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Abstract

We consider supercritical bond percolation on a family of high-girth d-regular expanders. Alon,

Benjamini and Stacey (2004) established that its critical probability for the appearance of a linear-

sized (“giant”) component is pc = 1/(d− 1). Our main result recovers the sharp asymptotics of the

size and degree distribution of the vertices in the giant and its 2-core at any p > pc. It was further

shown in [1] that the second largest component, at any 0 < p < 1, has size at most nω for some ω < 1.

We show that, unlike the situation in the classical Erdős–Rényi random graph, the second largest

component in bond percolation on a regular expander, even with an arbitrarily large girth, can have

size nω′
for ω′ arbitrarily close to 1. Moreover, as a by-product of that construction, we answer

negatively a question of Benjamini (2013) on the relation between the diameter of a component in

percolation on expanders and the existence of a giant component. Finally, we establish other typical

features of the giant component, e.g., the existence of a linear path.

1 Introduction

A graph G is called a (b, d)-expander if its maximum degree is d, and for every subset S ⊂ V (G) of at
most |V (G)|/2 vertices there are at least b|S| edges in the cut between S and V (G) \ S. For 0 < p < 1

and a given graph G, let Gp denote the corresponding bond percolation on G, i.e., the distribution over

spanning subgraphs of G where each edge is present, independently, with probability p. Our primary

focus will be Gp for a (d-)regular (b, d)-expander G whose girth (length of the shortest cycle) is large.

The pioneering paper of Alon, Benjamini and Stacey [1] showed that if G is an expander and p > 0 is

fixed, there is at most a single linear component in Gp with high probability (w.h.p.). Moreover, when G
is d-regular and its girth tends to ∞, the authors of [1] identified the critical percolation probability to

be pc = 1/(d−1), showing that, for every fixed p > pc, w.h.p. there exists a linear (“giant”) component

in Gp (see the formal statement below). The latter result was thereafter extended by Peres et al. [4] to

any family of sparse graphs that converge as n → ∞ in the Benjamini–Schramm sense.

More formally, write Ci(G) (for i = 1, 2, . . .) for the connected components of G in decreasing order

of their sizes. (By a slight abuse of notation, we also let Cv(G) (for v ∈ V (G)) denote the connected
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component of v in G.) It was shown in [1] that if G is a regular (b, d)-expander on n vertices (more

precisely, a sequence of such graphs) with girth tending to ∞ with n, then for every fixed p > 1/(d−1),

for some fixed c = c(p, d) > 0 : lim
n→∞

P (|C1(Gp)| > cn) = 1 ,

whereas for every fixed p < 1/(d− 1),

for every fixed c > 0 : lim
n→∞

P (|C1(Gp)| > cn) = 0 .

That the lack of a linear component w.h.p. at p < 1/(d− 1) extends also to p = 1/(d− 1) follows from

the work of Nachmias and Peres [13] (who proved, more generally, that P(|C1| ≤ An2/3) → 0 as A → ∞
in percolation with parameter p = 1/(∆− 1) on any family of graphs with maximal degree ∆).

Pittel [14] refined the results of Alon et al. in the special case where G is a random (uniformly

chosen) d-regular graph on n vertices for d ≥ 3 fixed — well-known to be a expander w.h.p. — showing

that the phase transition of |C1| mirrors that in the Erdős–Rényi graph G(n, p): w.h.p., |C1| ≤ C(p) log n

at p < pc =
1

d−1 vs. |C1| ∼ θ1n at p > pc for an explicit θ1(p), whereas |C1| = n2/3+o(1) at the critical pc

(the precise order of n2/3 and correct scaling of the critical window were subsequently found in [13]).

In this work we obtain the asymptotic size (lower bounded by c(p, d)n above) and degree distribution

of the giant component C1(G) for any high-girth expander G ∼ Gp at p > 1/(d−1), as well as its 2-core.

For d ≥ 3 and 1 < λ < d− 1, let

p = λ/(d− 1)

and let q = q(λ, d) be the unique solution in [0, 1) of the equation

q = (1− p+ pq)d−1 , (1.1)

well known (cf. [2]) to coincide with the extinction probability of a Bin(d− 1, p)-Galton–Watson tree.

Recall that the 2-core of a connected component C, denoted here C(2), is its maximum induced

subgraph with minimum degree at least 2, and the (tree) excess of C is the minimum number of edges

that need to be removed from C to turn it into a tree (note that the excess of C equals that of C(2)).

Our first main result establishes the asymptotic number of vertices and edges in the largest (giant)

component in supercritical bond percolation on a high girth d-regular expander, as well as its 2-core,

and consequently their asymptotic excess.

Theorem 1 (the giant). Fix d ≥ 3 and 1
d−1 < p < 1, and letting q be as in (1.1), define

θ1 := 1− q(1− p)− pq2 , η1 :=
1
2pd(1− q2) , (1.2)

θ2 := 1− q − (d− 1)pq(1− q) , η2 :=
1
2pd(1− q)2 . (1.3)

For every ε > 0 and b > 0 there exist some c, C,R > 0 such that, if G is a regular (b, d)-expander on n

vertices with girth at least R, then with probability at least 1− Ce−cn, the random graph G ∼ Gp has
 1
n |V (C1)|− θ1

 < ε ,
 1
n |E(C1)|− η1

 < ε , (1.4)
 1
n |V (C(2)

1 )|− θ2
 < ε ,

 1
n |E(C(2)

1 )|− η2
 < ε . (1.5)

In particular, with probability at least 1−C exp(−cn), the excess of C1 is within 2εn of (η1 − θ1)n, and

the excess of C(2)
1 is within 2εn of (η2 − θ2)n.
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Figure 1: Asymptotic degree distributions of the giant component (∼αkn degree-k vertices (blue)) and

its 2-core (∼βkn degree-k vertices (red)) in supercritical percolation on a high girth 3-regular expander.

Remark 1.1 (degree distributions of the giant and the 2-core). In the setting of Theorem 1, we in fact

asymptotically obtain the entire degree distributions of the giant component and 2-core (Theorem 2.1).

For instance, for a fixed b > 0, consider a sequence G(n) of regular (b, 3)-expanders on n vertices whose

girth tends to ∞ (arbitrarily slowly) with n. For 1
2 < p < 1, let

α1 =
3

p
(1− p)2(2p− 1) , α2 =

3

p2
(1− p)(1− 4p+ 6p2 − 4p3) , α3 = p3


1−


1−p
p

6 
,

β2 =
3

p3
(1− 2p)2(1− p) , β3 =

2p− 1

p

3
.

Then w.h.p., the giant component C1 of G ∼ G(n)
p has (αk + o(1))n vertices of degree k for each

k ∈ {1, 2, 3}, and its 2-core C(2)
1 has (βk + o(1))n vertices of degree k for each k ∈ {2, 3}; see Figure 1.

Remark 1.2 (Limits for large d). For p = (1 + ξ)/(d− 1) with ξ > 0 and d → ∞ with n, one has

q → 1− 2ξ + 8
3ξ

2 − 28
9 ξ

3 +O(ξ4)

and

θ1 → 2ξ − 8
3ξ

2 + 28
9 ξ

3 +O(ξ4) , η1 → 2ξ − 8
3ξ

2 + 34
9 ξ

3 +O(ξ4) , η1 − θ1 → 2
3ξ

3 +O(ξ4) ,

θ2 → 2ξ2 − 4ξ3 +O(ξ4) , η2 → 2ξ2 − 10
3 ξ

3 +O(ξ4) , η2 − θ2 → 2
3ξ

3 +O(ξ4) .

