
Finding Hamilton cycles in random graphs with few queries

Asaf Ferber ∗ Michael Krivelevich † Benny Sudakov ‡ Pedro Vieira §

Abstract

We introduce a new setting of algorithmic problems in random graphs, studying the minimum
number of queries one needs to ask about the adjacency between pairs of vertices of G(n, p)
in order to typically find a subgraph possessing a given target property. We show that if p ≥
lnn+ln lnn+ω(1)

n , then one can find a Hamilton cycle with high probability after exposing (1+o(1))n
edges. Our result is tight in both p and the number of exposed edges.

1 Introduction

Random Graphs is definitely one of the most popular areas in modern Combinatorics, also having

a tremendous amount of applications in different scientific fields such as Networks, Algorithms,

Communication, Physics, Life Sciences and more. Ever since its introduction, the binomial random

graph model has been one of the main objects of study in probabilistic combinatorics. Given a

positive integer n and a real number p ∈ [0, 1], the binomial random graph G(n, p) is a probability

space whose ground set consists of all labeled graphs on the vertex set [n]. We can describe the

probability distribution of G ∼ G(n, p) by saying that each pair of elements of [n] forms an edge in

G independently with probability p. For more details about random graphs the reader is referred to

the excellent books of Bollobás [3] and of Janson, Luczak and Ruciński [11].

Due to the importance and visibility of the subject of Random Graphs, and also due to its

practical connections and the fact that random discrete spaces are frequently used to model real

world phenomena, it is only natural to study the algorithmic aspects of random graphs. The reader

is advised to consult an excellent survey of Frieze and McDiarmid on the subject [10], providing an

extensive coverage of the variety of problems and results in Algorithmic Theory of Random Graphs.

In this paper we present an apparently new and interesting setting for algorithmic type questions

about random graphs.

Usually, questions considered in random graphs have the following generic form: given some

monotone increasing graph property P (that is, a property of graphs that cannot be violated by

adding edges) and a function p = p(n) ∈ [0, 1], determine whether a graph G ∼ G(n, p) satisfies P
with high probability (whp) (that is, with probability tending to 1 as n tends to infinity). In order to

solve questions of this type, one should show that after asking for all possible pairs (i, j) of distinct

elements of [n] the question “is (i, j) ∈ E(G)?” and getting a positive answer with probability p(n)

∗Department of Mathematics, Yale University, and Department of Mathematics, MIT. Emails: asaf.ferber@yale.edu,

and ferbera@mit.edu.
†School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

Aviv, 6997801, Israel. Email: krivelev@post.tau.ac.il. Research supported in part by USA-Israel BSF Grant 2010115

and by grant 912/12 from the Israel Science Foundation.
‡Department of Mathematics, ETH, 8092 Zurich, Switzerland. Email: benjamin.sudakov@math.ethz.ch. Research

supported in part by SNSF grant 200021-149111.
§Department of Mathematics, ETH, 8092 Zurich, Switzerland. Email: pedro.vieira@math.ethz.ch.

1

independently, whp the graph G obtained from all positive answers possesses P. Here we propose a

different task. Given p such that a graph G ∼ G(n, p) whp satisfies P, we want to devise an algorithm,

probably an adaptive one, that asks typically as few queries “is (i, j) ∈ E(G)?” as possible, and yet

the positive answers reveal us a graph which possesses P. We refer to such an algorithm as an

adaptive algorithm interacting with the probability space G(n, p). For example, consider the case

where P is the property “containing a Hamilton cycle” (i.e. a cycle passing through all the vertices

of the graph). In this case we aim to find an algorithm that will adaptively query as few pairs as

possible, yet a sufficient amount to get whp a Hamilton cycle between the positive answers. It is

important to remark that we are not concerned here with the time of computation required for the

algorithm to locate a target structure (thus essentially assuming that the algorithm has unbounded

computational power), but we make the algorithm pay for the number of queries it asks, or for the

amount of communication with the random oracle generating the random graph. Therefore, in this

sense this setting is reminiscent of such branches of Computer Science as Communication Complexity

and Property Testing.

