1 and possibly
some edges of Ai1 to close the cycle.

The digraph H is a random digraph on t = Θ(n/ log0.9 n) vertices with edge probability ρ that
satisfies 1− ρ = (1− (n

√
log n)−1)L

2
, implying that ρ = (1 + o(1)) log1.1 n

n . We thus need to prove that
such a random digraph contains w.h.p. an almost spanning cycle. This is an established fact, and
here we derive it from the following lemma of [3], whose short proof is included for completeness.

Lemma 2.5 ([3]). Let D = (V,E) be a directed graph on t vertices in which for every ordered pair
A,B of disjoint vertex subsets A,B ⊂ V of size |A| = |B| = k there is an edge from A to B. Then D

contains a path of length at least t− 2k and a cycle of length at least t− 4k.

Proof. Fix an arbitrary order σ on the vertices of D and run the DFS (Depth First Search) on D,
guided by σ. The DFS maintains three sets of vertices: Let S be the set of vertices which we have
completed exploring, T be the set of unvisited vertices, and U = V (G)− (S ∪ T ), where the vertices
of U are kept in a stack (a last in, first out data structure). The DFS starts with S = U = ∅ and
T = V (D), and at each stage moves a vertex from T to U (an unvisited vertex with an incoming
edge from the top of the stack U) or from U to S until eventually all vertices are in S. As such, at
some point in the course of the algorithm we must have |S| = |T |; consider that point, and observe
crucially that all the vertices in U form a directed path, and that there are no edges from S to T .
We conclude that |S| = |T | ≤ k − 1, and therefore |U | ≥ t− 2k + 2, so there is a directed path with
t− 2k+ 1 edges in D, as required. To get a directed cycle of the desired length, take a path as above
and use a directed edge from its last k vertices to its first k vertices to close a cycle. �
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In order to apply the above lemma, take k = bn/ log nc while recalling that H ∼ D(t, ρ) with t

satisfying (2.2) and ρ = (1 + o(1)) log1.1 n
n . As t ≤ n/ log0.9 n, the probability that H has two disjoint

vertex sets A,B of cardinality k each with no edges from A to B is at most(
t

k

)
(1− ρ)k

2 ≤
[
(et/k) e−ρk

]k
≤
[
(e+ o(1))

(
log n

)0.1 · e−(1−o(1)) log0.1 n
]k

= o(1) ,

thus w.h.p. H satisfies the conditions of Lemma 2.5 and in turn it contains w.h.p. a cycle of length
at least t− 4k = (1− o(1))t. As explained above, it follows that w.h.p. the digraph D0 ∪D1 contains
a directed cycle covering all but O(k log0.9 n) +O(n/ log0.1 n) = o(n) vertices, as required. �

2.3 Controlling the effect of the filtering process

Proof of Theorem 2.2. An important element in the proof would be to analyze the set X with
respect to a subgraph of D ∼ D(n, p) with a reasonably large undirected girth. To this end we need
the following lemma.

Lemma 2.6. Let G be an undirected graph with girth g and let Z be a subset of its vertices. Define
X(G,Z) as in (2.1). For every 1 ≤ k ≤ g/8 and v ∈ Xk there is a tree Tv ⊂ G rooted at v whose
leaves are in Z and interior vertices are in

⋃
j<kXj. Moreover, Tv has at most 5(|Tv∩Z|−1) vertices,

at most 4k levels (including the root) and its number of leaves ` satisfies k < ` ≤ 2k.

Proof. We proceed by induction on k. For the induction base recall that if v ∈ X1 then there are
2 vertices x, y ∈ Z such that v is on a path of length at most 4 between x, y in G. Treat this path
as a tree Tv rooted at v, and notice that it has 2 leaves, at most 4 levels including the root (as
dist(v, x),dist(v, y) ≤ 3) and the induced subgraph on it in G is a tree by the girth assumption on
G. Furthermore, Tv has at most 5 ≤ 5(|Tv ∩ Z| − 1) vertices since |Tv ∩ Z| ≥ 2, thus satisfying the
statement of the lemma.

