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Abstract

We prove that if T is a tree on n vertices with maximum degree ∆ and the edge probability
p(n) satisfies: np ≥ C max{∆ log n, nε} for some constant ε > 0, then with high probability the
random graph G(n, p) contains a copy of T . The obtained bound on the edge probability is shown
to be essentially tight for ∆ = nΘ(1).

1 Introduction

In this paper we consider the problem of embedding a copy of a given spanning tree T on n vertices
into the binomial random graph G(n, p).

Embedding problems are one of the most classical subjects in Extremal and Probabilistic Combi-
natorics. There is a large variety of results about finding given subgraphs, or graphs belonging to a
given family, in random graphs. Here we concentrate on embedding large trees in binomial random
graphs.

The problem of embedding large or nearly spanning trees in random graphs on n vertices (where by
a nearly spanning tree we mean a tree T whose number of vertices is at most (1−c)n for some constant
c > 0) is a rather well researched subject, especially in the case of trees with bounded maximum degree,
see, e.g., [7], [1], [9], [8], [10]. In particular, Alon, Sudakov and the author proved in [2] that for given
ε > 0 and integer d there exists C = C(d, ε) > 0 such that whp1 the random graph G(n, p) with
p = C/n has a copy of a tree T on (1− ε)n vertices of maximum degree at most d (in fact [2] proved
that such a random graph contains whp a copy of every such tree); better constant dependence and
the resilience version of this result have recently been obtained in [3] and [4], respectively.

In contrast, nearly nothing has been known for the case of embedding spanning trees. Even the
case of embedding spanning trees of bounded maximum degree appears to be unaddressed, apart from
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1An event En occurs with high probability, or whp for brevity, in the probability space G(n, p) if limn→∞ Pr[G ∼

G(n, p) ∈ En] = 1.

1



some sporadic cases. Of course, the most classical result is about embedding a Hamilton path, or
even a Hamilton cycle, in G(n, p); Komlós and Szemerédi [14] and independently Bollobás [5] proved
that if p(n) ≥ lnn+ln lnn+ω(1)

n , where ω(1) is any function tending to infinity arbitrarily slowly with n,
then whp G(n, p) contains a Hamilton cycle. Alon et al. [2] observed that if a tree T has a linear
in n number of leaves, then whp G(n,C lnn/n) contains a copy of T for some large enough C > 0;
the proof is not that hard and utilizes the embedding result for nearly spanning trees from the same
paper. However, no general result for this problem has been obtained, and even the case of the comb
(which is the path P0 of length

√
n− 1 with disjoint paths of length

√
n− 1 attached to each vertex

of P0), interpolating in some sense between the above mentioned solved cases, is open; this natural
question has been communicated to us by Jeff Kahn [12].

Here we make a substantial step forward in solving this class of problems. Our main result if the
following embedding theorem.

Theorem 1 Let T be a tree on n vertices of maximum degree ∆. Let 0 < ε < 1 be a constant. If

np ≥ 40
ε

∆ lnn+ nε ,

then whp a random graph G(n, p) contains a copy of T .

In other words, starting from ∆(T ) = nε, edge probability p = C∆ lnn
n is enough to get whp a copy

of T in G(n, p).
It is not hard to see that the dependence of p on ∆, posted in Theorem 1, is optimal up to a

constant factor in the range np = nΘ(1). In order to state this result formally, for integers n ≥ ∆ ≥ 3
define the tree T (n,∆) as follows. Write n = (∆ − 1)k − r, where 0 ≤ r ≤ ∆ − 2. Take a path
P = (v1, . . . , vk) with k vertices, attach to v1, . . . , vk−1 vertex disjoint stars with ∆ − 2 leaves each,
and finally attach to vk a star with ∆−2−r leaves. The tree T (n,∆) has n vertices and is of maximum
degree at most ∆. For future reference observe that the k vertices of P dominate the remaining n− k
vertices of T (n,∆).

Theorem 2 For every ε > 0 there exists δ > 0 such that if nε ≤ ∆ ≤ n
lnn , then a random graph

G(n, p) with p = δ∆ lnn
n whp does not contain a copy of T (n,∆).

