Abstract

We introduce a model of a controlled random graph process. In this model, the edges of the complete graph K_n are ordered randomly and then revealed, one by one, to a player called Builder. He must decide, immediately and irrevocably, whether to purchase each observed edge. The observation time is bounded by parameter t, and the total budget of purchased edges is bounded by parameter b. Builder’s goal is to devise a strategy that, with high probability, allows him to construct a graph of purchased edges possessing a target graph property P, all within the limitations of observation time and total budget. We show the following:

- Builder has a strategy to achieve k-vertex-connectivity at the hitting time for this property by purchasing at most $c_k n$ edges for an explicit $c_k < k$; and a strategy to achieve minimum degree k (slightly) after the threshold for minimum degree k by purchasing at most $(1 + \varepsilon)kn/2$ edges (which is optimal).
- Builder has a strategy to create a Hamilton cycle at the hitting time for Hamiltonicity by purchasing at most Cn edges for an absolute constant $C > 1$; this is optimal in the sense that C cannot be arbitrarily close to 1. This substantially extends the classical hitting time result for Hamiltonicity due to Ajtai–Komlós–Szemerédi and Bollobás.
- Builder has a strategy to create a perfect matching by time $(1 + \varepsilon)n \log n/2$ while purchasing at most $(1 + \varepsilon)n/2$ edges (which is optimal).
- Builder has a strategy to create a copy of a given k-vertex tree if $t \geq b \gg \max\{(n/t)^{k-2}, 1\}$, and this is optimal;
- For $\ell = 2k + 1$ or $\ell = 2k + 2$, Builder has a strategy to create a copy of a cycle of length ℓ if $b \gg \max\{n^{k+2}/\ell^{k+1}, n/\sqrt{t}\}$, and this is optimal.
1 Introduction

1.1 The model

The random graph process, introduced by Erdős and Rényi [22, 23], is a stochastic process that starts with an empty \(n \)-vertex graph and, at each step, gains a new uniformly selected random edge. At any fixed time \(t \), the process is distributed as the uniform random graph \(G(n, t) \). A graph property is a family of graphs that is closed under isomorphisms. It is monotone if it is closed under addition of edges. A vast body of literature is concerned with finding thresholds for various monotone graph properties in the random graph process, namely, with finding time \(t_c \) such that the random graph process belongs to \(P \) with high probability (whp; that is, with probability tending to 1 as \(n \to \infty \)) whenever \(t \) is much (or somewhat) larger than \(t_c \) and does not belong to \(P \) whp if \(t \) is much (or somewhat) smaller than \(t_c \).

In many cases, if one observes the random graph process at time \(t \) above the threshold, the graph has the desired property but, in fact, contains a much sparser subgraph that has the property. For example, one of the outstanding results in this model regards a threshold for Hamiltonicity: Komlós and Szemerédi [38] and, independently, Bollobás [17] showed that if \(2t/n - \log n - \log \log n \) tends to infinity, then the random graph process, at time \(t \), contains a Hamilton cycle whp. Evidently, not all \(\sim n \log n / 2 \) observed edges must be included in the resulting graph for it to be Hamiltonian (as any Hamilton cycle only uses \(n \) edges). Nevertheless, when an edge arrives, it is generally hard to determine whether it will be crucial for Hamiltonicity.

The above motivates the following “online” version of building a subgraph of the random graph process. We think of it as a one-player game, where the player (“Builder”) has a limited “budget”. Edges “arrive” one at a time in random order and are presented to Builder. Whenever he observes an edge, he must immediately and irrevocably decide whether to purchase it. A non-purchased edge is thrown away and never reappears. The time (total number of presented edges) and the budget (maximum number of edges Builder can purchase) are both capped. The question is as to whether or not, under the given time and budget constraints, Builder has a strategy that allows him to obtain, whp, a particular monotone graph property in the graph of purchased edges.

To demonstrate the model, consider the property of connectedness. Let \(\tau_C \) be the (random) time at which the random graph process becomes connected. Evidently, if Builder wishes to construct a connected subgraph of the random graph process, he must purchase at least \(n - 1 \) edges. However, in this case purchasing \(n - 1 \) edges suffices: Builder’s strategy would be to purchase an edge if and only if it decreases the number of connected components in his graph. That way, Builder maintains a forest, which becomes connected exactly at time \(\tau_C \). Therefore, in this example, Builder does not have to “pay” for having to make decisions online. However, this is not always the case. For example, if Builder wants to purchase a triangle and wishes to do so while observing \(o(n^2) \) edges, he must purchase (many) more than three edges (see Theorem 6).

We denote the underlying random graph process at time \(t \) (namely, after \(t \) edges have been presented to Builder) by \(G_t \) (where the number of vertices, \(n \), is implicit). As we mentioned earlier, \(G_t \) is distributed as the uniform random graph \(G(n, t) \). The hitting time for a monotone graph property \(P \) is the (random) minimum time \(t \) for which \(G_t \) has \(P \). Builder’s graph at time \(t \), denoted \(B_t \), is a subgraph of \(G_t \) on the same vertex set that consists of the edges purchased by Builder by time \(t \). A \((t, b)\)-strategy of Builder is a (potentially random) function that, for any \(s \leq t \), decides whether to purchase the edge presented at time \(s \), given \(B_{s-1} \), under the limitation that \(B_s \) has at most \(b \) edges.
1.2 Our results

Our first result discusses a strategy for constructing a subgraph with a given minimum degree and, for \(k \geq 3 \), of a given vertex-connectivity, as quickly as possible. For every positive integer \(k \), denote by \(\tau_k \) the hitting time for minimum degree \(k \) in the random graph process. It was proved by Erdős and Rényi [24] that \(\tau_k = \frac{b}{2} (\log n + (k - 1) \log \log n + O(1)) \) whp (see Lemma 2.8). Let \(\kappa \) denote vertex-connectivity.

Theorem 1 (Minimum degree and vertex-connectivity at the hitting time). For every positive integer \(k \) there exists a constant \(c_k \in (k/2, 3k/4] \) such that the following holds. If \(b \geq c_k n + \omega(\sqrt{n} \log n) \) then there exists a \((\tau_k, b)\)-strategy \(B \) of Builder such that

\[
\lim_{n \to \infty} \mathbb{P}(\delta(B_{\tau_k}) \geq k) = 1.
\]

If \(k \geq 3 \), the same strategy guarantees

\[
\lim_{n \to \infty} \mathbb{P}(\kappa(B_{\tau_k}) \geq k) = 1.
\]

For \(k = 1 \), as we mentioned in the introduction, a sufficient and necessary budget for connectivity at the hitting time is \(n - 1 \). For \(k = 2 \), Theorem 3 below implies that a budget of \(O(n) \) suffices for 2-connectivity at the hitting time for minimum degree 2. The constant \(c_k \) in Theorem 1 is explicit and computable (see Eq. (1) in Section 3; the first three values in the sequence \(c_k \) are \(\frac{3}{4}, \frac{11}{8} \) and \(\frac{63}{32} \)), and is roughly \(k/2 \) when \(k \) is large (see Corollary 3.2). We believe that at the hitting time \(\tau_k \), that constant is optimal (see Conjecture 7 and the discussion following it). However, if we allow the time to be optimal only asymptotically, then an asymptotically optimal budget suffices.

Theorem 2 (Minimum degree). Let \(k \) be a positive integer and let \(\epsilon > 0 \). If \(t \geq (1 + \epsilon)n \log n/2 \) and \(b \geq (1 + \epsilon)kn/2 \) then there exists a \((t, b)\)-strategy \(B \) of Builder such that

\[
\lim_{n \to \infty} \mathbb{P}(\delta(B_t) \geq k) = 1.
\]

The above theorem is tight in the following sense: if \(t \leq (1 - \epsilon)n \log n/2 \) then the underlying random graph process has, whp, isolated vertices; and if \(b < kn/2 \) then every strategy will fail since Builder will not be able to purchase enough edges to obtain the required minimum degree.

We remark that after an earlier version of this paper appeared online, a vertex-connectivity version of Theorem 2 that holds for every \(k \geq 2 \) has been proved by Lichev [43] (see Section 6). Theorem 2 follows from Theorem 4 below (for \(k = 1 \)) and from Lichev’s result (for \(k \geq 2 \)). We keep it here due to its short and simple proof (see Section 4.1). Note that Theorem 1 is not implied by Lichev’s result, as Theorem 1 implies a strategy that succeeds whp at the hitting time \(\tau_k \), whereas Lichev’s strategy typically requires \(\omega(n) \) additional steps (which can, as we demonstrate later in Theorem 3 and the discussion following it, make a big difference). An asymptotic version of Lichev’s result, according to which for every \(\epsilon > 0 \) there exists \(k_0 \) such that for every \(k \geq k_0 \) there exists a strategy to build a \(k \)-vertex-connected graph in time \((1 + \epsilon)n \log n/2 \) and with budget \((1 + \epsilon)kn/2 \) follows from Theorem 1 together with the observation that \(c_k \sim k/2 \) when \(k \) is large (Corollary 3.2).

We continue to Hamiltonicity. The classical hitting-time result of Bollobás [17] and independently of Ajtai, Komlós, and Szemerédi [1] states that the random graph process, whp, becomes Hamiltonian as soon as its minimum degree reaches 2. As we reminded earlier, \(\tau_2 = \Theta(n \log n) \), while a Hamilton cycle has only \(n \) edges. The following result states that there exists an online algorithm choosing only linearly many edges from the first \(\tau_2 \) edges of the random graph process that still obtains a Hamilton cycle whp. Moreover, as we show in the proof, this algorithm is extremely simple, deterministic, and requires only local information. The theorem recovers – and substantially strengthens – the aforementioned classical result.
Theorem 3 (Hamiltonicity at the hitting time). There exists $C > 1$ for which there exists a (τ_2, Cn)-strategy B of Builder with

$$\lim_{n \to \infty} \mathbb{P}(B_{\tau_2} \text{ is Hamiltonian}) = 1.$$

The constant C we obtain in Theorem 3 is large, and we made no serious effort to optimise it. A natural question is whether it could be as low as $1 + \varepsilon$ for every $\varepsilon > 0$. The answer, found by Anastos [3] (see the concluding remarks there), is negative. As part of the proof of Theorem 3, we show that the so-called random k-nearest neighbour graph (see Section 3) – for large enough constant k – is whp Hamiltonian (Theorem 3.4). This partially solves an open problem of the first author [29, Problem 45]. To prove Theorem 3, we prove a stronger hitting time version of Theorem 3.4 (Theorem 3.5) which states that the k-nearest neighbour graph, considered as a process and stopped as the minimum degree becomes 2, is whp Hamiltonian.

We remark that an immediate corollary of Theorem 3 (using Lemma 2.8) is that if $t \geq (1 + \varepsilon)n \log n/2$ (namely, slightly after the Hamiltonicity threshold) and $b \geq Cn$ (namely, when the budget is inflated by a constant), then there exists a (t, b)-strategy of Builder that succeeds (whp) in building a Hamilton cycle. In an earlier version of this paper that appeared online, we also proved a complementary statement: if $t \geq Cn \log n/2$ and $b \geq (1 + \varepsilon)n$, then there exists a “successful” (t, b)-strategy (see Theorem 4.1). After that early version appeared online, Anastos [3] proved, using different and more involved techniques, that Hamiltonicity can be achieved in asymptotically optimal time and budget. Namely, he showed that in the above statement, one could take $C = C(\varepsilon) = 1 + \varepsilon$. He states this result as a special case in a model that generalises both the budget model discussed here and the so-called Achlioptas process (see discussion in Section 1.4). We leave here our original proof due to its relative shortness and simplicity (see Section 4.2.2). Note that Theorem 3 does not follow from the work of Anastos.

For perfect matchings, we show that there exists an asymptotically-optimal-time asymptotically-optimal-budget strategy.

Theorem 4 (Perfect matchings). Suppose n is even. For every $\varepsilon > 0$ if $t \geq (1 + \varepsilon)n \log n/2$ and $b \geq (1 + \varepsilon)n/2$ then there exists a (t, b)-strategy B of Builder such that

$$\lim_{n \to \infty} \mathbb{P}(B_t \text{ has a perfect matching}) = 1.$$

An earlier version of this paper that appeared online contained a non-optimal version of Theorem 4 (analogous to Theorem 4.1). Recently, Anastos [3] proved a more general version of Theorem 4 (see remark after Theorem 4.1), using different and more involved techniques. The proof we provide here is more elementary.

The next two theorems discuss optimal strategies for purchasing small subgraphs. We resolve the problem whenever the target subgraph is a fixed tree or a cycle.

Theorem 5 (Small trees). Let $k \geq 3$ be an integer and let T be a k-vertex tree. If $t \geq b \geq \max\{(n/t)^{k-2}, 1\}$ then there exists a (t, b)-strategy B of Builder such that

$$\lim_{n \to \infty} \mathbb{P}(T \subseteq B_t) = 1$$

and if $b \ll (n/t)^{k-2}$ then for any (t, b)-strategy B of Builder,

$$\lim_{n \to \infty} \mathbb{P}(T \subseteq B_t) = 0.$$
Remark. We show in the proof of Theorem 5 that if $t \gg n$ then, in fact, there exists a (t, b)-strategy for $b = k - 1$ that succeeds whp in building a copy of a k-vertex tree.