Next, let k > 1 and let v ∈ Xk. Let x, y ∈ Z ∪
⋃
j<kXj be the endpoints of a shortest path P

containing v (by definition (2.1) the path P has length at most 4). Suppose first that one of these
vertices belongs to Z, i.e. without loss of generality x ∈ Z whereas y ∈ Xk−1 (otherwise v would have
belonged to some Xj with j < k). Define the tree Tv as a path Py of length distG(v, y) from the root
v to the sub-tree Ty, provided by the induction, together with another path Px of length distG(v, x)
from v to x. On one hand, the paths Px, Py are disjoint by definition, and furthermore, excluding
their endpoints, their vertices do not belong to Z ∪

⋃
j<kXj by the minimality of P and in particular

do not belong to Ty. On the other hand, if the path Px does intersect Ty, which was guaranteed to
have at most 4(k − 1) levels by induction, then together with Py they complete a cycle of length at
most 4(k− 1) + 4 < 4k ≤ g/2 in G contradicting its girth assumption. We conclude that Tv is indeed
a tree, with at most 4(k− 1) + 4 = 4k levels including the root. Finally, |Tv ∩Z| = |Ty ∩Z|+ 1, hence
the induction hypothesis and the fact that Tv adds at most 4 vertices to Ty together imply that

|Tv| ≤ |Ty|+ 4 ≤ 5(|Ty ∩ Z| − 1) + 4 < 5(|Tv ∩ Z| − 1) .

It remains to treat the case where x ∈ Xj for some j < k while y ∈ Xk−1. As before, if Tx ∩ Ty 6= ∅
then together with the path P we obtain a cycle of length at most 8(k − 1) + 4 < 8k ≤ g in G,
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contradicting the girth assumption. Otherwise, |Tv ∩ Z| = |Tx ∩ Z|+ |Ty ∩ Z| and so our hypothesis
on Tx, Ty gives that

|Tv| ≤ |Tx|+ |Ty|+ 3 ≤ 5(|Tx ∩ Z| − 1) + 5(|Ty ∩ Z| − 1) + 3 < 5(|Tv ∩ Z| − 1) .

Noting that the number of leaves `(Tv) was either `(Ty) + 1 or `(Tx) + `(Ty) immediately implies that
k + 1 ≤ `(Tv) ≤ 2k and completes the proof of the lemma. �

Let G denote the undirected underlying graph of D ∼ D(n, p), and define C ⊂ V (G) to be
comprised of all vertices that belong to cycles of length at most

R = (20/c) log n

in G. Since each edge appears in G with probability at most 2p independently of other edges, the
expected number of cycles of length r in G is at most nr(2p)r/r and thus

E|C| ≤
∑
r<R

(2c)r ≤ (2c)R

c− 1
< n1/5 ,

where we used the fact that c/ log(2c) > 100 for sufficiently large c. In particular, |C| < n1/4 w.h.p.

Define Z ′ = C ∪ Z and let D′ be the graph obtained by deleting all inner edges between vertices
of C (i.e. all edges of the induced subgraph on C). Let G′ denote the undirected underlying graph of
D′ and for all k let X ′k denote the set Xk(G′, Z ′) defined via (2.1). A key observation is that

X ⊂ X ′ ∪ C . (2.3)

To see this, recall that X0 = ∅ and assume by induction that⋃
j<kXj ⊂

((⋃
j<kX

′
j

)
∪ C
)

for some k ≥ 1 .

Let v ∈ Xk\C. Let P be a shortest path containing v inG with endpoints x, y ∈
(⋃

j<kXj

)
∪Z. By the

definition of Xk and the minimality of P we know that P has 1 ≤ l ≤ 4 edges and none of its interior
vertices belongs to

(⋃
j<kXj

)
∪Z. Consider the two sub-paths from v to x, y (one of which is possibly

empty) and let x′, y′ be the first vertices on these respective paths that belong to
(⋃

j<kXj

)
∪C ∪Z.