Compare this to G(n, p) for p = 1+ξ
n with ξ = o(1): there |V (C1)| ∼ 2ξn, |E(C1)| ∼ 2ξn, |V (C(2)

1 )| ∼ 2ξ2n

and the excess is (1 + o(1))23ξ
3n (see, e.g., [6, 10, 15] and the structure theorems in [7, 8]).
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In the context of the second largest component of Gp, it was shown by Alon et al. [1] that, if G is

a (b, d)-expander (not necessarily regular) on n vertices then there exists ω = ω(b, d) < 1 such that,

w.h.p., for every sequence 0 < pn < 1,

lim
n→∞

P(|C2(Gpn)| < nω) = 1 .

Indeed, it is well-known (cf., e.g., [6]) that in the Erdős–Rényi random graph G(n, p) (where G is the

complete graph) such is the case, as the supercritical regime p > 1/n admits a single giant component

w.h.p., and all other components are logarithmic in size (see, e.g., [6] and [10]). Such is also the case in

percolation on random regular graphs (cf. [13]). In light of this — and in line with results of Pittel [14]

on |C2| in random regular graphs — one may believe that the same holds for percolation on expanders,

whereby the nω above could be replaced by some C(b, d) log n with probability arbitrarily close to 1.

Perhaps surprisingly, it turns out that even on a family of regular expanders with arbitrarily large

girth, the above polynomial bound of nω is essentially best possible, as the second largest component

can have size nω′
with ω′ arbitrarily close to 1.

Theorem 2 (second component). For every d ≥ 3, R ≥ 1, p ∈ ( 1
d−1 , 1) and α ∈ (0, 1) there exist b > 0

and a regular (b, d)-expander G on n vertices with girth at least R where G ∼ Gp has |V (C2)| ≳ nα w.h.p.

Remark 1.3. Using essentially the same construction, for any sequence 0 < α1 ≤ α2 ≤ . . . ≤ αk < 1

with k fixed, one can construct an expander G such that w.h.p. G ∼ Gp has components whose sizes

have orders nα1 , . . . , nαk , respectively (in addition to the linearly sized component).

Towards a construction of an infinite graph that disproves the existence of “expanders at all scales,”

Benjamini asked the following question (a positive answer to which would be a step in said construction),

on the relation between the diameter of the connected component of v in Gp to the existence of a giant.

Question (Benjamini [3, Q. 5.5]). Let G be a bounded degree expander. Further assume that there is

a fixed vertex v ∈ G, so that G ∼ G1/2 satisfies

P

diam(Cv(G)) > 1

2 diam(G)

> 1

2 .

Is there a giant component w.h.p.?

A variant of the construction in Theorem 2 gives a negative answer to this question.

Theorem 3. For every ε > 0 and 0 < p < 1 there exist b, d, δ > 0 and, for infinitely many values of n,

a (b, d)-expander G on n vertices with a prescribed vertex v, such that the graph G ∼ Gp satisfies

P

diam(Cv(G)) ≥ (1− ε) diam(G)


≥ 1− ε ,

and yet there are no components of size larger than n1−δ in G w.h.p.

Finally, in §4, we explore additional typical properties of percolation on high-girth expanders (where

we find the typical order of those random variables but not their precise asymptotics): the existence of

linear simple paths (Corollary 4.2), the fact that linearly many vertices must be removed in order to

disconnect the giant component (Theorem 4.1), and the existence of complete minors (Corollary 4.4).
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Main techniques.

The starting point in proving Theorem 1, and furthermore its more detailed version Theorem 2.1 which

gives the typical degree profile in the giant and 2-core of Gp, is a refinement of the elegant sprinkling

argument of Alon et al. [1]. While that argument was used in [1] and later also in [4] to show that

w.h.p. a fixed proportion of the vertices whose local neighborhoods in Gp−ε are “large” will belong to

the giant after adding Gε, in fact all but a negligible proportion of such vertices will be in the giant.

Namely, the local property of whether the connected component of a vertex x has size at least R turns

out to be a predictor, for all but ε(R)n vertices, as to whether x ∈ C1(Gp) (similarly for edges) — see

Proposition 2.2. One can then readily use this local predictor to read off the degree profile, and more

generally, the entire local geometry in C1(Gp) for a high girth expander G, as demonstrated next.

Example 1.4. [Density of local neighborhoods in C1] Let G ∼ Gp for 1
d−1 < p < 1 and a d-regular

expander G on n vertices whose girth tends to ∞ with n. Set q as in (1.1), let T be a rooted tree with

k levels and ℓ leaves (for some fixed k, ℓ), and let αT = P(Tp ≃ T ), where T is the tree on k levels that

is d-regular except at its leaves (and ≃ denotes graph isomorphism). The number of vertices in C1(G)

whose k-radius neighborhood is isomorphic to T is then w.h.p. asymptotically

1− qℓ


αT n.

Example 1.5. [Asymptotic density of paths in C1] For G as in Example 1.4 and for any fixed ℓ ≥ 1,

the number of paths with ℓ edges in C1 is w.h.p. asymptotically 1
2d(d−1)ℓ−1pℓ


1−qℓ+1(1−p+pq)1−ℓ


n.

The analysis of cycles in G (and its 2-core) is substantially more delicate. Naively, one might expect

our results to suggest that, if a certain edge xy in G ∼ Gp is such that in the graph Hxy := G\{xy} the

components of x and y are both “large,” then both should typically belong to the giant in H (which

is a subset of the giant of G), hence the edge xy should lie on a cycle in C1(G). However, turning this

intuition into a rigorous argument is problematic in light of the fact that we cannot actually delete xy

(as we aim to carry this analysis simultaneously for all edges xy), and our mechanism of securing that

the components of x and y would belong to the giant was non-constructive (arguing that there are small

cuts whence sprinkling would patch most such components together); in particular, that argument gave

no control over whether or not the edge xy itself is a bridge as opposed to a cycle edge in C(2)
1 (G).

To remedy this, we introduce the notion of a k-thick set — roughly put, a set that can be covered

by disjoint connected components of size at least k each (see Definition 2.7) — and show, in what

may be of independent interest, that if G is an expander and H is a slightly percolated subgraph of

G (that is, H ∼ G1−δ for some small δ > 0), then every linearly-sized k-thick set expands in H (cf.

Claim 2.8). Since we seek to analyze the effect of sprinkling on components that are “large,” such

expansion suffices, and does in fact hold in H, supporting the above framework of the proof.

Finally, our constructions in Theorem 2 and 3 exploit the source of some of the obstacles described

above: while we have full understanding of the geometry of G in the microscopic scale (locally the

graph is a regular tree up to an arbitrarily large radius), and some control over it in the macroscopic

scale (the expansion implies bounds on the number of edges between every two linearly-sized sets), we

have limited control over it in the intermediate scales. For instance, if the k-radius ball around a vertex

x grows as (d− 1)k then percolation is supercritical, as opposed to growing only as bk whence it might

be subcritical (yet still satisfying the expansion property). Our constructions combine both these types

of expansion in the mesoscopic scales to create components of size Θ(nα) (0 < α < 1) in Gp.
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2 Asymptotics of the giant component and its 2-core

The goal in this section is to prove the following result (from which Theorem 1 follows) describing the

typical degree distribution of the giant component and its 2-core in Gp up to an error of o(n).