In general, given a monotone property P, what can we expect? If all n-vertex graphs belonging

to P have at least m edges, then the algorithm should get at least m positive answers to hit the

target property with the required absolute certainty. This means that the obvious lower bound in

this case is (1 + o(1))m/p queries, and therefore, whp one would have (1 + o(1))m positive answers.

Continuing with our example of Hamiltonicity, this lower bound translates to (1 + o(1))n positive

answers. This should serve as a natural benchmark for algorithms of such type. Of course, the above

described framework is very general and can be fed with any monotone property P, thus producing

a variety of interesting questions.

Here is a very simple illustration of our model. Let us choose the target property to be connect-

edness (i.e., the existence of a spanning tree) in G ∼ G(n, p)). Suppose the edge probability p(n) is

chosen to be above the threshold for connectedness, which is known to be equal to p(n) = lnn+ω(1)
n .

In this case the minimum number of positive answers to the algorithm’s queries is obviously n − 1.

An adaptive algorithm discovering a spanning tree after n− 1 positive answers is very simple: start

with T = v, where v ∈ [n] is an arbitrary vertex, and at each step query in an arbitrary order

previously non-queried pairs between the current tree T and the vertices outside of T until the first

such edge (u,w) ∈ G has been found, then update T by appending the edge (u,w). Assuming the

input graph G is connected, the algorithm clearly creates a spanning tree of G after exactly n − 1

positive answers.

In this paper we focus on the property of Hamiltonicity, which is one of the most central notions

in graph theory, and has been intensively studied by numerous researchers. The earlier results on

Hamiltonicity of random graphs were proved by Korshunov [13] and by Pósa [16] in 1976. Building

on these ideas, Bollobás [4], and Komlós and Szemerédi [12] independently showed that for p ≥
lnn+ln lnn+ω(1)

n , a graph G ∼ G(n, p) is whp Hamiltonian. This range of p cannot be further improved

since if p ≤ lnn+ln lnn−ω(1)
n , then whp a graph G ∼ G(n, p) has a vertex of degree at most 1, and such

a graph is trivially non-Hamiltonian.

In the following theorem, which is the main result of this paper, we verify what the reader may

have suspected: (1 + o(1))n positive answers (and thus, (1 + o(1))n/p queries) are enough to create

a graph which contains a Hamilton cycle, for every p ≥ lnn+ln lnn+ω(1)
n .

Theorem 1. Let p = p(n) ≥ lnn+ln lnn+ω(1)
n . Then there exists an adaptive algorithm, interacting

with the probability space G(n, p), which whp finds a Hamilton cycle after getting (1 + o(1))n positive

2

answers.

Note that Theorem 1 is asymptotically optimal in both the edge probability p and the number

of positive answers we get. We remark that if we allow (say) 3n positive answers, and replace

p(n) ≥ lnn+ln lnn+ω(1)
n with p(n) ≥ (1 + ε) lnn/n, then the result follows quite easily from a result of

Bohman and Frieze [2] by effectively embedding some other random space, like a 3-out, in G(n, p) and

accessing it in few queries. Moreover, if our goal is to find a Hamilton cycle after having (1 + o(1))n

positive answers but we are willing to weaken the assumption to p = ω(log n/n), then in fact the

problem becomes much easier. In what follows, as an illustrative example, we provide a sketch of a

proof for this statement.

Proposition 1.1. Let p = ω(log n/n). Then there exists an adaptive algorithm, interacting with the

probability space G(n, p), which whp finds a Hamilton cycle after getting (1+o(1))n positive answers.

Proof (sketch). Let p = f(n) log n/n, where f := f(n) is an arbitrary function tending to infinity

with n, and set q1 = (1 − ε)p (where, say, ε = f−1/3) and q2 to be the unique solution to 1 − p =

(1− q1)(1− q2)4. Our proof consists of two phases, where in Phase 1 we find a “long” path, and in

Phase 2 we close it into a Hamilton cycle.