Since x, y clearly belong to this set, this defines a sub-path P ′ of length 1 ≤ l′ ≤ l ≤ 4 that contains
v in G. Crucially, since v /∈ C the path P ′ has no interior vertices in C and therefore all of its edges
belong to G′. Finally, the induction hypothesis ensures that x′, y′ ∈

(⋃
j<kX

′
j

)
∪Z ′ and we conclude

that v ∈
(⋃

j≤kX
′
j

)
∪ Z ′, completing the induction.

Our next goal is to provide an upper bound on X ′ which is linear in n (with a suitably small
coefficient), absorbing the negligible contribution to it from vertices in C. Observe that by definition
the girth of G′ is larger than R = (20/c) log n and set

K = b(2/c) log nc . (2.4)

Invoking Lemma 2.6 w.r.t. G′, for each k ≤ K we can bound |X ′k| from above by |T ′k | where

T ′k =

{
T ⊂ G′ :

labeled rooted tree with ` leaves, k < ` ≤ 2k, all belonging to Z ′,
a total of t vertices for t ≤ 5(`− 1) and at most 4k levels.

}
. (2.5)

In particular, we will be able to assert that X ′K = ∅ by showing that T ′K is empty, as the next lemma
establishes.
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Lemma 2.7. Set K as in (2.4). With high probability X ′K = ∅.

Proof. In what follows let L(T ) denote the set of leaves of a tree T and recall that if T ∈ T ′k then
L(T ) ⊂ Z ′ = C ∪ Z by definition.

Let T ∗k be the set of all trees in T ′k where at least ` − 1 of the leaves belong to Z. We have
(
n
t

)
choices for the vertices of T ∈ T ∗k on t vertices, and the well-known Cayley formula asserts that the
number of labeled rooted trees on t vertices is tt−1. The probability that a given labeled tree on t

vertices is in G (an upper bound on the probability that it belongs to G′ ⊂ G) is exactly (2p)t−1.
Finally, if u ∈ L(T ) ∩ Z then by definition dG(u) ≤ 3 and in particular dG\T (u) ≤ 3. Crucially, the
events {dG\T (u) ≤ 3} for u ∈ L(T ) are mutually independent as well as independent of all the interior
edges of T (accounted for in the probability that T ⊂ G). Altogether, for all k ≤ K,

E|T ∗k | ≤
2k∑

`=k+1

∑
t≤5(`−1)

(
n

t

)
tt−1(2p)t−1`

(
2P
(

Bin(n− t, p) ≤ 3
))`−1

.

≤
2k∑

`=k+1

∑
t≤5(`−1)

e (2ec)t−1 (2P
(

Bin(n− t, p) ≤ 3
))`−1

n , (2.6)

where in the last inequality we used the facts that
(
n
t

)
≤ (en/t)t and t > `. If c is sufficiently large

then n − t = (1 − o(1))n as t < 5 · 2K = o(n) and in particular P
(

Bin(n − t, p) ≤ 3
)
≤ 1

2c
3e−c.

Plugging this in (2.6) gives that for sufficiently large n,

E|T ∗k | ≤
2k∑

`=k+1

∑
t≤5(`−1)

(2ec)t
(
c3e−c

)`−1
n

≤
2k∑

`=k+1

(
(2e)5c8e−c

)`−1
n ≤ ne−

3
4
ck , (2.7)

where the last inequality holds for large enough c and n. Substituting k = K = b(2/c) log nc now
gives