Theorem 2.1. Fix d ≥ 3 and 1 < λ < d− 1, let p = λ/(d− 1), and with q as in (1.1), define

αk =


d

k


pk(1− p)d−k(1− qk) (k = 1, . . . , d) , (2.1)

βk =


d

k


pk(1− q)kq

(1− p+ pq)k−1
(k = 2, . . . , d) . (2.2)

For a given d-regular graph G, let Dk (1 ≤ k ≤ d) be the number of degree-k vertices in C1, the largest

component of the graph G ∼ Gp, and let D∗
k denote the number of degree-k vertices in its 2-core C(2)

1 .

Then for every ε > 0 and b > 0 there exist some c, R > 0 so that, if G is a regular (b, d)-expander on

n vertices with girth at least R, then with probability at least 1− exp(−cn),
Dk/n− αk

 < ε for all 1 ≤ k ≤ d and
D∗

k/n− βk
 < ε for all 2 ≤ k ≤ d .

Indeed, Theorem 1 follows from verifying (recalling (1.1)) that the quantities θi and ηi (i = 1, 2), as

defined in (1.2)–(1.3), satisfy the following w.r.t. the above defined αk (1 ≤ k ≤ d) and βk (2 ≤ k ≤ d):

θ1 =
d

k=1 αk , η1 =
1
2

d
k=1 kαk , θ2 =

d
k=2 βk , η2 =

1
2

d
k=2 kβk .

2.1 The giant component

Fix ε > 0 small enough so that p′ := p − ε satisfies p′ > 1/(d − 1). There exists R0 so that, for

all R ≥ R0, the probability of survival to depth R in a Galton–Watson (GW) tree with offspring

distribution Bin(d − 1, p′) is at least 1 − q′, and the corresponding probability in a GW-tree with

offspring distribution Bin(d − 1, p) is at most 1 − q + ε. Since λ → q(λ) is continuous, one has q′ ↑ q

as ε ↓ 0. We will couple G′ ∼ Gp′ and G ∼ Gp by letting E(G) = E(G′) ∪ E(F ′) for F ′ ∼ Gε′ , where

ε′ :=
p− p′

1− p′
=

ε

1− p′
.

For a graph H and an ordered pair of vertices x, y ∈ V (H), define

AR
x,y = AR

x,y(H) = {|Cy(H \ {xy})| ≥ R} (2.3)

(whereH\{xy} is obtained by deleting the edge xy if present), and for an unordered pair x, y ∈ V (H) let

BR
xy = BR

xy(H) =

AR

x,y ∪AR
y,x


∩ {xy ∈ E(H)} ; (2.4)

i.e., AR
x,y says that after removing xy (if present) the component of y has at least R vertices, while BR

xy

says that, in addition to this, after removing xy the component of x also has at least R vertices, and

that the edge xy does belong to H. Further define, for every vertex x ∈ V (H),

BR
x =



y


AR

x,y ∩ {xy ∈ E(H)}

. (2.5)
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Finally, let
E1(H) = {xy ∈ E(H) : BR

xy(H) holds} ,

V1(H) = {x ∈ V (H) : BR
x (H) holds} .

(2.6)

The main result we wish to prove in this subsection is as follows.

Proposition 2.2. For every ε, b > 0 there exist R and c > 0 such that, if G is a regular (b, d)-expander

on n vertices with girth greater than 2R, and G ∼ Gp, then

P
E1(G)△E(C1(G))

 > εn

≤ exp(−cn) , (2.7)

P
V1(G)△V (C1(G))

 > εn

≤ exp(−cn) . (2.8)

Proof. Observe that, for any graph H with maximum degree d, if |Cx| > dR then the vertex x must

be incident to some y such that AR
x,y holds; similarly, if an edge xy belongs to a component of size at

least 2R then at least one of the events AR
x,y,AR

y,x must hold. That is,


{E(C) : C is a connected component of H with |C| ≥ 2R} ⊆ E1(H) .
{V (C) : C is a connected component of H with |C| > dR} ⊆ V1(H) .

(2.9)

By the assumptions that R ≥ R0 for a large enough R0 and that the girth is greater than 2R,

1− q ≤ P(AR
x,y(G)) ≤ 1− q + ε , 1− q′ ≤ P(AR

x,y(G
′)) ≤ 1− q′ + ε .

When H ∼ Gp or H ∼ Gp′ , the standard edge-exposure martingale (see, e.g., [10, Sec. 2.4]) — noting

that adding/deleting an edge influences at most 2(d− 1)R edges — implies via Hoeffding–Azuma that

P
|E1(H)|− E[|E1(H)|]

 ≥ a

≤ exp


− a2

4dn(d− 1)2R


. (2.10)

and similarly,

P
|V1(H)|− E[|V1(H)|]

 ≥ a

≤ exp


− a2

4dn(d− 1)2R


. (2.11)

Note that, in G ∼ Gp, since the girth of G is greater than 2R (hence AR
x,y and AR

y,x are independent),

p(1− q2) ≤ P(BR
xy) ≤ p(1− (q − ε)2) ,

and, using that q = (1− p+ pq)d−1 and the mutual independence of AR
x,y for all neighbors y of x in G,

1− q(1− p+ pq) ≤ P(BR
x ) ≤ 1− (1− p+ p(q − ε))d .

We can therefore deduce that

1
2pd(1− q2)n ≤ E[|E1(G)|] ≤ 1

2pd(1− (q − ε)2)n , (2.12)

1− q(1− p+ pq)


n ≤ E[|V1(G)|] ≤


1− (1− p+ p(q − ε))d


n . (2.13)
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Combining this with (2.9)–(2.10) implies that, in G ∼ Gp, with probability at least 1− exp(−cn),



C:|V (C)|≥2R

|E(C)| ≤ |E1(G)| ≤

1
2pd(1− (q − ε)2) + ε


n , (2.14)



C:|V (C)|>dR

|V (C)| ≤ |V1(G)| ≤

1− (1− p+ p(q − ε))d + ε


n . (2.15)

(In particular, this gives upper bounds on |E(C1(G))| and on |V (C1(G))|.)
Next, we consider G′, and note that using (2.10)–(2.11), together with the analogs of (2.12)–(2.13)

for G′, yields

P

|E1(G

′)| < (12p
′d(1− q′2)− ε)n


≤ exp(−cn) , (2.16)

P

|V1(G

′)| < (1− q′(1− p′ + p′q′)− ε)n

≤ exp(−cn) . (2.17)

Claim 2.3. For every ε, b, d > 0 there exist c, R > 0 such that the following holds for large enough n.

If G is a regular (b, d)-expander with n vertices, and S is a collection of disjoint vertex subsets of G,
each of size at least R, then the probability that there exist two subsets S1,S2 ⊂ S, with a total of at

least εn vertices in each, and no path between them in H ∼ Gε, is at most exp(−cn).

Proof. By Menger’s Theorem and our hypothesis on the edge expansion of G, for every two disjoint

subsets A,B ⊂ V (G) of size at least εn each, there are at least bεn edge-disjoint paths between them

in G. Since the total number of edges in G is dn/2, it follows that for every two such subsets A,B,

there are at least

bε
2 n


edge-disjoint paths of length at most


d
bε


between A,B in G . (2.18)

In particular, this holds for every two subsets S1 and S2 of S each containing at least εn vertices. The

probability that none of these short paths between S1 and S2 survive in Gε is at most


1− εd/(bε)

 1
2
bεn

≤ exp

−1

2bε
1+d/bεn


.

Altogether, a union bound over at most 22n/R possible pairs of subsets of S shows that the probability

that there exist S1,S2 violating the statement of the claim is at most

exp


R−12 log 2− 1
2bε

1+d/bε

n

.

Taking R large enough completes the proof. 