Theorem 6 (Short cycles). Let $k \geq 1$ be an integer and let $H = C_{2k+1}$ or $H = C_{2k+2}$. Write $b^* = b^*(n, t, k) = \max\{n^{k+2}/t^{k+1}, n/\sqrt{t}\}$. If $t \gg n$ and $b \gg b^*$ then there exists a (t, b)-strategy B of Builder such that

$$\lim_{n \to \infty} \mathbb{P}(H \subseteq B_t) = 1,$$

and if $t \ll n$ or $b \ll b^*$ then for any (t, b)-strategy B of Builder,

$$\lim_{n \to \infty} \mathbb{P}(H \subseteq B_t) = 0.$$

For a visualization of Theorem 6 see Fig. 2. For discussion on the difficulty arising in handling graphs with more than one cycle see Section 6.
1.3 Tools and techniques

Expanders Expanders are graphs in which (sufficiently) small sets expand. Namely, these are graphs in which the neighbourhood of each small set is larger than that set by a constant factor\(^1\). It is well known that connected expanders are helpful in finding Hamilton cycles (see Lemma 2.12); more concretely, connected non-hamiltonian expanders have many “boosters”, namely, non-edges whose addition to the graph creates a graph that is either Hamiltonian or whose longest path is longer (for a comprehensive account, we refer the reader to [39]). Thus, expanders will play a crucial role in the proof of Theorem 3 (and also in the proof of Theorem 4): Builder will attempt to construct (sparse, and therefore cheap) connected expanders within the random graph process. A standard method for obtaining sparse expanders in random graphs is choosing an appropriate random (sub)graph model. Natural candidates are discussed in the following paragraphs.

Random \(k\)-out graphs In the goals described in Theorems 1 to 4, Builder must achieve a certain minimum degree in his (spanning) graph. The (standard) random graph process is quite wasteful in this regard, as to avoid isolated vertices, a superlinear number of edges must arrive. Thus, a wise Builder would instead construct a much sparser subgraph of the random graph process with the desired minimum degree. A classical sparse graph with a given minimum degree is the random regular graph (see, e.g., in [30]). However, such a graph is generally very hard to construct online. A much simpler alternative is the so-called random \(k\)-out graph (see, e.g., in [30]). In the \(k\)-out graph, each vertex chooses, random, independently, and without repetitions, \(k\) neighbours to connect to. Thus, the total number of edges in a \(k\)-out graph is at most \(kn\), and the minimum degree is at least \(k\). Unfortunately, \(k\)-out graphs are not generally subgraphs of the random graph process at the hitting time for minimum degree \(k\). We will therefore analyse a different model, which can be considered the undirected counterpart of the \(k\)-out graph (see the next paragraph). Nevertheless, we will exploit the simplicity of the \(k\)-out graph to analyse its (slightly more complicated) undirected counterpart.

Random \(k\)-nearest neighbour graphs Suppose the edges of the complete graph are endowed with (potentially random) “lengths”. The graph made up only of the \(k\) shortest edges incident with each vertex is called the random \(k\)-nearest neighbour graph, and has been studied in various, primarily geometric, contexts (see, e.g., [21]). When the weights are independent uniform random variables supported on \([0,1]\), the model becomes a symmetric random graph\(^2\), which we denote by \(O_k\) (see Section 3). To prove Theorem 1, we devise a simple strategy that emulates \(O_k\). Since the minimum degree of \(O_k\) is obviously \(k\), the statement would follow from a theorem of Cooper and Frieze [20] according to which the number of edges of \(O_k\) is at most \(cn\) for some concrete constant \(c = c(k) < k\) which is roughly \(k/2\) when \(k\) is large (see Theorem 3.1 and Corollary 3.2).

By observing that \(O_k\) is stochastically dominated by the random \(k\)-out graph (Observation 3.7), we prove that it is a connected (Corollary 3.12) expander (Corollary 3.11), and use that to prove that it is Hamiltonian (Theorems 3.4 and 3.5). We use that helpful fact in several places: when aiming to create a Hamilton cycle at the hitting time and with inflated budget, we construct a subgraph of \(O_k\) that is already Hamiltonian; when creating a Hamilton cycle under an asymptotically optimal budget, we emulate copies of \(O_k\) in small parts of the graph, to allow us to absorb a long path into a Hamilton cycle; finally, we use a similar approach for the construction of perfect matchings.

\(^1\)We need, and hence use, a rather weak notion of expansion; see in Section 2.3.

\(^2\)The choice of uniform distribution supported on \([0,1]\) is arbitrary; any distribution without atoms would yield the same random graph.
High-level arguments for the containment of fixed graphs We give brief proof outlines for Theorems 5 and 6. The proof for the upper bound on the budget threshold for trees is essentially inductive: given a fixed k-vertex tree T, we let T' be obtained from T by removing a leaf. The inductive argument is that Builder can construct sufficiently many copies of T' while leaving enough time to extend some of them into copies of T. The proof for the lower bound is based on a similar idea: we show that Builder cannot construct a connected component of size at least k. In order to construct such a component, he needs to construct enough smaller components so that in the remaining time, he will, \textbf{whp}, connect two of them so that the resulting component will be large enough.

The strategy for obtaining a cycle of length $\ell = 2k + 1$ goes through the construction of many “traps”, namely, non-edges whose addition to Builder’s graph would create the desired cycle. An optimised way to construct many such traps quickly is by constructing $r d$-ary trees of depth k (for a correct choice of r, d). If d is large, most pairs of leaves in such a tree are connected by a path of length $2k$, and thus form a trap. The argument for a cycle of length $\ell = 2k + 2$ is similar. We complement the upper bound with two lower bounds; each matches the upper bound in a different regime. We first show a “universal” lower bound, based on the straightforward observation that the number of traps Builder has in his graph is bounded by $O(b^2)$, as he has at most $2b$ vertices of positive degree in his graph. A more involved lower bound fits the earlier regimes (lower values of t). To this aim, we observe that Builder’s graph is typically $\Theta(1)$-degenerate. Then, we use this observation, together with an estimate on the number of paths of a fixed length that contain a vertex of “high” degree, to bound from above the number of paths of length ℓ (and hence the number of traps).

1.4 Related work

The study of random graph processes is at the heart of the theory of random graphs, providing a dynamic point of view on their evolution. One of the main questions is to determine the thresholds of monotone increasing graph properties or their (more refined) hitting times. Classical results of this sort include the thresholds of minimum degree and vertex-connectivity k [24], the appearance of a “giant” component [23], Hamiltonicity [38,17] and the containment of fixed subgraphs [23,16]. For a comprehensive coverage of the topic, we refer the reader to the books of Bollobás [18], Janson, Łuczak and Rucińki [37], and Frieze and Karoński [30]. In our context, an obvious necessary condition for the existence of a winning strategy for Builder is that the “time” is above the threshold (or at least at the hitting time), as otherwise, the underlying graph process is not guaranteed to have the desired property \textbf{whp}. Evidently, if $b = t$ (namely, if the budget equals the time), and t is (sufficiently) above the threshold of the target property, then Builder has a winning strategy: the naive one that purchases each observed edge. Since in many cases Builder can do better, the model can be seen as an extension of the “standard” random graph process.

In the last couple of decades, partly inspired by the remarkable work of Azar, Broder, Karlin and Upfal [4] on balanced allocations, there has been a growing interest in controlled random processes. In the context of graph processes, an algorithm is provided with a random flow of edges (usually, but not always, the random graph process) and with (the offline version) or without (the online version) “peeking into the future”, makes a decision that handles that flow by accepting/rejecting edges, by colouring them, or by other means. We mention several related models that fall into this category, mainly in the online version.

The \textit{Achlioptas process}, proposed by Dimitris Achlioptas in 2000, is perhaps the most studied controlled random graph process. In this process, the algorithm is fed by a stream of random k-sets of edges (with or without repetitions) and should pick, immediately and irrevocably (“online”), a
single edge to accept, rejecting the others. The algorithm’s goal is to make the graph of accepted edges satisfy some monotone increasing (decreasing) graph property while minimising (maximising) the total number of rounds. Early work on this model [10,11,13] treated the original question posed by Achlioptas of avoiding a giant component for as long as possible. Other works [27,15] considered the opposite of the original question, namely, the question of accelerating the appearance of the giant (see also [48] for a general framework). The model has also been studied for other objectives, such as avoiding [40,46] or creating [42] a fixed subgraph or obtaining a Hamilton cycle [41]. Several variants have also been studied, such as an offline version, in which the algorithm sees all k-sets of edges at the beginning of the process (see, e.g., [14]); and a memoryless version, in which the algorithm’s decision may not depend on its previous decisions (see [9]). A common generalisation of the Achlioptas process and the process considered in this paper, where an algorithm should pick at most a single edge to accept/purchase subject to a restricted “budget”, was recently studied by Anastos in [3] (see remarks after Theorem 4.1 and Theorems 3 and 4).

The semi-random process, proposed by the third author in 2016, is a variation of the Achlioptas process in which the algorithm is fed by a stream of random spanning stars (with repetitions) instead of k-sets of edges. As with the Achlioptas process, the algorithm must immediately and irrevocably pick a single edge to accept. Work on this model treats monotone properties such as containment of fixed subgraphs [8,5], minimum degree and vertex-connectivity [8], perfect matchings [35], Hamilton cycles [34,36] and bounded degree spanning graphs [7].

Another model that fits in this setting was studied by Frieze and Pegden [32,33] and by Anastos [2] under the name “purchasing under uncertainty”. In their model, whenever an edge arrives, it is given an independent random “cost”, and the algorithm has to decide whether to purchase that edge, aiming to pay the minimum total cost required to obtain a desired graph property.

In a Ramsey-type version of controlled random processes, incoming edges are coloured (irrevocably) by an online algorithm. The algorithm aims to avoid, or to create, a monochromatic property. In [28], the triangle-avoidance game for up to 3 colours is discussed. This was extended to any fixed cyclic graph and any number of colours in [44,45]. The model was further studied in the contexts of the giant component [12,49] and Hamilton cycles [19].

Finally, we would like to mention a related adaptation of the two-stage optimisation with recourse framework for the minimum spanning tree model [26]. Here, every edge of the complete graph is given an independent random “Monday” cost and another independent random “Tuesday” cost. The algorithm sees all Monday costs and decides (immediately and irrevocably) which edges to incorporate into its (future) spanning tree. Then, Tuesday costs are revealed, and the algorithm uses them to complete his (current) forest into a spanning tree. The algorithm’s goal is to minimise the total cost of edges in his constructed tree.

1.5 Paper organisation and notation

The rest of the paper is organised as follows. In Section 2 we introduce some preliminaries. Section 3 is devoted to the random k-nearest neighbours graph and to the k-out graph. Section 4 contains the proofs of Theorems 1 to 4 and Theorem 4.1, and Section 5 contains the proofs of Theorems 5 and 6. In the final section, Section 6, we mention a few relevant open problems.

Throughout the paper, all logarithms are in the natural basis. If f,g are functions of n we write $f \preceq g$ if $f = O(g)$, $f \ll g$ if $f = o(g)$, $f \asymp g$ if $f = \Theta(g)$, and $f \sim g$ if $f = (1 + o(1))g$. For two vertices u,v of a graph we write $u \sim v$ to denote that they are neighbours. For simplicity and clarity of presentation, we often make no particular effort to optimise the constants obtained in our proofs and omit floor and ceiling signs whenever they are not crucial.
2 Preliminaries

2.1 Concentration inequalities

We will make use of the following version of Chernoff bounds (see, e.g., in, [37, Chapter 2]).

Theorem 2.1 (Chernoff bounds). Let \(n \geq 1 \) be an integer and let \(p \in [0,1] \), let \(x \sim \text{Bin}(n,p) \), and let \(\mu = \mathbb{E}x = np \). Then, for every \(a > 0 \),

\[
\mathbb{P}(x \leq \mu - a) \leq \exp\left(-\frac{a^2}{2\mu}\right), \quad \mathbb{P}(x \geq \mu + a) \leq \exp\left(-\frac{a^2}{2(\mu + a/3)}\right).
\]

The following are trivial yet useful bounds.

Claim 2.2. Let \(n \geq 1 \) be an integer and let \(p \in [0, \frac{1}{2}] \), and let \(x \sim \text{Bin}(n,p) \). Write \(q = 1 - p \) and let \(1 \leq k \leq np/q \) be an integer. Then

\[
\mathbb{P}(x \leq k) \leq \left(\frac{enp}{kq}\right)^k e^{-np}.
\]

Proof. By the binomial theorem, for every \(\alpha \in (0, p/q] \),

\[
(1 + \alpha)^n = \sum_{i=0}^{n} \binom{n}{i} \alpha^i \geq \sum_{i=0}^{k} \binom{n}{i} \left(\frac{p}{q}\right)^i \left(\frac{\alpha q}{p}\right)^k,
\]

hence

\[
\mathbb{P}(x \leq k) = \sum_{i=0}^{k} \binom{n}{i} \left(\frac{p}{q}\right)^i q^n \leq \frac{(1 + \alpha)^n p^k}{\alpha^k q^k} \cdot (1 - p)^n \leq \frac{e^{\alpha np} p^k}{\alpha^k q^k} e^{-np}.
\]

Taking \(\alpha = k/n \leq p/q \) we obtain

\[
\mathbb{P}(x \leq k) \leq \left(\frac{enp}{kq}\right)^k e^{-np}. \tag*{\Box}
\]

Claim 2.3. Let \(x \sim \text{Bin}(n,p) \) with \(\mu = np \) and let \(1 \leq k \leq n \). Then

\[
\mathbb{P}(x \geq k) \leq \left(\frac{enp}{k}\right)^k.
\]

For a proof see, e.g., [31].

2.2 The random graph process

Recall that \(G_t \) denotes the random graph process at time \(t \). The next lemma essentially states that in \(G_t \), where \(t \) is superlinear (but not too large), there are no small dense sets.