E|T ∗K | ≤ ne−
3
4
cK = O(n−1/2) = o(1) ,

hence w.h.p. T ∗K = ∅.
Now consider T ∈ T ′K \T ∗K . Here there exist distinct ui, uj ∈ L(T )∩C. As T has at most 4K levels

and connects ui, uj in G′ (where the inner edges between the vertices of C are absent) this implies
the existence of a subgraph F ⊂ G with m vertices and at least m+ 1 edges such that

m ≤ 2R+ 8K + 2 ≤ (60/c) log n

(accounting for ui and uj , a path of length at most 8K between them and up to 2 cycles in C, with
the last inequality holding for large enough c). When c is sufficiently large, the probability that such
a graph F belongs to G is at most(

n

m

)( (
m
2

)
m+ 1

)
(2p)m+1 ≤

(en
m

)m (em
2

)m+1
(2c/n)m+1 ≤ m

n

(
e2c
)m+1 = O(1/

√
n) = o(1) (2.8)

implying that T ′K \ T ∗K , and hence also T ′K , is w.h.p. empty. By (2.5) and the remark following that
definition it now follows that X ′K = ∅ w.h.p., as required. �
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It remains to estimate | ∪k<K X ′k|. To this end, let B(C, R/2) be the set of all vertices whose
undirected distance from C in G is less than R/2 = (10/c) log n. Consider some v ∈ X ′k for some
k ≤ K, let Tv be the corresponding tree provided by Lemma 2.6 and suppose first that some leaf u in
Tv belongs to C (recall that every leaf of Tv is in C ∪ Z by (2.5)). Since by definition Tv has at most
4k ≤ 4K ≤ (8/c) log n levels it follows that Tv ⊂ B(C, R/2) and in particular v ∈ B(C, R/2). Due to
this argument, if we let Tk denote the set of rooted trees in T ′k where all leaves belong to Z and let
Yk denote the number of vertices serving as roots of such trees, i.e.

Tk =

{
T ⊂ G′ :

labeled rooted tree with ` leaves, k < ` ≤ 2k, all belonging to Z,
a total of t vertices for t ≤ 5(`− 1) and at most 4k levels.

}
Yk = #

{
v ∈ V (G) : v is the root of T for some T ∈ Tk

}
(notice that clearly Yk ≤ |Tk| for any k), then

| ∪k<K X ′k| ≤ |B(C, R/2)|+
∑
k<K

Yk .

To estimate the size of B(C, R/2) observe that each vertex v in this set corresponds to a graph on
m < 3R/2 vertices and at least m edges. We can therefore repeat the calculation in (2.8) to get that

E|B(C, R/2)| ≤
∑

m<3R/2

(
n

m

)((m
2

)
m

)
(2p)m ≤

∑
m<3R/2

(
e2c
)m

<
√
n ,

where the last inequality is valid for large c. In particular, |B(C, R/2)| < n3/4 w.h.p. and it remains
to estimate

∑
k<K Yk.

Consider |T1|, counting rooted labeled trees in G with 2 leaves (i.e. paths with a distinguished
vertex) and at most 5 vertices and where both leaves are in Z. Conditioned on the existence of a
given labeled path P in G, the probability that its endpoints are in Z is less than the probability that
each endpoint has an at most 3 in-neighbors or at most 3 out-neighbors in D \ P . Altogether,

EY1 ≤ E|T1| ≤
∑

2≤t≤5

tnt(2p)t−1
(
2P
(

Bin(n− t, p) ≤ 3
))2

≤ 4 · 5(2c)4
(
2P
(

Bin(n− 5, p) ≤ 3
))2

n ≤ 20(2c)4
(
c3e−c

)2
n < 600 c10e−2cn ,

where the last inequality holds for sufficiently large n.