Corollary 2.4. For every ε, b, d > 0 there exist c, R > 0 so that the following holds for large enough n.

If G is a regular (b, d)-expander on n vertices with girth greater than 2R, then with probability 1−O(e−cn)

there exists a connected component C of G′ ∪ F ′ containing all but at most 2εn vertices of the set

V 1(G
′) :=


y ∈ V (G) : AR

x,y(G
′) holds for some x ∈ V (G)


.

In particular, C contains all but at most 2εn of the vertices V1(G
′).
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Proof. Let S(G′) = {Cy(G′) : y ∈ V 1(G
′)}, noting that every component in S(G′) is of size at least R

by definition. By Claim 2.3, with probability at least 1−exp(−cn), one cannot partition S(G′) into two

subsets S1,S2, each of size at least εn, such that there will be no path connecting them in G = G′∪F ′.

With this in mind, let U be a set of vertices obtained by collecting (in an arbitrary way) connected

components of S(G′) in G, until |U ∩V 1(G
′)| ≥ εn. Note that |U ∩V 1(G

′)| < εn+ |C ∩V 1(G
′)|, where

C is a connected component in G (the last one that joined U). If |C ∩ V 1(G
′)| ≤ |V 1(G

′)|− 2εn, then

the sets S1 = U ∩V 1(G
′) and S2 = V 1(G

′) \U (each of size at least εn) violate the above property. 

Note that, on the event stated in the above corollary, the component C contains all but at most

2εdn edges of E1(G
′) (losing at most d edges per vertex in V1(G

′) \ C). Therefore, using (2.16), with

probability at least 1− exp(−cn) we have that C is of linear size, and moreover,

|E(C)| > 1
2p

′d(1− q′2)n− (2d+ 1)εn .

In particular, the component C belongs to the set of components in the left-hand side of (2.9), so

E(C) ⊆ E1(G) , V (C) ⊆ V1(G) .

By (2.14), the total number of edges in all components C′ ∕= C with |C′| ≥ 2R is at most

|E1(G) \ E(C)| ≤

1
2pd(1− (q − ε)2)− 1

2p
′d(1− q′2)


n+ (2d+ 2)εn .

For small enough ε > 0, the right-hand is at most ε̃n, where ε̃ ↓ 0 as ε ↓ 0. The proof of (2.7) is

therefore concluded by the fact that, for a small enough ε > 0, one has ε̃ < η1/2, whence the total

number of edges in components C′ ∕= C with |C′| ≥ 2R is strictly less than that in C, thus in fact C = C1.
Finally, to establish (2.8), recall that, by (2.17), with probability at least 1− exp(−cn) we have

|V (C)| ≥ |V1(G
′)|− 2εn ≥ (1− q′(1− p′ + p′q′)− 3ε)n .

Comparing this with the upper bound on |V1(G)| in (2.15), and recalling that p′ ↑ p and q′ ↑ q as ε ↓ 0,

thereby concludes the proof of Proposition 2.2. 

From the proposition and (2.10),(2.12), we deduce the required estimate on |E(C1)|, while (2.11),(2.13)
analogously imply the required estimate on |V (C1)|.

Furthermore, from (2.7) we see that with probability 1− exp(−cn), at most 2εn vertices in G ∼ Gp

have a discrepancy between their degree in C1 and that in E1(G). The statement of Theorem 2.1 that

|Dk/n − αk| < ε thus follows from the fact that, for every x and 1 ≤ k ≤ d, the probability that

#{y : xy ∈ E1(G)} = k corresponds to αk (up to replacing 1−q by 1−q+ε in that expression), as this

event occurs iff x has exactly k neighbors in G, out of which there exists at least one vertex y which

satisfies {|Cy(C1 \ {xy})| ≥ R− 1} (up to replacing R− 1 by R in the case k = 1).
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2.2 The 2-core of the giant component

Recall the definition of Ax,y in (2.3), and define

E2(H) = {xy ∈ E(H) : AR
x,y(H) ∩AR

y,x(H) ∩ {xy ∈ E(H)}} ,

V2(H) = {x ∈ V (H) : xy ∈ E2(H) for some y ∈ V (H)} .
(2.19)

The main result we wish to prove in this subsection is the following characterization of the 2-core of a

typical random graph G ∼ Gp. It consists of a local rule for inclusion of vertices and edges in C(2)
1 (G),

the 2-core of its largest component, which determines it up to at most εn vertices. We also show that

all other components contribute a combined total of at most εn vertices to the 2-core of G. (It is easy

to see that, in both cases, a linear error of some ε′n vertices must be allowed, e.g., when every vertex

is part of a cycle of length O(R).)

Proposition 2.5. For every ε, b > 0 and d ≥ 3 there exist some R and c > 0 such that, if G is a

regular (b, d)-expander on n vertices with girth greater than 2R, and G ∼ Gp, then

P
E2(G)△E(C(2)

1 (G))
 > εn


≤ exp(−cn) , (2.20)

P
V2(G)△V (C(2)

1 (G))
 > εn


≤ exp(−cn) , (2.21)

whereas

P


i≥2

C(2)
i (G)

 > εn

≤ exp(−cn) . (2.22)

Proof. First observe that, for any graph H with girth greater than 2R,


E

C(2)


: C = Cx(H) for some x ∈ V (H)


⊂ E2(H) ;

indeed, for any such H and edge xy ∈ E(H), if AR
x,y does not hold then the component Cy(H \ {xy})

has size less than R, and hence it is a tree by the girth assumption, so xy cannot belong to the 2-core.

In particular, 

i≥1

E

C(2)
i (G)


⊂ E2(G) and



i≥1

V

C(2)
i (G)


⊂ V2(G) . (2.23)

Establishing the following bound (for some R, c depending on b, d, ε) will allow us to conclude the proof:

P

|E(C(2)

1 (G))| > (1− ε)12dp(1− q)2n

= 1−O(exp(−cn)) . (2.24)

In order to see that this indeed implies the statement of the proposition, note that, as in the argument

preceding (2.10), applying Hoeffding’s inequality to the appropriate edge-exposure martingale (where

the Lipschitz constant is as before) implies that, if G ∼ Gp then

P (|E2(G)|− E[|E2(G)|]| ≥ a) ≤ exp


− a2

4dn(d− 1)2R


, (2.25)
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where
1
2dp(1− q)2n ≤ E[|E2(G)|] ≤ 1

2dp(1− q + ε)2n ; (2.26)

thus, the combination of (2.23)–(2.24) will indeed imply (2.20), and in particular will also give (2.21),

as well as the upper bound (2.22) on the cumulative size of the 2-cores of C(2)
i (G) for i > 1.

It remains to prove (2.24). As before, let p′ = p− ε > 1/(d− 1) where ε′ = ε/(1− p′) such that, if

we take G′ ∼ Gp′ and F ′ ∼ Gε′ then we can produce G ∼ Gp via E(F ′) ∪ E(G′). The key to the proof

would be to randomly partition E(G) into Eb∪ER — denoting Eb as blue edges and Er as red edges

— and then connect the appropriate proportion of edges (x, y) ∈ E(G) in the giant component C1(G)

via one blue edge e and one red path to establish that e ∈ E(C(2)
1 (G)). In what follows, if H is a

subgraph of G, we let Hb denote the (blue) subgraph of H whose edges are E(H)∩Eb and, similarly,

we let Hr denote the (red) subgraph of H whose edges are E(H) ∩ Er.