Phase 1 In this phase we construct a path P of length t := n − m where m = n/
√
f , while

exposing edges in an “online fashion” with edge probability q1, after exposing (successfully) exactly

t edges. At each time step 0 ≤ ` ≤ t− 1 of this phase we try to extend a current path P` := v0 . . . v`
by exposing an edge of the form v`u, where u ∈ [n]\V (P`). Note that the probability to fail in step `

is (1− q1)n−(`+1) ≤ e−q1m = o(1/n), and therefore, by applying the union bound, whp the algorithm

does not terminate unsuccessfully during this phase.

Phase 2 In this phase we want to turn the path P := v0 . . . vt obtained in Phase 1 into a Hamilton

cycle. To this end, we define an auxiliary directed graph D, based on a subgraph of G, and show that

a directed Hamilton cycle in this graph exists whp, and that such a cycle corresponds to a Hamilton

cycle of G. Moreover, we show that D contains O(km) = o(n) edges. This will complete the proof.

Let U := ([n] \ V (P)) ∪ {vP } and set V (D) = U . Let us choose (say) k := 100 (actually, any

k ≥ 2 will work, but for a large k the proof of the tool we base our argument on becomes relatively

simple). We choose the arcs (directed edges) of D according to the following procedure:

• For every v ∈ U \ {vP }, we define

Out(v) = (U − v) ∪ {v0}

and

In(v) = (U − v) ∪ {vt}.

Now, in G, iteratively expose edges of the form vu, u ∈ Out(v), with probability q2, indepen-

dently at random, according to a random ordering of Out(v), until you have exactly k successes.

Let x1, x2, . . . , xk denote these successes, and add vxi, 1 ≤ i ≤ k as arcs to E(D) (if one of the

xi’s is v0, then add the arc vvP to E(D)). Do the same for edges of the form uv, u ∈ In(v),

where an arc of the form vtv translates to the arc vP v.

• For vP , let Out(vP) = In(vP) := U \ {vP }. Expose (in G) edges of the form vtu, u ∈ Out(vP)

with probability q2, independently at random, according to a random ordering of Out(vP),

until having exactly k successes. For each success vtu, add an arc vPu to E(D). Do the same

3

for In(vP), where now one exposes edges of the form uv0, u ∈ In(vP). For each edge of the

form uv0 add the arc uvP to E(D).

It is relatively easy to show that the probability for not having k successes for at least one of the

vertices is o(1), and that the choices are made independently and uniformly. Moreover, the number

of successively exposed edges is clearly O(km) = o(n). Therefore, D can be seen as a directed

graph obtained by the following procedure: each vertex picks exactly k in- and k out-neighbors,

independently, uniformly at random. This model is known as Dk−in,k−out and whp contains a

directed Hamilton cycle (see the main result of [6], or the less complicated one in [5]). Clearly,

by replacing the vertex vP by the path P itself, such a Hamilton cycle corresponds to a Hamilton

cycle of G. Moreover, note that throughout the algorithm (both phases), each edge has been queried

at most once with probability q1 (in Phase 1) and at most 4 times with probability q2 (in Phase 2),

and therefore the resulting graph naturally couples as a subgraph of G ∼ G(n, p). It’s not hard to see

that if we were to expose with full probability p the edges that have been exposed by this procedure

with any non-zero probability, the number of additional successively exposed edges would be o(n),

because of our choices of q1 and q2. This completes the proof of this sketch.

2 Notation

Most of the notation used in this paper is fairly standard. Given a natural number k and a set

S, we use [k] to denote the set {1, 2, . . . , k} and
(
S
k

)
to the denote the collection of subsets of S of

size k.

Given a graph G we use V (G) to denote the set of vertices of G. Moreover, given a subset E of

the edges of G we shall oftentimes abuse notation and refer to the subgraph of G formed by these

edges simply by E (with vertex set V (G) unless stated otherwise).