Lemma 2.4. Suppose that \(R \gg 1 \) and \(n^{-5}R^2t^3 \leq \alpha < 1/8 \). Then, in \(G_t \), whp, every vertex set of size \(r \leq R \) spans at most \(3r \) edges.

Proof. Let \(N = \binom{n}{2} \) and \(p = t/N \). For a set \(S \) of \(s \) edges the probability that \(S \) is contained in \(G_t \) is at most \(p^s \). By the union bound, the probability that there exists a set \(U \) of size \(r \) that spans at least \(3r \) edges is at most

\[
\binom{n}{r} \frac{\binom{r}{2}}{3r} p^{3r} \leq \left(\frac{nr^2 p^3}{3}\right)^r.
\]

We note that \(nR^3p^3 \geq n^{-5}Rt^3 \leq \alpha/R \ll 1 \) and \(nR^2p^3 \sim 8n^{-5}R^2t^3 \leq 8\alpha \). By the union bound over \(2 \leq r \leq R \), the probability that there exists such a set is at most

\[
\sum_{r=2}^{R} (n^2p^3)^r \leq \sum_{r=2}^{\sqrt{R}} (nR^3p^3)^r + \sum_{r=\sqrt{R}}^{R} (nR^2p^3)^r \leq \sum_{r=2}^{\sqrt{R}} (o(1))^r + \sum_{r=\sqrt{R}}^{R} (8\alpha^r) = o(1),
\]

and the claim follows.

The lemma easily implies the following useful fact.

Claim 2.5. Suppose \(1 \ll b^2 \leq n^5/(40t^3) \). Then, **whp**, every subgraph of \(G_t \) with at most \(b \) edges is \(6 \)-degenerate.

Proof. Let \(B \) be a subgraph of \(G_t \) with at most \(b \) edges. Thus, \(B \) has at most \(2b \) non-isolated vertices. Apply Lemma 2.4 with \(R = 2b \) and \(t \) (we can do so as \(b \gg 1 \) and \(n^{-5}(2b)^2t^3 \leq 1/10 \)). We therefore obtain that, with high probability, for every \(q \geq 0 \), every subgraph of \(B \) on \(q \) vertices spans at most \(3q \) edges, and hence has minimum degree of at most 6, and the result follows.

We introduce more notation. For \(d \geq 1 \), let \(X_d^t \) be the set of vertices in \(G_t \) with degree less than \(d \), and let \(Y_d^t \) be its complement. The next lemmas state that in time linear in \(n \) there is a transition between “most vertices are of degree less than \(d \)” and “most vertices are of degree at least \(d \)”.

Lemma 2.6. Let \(d \geq 1 \) be an integer. Then, deterministically, \(|Y_d^t| \leq 2t/d \).

Proof. It follows from \(t = |E(G_t)| \geq |Y_d^t| \cdot d/2 \).

Lemma 2.7. For every integer \(d \geq 1 \), if \(t \geq 6dn \) then \(|X_d^t| \leq n/100 \) **whp**.

Remark. When proving statements about \(G_t \) it is often convenient to prove them for \(G \sim G(n,p) \) with \(p \sim t/(\binom{n}{2}) \) instead. We could then translate the results back to \(G_t \) using standard methods (see, e.g., in [30]).

Proof. Let \(t = 6dn \) (the result would follow for \(t \geq 6dn \) due to monotonicity). Write \(p = 12d/n \sim t/(\binom{n}{2}) \) and \(m = n/100 \). If \(|X_d^t| > m \) then there exists a vertex set \(V_0 \) with \(|V_0| = m \) such that \(|E(V_0, V_0)| < md \). Let \(x = |E(V_0, V_0)| \) and note that \(x \sim \text{Bin}(m(n-m), p) \). By Claim 2.2 and the union bound over the choice of \(V_0 \), the probability that the statement of the lemma does not hold is at most

\[
\left(\frac{n}{m} \right)^p \left(\frac{e}{m} \right)^p \left(\frac{en(n-m)p}{md(1-p)} \right)^m e^{-m(n-m)p} \leq \frac{(en)^p}{m^p} \cdot \frac{e^{nd}}{d^{md}} e^{-0.99mp} \leq \left(100e \cdot (12e^{-11})^d \right)^m = o(1). \]

We will also use the next two known results about \(\tau_d \).

Lemma 2.8 ([24]). For every fixed \(d \geq 1 \), \(\tau_d = n(\log n + (d-1) \log \log n + x)/2 \), where \(x = O(1) \) **whp**.

For a proof of the next lemma see, e.g., [39].

Lemma 2.9. Let \(d \geq 1 \) be an integer. Then, **whp**, \(|X_d^{\tau_d}| \leq n^{0.5} \), the distance between two vertices in \(X_d^{\tau_d} \) is at least 5, and no vertex in \(X_d^{\tau_d} \) lies in a cycle of length at most 4.
Finally, we would need the following lemma on the size of the k-core of a random graph. The k-core of a graph is its (unique) maximal subgraph of minimum degree at least k.

Lemma 2.10. For every $k \geq 1$ the size of the k-core of G_t, for $t = 8kn$, is whp at least $n/2$.

Proof. We prove the statement for $G(n, p)$ with $p = 16k/n \sim t/\binom{n}{2}$. First we show that whp the number of edges between any set of size $n/2$ and its complement is at least kn. Indeed, let V_0 be a fixed vertex set of size $n/2$. Then, $x = |E(V_0, \overline{V_0})| \sim \text{Bin}(n^2/4, p)$, hence $Ex = 4kn$. By Chernoff bounds (Theorem 2.1), $\mathbb{P}(x \leq kn) \leq \exp(-\frac{9}{8}kn)$. By the union bound over all choices of V_0, the probability that there exists such a set is at most $2^n \cdot \exp(-\frac{9}{8}kn) = o(1)$.

Now, suppose the k-core is smaller than $n/2$. Consider the process of removing vertices of degree smaller than k one by one. By definition of the k-core, this process lasts more than $n/2$ steps. Stop the process exactly after $n/2$ steps. At this point, the remaining set $|V_0|$ is of size $n/2$. On the other hand, we have removed less than $k \cdot n/2$ edges, hence $|E(V_0, \overline{V_0})| < kn$, and we have seen that whp there is no such set. \hfill \square

2.3 Rotations, expanders, and boosters

In our proofs we shall repeatedly use the so-called rotation–extension technique of Pósa [47]. Given a longest path $P = (v_0, \ldots, v_t)$ we say that P' obtained from P by an elementary rotation of P (with v_1 fixed) if $P' = (v_0, \ldots, v_{t-1}, v_i, v_j, v_{j-1}, \ldots, v_{t+1})$ ($j > i$). We let $\mathcal{R}(P)$ denote the set of endpoints of paths obtained from P by a (finite) sequence of elementary rotations. We will use the following classical lemma of Pósa:

Lemma 2.11 (Pósa’s lemma [47]). Let G be a graph and let P be a longest path in G. Then $|N(\mathcal{R}(P))| \leq 2|\mathcal{R}(P)| - 1$.

Say that a graph $G = (V, E)$ is an R-expander if every set $U \subseteq V$ with $|U| \leq R$ has $|N(U)| \geq 2|U|$. For an n-vertex graph G denote by $\lambda(G)$ the length of a longest path in G, or n if G is Hamiltonian. A non-edge e of G is called a booster if $\lambda(G + e) \geq \min\{\lambda(G) + 1, n\}$. The following lemma is a corollary of Lemma 2.11. For a proof see, e.g., [39].

Lemma 2.12. Let G be a connected R-expander which contains no Hamilton cycle. Then G has at least $(R + 1)^2/2$ boosters.

We use Lemma 2.12 by sprinkling: we begin with a connected expander and add random edges that hit boosters and advance the expander towards Hamiltonicity. Occasionally, the expander we handle is not guaranteed to be connected. This is sometimes not a problem, as random edges can first connect the expander, and then hit boosters. We summarise this in the following lemma:

Lemma 2.13 (Sprinkling). Let $\beta > 0$ and let G be an n-vertex βn-expander. Then there exists $C = C(\beta) > 0$ such that the addition of Cn random non-edges to G makes it whp Hamiltonian.

Proof. Since G is a βn-expander, each of its components is of size at least $3\beta n$, hence its number of connected components is at most $1/(3\beta)$. Assume first that G is not connected (and hence $\beta \leq 1/6$). Let (e_1, \ldots, e_ℓ) be a random permutation of the non-edges of G. For $0 \leq i \leq \ell$, write $G_i = G \cup \{e_1, \ldots, e_i\}$. As long as G_i is not connected, there are at least $3\beta(1 - 3\beta)n^2 \geq \beta^2 n^2$ edges that connect distinct components, hence the probability that a random edge connects distinct components is at least β^2. Let $t_1 \gg 1$ be an integer, and consider the first t_1 random edges. For $i \in [t_1]$ let x_i be the indicator of the event that the i'th edge connects distinct components, or that G_{i-1} is already connected. Let $x = \sum_{i=1}^{t_1} x_i$ and note that $x \geq 1/(3\beta)$ implies that G_{t_1} is
connected. Since x stochastically dominates a binomial random variable with t_1 attempts and success probability β^2, it follows from Claim 2.2 that the probability that $x \leq 1/(3\beta)$ is $o(1)$. Thus, after adding t_1 random non-edges, the graph becomes whp connected.

Now, using Lemma 2.12 and the monotonicity of expansion, we know that G_{t_1} is either Hamiltonian (in which case we are done) or it has at least $\beta^2(\frac{n}{2})$ boosters. Thus, the probability that a random edge hits a booster is at least β^2. Let $t_2 = \tau n$ be an integer with $\tau > \beta^{-2}$, and consider the next t_2 random edges. For $i \in \{t_1 + 1, \ldots, t_1 + t_2\}$ let y_i be the indicator of the event that the i'th edge hits a booster, or that $G_{t_{i-1}}$ is already Hamiltonian. Let $y = \sum_{i=1}^{t_2} y_i$, and note that $y \geq n$ implies that $G_{t_1+t_2}$ is Hamiltonian. Since y stochastically dominates a binomial random variable with t_2 attempts and success probability β^2, it follows from Theorem 2.1 that the probability that $y \leq n$ is $o(1)$. Thus, after adding t_2 further random non-edges, the graph becomes whp Hamiltonian.

We also use Lemma 2.11 to show that in Hamiltonian expanders, the set of endpoints of Hamilton paths whose other endpoint is fixed is large.

Lemma 2.14. Let G be a Hamiltonian R-expander and let v be a vertex of G. Then, the number of endpoints of Hamilton paths of G whose other endpoint is v is at least R.

Proof. Since G is Hamiltonian, there exists a Hamilton path P with v as an endpoint. By Lemma 2.11, $|N(R(P))| \leq 2|R(P)| - 1; \text{ thus } |R(P)| > R$.

2.4 Greedy k-matchings and k-cores

We show that the greedy strategy works “well” for purchasing a large k-matching; namely, a subgraph of maximum degree k in which all but a few vertices are of degree k. This will be useful in the proofs of Theorem 2 and Theorem 4.

Lemma 2.15. Let k be a positive integer and let $\varepsilon > 0$. Then, there exists $C = C(k, \varepsilon) > 0$ such that if $t \geq Cn$ and $b \geq (k - \varepsilon)n/2$ then there exists a (t, b)-strategy of Builder (that succeeds whp) that purchases a graph with maximum degree k in which all at most cn vertices are of degree k.

Proof. Builder follows the greedy strategy; that is, he purchases every edge both of whose endpoints are of degree below k. Observe that this strategy ensures that the maximum degree of Builder’s graph is at most k at any stage. Let U denote the (dynamic) set of vertices of degree below k. Let $C = k\varepsilon^{-2}$ and let $t \geq Cn$. For $i = 1, \ldots, t$ let x_i be the indicator of the event that the i'th edge arriving is contained in U (and thus purchased by Builder) or $|U| \leq \varepsilon n$. The probability for this event is at least $\sim \varepsilon^2$. Thus, $x := \sum x_i$ stochastically dominates a binomial random variable with mean $\sim \varepsilon^2 Cn = kn$. Therefore, the probability that $x < (k - \varepsilon)n/2$ is, by Chernoff bounds (Theorem 2.1), $o(1)$. On the event that $x \geq (k - \varepsilon)n/2$, either $|U| \leq \varepsilon n$, or Builder has purchased at least $(k - \varepsilon)n/2$ edges, in which case it follows that $|U| \leq \varepsilon n$. Obviously, by that time Builder has purchased at most $(k - \varepsilon)n/2$ edges.

Given a vertex set we may use Theorem 3.1 below to construct a spanning graph of an arbitrary fixed minimum degree (see Section 4.1). That requires, however, that the time will be long enough so that every vertex will have the desired degree in the underlying graph process. If we are satisfied with a small graph of a given minimum degree, we can do it in linear time. The following corollary follows directly from Lemma 2.10.

Corollary 2.16. Let $k \geq 1$ be an integer and let $b = t = 8kn$. Then there exists a (t, b)-strategy of Builder (that succeeds whp) that purchases a graph whose k-core is of size at least $n/2$.

3 The random \(k \)-nearest neighbour graph

Suppose the edges of the complete graph are endowed with independent uniform random “lengths” in \([0, 1]\). The (random) graph obtained by retaining (only) the \(k \) shortest edges incident with each vertex is called the random \(k \)-nearest neighbour graph (see [20, 30]). We denote it by \(\mathcal{O}_k \) (or by \(\mathcal{O}_k(n) \) if we wish to emphasize that it is on \(n \) vertices). As we remarked earlier, the choice of uniform distribution supported on \([0, 1]\) is arbitrary; any distribution without atoms would yield the same random graph (see [20]); we use this fact in the proof of Observation 3.7. The following theorem of Cooper and Frieze [20] (stated here in a weaker form) will be useful for us in several places in this paper.