Remark 2.6. In principle, to show that e ∈ E2(G
′) is also in E(C(2)

1 (G)), one would only need to show

that e ∈ C1 and provide a path that connects the two clusters — each of size at least R — that are at

its endpoints without using said edge. However, we must resort to witnesses in the form of a red path

between the endpoints x, y of the edge e which itself is blue due to our mechanism to guarantee that

e ∈ C1: the latter uses sprinkling (new edges in F ′) to connect large clusters (ones of size at least R)

to one another, and potentially might use, for instance, the edge e to connect the clusters of x and y.

To remedy this, we independently color each edge of G in blue with some probability ε̂, for a lower

bound on the number of blue edges in C(2)
1 (G), which will turn out to be asymptotically tight, despite

insisting on sprinkling only red edges to connect the large clusters (see Remark 2.12).

The random partition E(G) = Eb ∪ Er is defined as follows: we let each e ∈ E(G), independently,
belong to Eb with probability ε̂, given by

ε̂ := 3d
√
ε , (2.27)

and further suppose that

ε̂ < 1
4(24d)

−2/b , (2.28)

which we may assume w.l.o.g. since the event we wish to estimate in (2.24) is monotone in ε.

Our goal will be to show that the edges in the set

U :=

e ∈ E(G′

b) : AR
x,y(G

′
r) ∩AR

y,x(G
′
r) holds



represent, up to an arbitrarily small error, an ε̂-proportion of the 2-core C(2)
1 (G). This would entail

adapting our strategy of connecting small components via sprinkling to be restricted to red edges (so

we could guarantee e ∈ U would be part of a cycle), towards which we introduce the following notion.

Definition 2.7 (k-thick subsets). We say a subset S of vertices of a graph H is k-thick if there exists

a collection {Si} of disjoint connected subsets of H, each of size at least k, such that S =


Si.

The idea behind this definition is that, although Gr is not an expander — for instance, it contains

a linear proportion of isolated vertices — w.h.p., sets that are k-thick maintain edge expansion in Gr:
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Claim 2.8. Let G be a regular (b, d)-expander on n vertices, let ε > 0 and set Eb, Er as above for ε̂ as

in (2.27). There exists k(ε, b, d) such that, with probability 1−O(2−εn),

#{(x, y) ∈ Er : x ∈ S , y ∈ Sc} ≥ 1
2b|S| for every k-thick S ⊂ V (G) with εn ≤ |S| ≤ n/2 . (2.29)

Proof. By the edge expansion assumption, the probability that a given k-thick subset S as above —

denoting its size by s — violates the statement of the claim, is at most


⌈bs⌉
⌈bs/2⌉


ε̂bs/2 ≤ [(4 + o(1))ε̂]bs/2 .

On the other hand, if m = ⌈s/k⌉, then there are at most 22s

n
m


(ed)s such subsets, as we may enumerate

over all possible ways to write s = s1 + . . .+ sm for the subset sizes (some possibly empty; there are at

most m components since nonempty ones have size at least k), and then for each subset Si we first root

it in some vi ∈ V (G) — the total number of choices of these roots would be

n
m


— and then specify

its spanning tree out of at most (ed)si options (as all degrees are at most d; see, e.g., [5, Lemma 2]).

Hence, the probability that there exists some set S violating the statement of the claim is at most



εn≤s≤n/2


(1 + o(1))


en

s/k

1/k+o(1)

4ed(4ε̂)b/2
s

≤


s≥εn


12d(4ε̂)b/2

s
≤



s≥εn

2−s = O(2−εn) ,

where we used that k is large enough such that 4e(eε−1k)1/k < 12, as well as (2.28). 

Using the above claim, we can produce a version of Claim 2.3 that will only consider Er for

sprinkling.

Claim 2.9. For every b, d, ε > 0 there are k, c > 0 such that the following holds. If G is a regular

(b, d)-expander on n vertices, E(G) = Eb ∪ Er satisfying (2.29), S is a family of disjoint connected

subsets of G, each of size at least k, and H ∼ Gε independently, then with probability 1 − exp(−cn),

every two subsets S1,S2 of S, with at least εn vertices in each, are connected by a path in Hr.

Proof. Each of the subsets S1 and S2 addressed by the claim is by definition k-thick in G (by the

hypothesis on S) and contains at least εn vertices. Thus, for any such S1 and S2, if (U,U c) is a

minimal cut separating these subsets of vertices in Gr (i.e., S1 ⊂ U and S2 ⊂ U c for U minimizing the

number of edges between U,U c in Er) then w.l.o.g. U is also k-thick and |U | ≤ n/2 (suppose U is the

smaller part of the cut; we proceed by moving vertices that are not connected to S1 from U to U c,

noting that this would not increase the cut size). Hence, (2.29) implies that there are, with probability

1 − O(2−εn), at least 1
2εbn edges in this cut. By Menger’s Theorem, as in the proof of Claim 2.3,

we thus conclude that (2.18) holds for A = S1 and B = S2 with b/2 replacing b, and the rest of the

argument in the proof of Claim 2.3 holds as before (with b replaced by b/2). 

Following the same short proof of Corollary 2.4 with the single modification of using the above

claim instead of Claim 2.3 now yields its following analog w.r.t. sprinkling only red edges.
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Corollary 2.10. For every b, d, ε > 0 there are c, R > 0 so that the following holds. If G is a regular

(b, d)-expander on n vertices with girth greater than 2R, and E(G) = Eb∪Er satisfies (2.29), then with

probability 1−O(e−cn), there is a component C of G′
r ∪ F ′

r containing all but at most 2εn vertices of

V 1(G
′
r) :=


y ∈ V (G) : AR

x,y(G
′
r) holds for some x ∈ V (G)


.

Condition on the partition of E(G) into Eb ∪Er, and suppose that (2.29) holds (which occurs with

probability 1−O(exp(−cn)) as per Claim 2.8). Observe that if e = (x, y) ∈ U then x, y ∈ V 1(G
′
r) thanks

to the events AR
y,x(G

′
r),AR

x,y(G
′
r), respectively. By the last corollary, with probability 1−O(exp(−cn)),

all the edges of U up to at most 2dεn will thus belong to some component C of G′∪F ′
r. Moreover, each

such edge is blue, and its endpoints will be connected in C by a red path (in G′
r ∪F ′

r). In particular,

with probability 1−O(exp(−cn)), all but at most 2dεn edges of U are in the 2-core of C.
Note that, as argued above (2.12), the girth assumption on G implies that the events AR

x,y and AR
y,x

are independent, and by their definition these are also independent of the event {(x, y) ∈ Eb} (which

occurs with probability ε̂). Therefore, our bounds on P(AR
x,y) yield

1
2dp

′(1− q′)2ε̂n ≤ E| U| ≤ 1
2dp

′(1− q′ + ε)2ε̂n ,

and, as argued before, the standard concentration estimate via the edge-exposure martingale yields

P
| U|− E| U|

 ≥ a

≤ exp


− a2

4dn(d− 1)2R


,

so that, in particular, for some c(ε, d, R) > 0 and every sufficiently large n,

P

| U| ≥ 1

2dp
′(1− q′)2ε̂n− εn


= 1−O(exp(−cn)) .

In conclusion, the aforementioned single (linear) component C with most of the edges of U must w.h.p.

be the largest component C1 in light of our result in the previous section.

Denoting the number of edges and blue edges in the 2-core of C1(G), respectively, by

M :=
E(C(2)

1 (G))
 and M :=

E(C(2)
1 (G)) ∩ Eb

 ,

we conclude from the above analysis of U that, for some c(ε, d, R) > 0,

P

M ≥ 1

2dp
′(1− q′)2ε̂n− (2d+ 1)εn


= 1−O(exp(−cn)) .