Given a subset S ⊆ V (G), G[S] denotes the subgraph of G induced by the vertices in S, i.e. the

graph with vertex set S whose edges are the ones of G between vertices in S. Furthermore, we use

eG(S) to denote the number of edges of the graph G[S].

Given a vertex v ∈ V (G) and a subset S ⊆ V (G), we use NG(v) to denote the set of neighbours of

v in the graph G, NG(S) := ∪v∈SNG(v) to denote the set of neighbours of vertices in S in the graph G

and NG(v, S) := NG(v)∩S to denote the set of neighbours of v in the graph G which lie in the set S.

Moreover, dG(v) := |NG(v)| denotes the degree of v in the graphG, dG(v, S) := |NG(v, S)| denotes the

number of neighbours of v in the graph G which lie in the set S, ∆(G) := maxv∈V (G) dG(v) denotes

the maximum degree of the graph G and finally δ(G) := minv∈V (G) dG(v) denotes the minimum

degree of the graph G.

A subgraph P of the graph G is called a path if V (P) = {v1, . . . , v`} and the edges of P are v1v2,

v2v3, . . ., v`−1v`. We shall oftentimes refer to P simply by v1v2 . . . v`. We say that such a path P

has length ` − 1 (number of edges) and size ` (number of vertices). We say that P is a Hamilton

path (in the graph G) if it has size |V (G)|. Furthermore, a subgraph C of the graph G is called a

cycle if V (C) = {v1, . . . , v`} and the edges of P are v1v2, v2v3, . . ., v`−1v` and v`v1. As for paths,

we shall oftentimes refer to C simply by v1v2 . . . v`. We say that such a cycle has length ` (number

of edges) and size ` (number of vertices). We say that C is a Hamilton cycle (in the graph G) if

it has size |V (G)|. A trail of length t in G between two vertices x and y is a sequence of vertices

x = v0, v1, . . . , vt = y such that {v0v1, v1v2, . . . , vt−1vt} is a set of distinct t edges of G.

4

3 Auxiliary results

3.1 Probabilistic tools

We need to employ standard bounds on large deviations of random variables. We mostly use

the following well-known bound on the lower and upper tails of the Binomial distribution due to

Chernoff (see e.g. [1], [11]).

Lemma 3.1. Let X ∼ Bin(n, p) and let µ = E[X]. Then

• Pr [X ≤ (1− a)µ] < e−a
2µ/2 for every a > 0;

• Pr [X ≥ (1 + a)µ] < e−a
2µ/3 for every 0 < a < 3/2.

The following is a trivial yet useful bound.

Lemma 3.2. Let X ∼ Bin(n, p) and k ∈ N. Then the following holds:

Pr(X ≥ k) ≤
(enp
k

)k
.

Proof. Pr(X ≥ k) ≤
(
n
k

)
pk ≤

(enp
k

)k
.

3.2 Properties of random graphs

We start with the following natural definition for k-pseudorandomness of graphs.

Definition 3.3. A graph G is called k-pseudorandom if eG(A,B) > 0 for every two disjoint sets A

and B of size at least k.

Lemma 3.4. Let k = k(n) be an integer such that 3 lnn ≤ k ≤ n
8 and let 3 ln(n/k)

k ≤ p ≤ 1. Then

whp a graph G ∼ G(n, p) is k-pseudorandom.

Proof. If G is not k-pseudorandom then there exist two disjoint sets S and T with |S| = |T | = k and

no edge between them. Note that the probability that there is no edge between a given such pair

{S, T} is (1 − p)k2 and there are at most
(
n
k

)2
such pairs. Thus, applying the union bound over all

pairs of disjoint sets S, T of size k we obtain that the probability that G is not k-pseudorandom is

at most (
n

k

)2

(1− p)k2 ≤
(en
k

)2k
e−pk

2
=

(
e2n2e−pk

k2

)k
≤
(
e2k

n

)k
= o(1).

Thus, we conclude that whp a graph G ∼ G(n, p) is k-pseudorandom as claimed.

In the following two lemmas we state a few properties of a typical random graph which will be

used extensively throughout the paper.