Theorem 3.1 ([20, Theorem 1.1]). For every constant \(k \), the number of edges of \(\mathcal{O}_k \) is **whp**

\[
kn - \frac{n(n - 1)}{2n - 3} \sum_{1 \leq i < j \leq k} \frac{(n - 2)}{2^\delta(i,j)} \frac{(n - 2)}{2^{i+j-2}} + O(\sqrt{n} \log n),
\]

where \(\delta(i, j) \) is the Kronecker delta.

It would be useful for us to state Theorem 3.1 in an “asymptotic” form. To this end, we complement the analysis of Cooper and Frieze by obtaining an asymptotic estimate of the expected size of \(\mathcal{O}_k \). Let

\[
o_k = k - \frac{1}{4} \sum_{i,j=0}^{k-1} \binom{i+j}{i} 2^{-(i+j)}, \quad (1)
\]

Corollary 3.2. For every integer \(k \geq 1 \) the number of edges of \(\mathcal{O}_k \) is **whp** \(o_k n + O(\sqrt{n} \log n) \). Moreover, \(k/2 < o_k \leq 3k/4 \), and \(\lim_{k \to \infty} o_k/k = 1/2 \).

Proof. First note that for every nonnegative integer \(k \),

\[
\sum_{i=0}^{k} \binom{i+k}{i} 2^{-(i+k)} = 1. \quad (2)
\]

Indeed, consider a sequence of fair coin flips that stops whenever \(k + 1 \) heads or \(k + 1 \) tails are encountered. Let \(x \) be the number of tails if the sequence stopped by encountering \(k + 1 \) heads, or the the number heads otherwise. Thus, \(x \) is supported on \([0, \ldots, k]\) and \(P(x = i) = \binom{i+k}{i} 2^{-(i+k)} \). For an integer \(k \geq 0 \) write \(f(k) = \sum_{i,j=0}^{k} \binom{i+j}{i} 2^{-(i+j)} \) (so \(o_k = k - f(k-1)/4 \)). Note that for \(k \geq 1 \), by Eq. (2),

\[
f(k) = f(k-1) + 2 \sum_{i=0}^{k} \binom{i+k}{i} 2^{-(i+k)} - \binom{2k}{k} 2^{-2k} = f(k-1) + 2 - \Theta(k^{-1/2}).
\]

Thus, \(f(0) = 1 \), \(f(k) \leq 1 + 2k \) for \(k \geq 0 \) and

\[
\lim_{k \to \infty} \frac{f(k)}{k} = 2. \quad (3)
\]

It follows from Theorem 3.1 that the number of edges of \(\mathcal{O}_k \) is, **whp**, \(f(k) \approx 2k \) for \(k \geq 0 \) and

\[
\left(k - \frac{1}{2} \sum_{1 \leq i \leq j \leq k} \binom{i+j-2}{i-1} 2^{-(i+j-2)-\delta(i,j)} \right) n + O(\sqrt{n} \log n)
\]
Evidently, \(f(k) \) is increasing; thus, \(\frac{k}{2} + \frac{1}{4} \leq o_k \leq 3k/4 \). In addition, Eq. (3) implies that \(o_k/k \to 1/2 \) as \(k \to \infty \).

One of the main results of [20], that we conveniently use here, is that for \(k \geq 3 \), \(\mathcal{O}_k \) is \textit{whp} \(k \)-vertex-connected. Cooper and Frieze also showed (there) that the probability that \(\mathcal{O}_2 \) is connected is bounded away from 0 and 1.

Theorem 3.3 ([20, Theorem 1.4]). For \(k \geq 3 \), \(\mathcal{O}_k \) is \textit{whp} \(k \)-vertex-connected.

Our main goal in this section is to prove that for large enough \(k \), \(\mathcal{O}_k \) is \textit{whp} Hamiltonian.

Theorem 3.4. There exists \(k_H > 0 \) such that for every \(k \geq k_H \), \(\mathcal{O}_k \) is \textit{whp} Hamiltonian.

As mentioned in the introduction, this partially resolves [29, Problem 45]. It is conjectured that \(k_H = 3 \) or \(k_H = 4 \).

In fact, we need (and hence prove) a stronger result that immediately implies Theorem 3.4. To state it, consider the following equivalent way of generating \(\mathcal{O}_k \) (see [20]). Given a uniform random ordering of the edges of the complete graph \(K_n \), we consider them one by one. When an edge arrives, we add it to \(\mathcal{O}_k \) if and only if one of its endpoints is incident to a vertex that is — at this point — of degree less than \(k \). When we only add edges that arrived by time \(t \) for some fixed \(0 \leq t \leq \binom{n}{2} \), we obtain a subgraph of \(\mathcal{O}_k \) that we denote by \(\mathcal{O}_t \). This process yields a coupling between the random graph process at time \(t \) and \(\mathcal{O}_t \). Under this coupling, which we call the **natural coupling**, \(\mathcal{O}_t \) is a subgraph of \(G_t \). For convenience, we denote \(\mathcal{O}_{k,d} = \mathcal{O}_t \) for every \(0 \leq d \leq k \). Note that as long as the minimum degree of the random graph process is at most 1, it cannot contain a Hamilton cycle; thus, for \(t < \tau_2 \), \(\mathcal{O}_t \) is not Hamiltonian.

Theorem 3.5. There exists \(k_H > 0 \) such that for every \(k \geq k_H \), \(\mathcal{O}_{k,2} \) is \textit{whp} Hamiltonian.

As mentioned in the introduction, a classical result due to Bollobás [17] and independently Ajtai, Komlós, and Szemerédi [1] is a hitting-time result, which states that, \textit{whp}, the random graph process will contain a Hamiltonian cycle as soon as its minimum degree reaches 2. Theorem 3.5 refines that result by showing that there exists an **online** algorithm that can choose a small number of edges (linear in the number of vertices) from the first \(\tau_2 \) edges of the random graph process that induce a Hamiltonian cycle \textit{whp}. Furthermore, this algorithm is deterministic, simple, and only requires local information, namely, the degrees of the endpoints of the considered edge.

The rest of this section is devoted to the proof of Theorem 3.5, which implies, in turn, Theorem 3 (see Section 4.2.1). While the proof shares some ideas with previous proofs of the hitting time result for Hamiltonicity of the random graph process (see, e.g., [39]), it still has its twists and turns to achieve the goal. In particular, we find a way around the common method of **random sparsification** accompanied by sprinkling (which is not available to us in this setting) by casting our argument directly on the (already sparse) graph and finding boosters inside it using a sophisticated argument. We begin with a couple of helpful observations. The following is immediate:

Observation 3.6. For integers \(0 \leq d < k \), time \(t \) and a vertex \(v \), under the natural coupling between \(G_t \) and \(\mathcal{O}_t \) one has \(d_{\mathcal{O}_t}(v) = d \) if and only if \(d_{G_t}(v) = d \).

The next observation that we will need for this goal is that \(\mathcal{O}_k \) is stochastically dominated by the **random** \(k \)-out graph (see, e.g., in [30]): the random graph whose edges are generated independently for each vertex by a random choice of \(k \) distinct edges incident to that vertex. For brevity, denote it by \(\mathcal{G}_k \). Note that \(\mathcal{G}_k \) has roughly \(kn \) edges, whereas, as stated in Corollary 3.2, \(\mathcal{O}_k \) is nearly twice as sparse (for large \(k \)).
Observation 3.7. \(\mathcal{O}_k \) is stochastically dominated by \(\mathcal{G}_k \).

Proof. For every ordered pair of distinct vertices \(u, v \) let \(w(u, v) \) be a uniform \([0,1]\) random weight assigned to the ordered pair \((u, v)\). Then, \(\mathcal{G}_k \) is obtained by adding the edge \(\{u, v\} \) whenever \(w(u, v) \) is one of the \(k \) smallest weights in the family \(\{w(u, w)\}_u \). For every (unordered) pair of distinct vertices \(u, v \), let \(x\{u, v\} = \min\{w(u, v), w(v, u)\} \). Observe crucially that while \(x \) is not uniform, it has a continuous density function on \([0,1]\) and, more importantly, is independent for distinct edges. Thus, \(\mathcal{O}_k \) is obtained by including the edge \(\{u, v\} \) whenever \(x\{u, v\} \) is one of the \(k \) smallest weights in the family \(\{x\{u, w\}\}_u \). Let us now show that under this coupling, \(\mathcal{O}_k \subseteq \mathcal{G}_k \). Let \(\{u, v\} \in \mathcal{O}_k \) and assume without loss of generality that \(x\{u, v\} = w(u, v) \). Pick a vertex \(w \) for which \(x\{u, v\} < x\{u, w\} \) (there are at least \(n - 1 - k \) such vertices). Then, \(w(u, v) = x\{u, v\} < x\{u, w\} \leq w(u, w) \). It follows that there are at least \(n - 1 - k \) vertices \(w \) for which \(w(u, v) < w(u, w) \), hence \(\{u, v\} \in \mathcal{G}_k \).

We now show that for \(k \geq 12 \), \(\mathcal{O}_{k,2} \) is \(\text{whp} \) an expander\(^3\).

Lemma 3.8. There exists \(\beta > 0 \) such that for \(k \geq 12 \), \(\mathcal{O}_{k,2} \) is \(\text{whp} \) a \(\beta n \)-expander.

Proof. We prove it for \(k = 12 \) and derive the statement for every \(k \geq 12 \) due to monotonicity. Fix \(b = k/11 > 1 \). We first prove that there exists \(\gamma > 0 \) for which, \(\text{whp} \), no vertex set \(S \) in \(\mathcal{O}_{k,2} \) of cardinality \(s \leq \gamma n \) spans more than \(bs \) edges. Since \(\mathcal{O}_{k,2} \) is stochastically dominated by \(\mathcal{O}_k \) and (by Observation 3.7) \(\mathcal{O}_k \) is stochastically dominated by \(\mathcal{G}_k \), we may prove that statement for \(\mathcal{G}_k \). Note that the probability that a given edge appears in \(\mathcal{G}_k \) is at most twice the probability that a given vertex chooses a given incident edge (which is \(k/(n-1) \)). By the union bound over the choice of \(S \) and the choices of the spanned edges, that probability is at most

\[
\sum_{s=2}^{\gamma n} \binom{n}{s} \left(\frac{s}{bs} \right)^{3k} \leq \sum_{s=2}^{\gamma n} \left[\frac{es}{s} \left(\frac{3k}{2b} \right) \right]^{bs} = \sum_{s=2}^{\gamma n} \left(\frac{s}{n}^{b-1} \right)^{bs}.
\]

If \(n/\log n \leq s \leq \gamma n \) then the \(s \)th summand is at most \(c^{n/\log n} \) for some \(c < 1 \) (for small enough \(\gamma > 0 \)). Otherwise, it is \(o(1) \). Thus, the sum is \(o(1) \).

Back to \(\mathcal{O}_{k,2} \), let \(X = X_{k,2}^2 \) be the set of vertices of degree smaller than \(k \) at time \(\tau_2 \). Suppose first that there exists a set \(B \) of size at most \(b \) for \(\beta = \gamma/5 \) with \(B \cap X = \emptyset \) and \(|B\cap\mathcal{G}_k| \leq 4|B| \). Set \(S = B \cup N(B) \) and note that \(s = |S| \leq 5\beta n = \gamma n \) while \(|E(S)| \geq k\beta n/2 > bs \), contradicting the above. Now, let \(A \) with \(|A| \leq \beta n \). Let \(A_X = A \cap X \) and \(A_Y = A \setminus X \). Let further \(S_X = A_X \cup N(A_X) \) and \(S_Y = A_Y \cup N(A_Y) \). By the above, \(|N(A)| \geq 4|A| \). By Lemma 2.9 and Observation 3.6, \(|N(A_X)| \geq 2|A_X| \) and every vertex in \(A_Y \) (or in general) has at most one neighbour in \(S_X \). Hence, in particular, \(|N(A_Y) \setminus S_X| \geq |N(A_Y)| - |A_Y| \geq 3|A_Y| \). Thus,

\[
|N(A)| = |N(A_X) \setminus A_Y| + |N(A_Y) \setminus S_X| \geq (2|A_X| - |A_Y|) + 3|A_Y| \geq 2|A|,
\]

as required.

Our next step is to show that \(\mathcal{O}_{k,2} \) is also typically connected (for large enough \(k \)). For that, we need the following lemma. As we mentioned earlier, Cooper and Frieze [20] showed that \(\mathcal{O}_2 \) is connected with probability that is bounded away from 0 and 1. Since \(\mathcal{O}_3 \not\subseteq \mathcal{O}_{k,2} \) for any \(k \), we cannot use Theorem 3.3.

\(^3\)We made no effort to optimise the constant 12 in the lemma.
Lemma 3.9. Let $\alpha > 0$ and let F be a fixed set of edges in K_n with $|F| \geq \alpha n^2$. Then, there exist $k_0 = k_0(\alpha)$, $\eta = \eta(\alpha)$ and $c = c(\alpha) > 0$ such that for every $k \geq k_0$, if $t = \eta kn$ then $\mathbb{P}(F \cap E(\mathcal{O}_k^t) = \emptyset) \leq \exp(-ckn)$.