At the same time, since the partition E(G) = Eb ∪ Er was performed independently of G ∼ Gp, we

have that, conditional on G, the random variable M is distributed as Bin(M, ε̂). In particular,

P

M ≤ M ε̂+ εn | G


≥ 1− exp


−(εn)2/(2M)


≥ 1− exp


−(ε2/d)n



by Hoeffding’s inequality and the fact that M ≤ dn/2 deterministically. Combining the last two

inequalities, it follows that, for some c(ε, d, R) > 0,

P

M ≥ 1

2dp
′(1− q′)2n− (2d+ 2)(ε/ε̂)n


= 1−O(exp(−cn)) ,
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and the fact that (2d + 2)/(ε/ε̂) <
√
ε by our definition of ε̂ in (2.27) (so that, with this probability,

M ≥ 1
2dp

′(1−q′)2n−
√
εn, where as before, 1

2dp
′(1−q′)2 → 1

2dp(1−q)2 as ε → 0) now establishes (2.24)

and thereby concludes the proof of Proposition (2.5). 

Remark 2.11. Note that our lower bound on |C(2)
1 (G)| — which was tight up to at most εn vertices —

consisted of edges in the 2-core that lie on a cycle; thus, w.h.p. there are at most εn bridges in C(2)
1 (G).

Remark 2.12. A subtler aspect of the lower bound on |C(2)
1 (G)| is that counted edges that are blue

and lie on cycles that, apart from this edge, are entirely red; up to an arbitrarily small error, this

matched the correct number of edges in C(2)
1 (G), where edges may lie on cycles that have mixed colors,

thus the effect of such mixed cycles is negligible! It is important to note that this is not the case for

the number of such cycles (e.g., consider the case when the girth tends to infinity), but rather for the

sake of determining whether a given edge is contained in such a cycle.

From Proposition 2.5, Eq. (2.20), and (2.25)–(2.26), we deduce the required estimate on |E(C(2)
1 )|.

Moreover, with probability 1− exp(−cn), at most 2εn vertices in G ∼ Gp have a discrepancy between

their degrees in C(2)
1 (G) and in E2(G). As before, the statement of Theorem 2.1 that |D∗

k/n− βk| < ε

follows from the fact that, for every x and k ≥ 2, the probability that #{y : xy ∈ E2(G)} = k

corresponds to βk, as this occurs iff x has exactly k neighbors y in G such that {|Cy(C(2)
1 \ {xy})| ≥ R}.

(By (1.1), the expression for βk in (2.2) equals

d
k


pk(1−q)k (1− p+ pq)d−k, i.e., P(Bin(d, p(1−q)) = k).)

3 Second largest component

3.1 Proof of Theorem 2

Fix d ≥ 3 and R ≥ 1, and let 1
d−1 < p < 1 and 0 < α < 1. We need the following result, which

(although it may be proved directly) follows immediately from our results in §2.

Claim 3.1. For every b > 0, d ≥ 3 and 1
d−1 < p < 1 there exist some c, δ, ε, R > 0 such that, if

G = (V,E) is a regular (b, d)-expander on n vertices with girth at least R, then there exists a subset M

of at least δn vertex-disjoint edges of G such that the graph G0 = (V,E \M) satisfies that G0 ∼ (G0)p
contains a connected component of size at least εn with probability 1−O(e−cn).

Proof. Using the notation in §2.2, let each edge in G be blue independently with probability ε̂, as

defined in (2.27) and red otherwise; denote the red and blue edges by Er and Eb, respectively.

Corollary 2.10 guarantees that, with probability 1−O(e−cn), the red graph Gr = (V,Er) satisfies that

Gr ∼ (Gr)p contains a component of size εn for some ε > 0. Finally, Eb is of size at least (ε̂/2)dn/2

with probability 1−O(e−cn), whence, in particular, it contains a matching M of size at least ε̂n/4. 

Our construction of a regular (b, d)-expander G on n vertices is as follows.

• Fix some arbitrary b1 > 0. Let R1 be the maximum of R and the girth requirement from

Theorem 1 w.r.t. ε = θ1/2, and construct an expander H1 on n1 ≍ nα vertices with girth at least
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R1, where n̂1 ≍ nα vertices have degree 2 and the rest have degree d, in the following way: As per

Claim 3.1, let H1 be obtained from a regular (b1, d)-expander on n1 = ⌊nα⌋ vertices with girth

at least R1 by subdividing each of the edges of M (given by that claim) into a path of length 2

via a new degree-2 vertex (for a total of n̂1 ≍ nα new degree-2 vertices). Let V̂1 denote the n̂1

vertices of degree 2 in H1.

• On each vertex v ∈ V̂1 in H1: connect it via new edges to d− 2 new (d− 1)-ary trees Tv, each of

depth

h =


1

2
(1− α) logd−1 n


.

• Let F be a d-regular graph on m vertices, for some fixed m, with girth at least R — e.g., for

concreteness, the Erdős–Sachs [9] graph — and an arbitrary edge (x, y) removed from it. Take

L =


2 + α

(1− α) logd−1(1/p)


,

and replace every edge (a, b) of each (d− 1)-tree Tv by a path of L copies of F (with {(xi, yi)}Li=1

denoting their deleted edges), where adjacent copies have yi connected to xi+1 by a new edge,

the vertex a is connected by a new edge to x1, and b is connected by a new edge to yL.

Note that this did not modify any of the degrees in the original vertices of the (d − 1)-ary tree

Tv (which are thus d everywhere except for the degree-1 leaves).

• Identify each of the n̂2 ≍ n
1
2
(1+α) total leaves in all trees Tv as above, in an arbitrary way, to the

vertices of one final regular b2-expander H2 with n̂2 vertices of degree d − 1 and n2 vertices of

degree d, whose girth is at least R1, where n2 ≍ n is such that altogether there are n vertices.

It is easy to see that the G is a regular (b, d)-expander for some fixed b > 0, depending only on b1, b2, d,

as every set of s vertices must have at least s/3 vertices belong either to H1, or to the interior vertices

of the trees {Tv : v ∈ H1}, or to H2, thus the required expansion can be inferred from the one within

that corresponding expander (out of the three) by itself. It remains to examine Gp.

By Theorem 1, the size of the largest component C1 in (H1)p is of order nα (thanks to Claim 3.1)

with probability at least 1 − exp(−cnα). Each vertex v of this component connects to H2 in Gp (i.e.,

there is a path in (Tv)p from the root to one of the leaves) with probability at most (d− 1)hphL; thus,

the probability that H1 is connected to H2 in Gp is at most

n̂2 p
hL ≍ n(1+α)/2phL ≤ n−1/2 = o(1) .

Furthermore, the size of this augmented component in Gp is stochastically dominated by the combined

size of O(nα) i.i.d. GW-trees with offspring distribution Bin(d − 1, pL) (multiplied by an extra factor

of L|V (F )| = O(1) due to the L copies of the graph F ). Since pL < d−2, in particular these GW-trees

are subcritical, hence the size of this component is of order nα w.h.p.

On the other hand, the entire graph has girth at least R and is a d-regular expander, hence contains

a linear component with probability at least 1− exp(−cn) by Theorem 1. 
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Remark 3.2. In the above construction, unlike the case of G(n, p), some edges can have a polynomially

small probability of belonging to the giant, even though the girth can be made arbitrarily large and in

particular the local neighborhoods (to an arbitrary distance) look all alike.