There is a certain similarity in appearances between the above results and the theorem of Komlós,
Sárközy and Szemerédi [13], who proved that for δ > 0 and all large enough n, any graph G on n

vertices of minimum degree at least (1/2+δ)n contains a copy of every tree T on n vertices of maximum
degree ∆(T ) ≤ cn/ lnn, where c = c(δ) is a small enough constant; they noticed that their condition
on ∆(T ) is essentially tight too (actually because of the random graph G(n, p) with 1/2 < p < 1 and
the above described tree T (n,∆), just like in our Theorem 2). The arguments of [13] are naturally
very different and do not seem to have much bearing on the situation in (sparse) random graphs.

In order to ease the reader’s task we now give a brief description of the proof of Theorem 1. The
key definition used is that of a bare path:
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Definition 1 A path P in a tree T is called bare if all vertices of P have degree exactly two in T .

In the proof of Theorem 1, we first argue that every tree T on n vertices has a linear in n number
of leaves, or a collection of vertex disjoint bare paths of (large) constant length each (Lemma 2.1).
The former case is rather easy; similarly to the argument outlined in [2], we first embed the subtree
F of T , obtained by deleting from T a linear number of leaves, by a straightforward greedy algorithm
(Lemma 2.2). Then we embed the remaining edges between the omitted leaves of T and their fathers
(Lemma 2.3); the restriction np ≥ C∆ lnn is induced by this part. In the complementary case, where
the number of leaves of T is relatively small, we first take out a linear number of disjoint constant
length bare paths to obtain a subforest F of T ; we embed F using the same greedy argument (Lemma
2.2). Then we are left with embedding the remaining bare paths; we do this by reducing the problem
to that of finding a factor of cycles (with some extra conditions imposed) in a random graph, and
then by invoking a beautiful result of Johansson, Kahn and Vu [11] about factors in random graphs
(Lemma 2.4). In both above described cases we need our random edges to come in two independent
chunks: the standard trick of representing G ∼ G(n, p) as G = G1 ∪ G2, where Gi ∼ G(n, pi) and
1− p = (1− p1)(1− p2), allows for this readily.

The notation used in the paper is pretty standard. We systematically suppress rounding signs for
the sake of clarity of presentation.

The proofs of Theorems 1 and 2 are given in the next section. The last section of the paper is
devoted to concluding remarks.

2 Proofs

Lemma 2.1 Let k, l, n > 0 be integers. Let T be a tree on n vertices with at most l leaves. Then T

contains a collection of at least n−(2l−2)(k+1)
k+1 vertex disjoint bare paths of length k each.

Proof. Define

V1 = {v ∈ V (T ) : d(v) = 1} ,

V2 = {v ∈ V (T ) : d(v) = 2} ,

V3 = {v ∈ V (T ) : d(v) ≥ 3} .

Clearly V1 is the set of leaves of T and thus satisfies |V1| ≤ l. We have:

2n− 2 = 2|E(T )| =
∑

v∈V (T )

d(v) ≥ |V1|+ 2|V2|+ 3|V3|

= 2(|V1|+ |V2|+ |V3|) + (|V3| − |V1|)

= 2n+ |V3| − |V1| ,

implying |V3| ≤ |V1| − 2 ≤ l − 2.
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T has |V1|+|V3|−1 ≤ 2l−3 internally disjoint paths connecting between the vertices of V1∪V3, with
all internal vertices of these paths being of degree two. In each such path, pick a largest collection of
vertex disjoint subpaths of length k. This leaves at most k vertices of the path uncovered, so altogether
the so formed collection of bare paths of length k in T contains all but at most (|V1|+ |V3|) + (|V1|+
|V3|−1)k < (2l−2)(k+1) vertices, implying that the total number of paths of length k in the collection
is at least n−(2l−2)(k+1)

k+1 as required. �

Lemma 2.2 Let 0 < a < 1 be a constant. Let F be a tree on (1− a)n vertices of maximum degree ∆.
If anp ≥ 3∆ + 5 lnn, then whp a random graph G(n, p) contains a copy of F .

Proof. Choose arbitrarily a root r of F and fix some search order π, say BFS, on F starting from r.
Let π = (v1 = r, . . . , vm) with m = (1− a)n. We will embed F in G ∼ G(n, p) according to π. Let φ
be the so constructed embedding.