Proof. Let $\gamma = \sqrt{\alpha}$, and $\eta = \gamma/3$. Take $k > 6(1 - \log \gamma)/\gamma^2$, and $t_0 = \eta kn$. Let $E_0 = \{e_1, \ldots, e_{t_0}\}$ be the first t_0 edges of the underlying random graph process (in this order) and let $F_0 = F \cap E_0$. Let $V_0 = \bigcup F_0$ be the set of vertices covered by the edges of F_0. We observe that typically V_0 cannot be too small; indeed, for a given set S to be $\bigcup F_0$ we need every edge of F that is not contained in S to appear after time t_0. By the union bound over all choices of V_0 of size at most γn,

$$\mathbb{P}(|V_0| \leq \gamma n) \leq \left(\frac{n}{\gamma n}\right)^{|F|} \leq \exp((-\gamma \log \gamma - \eta k(2\alpha - \gamma^2))n) \leq \exp((-\gamma \log \gamma - \gamma^3 k/3)n) \leq \exp(-ckn),$$

for $c = \gamma^3/6 > 0$. Let $F_1 = F_0 \cap E(\mathcal{O}_k^{t_0})$. Note that if $F_1 = \emptyset$ then when an edge in F_0 arrived both its endpoints had degree at least k; hence all vertices of V_0 have degree at least k in $\mathcal{O}_k^{t_0}$. But in this case, $|V_0| \geq \gamma n$ implies that $\gamma n k/2 \leq |E(\mathcal{O}_k^{t_0})| \leq t_0 = \eta kn = \gamma kn/3$, a contradiction. Thus,

$$\mathbb{P}(F \cap E(\mathcal{O}_k^t) = \emptyset) \leq \mathbb{P}(F \cap E(\mathcal{O}_k^{t_0}) = \emptyset) \leq \mathbb{P}(F_1 = \emptyset) = \exp(-ckn).$$

Lemma 3.10. For every $\beta > 0$ there exists $k_0 = k_0(\beta)$ such that for every $k \geq k_0$, whp, every two disjoint vertex sets in $\mathcal{O}_{k,2}$ with $|A|, |B| \geq \beta n$ are connected by an edge.

Proof. Let $\alpha = \beta^2$ and let k_0, η, c be the constants guaranteed by Lemma 3.9. Let $h(\beta) = -\beta \log \beta - (1 - \beta) \log(1 - \beta)$, and set $k_1 = 3h(\beta)/c$. Take $k \geq \max\{k_0, k_1\}$ and $t = \lceil \eta kn \rceil$. Fix two disjoint vertex sets A, B with $|A|, |B| = \beta n$. Let $F = E(A, B)$, so $|F| \geq \alpha n^2$. By Lemma 3.9, the probability that in \mathcal{O}_k^t does not contain an edge from F (and hence the probability that in \mathcal{O}_k^t the sets A, B are not connected by an edge) is at most $\exp(-ckn)$. By the union bound over all sets A, B, the probability that in \mathcal{O}_k^t there are two disjoint sets of size at least βn that are not connected by an edge is at most

$$\left(\frac{n}{\beta n}\right)^2 e^{-ckn} = \exp(((2 + o(1))H(\beta) - ck)n) = \exp(-\Omega(n)) = o(1).$$

The result follows since whp $t \leq \tau_2$, implying $\mathcal{O}_k^t \subseteq \mathcal{O}_{k,2}$.

Corollary 3.11. There exists $k_0 > 0$ such that for every $k \geq k_0$, $\mathcal{O}_{k,2}$ is whp an $\frac{n}{4}$-expander.

Proof. Let β be the constant guaranteed by Lemma 3.8 (we may (and will) assume that $\beta < 1/4$), and let $k_0 = k_0(\beta)$ be the constant guaranteed by Lemma 3.10. Let $k \geq \max\{k_0, 12\}$. Thus, by Lemma 3.8, $\mathcal{O}_{k,2}$ is whp a βn-expander; and, by Lemma 3.10, $\mathcal{O}_{k,2}$ has whp the property that any two disjoint vertex sets of size at least βn are connected by an edge. Assume both properties hold and let A be a vertex set with $|A| \leq n/4$. If $|A| \leq \beta n$ then $|N(A)| \geq 2|A|$ since $\mathcal{O}_{k,2}$ is a βn-expander. Otherwise, there is an edge between A and any other set of size at least βn, hence $|N(A)| \geq n - \beta n - |A| \geq (3/4 - \beta)n \geq n/2 \geq 2|A|$.

Corollary 3.12. There exists $k_0 > 0$ such that for every $k \geq k_0$, $\mathcal{O}_{k,2}$ is whp connected.

Proof. Let k_0 be the constant guaranteed by Corollary 3.11 and let $k \geq k_0$. From Corollary 3.11 it follows that every connected component of $\mathcal{O}_{k,2}$ is, whp, of size at least $3n/4$, implying that the graph is connected.
Proof of Theorem 3.5. Let k_0 be the constant from Corollaries 3.11 and 3.12, let $\ell = \max\{k_0, 500\}$ and let $k = 100\ell$. Note that by proving the statement of the theorem for k, due to monotonicity of $O_{k,2}$ in the first parameter, we prove it for every $k' \geq k$. Let $t_0 = 6\ell n$ and write $a = 6\ell / k$, so $t_0 = akn$. Consider the first t_0 edges of the random graph process (and note that $t_0 \ll \tau_2$). When an edge e arrives we colour it red if it is incident to a vertex of degree $d < \ell$, or black otherwise. Let $L = Y_{t_0}^\ell$, and note that by Lemma 2.7 and Observation 3.6, $|L| \geq 0.99n$ with high probability (w.h.p.). We now consider the next edges of the random graph process, until time τ_2. When an edge e arrives we colour it red if it is incident to a vertex of degree $d < \ell$ (note that these red edges are not contained in L), or black if it is any other edge not contained in L. If the arriving edge is contained in L, we do not record its identity, but rather its arrival time. In particular, we count these edges. We observe crucially that the exact identity of such an edge does not affect the rest of the colouring process; indeed, any permutation of the edges of the random graph process that fixes the coloured edges (by time τ_2) and the edges not in L is feasible. Let m be the number of edges we counted in L and let t_1, \ldots, t_m be their arrival times ($t_0 < t_1 < \ldots < t_m < \tau_2$). Note that the probability of an edge to fall inside L before m edges fell there (without conditioning on the rest of the process) is at least $p := 0.98$ (since both m and the number of existing edges in L are $O(n^2)$). Thus, for any $b = O(1)$, the number of edges falling into L between t_0 and $t_0 + bn$ stochastically dominates a binomial random variable with bn attempts and success probability p. Take $b = 500$, and $m' = \lfloor bn / 2 \rfloor$. It follows that $m' < m$ and $t_i < t_0 + bn$ for every $1 \leq i \leq m'$ with high probability (w.h.p.).

Let F be the set of non-edges in L at time τ_2. Conditioning on the entire colouring process (including m and the times t_1, \ldots, t_m), the set of edges that fall into L at times t_1, \ldots, t_m is distributed as a uniformly sampled edge set of size m of F. Let f_1, \ldots, f_m be a random ordering of this random set of edges. Write $F_i = \{f_1, \ldots, f_i\}$ for $0 \leq i \leq m$. We add the random edges in F_m one by one (edge f_i at time t_i), so the distribution of f_i is uniform over $F \setminus F_{i-1}$. Some of these edges will be coloured blue according to a rule explained below. For $i \in [m]$, let $K_i = Y_{k_i}^{t_i-1} \cap L$ be the set of vertices of degree at least k_i in L just before time t_i. We note by Lemma 2.6, Observation 3.6 and the discussion above that $|K_i| \leq 2t_i/k \leq 2(a + b/k)n$ for every $i \in [m']$, with high probability (w.h.p.). Note that the graph that consists of the red edges at time τ_2 is $O_{\ell,2}$. Denote by H_i the graph that consists of the red edges and the blue edges among F_i. Thus, this is a supergraph of $O_{\ell,2}$. By Corollaries 3.11 and 3.12 and Lemma 2.12, and since expansion (and connectivity) is monotone, either H_i is Hamiltonian, or there are at least $n^2 / 32$ boosters with respect to it. Suppose H_i is not Hamiltonian, and let Z_i be the set of boosters with respect to H_i. Let $Z'_i = Z_i \cap \left(\binom{L}{2} \setminus \binom{K_i}{2} \right) \setminus F_i$. These are the boosters that are (a) contained in L, (b) have at least one endpoint of degree less than k at the time of arrival, and (c) have not been revealed earlier. It follows that

$$|Z'_i| \geq |Z_i| - |E(X_{\ell_0}^0, V)| - \left(\binom{K_i}{2} \right) - |F_i| \geq \left(\frac{1}{32} - \frac{1}{100} - 2 \left(a + \frac{b}{k} \right)^2 - o(1) \right) n^2.$$

This is at least $n^2 / 100$ for $\ell \geq 500$ and $k = 100\ell$. When considering the edge f_{i+1} we colour it blue if it is in Z'_i, or if it is in $\left(\binom{L}{2} \setminus \binom{K_i}{2} \right)$ and H_i is already Hamiltonian. But the probability that it is in Z'_i is at least $|Z'|/(|L| - |F_i|) \geq q := 1/100$, independently of the past. Thus, the number of blue edges stochastically dominates a binomial random variable with $m' \sim bnp / 2$ attempts and success probability q, and hence mean $\sim qbn / 2 > 2n$. By Chernoff bounds (Theorem 2.1), the number of blue edges is at least n with high probability (w.h.p.). We finish the proof by noting that if H_i is not Hamiltonian and f_{i+1} is coloured blue then f_{i+1} is a booster with respect to H_i that is contained in $O_{k,2}$. Thus, $H_{m'}$ (and thus H_m; and thus $O_{k,2}$) is Hamiltonian.

\[\Box\]
The proof above yields the following corollary.

Corollary 3.13. Let k_H be the constant from Theorem 3.5. Then, for every $k \geq k_H$, $O_{k,2}$ is whp a Hamiltonian $\frac{n}{4}$-expander.

4 Spanning subgraphs

4.1 Minimum degree and vertex-connectivity

It follows from Corollary 3.2 that Builder can construct a graph with minimum degree k by purchasing (sufficiently) more than $o_k n$ edges, while observing only enough edges to guarantee a sufficient minimum degree in the underlying random graph process.

Proof of Theorem 1. We describe Builder’s strategy. Builder purchases any edge touching at least one vertex of degree less than k. Since by time τ_k the random graph process has, by definition, minimum degree of at least k, the obtained graph is exactly O_k. We conclude by observing that by Corollary 3.2 Builder purchased, whp, at most $o_k n + O(\sqrt{n} \log n)$ edges, and that for $k \geq 3$, by Theorem 3.3, O_k is k-vertex-connected.

Proof of Theorem 2. Let $\varepsilon' = \varepsilon/2$. We describe Builder’s strategy in stages.

Stage I (Constructing a k-matching)

During the first Cn steps, for $C = C(\varepsilon', k)$, Builder constructs a k-matching, in which all but at most $\varepsilon' n$ vertices are of degree k. This is possible, whp, by Lemma 2.15.

Stage II (Handling low-degree vertices)

Denote by V_0 the set of vertices of degree smaller than k in Builder’s graph at the end of Stage I. By the above, whp, $|V_0| \leq \varepsilon'n$. Builder now emulates the O_k model with respect to these vertices; namely, Builder purchases any edge contained in V_0 that is incident to at least one vertex of degree less than k in $G[V_0]$. Since in the random graph process, by time t, the minimum degree is logarithmic in n, Builder will observe at least k additional edges incident to each vertex of V_0. He will purchase a subset of these (thus, at most $\varepsilon'kn$ edges).

4.2 Hamilton cycles

4.2.1 Hitting time, inflated budget

Proof of Theorem 3. Let k be a large enough constant so that $O_{k,2}$ is whp Hamiltonian (such k is guaranteed to exist by Theorem 3.5). Builder emulates $O_{k,2}$ by purchasing every edge that is incident to a vertex of degree less than k. He completes this in time τ_2 while purchasing at most kn edges.

4.2.2 Inflated time, optimal budget

In this section, we prove the following theorem:

Theorem 4.1 (Hamiltonicity). For every $\varepsilon > 0$ there exists $C > 1$ such that the following hold. If $t \geq Cn \log n/2$ and $b \geq (1 + \varepsilon)n$ then there exists a (t, b)-strategy B of Builder such that

$$
\lim_{n \to \infty} \mathbb{P}(B_t \text{ is Hamiltonian}) = 1.
$$
Proof of Theorem 4.1 We describe Builder’s strategy in (four) stages. Set $\varepsilon' = \varepsilon/40$. We describe a (t,b)-strategy for $b = (1 + \varepsilon)n$ and $t < n \log n/\varepsilon'$.