Next examine |Tk| for 2 ≤ k < K, which counts trees with at most 4k levels, ` ∈ {k + 1, . . . , 2k}
leaves and a total of t ≤ 5(` − 1) vertices, where all leaves are in Z. The calculation in (2.6),(2.7),
with the single change that now all leaves (rather than `− 1) belong to Z, yields

EYk ≤ E|Tk| ≤
2k∑

`=k+1

(
(2e)5c8e−c

)`
n ≤ e−

3
4
c(k+1)n , (2.9)

and combining the above inequalities we deduce that for large enough c and n we have∑
k<K

EYk ≤ 1000 c10e−2cn . (2.10)
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To assess the deviation of the Yk’s from their mean, set K0 = blog log nc and observe that∑
K0≤k<K

EYk ≤ 2e−
3
4
cK0n < n/ log2 n ,

with the last inequality easily holding for c large. Applying Markov’s inequality we deduce that

P
( ∑
K0≤k<K

Yk ≥ n/ log n
)
≤ 1/ log n = o(1) . (2.11)

It remains to estimate the Yk’s for k < K0. To this end, define Y ′k to be the number of roots of trees
T ∈ Tk such that every vertex in T has degree less than log2 n in G:

Y ′k = #
{
v ∈ V (G) : v is the root of T for some T ∈ Tk and d(u) < log2 n for all u ∈ T

}
.

Recall that the underlying graph G is obtained from D by erasing its edge directions. Therefore, G
itself is a random undirected graph G(n, p′) with edge probability p′ = 1− (1− p)2 = (1 + o(1))2p. As
we will formally state later, G ∼ G(n, p′) has maximum degree less than log2 n except with extremely
low (super-polynomial) probability, and so Yk = Y ′k w.h.p. We will show that Y ′k is concentrated
about its mean and then use it to derive concentration for Yk.

Let (Mt) be the edge-exposure Doob’s martingale for D; that is, let e1, . . . , e(n
2)

be an arbitrary
ordering of the edges of the complete graph on n vertices and set Mt = E [Yk | Ft] where Ft is the
σ-algebra corresponding to revealing the indicators {1{ei∈E(D)} : i ≤ t}. We are interested in bounds
on the increments of the martingale (Mt) in L∞ and L2.

Consider the effect of modifying one of the indicators 1{e∈E}; clearly this can create or destroy a
tree T ∈ Tk only if that tree includes an endpoint of e as one of its vertices. Since Y ′k counts roots
of such trees where every vertex has degree less than log2 n and by the definition of Tk each such
tree has at most 4k levels (including the root), it follows that modifying e can alter Y ′k by at most
(log2 n)4k. In other words, Y ′k is B-Lipschitz as a function of the edges of D, where

B = (log2 n)4k ≤ (log2 n)4K0 ≤ exp
(
8(log logn)2

)
= no(1) .

It is a well-known (and easy to show) corollary that in this case |Mt+1−Mt| ≤ B for all t (see, e.g. [2]
for the standard coupling argument deriving this for Doob’s martingale of Lipschitz functions).

Now assume that we have exposed 1{e1∈E}, . . . ,1{et∈E} and are about to reveal whether or not
et+1 ∈ E. We wish to bound Var(Mt+1 | Ft). If we let θ = E[Y ′k | Ft, et+1 /∈ E] then the shifted
variable Q = Mt+1 − θ satisfies P(Q 6= 0 | Ft) = P(et+1 ∈ E | Ft) = p′ ≤ 2p whereas |Q| ≤ B by the
assumption that P(|Mt+1 −Mt| ≤ B) = 1 (in fact, even more precisely, one has |Q| ≤ B due to the
B-Lipschitz property of Y ′k). Thus,

Var (Mt+1 | Ft) = Var(Q | Ft) ≤ 2p(B)2 = n−1+o(1) ,

and we conclude that for some L = n1+o(1) we have
∑

t Var (Mt | Ft−1) ≤ L with probability 1.