Lemma 3.5. Let p = p(n) ∈ (0, 1), let c > 1 be a constant and let C = C(n) ≥ 6 ln(np lnn). Then

whp a graph G ∼ G(n, p) is such that the following holds:

(P1) ∆(G) ≤ 4np, provided p ≥ lnn
n .

5

(P2) eG(X) < c|X| for any subset X ⊆ V (G) of size at most
(

1
lnn ·

(2c)c

ec+1npc

) 1
c−1

.

(P3) eG(X) < C|X| for any subset X ⊆ V (G) of size at most C
2p .

Proof. For (P1), note that for a vertex v ∈ V (G) we have dG(v) ∼ Bin(n − 1, p) and so by Lemma

3.2

Pr [dG(v) ≥ 4np] ≤
(
e(n− 1)p

4np

)4np

≤
(e

4

)4 lnn
= o

(
1

n

)
.

Thus, by applying the union bound over all vertices of G we see that the probability that there exists

a vertex v ∈ V (G) with dG(v) ≥ 4np is o(1), settling (P1).

For (P2), note that for a fixed X ⊆ V (G) of size |X| = x one has eG(X) ∼ Bin
((
x
2

)
, p
)
. Therefore,

by Lemma 3.2 we obtain

Pr [eG(X) ≥ cx] ≤
(
ex2p

2cx

)cx
=
(exp

2c

)cx
.

Applying the union bound over all subsets of V (G) of size at most t =
(

1
lnn ·

(2c)c

ec+1npc

) 1
c−1

we see that

the probability that there exists a set X of size x ≤ t with eG(X) ≥ cx is upper bounded by

t∑
x=1

(
n

x

)(exp
2c

)cx
≤

t∑
x=1

(en
x

)x (exp
2c

)cx
=

t∑
x=1

[en
x
·
(exp

2c

)c]x
≤

t∑
x=1

(
ec+1npctc−1

(2c)c

)x
= o(1) ,

since ec+1npctc−1

(2c)c = 1
lnn . This settles (P2).

For (P3) we proceed in a similar way as with (P2). By (P2), taking c = 2, we know that whp all

sets X ⊆ V (G) of size at most 1
2np2 lnn

satisfy eG(X) < 2|X| ≤ C|X|. Thus, we just need to show

that the probability that there exists a set X of size 1
2np2 lnn

≤ x ≤ C
2p with eG(X) ≥ Cx is o(1).

Indeed, proceeding as above, we see that this probability is at most

C
2p∑

x= 1
2np2 lnn

[
en

x
·
(exp

2C

)C]x
≤
∞∑
x=1

[
2e(np)2 lnn

(e
4

)C]x
≤
∞∑
x=1

(
2e

lnn

)x
= o(1).

since C ≥ 6 ln(np lnn) and
(
e
4

)6
< e−2. This settles (P3).

Lemma 3.6. Let w := w(n) be such that w →∞ as n→∞, let p := p(n) be such that lnn+ln lnn+w
n ≤

p ≤ 10 lnn
n , let G ∼ G(n, p) and let C be a fixed positive integer. Then whp all of the following hold:

(P1) G has minimum degree at least 2.

(P2) there are no two cycles in G of length at most lnn
4 ln(np) sharing exactly one vertex.

(P3) between any two vertices u, v ∈ V (G) there are at most 3 trails of length at most C.

6

Proof. First we prove that whp (P1) holds. Note that for a fixed vertex v ∈ V (G) we have

Pr [dG(v) < 2] = (1−p)n−1 +(n−1)p(1−p)n−2 ≤ 2e−np+2npe−np ≤ 2e−w

n lnn
+20 lnn · e

−w

n lnn
= o

(
1

n

)
where in the second inequality we used the fact that lnn + ln lnn + w ≤ np ≤ 10 lnn, and in the

last step we used the fact that w →∞. Thus, taking the union bound over all vertices in V (G) we

obtain

Pr [δ(G) < 2] = Pr [∃v ∈ V (G) such that dG(v) < 2] ≤ n · o
(

1

n

)
= o(1) ,

implying that (P1) holds whp as claimed.