Stage I (Growing disjoint paths) Time: $\Theta(n \log^{1/3} n) — Budget: (1 - \varepsilon')n$
Let C be a large constant to be chosen later. In the first stage, Builder grows many sublinear paths, covering together $(1 - \varepsilon')n$ vertices. Let $s' \sim n/\log^{1/3} n$ be an integer and let $s_0 = n/\log^{1/2} n \ll s'$. Builder grows simultaneously paths $P_1, \ldots, P_{s'}$ as follows. He begins by letting each P_i be a (distinct) vertex v^i_0. He then claims every edge that extends one of the paths without intersecting with other paths. Formally, let $\nu = (1 - \varepsilon')n/s'$. If at a given stage Builder has the paths $(v^1_0, v^1_{\ell_1}), \ldots, (v^{s'}_0, v^{s'}_{\ell_{s'}})$ on the vertex set V_P then he claims an observed edge if and only if it is of the form $\{v^j_{\ell_j}, w\}$ for some $j = 1, \ldots, s'$, $\ell_j < \nu$ and $w \notin V_P$. Builder stops if all but at most s_0 of the paths are of length at least ν (in which case the stage is “successful”), or when he has observed $t_1 = \frac{C}{\varepsilon'} n \log^{1/3} n$ edges (in which case the stage “fails”), whichever comes first. For $1 \leq j \leq s'$ and $1 \leq i \leq t_1$, let y^j_i be the indicator that Builder has purchased the i’th observed edge, and that this edge extends the path P_j. For convenience, if $|P_j| \geq (1 - \varepsilon')n$ we set y^j_i to 1. Observe that for every j, i, $\Pr(y^j_i = 1) \geq (n - |P_j|)/(\binom{n}{2}) > \varepsilon'/n$. If the stage fails then there is an s_0-subset $S_0 \subseteq [s']$ such that for every $j \in S_0$, the path P_j ends up with length less than ν. Write $y_0 = \sum_{j \in S_0} \sum_{i=1}^{\ell_j} y^j_i$. Thus, if the stage fails then $y_0 < \nu s_0$. But y_0 stochastically dominates a binomial random variable with t_1 attempts and success probability $p_1 = \varepsilon' s_0/n$. Set $\mu = t_1 p_1 \sim C \log^{1/3} n \gg s'$. By the union bound over the choices of an s_0-subset of the paths and using Chernoff bounds (Theorem 2.1), for large enough C, the probability that the stage fails is at most

$$\left(\frac{s'}{s_0}\right) \Pr(y_0 < \nu s_0) \leq 2^{s'} \exp(-\mu/10) = o(1).$$

Stage II (Connecting the paths) Time: $n \log^{1/2} n — Budget: o(n)$
At this stage Builder tries to connect most of the $s = s' - s_0 \sim s'$ complete paths to each other, eventually obtaining an almost-spanning path in his graph. For convenience, we ree-numerate the complete paths by $[s]$. Let $t_2 = n \log^{1/2} n$. During the next t_2 observed edges, Builder purchases an edge connecting the last vertex of one of his paths to the first vertex of another. Formally, he purchases every observed edge of the form $\{v^i_{\ell_i}, v^0_{j_0}\}$ for $i \neq j$. We will need the following lemma:

Lemma 4.2 ([6, Lemma 4.4]). Let $s, k \geq 1$ and let D be an s-vertex digraph in which for every two disjoint $A, B \subseteq V(D)$ with $|A|, |B| \geq k$, D contains an edge between A and B. Then, D contains a directed path of length $s - 2k + 1$.

We use the lemma on an auxiliary digraph D on the vertex set $[s]$ that is defined as follows. We observe t_2 random edges. Whenever Builder observes (and purchases) an edge of the form $\{v^i_{\ell_i}, v^0_{j_0}\}$, we add the edge (i, j) to D. We now have to claim that D satisfies the requirements of the lemma for $k = \varepsilon's$.

Claim 4.3. Whp, every two disjoint $A, B \subseteq [s]$ with $|A|, |B| \geq \varepsilon's$ satisfy $E_D(A, B) \neq \emptyset$.

Proof. Fix disjoint A, B with $|A|, |B| \geq \varepsilon's$. The event that $E_D(A, B) = \emptyset$ implies that none of the t_2 observed edges hits a pair $\{v^i_{\ell_i}, v^0_{j_0}\}$ for $i \in A$ and $j \in B$. There are at least $\varepsilon'^2 s^2$ such edges, hence that probability is at most

$$\left(\binom{n}{2} - \varepsilon'^2 s^2\right)/t_2 \leq \exp\left(-\varepsilon'^2 s^2 t_2/\binom{n}{2}\right) = \exp(-\Theta(n \log^{-1/6} n)).$$
Here we used the general bound \((a-b)/c \leq \exp(-bc/a)\). By the union bound over the choices of \(A, B\), the probability that the event in the statement does not hold is at most
\[
\left(\frac{n}{\varepsilon'}\right)^2 \exp(-\Theta(n \log^{-1/6} n)) \leq \exp(\varepsilon' s \log \log n - \Theta(n \log^{-1/6} n)) = o(1).
\]

Claim 4.3 and Lemma 4.2 imply that \(D\) has, \(\text{whp}\), a directed path of length \((1 - 2\varepsilon')s\). By the way we have defined \(D\), this implies the existence of a path \(Q\) of length \((1 - 3\varepsilon')n\) in Builder’s graph. To analyse the number of purchased edges at this stage, we note that at any stage an edge is purchased with probability \(s^2/n^2\), hence the expected number of purchased edges is \(\sim s^2 n^2/n = n/\log^{1/6} n\). By Chernoff bounds (Theorem 2.1), the number of purchased edges is sublinear \(\text{whp}\).

Stage III (Preparing the ground)

Time: \(\frac{1}{6} n \log n\) — Budget: \(36\varepsilon'n\)

Let \(q_1, q_2\) be the endpoints of \(Q\). Let \(V_1 \cup V_2 = V \setminus V(Q)\) be a partition of the vertices outside \(Q\) (so \(|V_i| = 3\varepsilon'n/2\) for \(i = 1, 2\)). Builder performs the next two tasks simultaneously.

(Connecting the endpoints of \(Q\) to \(V_1, V_2\)) Builder claims the first observed edge from \(q_i\) to \(V_i\) for each \(i = 1, 2\) (unless such an edge already exists). After \(cn \log n\) steps, for any \(c > 0\), there will be \(\text{whp}\) a neighbour of each of \(q_i\) in \(V_i\). Call this neighbour \(w_i\).

(Constructing expanders on \(V_1, V_2\)) Builder purchases a copy of \(O_{12}\) in \(V_i\). Observing that every new edge falls inside \(V_i\) with probability at least \(2\varepsilon'^2\), we conclude, using Theorem 2.1, Lemma 2.8, and Corollary 3.2, that this could be done \(\text{whp}\) by observing at most \(\frac{1}{6} n \log n\) edges and purchasing at most \(36\varepsilon'n\) of them. By Lemma 3.8, the obtained graphs are both \(\beta n\)-expanders for some \(\beta > 0\). For \(i = 1, 2\) let \(B_i = B[V_i]\) denote Builder’s graph on the vertex set \(V_i\).

Stage IV (Sprinkling)

Time: \(O(n)\) — Budget: \(3\varepsilon'n\)

By Lemma 2.13 and Theorem 2.1 there exists \(C_4 = C_4(\beta, \varepsilon') > 0\) such that by observing at most \(C_4 n\) edges and purchasing at most \(\frac{3}{2} \varepsilon'n\) edges among those landing inside each \(V_i\), both \(B_1, B_2\) become \(\text{whp}\) Hamiltonian. Conditioning on that event, denote the sets of endpoints of Hamilton cycles in \(B_i\) whose other endpoint is \(w_i\) by \(Y_i\) for \(i = 1, 2\). By Lemma 2.14, \(|Y_i| \geq \beta n\).

Stage V (Closing a Hamilton cycle)

Time: \(\log n\) — Budget: \(1\)

To close a Hamilton cycle, Builder purchases an edge between \(Y_1\) and \(Y_2\). The probability of failing to do so after observing \(\log n\) steps is \(o(1)\).

4.3 Perfect matchings

In this section we prove Theorem 4. Recall the constant \(k_H\) from Theorem 3.4, and let \(\varepsilon' = \varepsilon/k_H\).

Stage I (Constructing a \(k\)-core)

Time: \(\Theta(n)\) — Budget: \(\varepsilon'n\)

Let \(k\) be some large (even) constant to be determined later (in Stage VI). Choose \(\varepsilon_1 = \varepsilon'/(10k)\) and let \(V_1\) be an arbitrary vertex set of size \(\sim \varepsilon_1 n\). During the next \(t_1 \sim 9kn\) steps Builder purchases every edge that lands inside \(V_1\). By that time, \(\text{whp}\), at least \(8k\varepsilon_1 n\) (and at most \(10k\varepsilon_1 n = \varepsilon'n\)) edges are being purchased. Thus, by Corollary 2.16, \(\text{whp}\), the obtained graph contains a \(k\)-core on vertex set \(U_1 \subseteq V_1\) of size at least \(\varepsilon_1 n/2\). Write \(\eta_1 = |U_1|/n\) and note that \(\eta_1 \leq \varepsilon_1 \leq \varepsilon'/10\).
Stage II (Constructing a large matching) \hspace{1cm} \text{Time}: \Theta(n) \quad \text{Budget: } n/2

Let $\varepsilon_2 = \varepsilon'/3$. Let $Y = V \setminus U_1$; so $|Y| \sim (1-\eta_1)n$. Let $C_2 = C_2(1, \varepsilon_2)$ be the constant guaranteed by Lemma 2.15. Builder follows a (t_2, b_2)-strategy proposed by Lemma 2.15 to construct a matching M_2 with vertex set $X_2 \subseteq Y$ where $|X_2| \geq |Y| \sim (1 - \varepsilon_2)(1 - \eta_1)n$. The lemma guarantees that this is doable, whp, for $t_2 = C_2n$ and $b_2 \leq n/2$. Write $\eta_2 = 1 - |X_2|/n$, and note that $\eta_1 \leq \eta_2 \leq \eta_1 + \varepsilon_2$.

Stage III (Extending the large matching) \hspace{1cm} \text{Time: } \varepsilon'n \log n \quad \text{Budget: } \varepsilon n/3

Denote the vertices outside $X_2 \cup U_1$ by W_2. Recall that $|W_2| = n - (|X_2| + |U_1|) \sim (\eta_2 - \eta_1)n$. Write $\eta_3 = \eta_2 - \eta_1 \leq \varepsilon_2$. During the next $t_3 \sim \varepsilon'n \log n$ steps Builder (partially) constructs O_{k_H} on W_2. The number of purchased edges is whp at most $k_H \eta_3 n \leq k_H \varepsilon_2 n \leq \varepsilon n/3$. Let S be the set of vertices of degree less than k_H in W_2 at the end of this process. We now show that, whp, $|S| \leq n^{1-\delta_3}$ for $\delta_3 = \eta_3 \varepsilon'/2$. Indeed, let $w \in W_2$. The probability that the next edge contains w and is contained in W_2 is $p_3 \sim 2\eta_3/n$. Thus, the total number of observed edges incident to w stochastically dominates a binomial random variable with t_3 attempts and success probability p_3. Consequently, the probability that edges containing w were observed less than k_H times is, by Claim 2.2, at most $n^{-\eta_3 \varepsilon'}$. Hence, by Markov’s inequality, $P(|S| \geq n^{1-\delta_3}) \leq \eta_3 n^{(1-\eta_3 \varepsilon')/n^{1-\delta_3}} \ll 1$. We argue that $B[W_2]$ contains a matching that covers all but $2k_H n^{1-\delta_3}$ vertices. Indeed, if we had continued constructing the copy of O_{k_H} without any time restrictions, we would had – according to Theorem 3.4 – a (nearly) perfect matching there. But, deterministically, we would have purchased at most $k_H |S|$ additional edges to achieve that goal. Thus, whp, the current largest matching covers all but at most $2k_H n^{1-\delta_3}$ vertices in W_2. Denote this matching by M_3, and let $X_3 = V(M_3)$.

Stage IV (Building stars) \hspace{1cm} \text{Time: } (1 + \varepsilon')n \log n/2 \quad \text{Budget: } o(n)

We append the matching constructed in Stage III to the matching constructed in Stage II; namely, we set $M = M_2 \cup M_3$, $X = X_2 \cup X_3$ and $W = V \setminus (X \cup U_1)$. We recall that $|W| \leq n^{1-\delta_4}$ for some $0 < \delta_4 < \delta_3$ and $|X| \sim (1 - \eta_1)n$. Let $K > 1/(2\eta_1 \varepsilon')$ be an integer. In this stage Builder attempts to construct disjoint K-leaf stars at each vertex of W, with leaves inside X, where each edge of M contains at most one leaf. For $w \in W$ let x_w denote the number of leaves in the star that is rooted at w that Builder managed to purchase by the end of the stage. We show that whp for every $w \in W$, $x_w = K$, hence the stage is successful. Indeed, whenever an edge arrives it has probability $2/n$ to be incident to w. The other end of such an edge is incident to an available edge of M with probability at least $(|X| - 2K|W|)/n \sim 1 - \eta_1$. Thus, x_w stochastically dominates a binomial random variable with $t_4 = (1 + \varepsilon')n \log n/2$ attempts and success probability $p_3 = (1 - 2\eta_1) \cdot 2/n$. Therefore, by Claim 2.2 (since $\varepsilon' < 1$ and $2\eta_1 < \varepsilon'$),

$$P(x_w < K) \leq \left(\frac{e t_3 p_3}{K(1 - p_3)} \right)^K e^{-t_3 p_3} = (\Theta(\log n))^K \cdot n^{-(1+\varepsilon')(1-2\eta_1)} \ll n^{-1}.$$

By the union bound over all $o(n)$ vertices of W, the probability that any x_w is below K is $o(1)$.