Suppose we are to embed the children of a current vertex vi, 1 ≤ i ≤ m− 1, in G. Let Ui ⊂ [n] be
the set of vertices already used for embedding, clearly |Ui| < m. Expose the edges of G from φ(vi) to
[n] − Ui. We need to find at most dF (vi) ≤ ∆ neighbors of φ(vi) outside Ui. The probability of this
not happening is at most

Pr[Bin(n−m, p) < ∆] ≤ e−
(anp−∆)2

2anp < e−
2anp

9 � 1
n
.

Taking the union bound over all embedding steps, we conclude that whp G contains a copy of F . �

Lemma 2.3 Let 0 < d1, . . . , dk be integers satisfying: di ≤ ∆,
∑k

i=1 di = l. Let A = {a1, . . . , ak}, B
be disjoint sets of vertices with |B| = l. Let G be a random bipartite graph with sides A and B, where
each pair (a, b), a ∈ A, b ∈ B, is an edge of G with probability p, independently of other pairs. If

p ≥ 2∆ ln l
l

,

then whp as l→∞ the random graph G contains a collection S1, . . . , Sk of vertex disjoint stars such
that Si is centered at ai and has the remaining di vertices in B.

Proof. Define an auxiliary (random) bipartite graph G′ with sides A′ and B, where |A′| = |B| = l.
The vertices of A′ are partitioned into k pairwise disjoint sets A1, . . . , Ak with |Ai| = di, 1 ≤ i ≤ k.
G has an edge between a′ ∈ Ai and b ∈ B with probability pi, where (1 − pi)di = 1 − p, implying
pi ≥ p/di ≥ p/∆. The distribution G′ induces the distribution of G by the obvious projection: G has
an edge between a ∈ A and b ∈ B iff G′ has some edge between Ai and B. Observe that if G′ has a
perfect matching M ′ then G has the desired collection of stars {Si}, obtained by projecting A′ back
into A (the vertices of Ai are projected onto ai).

By the classical results about random graphs (see, e.g., Section 7.3 of [6]) and the monotonicity of
the property of having a perfect matching it is enough to require that all individual edge probabilities
in G′ are at least (ln l + ω(1))/l. Recalling that pi ≥ p/∆, we see that the lemma’s assumption
p ≥ 2∆ ln l

l guarantees the required condition. �

4



Lemma 2.4 Let k ≥ 3 be a fixed integer. Let G be distributed as G((k+1)n0, p). Let S = {s1, . . . , sn0},
T = {t1, . . . , tn0} be disjoint vertex subsets of [(k + 1)n0]. If

p ≥ C

(
lnn0

nk−1
0

)1/k

,

for some large enough constant C = C(k), then whp G contains a family {Pi}n0
i=1 of vertex disjoint

paths, where Pi is a path of length k connecting si and ti.

Proof. Fix a partition of V (G)−S∪T into vertex disjoint subsets V1, . . . , Vk−1 of cardinality |Vi| = n0

each. Define an auxiliary graph H with vertex set V (H) = X∪V1∪. . .∪Vk−1, where X = {x1, . . . , xn0}.
For 1 ≤ i ≤ k − 2, the edges of H between Vi and Vi+1 are identical to those of G. For v ∈ V1 and
xj ∈ X, (v, xj) is an edge of H iff (v, sj) is an edge of G. Similarly, for v ∈ Vk−1 and xj ∈ X, (v, xj)
is an edge of H iff (v, tj) is an edge of G. Notice that each relevant pair in V (H) becomes an edge of
H independently and with probability p.

Suppose now that H contains a Ck-factor {S1, . . . , Sn0}, where each cycle Sj traverses the sets
X,V1, . . . , Vk−1 in this order. Each such cycle Si translates to a path of length k between si and ti in
G, and these paths are pairwise disjoint.

It thus remains to argue that the random graph H contains whp the desired collection of cycles.
This can be obtained from the result of Johansson, Kahn and Vu [11] through straightforward (but
quite tedious) modification of their arguments. (They proved that a random graph G(kn, p) with
p ≥ C(k)

(
lnn
nk−1

)1/k
contains whp a factor of cycles Ck, we need the factor in a k-partite random

graph; moreover, the cycles in the factor are required to traverse the parts in the prescribed order.) �

Proof of Theorem 1. Set

δ =
ε

10
,

k =
⌈

2
ε

⌉
.