Next we show that (P2) also holds whp. Note that if C1 and C2 are cycles in Kn of lengths l1, l2,

respectively, sharing exactly one vertex then |V (C1)∪V (C2)| = l1 +l2−1 and |E(C1)∪E(C2)| = l1 +l2.

Thus, using the union bound, we see that the probability that in G we have two cycles of lengths

l1 and l2 which share exactly one vertex is at most nl1+l2−1pl1+l2 = (np)l1+l2

n . Moreover, letting

k := lnn
4 ln(np) and taking the union bound over all pairs of cycles of lengths at most k which share

exactly one vertex, we see that the probability of (P2) not holding is at most

k∑
l1,l2=1

(np)l1+l2

n
≤ k2(np)2k

n
= o(1) ,

since (np)2k =
√
n. Thus, we conclude that (P2) holds whp as claimed.

Finally we show that whp (P3) holds. Let u, v ∈ V (G) and let W1,W2,W3,W4 be any four

distinct trails between u and v in Kn, each of length at most C. A moment’s thought reveals that

|V (W1) ∪ V (W2) ∪ V (W3) ∪ V (W4)| < |E(W1) ∪ E(W2) ∪ E(W3) ∪ E(W4)| ≤ 4C.

Thus, using the union bound we see that the probability of (P3) not holding is at most

4C∑
l=1

nl−1pl =
4C∑
l=1

(np)l

n
≤ 4C(10 lnn)4C

n
= o(1).

We conclude that (P3) holds whp, completing the proof of the lemma.

3.3 Properties of graphs

The following simple lemma can be found, e.g., in Chapter 1 of [7].

Lemma 3.7. Let G = (V,E) be a graph. There exists S ⊆ V such that G[S] is a connected graph of

minimum degree at least |E|/|V |.

The next lemma follows from a simple application of Hall’s Theorem (see e.g. the exercises of

Chapter 2 in [7]).

Lemma 3.8. Let G = (V,E) be a bipartite graph with bipartition V = A∪B, and let k be a natural

number. Suppose that for every I ⊆ A we have |N(I)| ≥ k|I|. Then for every i ∈ A there exists a

subset Ji ⊆ N(i) of size |Ji| = k such that all the sets (Ji)i∈A are disjoint.

7

A routine way to turn a non-Hamiltonian graph H that satisfies some expansion properties into

a Hamiltonian graph is by using boosters. A booster is a non-edge e of H such that the addition

of e to H creates a path which is longer than a longest path of H, or turns H into a Hamiltonian

graph. In order to turn H into a Hamiltonian graph, we start by adding a booster e of H. If the

new graph H ∪ {e} is not Hamiltonian then one can continue by adding a booster of the new graph.

Note that after at most |V (H)| successive steps the process must terminate and we end up with a

Hamiltonian graph. The main point using this method is that it is well-known (for example, see [3])

that a non-Hamiltonian connected graph H with “good” expansion properties has many boosters.

In the proof of Theorem 1 we use a similar notion of boosters, known as e-boosters.

Given a graph H and a pair e ∈
(
V (H)

2

)
, consider a path P of H ∪ {e} of maximal length which

contains e as an edge. A non-edge f of H is called an e-booster if H ∪{e, f} contains a path Q which

passes through e and which is longer than P or if H ∪ {e, f} contains a Hamilton cycle that uses e.

The following lemma appears in [8] and shows that every connected and non-Hamiltonian graph G

satisfying certain expansion properties has many e-boosters for every possible e.

Lemma 3.9. Let H be a connected graph for which |NH(X) \X| ≥ 2|X|+ 2 holds for every subset

X ⊆ V (H) of size |X| ≤ k. Then, for every pair e ∈
(
V (H)

2

)
such that H ∪ {e} does not contain a

Hamilton cycle which uses the edge e, the number of e-boosters for H is at least 1
2(k + 1)2.