We are now in a position to apply the following large-deviation inequality which is a special case
of a result of Freedman [8, Theorem 1.6] (see also [12, Theorem 3.15]):

Theorem 2.8. Let (S0, S1, . . . , SN ) be a martingale with respect to the filter (Fi). Assume that
Si+1 − Si ≤ B for all i and that

∑N
i=1 Var(Si | Fi−1) ≤ L with probability 1 for some L > 0. Then

for any s > 0 we have P
(⋃N

i=1{Si ≥ S0 + s}
)
≤ exp

[
−1

2s
2/(L+Bs)

]
.
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Plugging in our estimate for |Mt+1 − Mt| and
∑

t Var(Mt | Ft−1) while recalling that by the
definition of the Doob martingale M0 = EY ′k whereas M(n

2)
= Y ′k it now follows that

P(|Y ′k − EY ′k| > s) ≤ 2 exp
[
−1

2s
2/
(
n1+o(1) + no(1)s

)]
,

and in particular

P(|Y ′k − EY ′k| > n3/4) ≤ exp
(
n−1/2+o(1)

)
. (2.12)

To complete the proof, recall that the probability that any vertex in G ∼ G(n, p′) would have degree
at least log2 n is at most

nP
(
Bin(n, 2c/n) ≥ log2 n

)
≤ n exp

(
−c′ log2 n

)
< n−10 ,

where the last inequality holds for large enough n. In particular, Y ′k = Yk except with probability
n−10 and since by definition 0 ≤ Y ′k ≤ Yk ≤ n we further have E[Yk] = E[Y ′k] + O(n−9). Combining
these inequalities with (2.12) now gives

P(|Yk − EYk| > 2n3/4) ≤ 2n−10 ,

where the extra factors of 2 absorbed the O(n−9) and exp(n−1/2+o(1)) error terms. In particular,
taking a union bound over the K0 ≤ log logn values of k we deduce that w.h.p.∑

k<K0

Yk −
∑
k<K0

EYk ≤ 2n3/4 log log n .

Finally, combining this inequality with (2.10) and (2.11) we conclude that w.h.p.∑
k<K

Yk ≤ 1000c10e−2cn+ 2n3/4 log log n+ n/ log n = (1000 + o(1))c10e−2cn ,

where the last inequality holds for large enough n. Together with the aforementioned bounds on X

in terms of X ′ and in turn of X ′ in terms of
∑
Yk we conclude that w.h.p.

|X| ≤ |C|+ |B(C, R/2)|+
∑
k<K

Yk < n1/4 + n3/4 + (1000 + o(1))c10e−2cn ≤ (2c)10e−2cn ,

where the last inequality is valid for any sufficiently large n, as required. �

3 Concluding remarks

We have proved that a random directed graph D(n, c/n) contains with high probability a directed
cycle including all but at most (2 + ε)e−cn vertices, where ε = ε(c) → 0 as c → ∞. In fact, our
proof shows that the relative error term ε(c) is exponentially small in c, namely ε(c) ≤ poly(c)e−c.
The main term in the result is asymptotically optimal as such a random digraph typically contains
(2e−c − o(1))n vertices with zero in-degree or out-degree.

It would be very interesting to derive accurate estimates for the length of a longest cycle in
D(n, c/n) for small(er) values of the constant c, starting perhaps as low as the threshold for the

13



appearance of a linear length cycle in such a random digraph. See the related work [10] where  Luczak
studied the length of the longest cycle in the undirected random graph near its critical window,
showing lower and upper bounds that are tight up to a factor of 1 + log(3/2) ≈ 1.41.

Compared to the situation in undirected graphs, the toolkit available for the case of directed
graphs is rather poor at present, thus making the progress in a variety of questions about directed
random and pseudo-random graphs much harder to achieve. In particular, the absence of any form
of a direct analogue of the famed Pósa’s rotation-extension technique, widely applied for undirected
graphs, is felt throughout. It would be very useful to derive some directed version of it.

In general, the field of random and pseudo-random directed graphs is largely an uncharted terri-
tory, compared to the situation for the undirected case. Although this is certainly partly due to its
relative difficulty, we believe enough knowledge and technology have been accumulated now to start
exploring it in a systematic way. One recent such result is the paper [4], where global resilience type
results with respect to long cycles have been derived for sparse random and pseudo-random directed
graphs. It would be interesting to explore further resilience type questions in directed graphs.
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