3.2 Proof of Theorem 3

The basic building block in the construction, which was already used for the construction in the proof

of Theorem 2, is the tree T (k, h, h∗, L∗), for integers k ≥ 2 and h, h∗, L∗ ≥ 1, obtained by

(a) taking a k-ary tree with h levels, and

(b) subdividing all edges between parent nodes in the last h∗ levels (i.e., in every level j ≥ h−h∗) and

their children to a path of length L∗.

Let 0 < p < 1, fix some sufficiently small ε > 0, and set

d := ⌈(1/p)2/ε⌉ , (3.1)

and define

hn := ⌊logd n⌋ , α :=

ε−1 log1/p d


, β :=


2 log1/p d


.

With these notations, our construction is the following graph G on |V (G)| ≍ n vertices.

(i) Let T1 = T (d, hn, ⌊εhn⌋,α). Denote its root by v and its leaves by {u′1, . . . , u′N} (so n/d < N ≤ n).

(ii) Let T2 = T (d, hn, ⌊εhn⌋,β) and denote its leaves by {u′′1, . . . , u′′N}.

(iii) Let F be the graph formed by taking some (arbitrary) d-regular expander F0 on the vertex set

{w1, . . . , wN}, and then subdividing each edge of F0 into a path of length β.

(iv) Add the edges (u′i, wi) and (u′′i , wi) for all i = 1, . . . , N .

Claim 3.3. For large enough n, the graph G above satisfies diam(G) ≤ (1 + 6ε) log1/p n.

Proof. First note that the height of T2 is

ℓ2 := hn + (β − 1)⌊εhn⌋ ≤ logd n+ 2ε log1/p n ≤ 5
2ε log1/p n ,

where we used the fact that logd n < (ε/2) log1/p n by (3.1). Therefore

distG(x, y) ≤ R := 2ℓ2 + β + 2 = 5ε log1/p n+O(1) for every x, y ∈ V (F ) ∪ V (T2) ,

where the additive β + 2 accounts for possibly traversing from the vertex x to the closest vertex wi to

it and then to vi (at total distance at most β/2 + 1 from x), and similarly for y.

Next, consider x ∈ V (T1) vs. y ∈ V (F ) ∪ V (T2). If u′i is some descendent of x in the tree T1, then

as established above, dist(y, u′i) ≤ R, while dist(x, u′i) is at most the height of T1, given by

ℓ1 := hn + (α− 1)⌊εhn⌋ ≤ logd n+ log1/p n ≤ (1 + ε/2) log1/p n ,
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and overall

dist(x, y) ≤ ℓ1 +R for every x ∈ V (T1) and y ∈ V (F ) ∪ V (T2) .

Finally, consider x, y ∈ V (T1), let u′i and u′j be some descendants of x, y, respectively, and write

dx = dist(x, u′i) and dy = dist(y, u′j). If dx + dy ≤ ℓ1, then dist(x, y) ≤ dx + dy + dist(u′i, u
′
j) ≤ ℓ1 +R,

and otherwise dist(x, y) ≤ dist(v, x) + dist(v, y) ≤ (ℓ1 − dx) + (ℓ2 − dy) < ℓ1, thus overall,

dist(x, y) ≤ ℓ1 +R for every x ∈ V (T1) and y ∈ V (G) .

Plugging in the values of ℓ1 and R we see that diam(G) ≤ ℓ1 +R ≤ (1 + 6ε) log1/p n for all sufficiently

large n (absorbing the additiveO(1)-term inR via the increased pre-factor of ε log1/p n), as required. 

Claim 3.4. W.h.p., the random graph G ∼ Gp satisfies |C1(G)| ≤ n1−ε/3.

Proof. Let U1 denote the vertices x ∈ V (G) which are at distance at most (1 − ε/2 + αε/2)hn from

v, the root of T1 (these are the vertices of the subtree of T1 in the first (1 − ε/2)hn levels of the tree

before the subdivision, as well as the new vertices in the subdivided edges between them). Similarly,

let U2 denote the vertices x ∈ V (G) whose distance from the root of T2 is at most (1− ε/2 + βε/2)hn,

and let U3 = V (G) \ (U1 ∪ U2). By construction, |Ui| = O(d(1−ε/2)hn) = O(n1−ε/2) for i = 1, 2.

At the same time, if x ∈ U3 then exploring the neighborhood of x in G via Breadth-First-Search

reveals edges that were subdivided (in either F , T1 or T2) into paths of length at least β, to within

depth (prior to the subdivision) of at least ℓ := ⌈(ε/2)hn⌉. In particular, this exploration process in

G ∼ Gp is stochastically dominated by a Galton–Watson tree with offspring variable Bin(d, pβ). Thus,

if ζi are i.i.d. such random variables, and Λ is the total progeny of this Galton–Watson tree, then

P(Λ > k) ≤ P


k

i=1

(ζi − 1) ≥ 0


≤ P


Bin(kd, pβ) ≥ k


≤


kd

k


pβk ≤


edpβ

k
,

which, for k = ℓ and using pβ < d−2, is at most (d/e)−ℓ = O

n− 2

5
ε

provided that ε is sufficiently small.

So, if U ′
3 = {x ∈ U3 : |Cx(G)| > ℓ}, then E|U ′

3| = O(n1− 2
5
ε). As |C1(G)| ≤ max{ℓ, |U1| + |U2| + |U ′

3|},
we find that E|C1(G)| = O(n1− 2

5
ε), which implies the statement of the claim. 

Claim 3.5. For large enough n, the random graph G ∼ Gp satisfies

P

diam(Cv(G)) > (1− ε) log1/p n


≥ 1− ε .

Proof. Let A denote the vertices of T1 at distance h∗n = hn − ⌊εhn⌋ from its root v, and let B be the

set of vertices whose distance from v, prior to the subdivision of the edges of the tree T1, was h
∗
n + ℓ,

where ℓ = ⌊(ε− 2ε2)hn⌋. The probability that percolation on the subtree of T1 rooted at some x ∈ A

survives to intersect B is at least

pαℓ ≤ d−ε−1(ε−2ε2)hn = n−1+2ε .
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Recall that, if Zt is the size of generation t in a Galton–Watson tree with offspring variable Bin(d, p),

such that m = dp > 1 and its extinction probability is 0 < q < 1, then Ztm
−t converges a.s. as

t → ∞ to a random variable W which, except for a mass of 1 − q at W = 0, has an absolutely

continuous distribution on (0,∞) (see, e.g., [2, §I.12]). In particular, there exists δ > 0 such that

P(Zt ≥ δmt) > 1 − q − ε/3 for every sufficiently large t. Further, since q is monotone decreasing in

d, our choice of d in (3.1) readily implies (recall (1.1)) that q < ε/3 provided ε is small enough, thus

overall P(Zt ≥ δmt) > 1− 2
3ε for every large enough t. Specialized to our setting, we take t = h∗n, and

noting that

mh∗
n ≥ d−1n1−εp(1−ε) logd n ≥ d−1n1− 3

2
ε+ 1

2
ε2

(using that log(1/p) < 1
2ε log d by (3.1)), we infer that the following bound on the size of A′, the set of

all vertices x ∈ A such that there exists a path from v to x in G: for every sufficiently large n,

P

|A′| ≥ n1− 3

2
ε

≥ 1− 2

3ε .

On the event |A′| ≥ n1− 3
2
ε, the size of the set B′ of vertices y ∈ B that are connected to v in G

stochastically dominates a random variable Z ∼ Bin(n1− 3
2
ε, n−1+2ε) by our bound on the event that

the subtree of x ∈ A survives the percolation to intersect B. Since Z > 0 w.h.p. (being concentrated

around nε/2), it then follows that P(B′ ∕= ∅) ≥ 1 − 2
3ε − o(1), whereas every vertex y ∈ B′ ∩ Cv(G)

would imply that

diam(Cv(G)) ≥ dist(v, y) ≥ h∗n + αℓ > (1− 2ε) log1/p n . 