Stage V (Building 3-paths) \hspace{1cm} \text{Time: } \varepsilon'n \log n \quad \text{Budget: } o(n)

For every $w \in W$ let $a^w_1, \ldots, a^w_K \in X$ be the leaves of the stars rooted at w that were constructed in the previous stage. For $i = 1, \ldots, K$, let $b^w_i \in X$ be the neighbour of a^w_i in M. Builder now purchases every edge that connects b^w_i (for some $w \in W$ and $i \in [K]$) to a vertex $u \in U_1$, as long as none of $b^w_1, \ldots, b^w_{K-1}, u$ was touched earlier during this stage. Fix $w \in W$. The probability that in a given step an edge between (an untouched vertex of) U_1 and $\{b^w_1, \ldots, b^w_K\}$ appears is at least
most the probability that \(k/2 \) of them end up in \(M^* \) and let \(u \) be a vertex set with \(|M^*| \geq k/2 \). Thus, the probability that \(k/2 \) of these \(k \) neighbours end up in \(U' \). By the union bound, this is at most \(\left(\frac{k}{k/2} \right)^{\frac{|U_1| - k/2}{|W|}} \leq \left(4 \cdot \frac{|W|}{|U_1|} \right)^{k/2} \times n^{-\delta k/2} \).

Making sure \(k > 2/\delta_4 \), this is \(o(n^{-1}) \), and hence, by the union bound, \(\text{whp} \), \(\delta(B[U^*]) \geq k/2 \). We remark that there is no circular dependency of the constants here.

We recall that by Lemma 2.4 (taking \(t = t_1 \sim 9kn \) and \(R = 3\beta_6 n \) for \(\beta_6 = 3^{-5}k^{-3/2} \) the random graph process \(G_t \), and hence also \(B[U^*] \), typically does not have a set of size \(r \leq 3\beta_6 n \) that spans more than \(3r \) edges. This, together with the minimum degree of \(B[U^*] \), implies expansion; indeed, let \(A \subseteq U^* \) be a vertex set with \(|A| = a \leq R/3 = \beta_6 n \). Suppose \(|N(A)| < 2|A| \) and write \(S = A \cup N(A) \) (so \(r = |S| < 3a \leq R \)). But the number of edges spanned by \(S \) is at least \(\delta(B[U^*])|A|/2 \geq ka/4 > kr/12 \geq 3r \) (making sure \(k \geq 36 \)), a contradiction to Lemma 2.4. Thus, \(B[U^*] \) is a \(\beta_6 n \)-expander. By Lemma 2.13 there exists \(C_6 = C_6(\beta_6) \) such that adding to \(B[U^*] \) \(C_6 \eta_1 n \) random non-edges makes it, \(\text{whp} \), Hamiltonian. Letting \(t_6 = C_6 n/\eta_1 \) for \(C_6 > C_6 \), it follows from Theorem 2.1 that after observing \(t_6 \) edges, at least \(C_6 \eta_1 n \) of them land, \(\text{whp} \), inside \(U^* \) (whose size is \(\sim \eta_1 n \)). Builder purchases each of these edges. Thus, by Lemma 2.13, Builder’s resulting graph on \(U^* \) contains, \(\text{whp} \), a Hamilton cycle. That Hamilton cycle contains a perfect matching \(M_6 \). Appending \(M_6 \) to \(M \), we get a perfect matching in Builder’s graph.

\[p_4 = K(|U_1| - |W|)/\binom{n}{2} \sim 2K\eta_1/n. \] Thus, the probability that in \(t_4 = \epsilon' n \log n \) steps such an edge does not appear is at most \(e^{-p_4 t_4} = n^{-2K\eta_1 \epsilon'}. \) Noting that \(K > (2\eta_1 \epsilon')^{-1} \) we get that this probability is \(o(n^{-1}) \), hence, by the union bound over all \(o(n) \) vertices of \(W \), we match one leaf in the star rooted at \(w \) with a unique vertex in \(U_1 \) for every \(w \in W \) \(\text{whp} \).

Stage VI (Sprinkling)

Time: \(\Theta(n) \) — Budget: \(\epsilon' n \)

We note that each of the 3-paths constructed in the previous stage can be used as an augmenting path. Namely, we let \(M' \) be the matching obtained by \(M \) by replacing every edge \(e \in M \) that is contained in such a 3-path (as a middle edge) by the other two edges of that path. Let \(U' \) be the set of vertices in \(U_1 \) matched in \(M' \), and write \(U^* = U_1 \setminus U' \). Thus, \(M' \) matches all vertices but those in \(U^* \). We now show that \(B[U^*] \) is \(\text{whp} \) an expander. For that, note that \(U' \) is a uniformly chosen subset of size \(|W| \leq n^{1-\delta_4} \) of \(U_1 \). We first argue that \(\delta(B[U^*]) \geq k/2 \) \(\text{whp} \). Indeed, fix \(u \in U_1 \), and let \(u_1, \ldots, u_k \) be arbitrary neighbours of \(u \) in \(B[U_1] \). The probability that \(d(u, U^*) \leq k/2 \) is at most the probability that \(k/2 \) of these \(k \) neighbours end up in \(U' \). By the union bound, this is at most \(\left(\frac{k}{k/2} \right)^{\frac{|U_1| - k/2}{|W|}} \leq \left(4 \cdot \frac{|W|}{|U_1|} \right)^{k/2} \times n^{-\delta k/2} \).

5 Small subgraphs

We introduce the following terminology. For a fixed graph \(H \) we call a non-edge \(e \) in Builder’s graph an \textbf{H-trap} (or, simply, a trap) if \(B + e \) contains a copy of \(H \). Following the terminology of “hitting” boosters, we say that Builder \textbf{hits} a trap if he encounters (and therefore purchases) such a non-edge.

5.1 Trees

1-statement

Proof of the 1-statement of Theorem 5. Let \(T_1 \subseteq \ldots \subseteq T_k \) be a sequence of subtrees of \(T \), \(T_i \) having \(i \) vertices (so \(T_k = T \)). We first note that if \(t \gg n \) then a budget \(b = k - 1 \) suffices with high probability. Indeed, suppose Builder has constructed \(T_i \) (note that he builds \(T_1 \) with a zero budget).
To build \(T_{i+1} \), Builder waits for one of at least \(\sim n \) edges whose addition to his current copy of \(T_i \) would create a copy of \(T_{i+1} \). By time \(t/(k-1) \) Builder observes (and purchases) such an edge \(\text{whp} \). Thus, by time \(t \) Builder constructs, \(\text{whp} \), a copy of \(T \).

We may thus assume from now on that \(t \leq cn \) for \(0 < c < 1/5 \) and \(t \geq b \gg (n/t)^{k-2} \). In particular, \(t \gg n^{1-1/(k-1)} \). For \(i = 1, \ldots, k \) define

\[
s_i = \frac{b}{k-1} \cdot \left(\frac{t}{(k-1)n} \right)^{i-2},
\]

and note that \(s_i \) is a strictly monotone decreasing sequence with \(n \geq s_1 \geq s_k \gg 1 \). We describe Builder’s strategy in stages (for convenience, the first stage will be indexed by 2). We assume that the beginning of stage \(i \), \(i = 2, \ldots, k \), Builder has built \(s_{i-1} \) vertex-disjoint copies of \(T_{i-1} \). The assumption trivially holds for \(i = 2 \), since \(s_1 \leq n \). At stage \(i \geq 2 \), Builder purchases any edge extending one of the \(s_{i-1} \) copies of \(T_{i-1} \) he currently has a copy of \(T_i \), so that the resulting trees are still vertex-disjoint. He continues doing so only as long as he does not have \(s_i \) copies of \(T_i \) (in which case this stage is successful) or if he had observed more than \(t/(k-1) \) edges during this stage (in which case this stage fails, and thus the entire strategy fails). For stage \(i \) and \(1 \leq j \leq t/(k-1) \) let \(y_j^i \) denote be the event that the \(j \)'th observed edge of stage \(i \) is being purchased, or that \(s_i \) copies of \(T_i \) have already been built. Being at stage \(i \), there are at least \(s_{i-1} - s_i \) potential trees to extend, each can be extended by observing one of at least \(n - 2b \) edges. Thus, noting that \(s_{i-1} - s_i \geq s_{i-1} (1 - c/(k-1)) \) and \(n - 2b \geq n - 2t \geq n(1 - 2c) \), we have

\[
\mathbb{P}(y_j^i) \geq \frac{(s_{i-1} - s_i)(n - 2b)}{n(n-1)/2} \geq \frac{2(1 - \frac{c}{k-1})s_{i-1} \cdot (1 - 2c)}{n}.
\]

Write \(c' = 2(1 - c/(k-1))(1 - 2c) \) and note that for small enough \(c > 0 \) \(c' < 1/5 \) suffices) we have \(c' > 1 \). Therefore, \(y^i = \sum_j y_j^i \) stochastically dominates a binomial random variable with mean \(\frac{t}{k-1} \cdot c's_{i-1} = c's_i \). By Chernoff bounds (Theorem 2.1), the stage is successful \(\text{whp} \). Thus, Builder builds, \(\text{whp} \), \(s_k \geq 1 \) copies of \(T_k = T \) by the end of \(k - 1 \) stages, that is, by time \(t \).

\(\blacksquare \)

0-statement

\textbf{Proof of the 0-statement of Theorem 5.} We assume \(b \ll (n/t)^{k-2} \). It follows that \(t \ll n \). We may also assume that \(b \ll t \); indeed, if \(b \gg t \) then \(t \ll (n/t)^{k-2} \), hence \(t \ll n^{1-1/(k-1)} \). This implies that \(\text{whp} \) no tree on \(k \) vertices exists in the graph of the observed edges. We prove that any \((t,b)\)-strategy of Builder fails, \(\text{whp} \), to build a connected component of size \(k \). Define a sequence \((r_i)_{i=1}^{k-1} \) by \(r_1 = n \) and \(r_i = b(3kt/n)^{i-2} \) for \(i = 2, \ldots, k-1 \). We argue that \(\text{whp} \) Builder cannot build more than \(r_i \) connected components of size \(i \). The proof is by induction on \(i \). The case \(i = 1 \) is trivial. The case \(i = 2 \) follows deterministically by the budget restriction, as \(r_2 = b \). To build a connected component of size \(2 < i < k \), Builder must observe an edge connecting a connected component of size \(1 \leq j < i \) with a connected component of size \(i-j \geq j \). By induction, the probability that the next observed edge is such is at most

\[
\frac{\sum_{j=1}^{i/2} (jr_j \cdot (i-j)r_{i-j})}{\binom{n}{2} - t} \leq \frac{inr_{i-1} + \Theta(b^2(t/n)^{i-4})}{\binom{n}{2} - t} \leq 2.5kr_{i-1}/n.
\]

Here we used the fact that \(b \ll t \), hence \(b^2(t/n)^{i-4} \ll nr_{i-1} \). Thus, by Chernoff bounds (Theorem 2.1), during \(t \) rounds the number of such edges is, \(\text{whp} \), smaller than \(r_{i-1} \cdot 3kt/n = r_i \). To build a tree of order \(k \), Builder must construct a connected component of size at least \(k \). For that,
Builder must observe an edge connecting a connected component of size 1 ≤ i ≤ k − 1 with a connected component of size max{1, k − i} ≤ j ≤ k − 1 (in his graph). The probability that the next observed edge is such is at most
\[
\sum_{i=1}^{k-1} \sum_{j=\max\{i,k-i\}}^{k-1} \binom{n}{2} - t \leq \frac{r_{k-1}}{n}.
\]
Hence, during t rounds the expected number of edges Builder observes that create such a connected component is ≤ r_{k-1}t/n ≪ 1; thus, Builder fails to construct such a component whp. ⊓⊔

5.2 Cycles

1-statement

Proof of the 1-statement of Theorem 6. Let b > b^* = b^*(n,t,k). As b^* ≪ n, we may assume b ≪ n. Choose n ≪ t' ≪ t such that it still holds that b > b' := b^*(n,t',k). Set s = n^2/(bt') = min\{t'/n^k, n/\sqrt{t'}\}, and note that 1 ≪ s ≪ b. Indeed, b/s > b'/s = n^2/(s^2t') ≥ 1. Denote d = cs^{1/k} for c < 1/(k + 5) and note that d ≫ 1. Note further that dn = cs^{1/k}n ≤ ct' and that c^k < 1/6.

Stage I (Growing d-ary trees)

Builder performs Stage I in k rounds, each lasting dn steps. Set r = b/s ≫ 1. Builder chooses 2^k r vertices arbitrarily, call them roots. Denote by P_0 = \{v_1, \ldots, v_{2^k r}\} the set of these roots, and let L_0 = R_0 = P_0 (we think of each root as being both on the right side of a tree and on the left side of a tree). Suppose at the beginning of round i ∈ [k] we have a set J_{i-1} ⊆ \{v_j\} with |J_{i-1}| = 2^{k-(i-1)}r and trees (T_j)_{j \in J_{i-1}}, where the tree T_j is rooted at v_j and is of depth i − 1 (so at the beginning of round 1 these trees are isolated roots). Write L^i_j for the set of vertices in L_i which are in tree j, and define R^i_j analogously. Builder’s goal at round i is to “extend” half of these trees, by attaching d|L^i_{i-1}| leaves to vertices in L^i_{i-1} and d|R^i_{i-1}| (distinct) leaves to vertices in R^i_{i-1}. Each of the new leaves should not be already covered by Builder’s graph. A leaf attached to L^i_{i-1} will be placed in L^i_j, and a leaf attached to R^i_{i-1} will be placed in R^i_j. Note that if i = 1 then L^i_1 = R^i_1 = \{v_j\}, in which case we attach two d-leaf stars at each root v_j. Let J_i ⊆ J_{i-1} be the subset of indices for which T_j has been successfully extended. Set L_i = \bigcup_{j \in J_i} L^i_j and R_i = \bigcup_{j \in J_i} R^i_j. Note that if Builder’s strategy has not failed by the beginning of round i, |J_{i-1}| = 2^{k-(i-1)}r and |L^i_{i-1}| = |R^i_{i-1}| = d^{i-1} for every j ∈ J_{i-1}. For i ∈ [k] and j ∈ J_{i-1} let x^{(j)}_i be the number of edges observed at round i with one endpoint in L^i_{i-1} and the other outside the set of vertices covered by the edges of Breaker’s graph at the time of observation. If |x^{(j)}_i| ≥ d|L^i_{i-1}| then Builder purchases the first |L^i_{i-1}| of those observed edges and this stage is “left-successful” for tree j. Similarly, let y^{(j)}_i be the number of edges observed at round i between R^i_{i-1} and the uncovered part of the graph. If |y^{(j)}_i| ≥ d|R^i_{i-1}| then Builder purchases the first |R^i_{i-1}| of those observed edges and this stage is “right-successful” for tree j. If a stage is both left-successful and right-successful for a tree j then T_j is successfully extended. As we remarked earlier, after extending successfully 2^{k-i}r trees, Builder stops.