We consider two cases.
Case 1. T has at least δn leaves.
We represent G as the union E(G) = E(G1) ∪ E(G2), where G1, G2 are two independent random
graphs, both distributed according to G(n, p′) with 1− p = (1− p′)2 (and thus p′ ≥ p/2). Let F be a
subtree of T obtained by deleting from T an arbitrary set of δn leaves. We first find a copy φ(F ) of F
in G1 – such a copy exists whp due to Lemma 2.2. Let now B = [n]−V (φ(F )), and let A ⊂ V (φ(F ))
be the set of images of the fathers of the δn leaves deleted from T to form F . Denote A = {a1, . . . , ak},
and let di ≤ ∆ be the number of leaves in T connected to the preimage φ−1(ai) and left outside F ;
clearly

∑k
i=1 di = δn. In order to complete the embedding of T into G, we need to find in G k vertex

disjoint stars S1, . . . , Sk, where the star Si is centered in ai and has the remaining di vertices in B. We
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invoke Lemma 2.3 to find such stars whp using the (random) edges of G2 between A and B. Since
the edge probability in G2 is at least p/2, we need to verify that

p

2
≥ 2∆ ln(δn)

δn
.

Recalling that δ = ε
10 and p ≥ 40∆ lnn

εn , we see that this condition is fulfilled indeed.
Case 2. T has less than δn leaves.
We again represent G as the union E(G) = E(G1) ∪ E(G2) as in the previous case. According to
Lemma 2.1, T contains a family of n0 = n−(2δn−2)(k+1)

k+1 = Θ(n) of vertex disjoint bare paths of length
k. Let F be a subforest of T obtained by deleting the internal vertices of such a family of bare paths.
We first use the edges of G1 to find whp a copy φ(F ) of F ; this is possible again due to Lemma 2.2.
It now remains to insert these n0 bare paths, connecting between prescribed pairs of vertices. We can
apply Lemma 2.4 to the edges of G2 to meet this goal. Since the edge probability in G2 is at least p/2
and

p

2
≥ n−1+ε

2
�
(

lnn
nk−1

)1/k

(recall ε > 1/k), the graph G2 contains indeed the required collection of paths whp. The proof is
complete. �

Proof of Theorem 2. Set
k =

⌈
n

∆− 1

⌉
.

Consider the random graph G(n, p) with p = δ∆ lnn
n , the value of δ = δ(ε) to be chosen later. Recall

that in the tree T (n,∆) k vertices of the spine path P dominate the rest of the graph. It thus suffices
to show that whp G(n, p) has no dominating set of size k. The probability that such a dominating
set exists is at most (

n

k

)
(1− (1− p)k)n−k ≤

(en
k

)k
e−(n−k)(1−p)k

≤ (3∆)
n
∆ e−

n
2
e−pk ≤ e

2n ln ∆
∆
−n

1−δ
3

≤ e2n1−ε lnn−n
1−δ
3 .

Taking δ = ε/2 we see that whp the random graph G(n, p) does not contain a dominating set of size
k and thus whp does not contain a copy of T (n,∆). �

3 Concluding remarks

We have shown that the (pretty immediate) lower bound on the edge probability p(n) ≥ c∆(T ) lnn/n
for the random graph G(n, p) to contain whp a copy of a given spanning tree T of maximum degree
∆ is tight up to a constant factor in the range ∆ = nΘ(1).
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The regime ∆(T ) = no(1) stays largely open. In particular, we were not able to provide a satisfac-
tory solution for the most natural case of embedding spanning trees with bounded maximum degree.
Our result only shows that in this case is is enough to require p(n) = n−1+o(1); this is probably not
the tightest bound possible.

For the case of embedding a bounded degree spanning tree T with cn leaves [2] has shown that it
is enough to take p(n) = C lnn/n, where C may depend on c. It is unclear whether such a dependence
is necessary. It seems plausible that assuming p(n) = (1 + o(1)) lnn/n may be enough.

Finally, it would be very interesting to obtain sufficient conditions for embedding spanning trees
with given maximum degree applicable to pseudo-random graphs.
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