As argued in the proof of Theorem 2, the graph obtained by connecting the expander F to Ti

is clearly also an expander, hence (iterating this) so is the entire graph G. The combination of

Claims 3.3, 3.4 and 3.5 thus concludes the proof of Theorem 3. 

4 Separators, long paths and complete minors

In this section we research further typical properties of a random subgraph of a high girth constant

degree expander. The properties are: non-existence of a small separator, existence of a linearly long

path, and existence of a large complete minor. The results obtained are “soft”, so to say, and lack the

precision of the conclusions of Theorem 1; still, we believe they are of interest and complement nicely

the more accurate results. We start with arguing that a random subgraph of a high girth constant

degree expander typically has all its separators linear in n. Given a graph G = (V,E) on n vertices, a

vertex set S ⊂ V is called a separator if there is a partition V = A ∪B ∪ S of the vertex set of G such

that G has no edges between A and B, and |A|, |B| ≤ 2n/3. Separators serve to measure quantitatively

the connectivity of large vertex sets in graphs; the fact that all separators in G are large indicates that

it is costly to break G into large pieces not connected by any edge.

Theorem 4.1. Fix d ≥ 3 and 1
d−1 < p < 1. For every b > 0 there exist some δ, c1, R > 0 such that, if

G is a regular (b, d)-expander on n vertices with girth exceeding R, then with probability 1−O(e−c1n),

the largest connected component C1 of the random graph G ∼ Gp has no separator of size at most δn.
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Proof. We first describe the idea of the proof. We will argue that if G ∼ Gp has a small separator S,

then by deleting all edges touching S we get a graph G′ ∼ Gp′ without a connected component of size

as large as dictated by Theorem 1, for some 1
d−1 < p′ < p. Since deleting a relatively small number

of edges touching S incurs a relatively small penalty when going from G to G′, we will thus conclude

that the probability of G to have a small separator must be exponentially small to begin with.

Now we provide a full proof, implementing rigorously the above described outline. For 1
d−1 < p′ < p,

to be chosen momentarily, denote

θ1 := θ1(p) , θ′1 := θ1(p
′) ,

where we apply (1.2) to define θ1, θ
′
1. Choose p

′ so θ′1 =
5
6θ1 (this is possible by the continuity of θ1(p)),

and let

ρ =
p′

p
.

Notice that a random graph G′ ∼ Gp′ can be obtained first by drawing a random graph G ∼ Gp, and

then by retaining every edge of G with probability ρ independently.

Let A be the following event addressing G ∼ Gp for some (small enough) δ > 0 to be set later:

A =

∃S ⊂ [n] : |S| ≤ δn and |C1(G \ S)| ≤ 11

15θ1n

,

and let B be the following event addressing G′ ∼ Gp′ :

B =

|V (C1(G′))| ≤ 11

15θ1n

.

Suppose G satisfies A, and choose S as in the definition of A. There are at most d|S| ≤ δdn edges

touching S in G. The probability to erase all these edges when going from G to G′ is at most (1−ρ)δdn.

However, if none of these edges belongs in G′, then |C1(G′)| ≤ 11
15θ1n = 22

25θ
′
1n. It thus follows that

P(B) ≥ P(A) (1− ρ)δdn .

On the other hand, by Theorem 1, the order of C1(G′) is very close to θ′1n with probability exponentially

close to 1, making the event B exponentially unlikely. Specifically, applying Theorem 1 in Gp′ with

ε = 3
25θ

′
1, we have P(B) ≤ Ce−cn for C, c > 0. Hence,

P(A) ≤ Ce−cn (1− ρ)−δdn ≤ e−c′n ,

for δ > 0 small enough (as a function of other parameters).

Finally, observe that if G ∼ Gp does not satisfy A, then for every subset S of at most δn vertices, the

graph G−S has some connected component of size more than 11
15θ1n. Invoking Theorem 1 once again,

this time in Gp with ε = 1
10θ1, we derive that with probability exponentially close to 1, the random

graph G ∼ Gp does not satisfy A, and its largest connected component satisfies |C1(G)| ≤ 11
10θ1n.

Therefore, in this case, recalling the definition of a separator, we derive that no subset S of at most δn

vertices can be a separator in C1(G). 
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As we have indicated, non-existence of small separators is a key fact in deriving other typical

properties of (the giant component) of a percolated high girth expander in the super-critical regime.

They are given in the following two corollaries.

Corollary 4.2. Fix d ≥ 3 and 1
d−1 < p < 1. For every b > 0 there exist some δ, c, R > 0 such

that, if G is a regular (b, d)-expander on n vertices with girth exceeding R, then with probability at least

1− exp(−cn), the random graph G ∼ Gp contains a path of length at least δn.

Proof. We need the following result (see, e.g. [12, Proposition 2.1], including a simple proof):

Lemma 4.3. Let k, l be positive integers. Assume G = (V,E) is a graph on more than k vertices,

where every A ⊂ V of size |A| = k has at least l neighbors in V \A. Then G contains a path of length l.

According to Theorems 1 and 4.1, with probability exponentially close to 1, the giant component

C1 of G ∼ Gp is of size close to θ1n and has no separator of size at most δn; we can assume δ ≪ θ1. Let

A be a subset of C1 of cardinality |A| = |V (C1)|/3. Then by the definition of a separator, A has at least

δn neighbors outside. It thus follows by Lemma 4.3 that C1 contains a path of length at least δn. 

As it frequently happens in random graphs, getting a linearly long cycle from a linearly long path

is pretty easy, here is a brief sketch of the argument. Choose 1
d−1 < p′ < p < 1 and argue that a

random graph G ∼ Gp′ has w.h.p. a path P of length δ′n, for some constant δ′ > 0. Let P1, P2 be the

first and the last thirds of P , respectively. Then by applying Menger’s Theorem to the base graph G,
we derive that it contains linearly many constant length paths between V (P1) and V (P2). With high

probability at least one of these short paths survives sprinkling (taking us from Gp′ to Gp); its union

with P contains a linearly long cycle.

We now discuss embedding complete minors in percolated expanders. Let G = (V,E), and let

t > 0 be an integer. We say that G contains a minor of the complete graph Kt if there is a collection

(V1, . . . , Vt) of pairwise disjoint vertex subsets in V such that each Vi spans a connected subgraph in G,

and in addition G has an edge between every pair of subsets Vi, Vj . Observe trivially that if G contains

a minor of Kt, then |E(G)| ≥

t
2


; this trivial bound provides an obvious but meaningful benchmark

for minor embedding statements.

Kawarabayshi and Reed proved in [11] that a graph G on n vertices has a minor of the complete

graph Kh or a separator of order O(h
√
n). Since by Theorem 4.1 the random graph G ∼ Gp has all

separators of size at least δn in its giant component C1 (whose size is much larger than δn by Theorem 1)

with probability exponentially close to 1, we conclude:

Corollary 4.4. Fix d ≥ 3 and 1
d−1 < p < 1. For every b > 0 there exist some δ, c, R > 0 such that, if

G is a regular (b, d)-expander on n vertices with girth exceeding R, then with probability 1 − O(e−cn),

the random graph G ∼ Gp contains a minor of Kδ
√
n.

The order of magnitude for the maximal h such that G contains a minor of Kh is obviously optimal,

as the base graph G has only linearly many edges to begin with.
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