Let us analyse this strategy. For 0 ≤ i ≤ k, denote by b_i the number of covered vertices by the end of step i. Observe that
\[
b_i ≤ \sum_{i' = 0}^i 2^{k+1-i'} rd^i' ≤ (1 + o(1))2^{k-i+1}rd^i.
\]
(since \(d \gg 1 \)). In particular, \(b_k < 3rd^k = 3c^kb \ll n \). Take \(i \in [k] \) and assume the strategy was successful so far. Thus, \(x_i^{(j)} \) (and also \(y_i^{(j)} \)) stochastically dominates a binomial random variable with \(dn \) attempts and success probability at least \(|L^2_{i-1}|/(n-|L^2_{i}|) \sim 2d^{-1}/n \). Thus, by Chernoff bounds (Theorem 2.1), \(\Pr(x_i^{(j)} < d|L^2_{i-1}) = \Pr(x_i^{(j)} < d^2) < \exp(-d^2)/5 \ll 1 \). By Markov’s inequality, \(\text{whp} \) for at least half of the trees indexed by \(J_i-1 \) Builder succeeds in extending the tree. The total time that passes until the end of this stage is at most \(kdn \leq ckt' < t' \ll t \), and the total budget is at most \(3c^kb < b/2 \).

Stage II (Connecting leaves)

Note that for every \(j \in J_k \), if \(u \in L^2_k \) and \(v \in R^2_k \) then \(u, v \) are both leaves of \(T_j \) of distance \(2k \) from each other. Thus, by adding the edge \(\{u, v\} \), a cycle of length \(\ell \) is formed. Thus, the number of traps is \(|J_k| \cdot |L^2_k| \cdot |R^2_k| = rd^{2k} \times rs^2 = bs \gg n^2/t' \). Thus, after time \(t - t' \gg t' \) we hit a trap \(\text{whp} \).

Even cycles We briefly discuss the modifications needed to obtain the result for cycles of length \(2k + 2 \). Instead of choosing \(P_0 \), Builder greedily constructs a matching \(M_0 \) of size \(2^k r \); this is doable (\(\text{whp} \)) since the first \(Cr \) observed edges (recalling that \(r \ll n \)) are mostly disjoint, and, in particular, for large enough \(C \), contain a matching of size \(2^k r \). Then, for each edge in \(M_0 \), Builder puts one vertex in \(L_0 \) and one vertex in \(R_0 \). Builder continues in the same fashion as in the case of odd cycles, where the only difference is that instead of \(L_0 = R_0 \) we have \(L_0 \cap R_0 = \emptyset \). We finish by noting that an edge between \(u \in L^2_k \) and \(v \in R^2_k \) now closes a cycle of length \(2k + 2 \). \(\square \)

0-statement

Let \(H = C_\ell \) for \(\ell = 2k + 1 \) or \(\ell = 2k + 2 \). The 0-statement in Theorem 6 follows from combining the next two claims together with the known fact that if \(t \ll n \) then \(G_{n, t}, \text{whp} \), contains no copy of \(H \).

Claim 5.1. If \(b \ll n/\sqrt{t} \) then for any \((t, b)\)-strategy \(B \) of Builder,

\[
\lim_{n \to \infty} \Pr(H \subseteq B_t) = 0.
\]

Claim 5.2. If \(b \ll n^{k+2}/t^{k+1} \) then for any \((t, b)\)-strategy \(B \) of Builder,

\[
\lim_{n \to \infty} \Pr(H \subseteq B_t) = 0.
\]

Proof of Claim 5.1. We may assume \(t \ll n^2 \). Consider a strategy for building \(H \). Let \(B' \) be Builder’s graph before obtaining the first copy of \(H \). We show that at this point, the time it takes Builder to hit an \(H \)-trap (and hence construct a copy of \(H \)) is typically much larger than \(t \). Let \(X \) denote the number of \(H \)-traps at this point. Observe that every \(H \)-trap is a non-edge of \(B' \), both whose endpoints are vertices of positive degree. Evidently, the number of vertices of positive degree is at most \(2b \), thus \(X \leq 4b^2 \). Thus, the probability of hitting a trap in \(t \) steps is at most \(tX/(\binom{n}{2} - t) \leq tb^2/n^2 \ll 1 \). \(\square \)

For the proof of Claim 5.2 we will need a couple of lemmas. In what follows, we may assume that \(t \leq n^{(k+1)/(k+1/2)} \), as otherwise \(n^{k+2}/t^{k+1} \leq n/\sqrt{t} \) and the claim follows from Claim 5.1.

Claim 5.3. Let \(\ell \geq 1 \) be an integer, write \(d = 2t/n \gg 1 \) and let \(C > 1 \). Then, \(\text{whp} \), the number of paths of length \(\ell \) in \(G_t \) that contain a vertex whose degree is at least \(Cd \) is \(o(n/d) \).
Proof. Let L be the set of all vertices of degree at least Cd, and let Q be the set of all paths containing a vertex from L. By Chernoff bounds (Theorem 2.1),

$$
\mathbb{E}[Q] \leq n^{t+1} \left(\frac{t}{n^2} \right)^{\ell} (\ell + 1) \cdot \mathbb{P}(d(v) \geq Cd - 2) \leq nd^e e^{-cd} \ll n/d,
$$

for some constant $c = c(C) > 0$, and the result follows from Markov’s inequality.

We turn to count the number of copies of a path of length ℓ in a z-degenerate graph G_0 with maximum degree Δ.

Lemma 5.4. Let $z, q, \Delta, \ell \geq 1$ be integers. Let G_0 be a z-degenerate q-vertex graph with maximum degree Δ. Then, the number of paths of length ℓ in G_0 is at most $q \cdot 2^\ell z^{\lfloor \ell/2 \rfloor} \Delta^{\lfloor \ell/2 \rfloor}$.

Proof. Let v_1, \ldots, v_q be an ordering of the vertices of G_0 such that for $1 \leq i \leq q$, v_i has at most z neighbours among v_1, \ldots, v_{i-1}. Given a path P of length ℓ, one of its consistent orientations has at least k edges going backwards (w.r.t. the orientation). Thus, to count the number of copies of P in G_0, it suffices to count the number of directed paths of length ℓ with at least $\lfloor \ell/2 \rfloor$ edges going backwards. To count those, first choose a starting vertex (n options), then choose the locations of the edges going back (at most 2^ℓ options), and finally choose from at most z options for an edge pointing back, or at most Δ options otherwise. Altogether, there are at most $q \cdot 2^\ell z^{\lfloor \ell/2 \rfloor} \Delta^{\lfloor \ell/2 \rfloor}$ such paths.

Proof of Claim 5.2. Consider a strategy for building H. Let B' be Builder’s graph before obtaining the first copy of H. We show that at this point, the time it takes Builder to hit an H-trap (and hence construct a copy of H) is typically much larger than t. Let X denote the number of H-traps at this point. Observe that X is bounded from above by the number of paths of length $\ell - 1$. Write $d = 2t/n$ and let B'' be obtained from B' by deleting every vertex of degree at least Cd. By Claim 5.3, the number of ($\ell - 1$) paths that we removed when obtaining B'' is whp $o(n/d)$. Evidently, $\Delta(B'') \leq Cd$. By Claim 2.5, since $b^2 n^{-2k+4}/t^{2k+2} \leq n^5/(40t^3)$ (here we use $t \geq 40n$), and since we may assume $b \gg 1$, B'' is, whp, 6-degenerate. Thus, by Lemma 5.4, B' has, whp, at most $2b \cdot 6^{k+1} \cdot (3t/n)^k + o(n/d) \ll n^2/t$ paths of length $\ell - 1$. Thus, whp, $X \ll n^2/t$. Therefore, whp, the probability of hitting a trap in t steps is at most $tX/((\binom{n}{2} - t) \ll 1$.

6 Concluding remarks and open problems

We have proposed a new model for a controlled random graph process that falls into the broader category of online decision-making under uncertainty. The question we considered is the following: given a monotone graph property \mathcal{P}, is there an online algorithm that decides whether to take or leave any arriving edge that obtains, whp, the desired property within given time and budget constraints. We analysed the model for several natural graph properties: connectivity, minimum degree, Hamiltonicity, perfect matchings and the containment of fixed-size trees and cycles. Our focal point was the investigation of the inevitable trade-off between the total number of edges Builder observes (maximum time) and the number of edges he might need to purchase (minimum budget). In some cases, the trade-off is substantial (for example, to construct a triangle in a close-to-optimal time, namely, when these just appear in the random graph process, Builder must purchase an almost-linear number of edges). For containment of fixed subgraphs, we have quantified that trade-off precisely.

Although we have made some sizable progress, there are a few challenging open problems to consider. Returning to our first result, we have shown (Theorem 1) that the budget needed to obtain
minimum degree k at the hitting time is at most $o_k n$. We believe that this result is (asymptotically) optimal in the following sense:

Conjecture 7. For every $k \geq 2$ and $\varepsilon > 0$, if $b \leq (o_k - \varepsilon)n$ then for any (τ_k, b)-strategy B of Builder,

$$
\lim_{n \to \infty} \mathbb{P}(\delta(B_{\tau_k}) \geq k) = 0.
$$

We continued by showing (Theorem 2) that if we allow the time to be only asymptotically optimal, then an asymptotically optimal budget suffices. For large enough k, a similar statement for k-vertex-connectivity follows from Theorem 1 and Corollary 3.2. For $k = 1$, as demonstrated in the introduction, this is trivially true. Recently, after an earlier version of this paper appeared online, Lichev [43] proved that this is true for every $k \geq 2$:

Theorem 6.1 ([43]). Let $k \geq 2$ be an integer and let $\varepsilon > 0$. If $t \geq (1 + \varepsilon)n \log n/2$ and $b \geq (1 + \varepsilon)kn/2$ then there exists a (t, b)-strategy B of Builder such that

$$
\lim_{n \to \infty} \mathbb{P}(B_t \text{ is } k\text{-connected}) = 1.
$$

For $k = 2$, we do not have a guess for the correct budget threshold at the hitting time for 2-connectivity, and believe it might be larger than $o_2 n = \frac{11}{5} n$.

For Hamilton cycles, we showed (in Theorem 3) that at the hitting time and with an inflated budget, Builder has a strategy that typically constructs a Hamilton cycle. Together with Theorem 4.1 it follows that if time is (asymptotically) optimal and the budget is inflated (by a constant factor), or when the budget is (asymptotically) optimal and the time is inflated, then Builder has such a strategy. As we mentioned in the introduction, Anastos [3] recently proved that this is doable in asymptotically optimal time and budget (but not at the hitting time). We remark that for any $k = k(n) \geq 1$, if $t \ll n^2/k^2$ and $b \leq n + k$, then any (t, b)-strategy of Builder fails whp; this follows almost directly from [25] (see Section 5 there). This implies that if t is asymptotically optimal (or even $t = O(n \log n)$) then, in particular, a budget of $n + o(\sqrt{n}/\log n)$ does not suffice.

It might be interesting to extend either the result of Anastos or Theorem 3 to other spanning structures. For example, can Builder construct (whp) the square of a Hamilton cycle at its hitting time (or after its threshold) using only a linear budget? More generally, can Builder construct (whp) any given bounded-degree spanning graph slightly after its threshold using only a linear budget? It might also be interesting to optimise the constant C in Theorem 3, or find the minimum k for which O_k (or O_k) is whp Hamiltonian.

Theorems 5 and 6 considered the budget thresholds for trees and cycles. It is not hard to extend our result on cycles to any fixed unicyclic graph: after obtaining the cycle, the remaining forest can be constructed quickly and with a constant budget. The smallest graph not covered by our results is therefore the diamond (a K_4 with one edge removed). One of the difficulties in this particular problem (or, possibly, in the case of any non-unicyclic graph) is that several quite different natural strategies, some are naive and some more sophisticated, turn out to give different upper bounds; each is superior in a different time regime. We handled a similar difficulty when discussing cycles but with lesser apparent complexity. It would be interesting to develop tools and approaches allowing to tackle the case of a generic fixed graph.

Finally, while the random graph process might be the most natural underlying graph process, other processes may be considered. One compelling example is the so-called semi-random graph process [8] mentioned in the introduction. The semi-random process has already exhibited some intriguing phenomena that significantly distinguish it from the (standard) random graph process. In our context, instead of observing a flow of random edges, Builder sees a flow of random vertices.
and, at each round, decides whether to connect the observed vertex to any other vertex. Evidently, Builder can achieve connectivity with \(t = b = n - 1 \); answering questions concerning, e.g., Hamilton cycles or fixed subgraphs would be interesting.

References