4 Proof of Theorem 1

In this section we prove Theorem 1. In our proof we present a randomised algorithm which

successively queries (about adjacency) carefully selected pairs of vertices in G(n, p), where p ≥
lnn+ln lnn+w(1)

n . We then show that whp the algorithm terminates by revealing a Hamilton cycle

after only n + o(n) positive answers. The algorithm is divided into five different phases, labeled I,

II, III, IV and V.

We remark that we may and will assume throughout the proof that p ≤ 10 lnn
n . Indeed, if p > 10 lnn

n

then we can use the algorithm Alg(p′) which queries pairs of vertices with probability p′ = 10 lnn
n with

a slight modification to obtain an algorithm Alg(p) which queries pairs of vertices with probability p.

When a pair of vertices is queried by Alg(p′), do it in two stages: first query it with probability p′

p to

decide whether Alg(p) should query this pair of vertices as well; if the answer is positive, then query

it a second time with probability p. A pair of vertices which is queried by Alg(p′) is considered to be

an edge if and only if the answer to both questions is positive, and so this happens with probability

p′ = p′

p · p. However, in the algorithm Alg(p) pairs of vertices are queried about adjacency with

probability p. Finally, note crucially that the edges which are revealed by the algorithm Alg(p) are

exactly the same as the ones which are revealed by the algorithm Alg(p′) and so, if the latter whp

finds a Hamilton cycle after only n+ o(n) positive answers then so does the former.

In order to simplify notation in the proof, we work in the following setting. Throughout the

algorithm we maintain a tripartition R ∪W ∪ B of the edge set of the complete graph with vertex

set V = [n]. Edges in R, W , B are called respectively red, white and blue. A red edge represents an

edge which has been queried successfully (and thus belongs to the exposed graph G), a white edge

represents an edge which has not yet been queried and a blue edge represents an edge which has been

queried unsuccessfully. During the algorithm we recolour some white edges. Recolouring a white

edge means that with probability p we recolour it red (i.e., we move it from the set W to the set R),

and otherwise we recolour it blue (i.e. we move it from the set W to the set B). All the recolourings

8

are considered independent. At any point during the algorithm, the red graph (respectively, white

graph and blue graph) refers to the graph with vertex set V and edge set R (respectively, W and

B). Moreover, if u, v ∈ V then we say that v is a red neighbour (respectively, white neighbour and

blue neighbour) of u if uv ∈ R (respectively, uv ∈ W and uv ∈ B). The algorithm starts with the

tripartition (R,W,B) =
(
∅,
(
V
2

)
, ∅
)

and whp it ends with the red graph containing a Hamilton cycle

while having only n+ o(n) edges.

During the algorithm, if R denotes the set of red edges at a certain point, and if at that point it

is verified that any of the events below does not hold then we stop the algorithm:

N.1 We have ∆(R) ≤ 40 lnn.

N.2 If none of the edges incident to a given vertex v ∈ V are white (i.e. they were already recoloured

before) then v has at least 2 red neighbours.

N.3 There are no two cycles in R of length at most (lnn)0.9 sharing exactly one vertex.

N.4 Between any two vertices u, v ∈ V there are at most three trails of length at most 6 in R.

We remark that all of these events hold whp by (P1) of Lemma 3.5 and by Lemma 3.6, and so we

can assume throughout the proof that these properties always hold.

In Phases I–IV we consider a finite number of properties concerning the tripartition (R,W,B),

which we need for later phases. These properties will be labeled according to the phase in which

they are considered, in order to make it easier for the reader to find them in a later reference. For

example, II.1(b) will be used to denote property 1(b) of Phase II. In each phase, we show that all

the properties considered hold whp and so we may assume that they hold for later phases.

4.1 Outline of the algorithm

Phase I: In this phase we use a modified version of the well known graph search algorithm

Depth First Search (see e.g. [17]). Starting from a complete graph with all edges white, we use this

algorithm to find a “long” red path P by recolouring red at most n − 1 white edges. Afterwards

by recolouring red one more white edge between “short” initial and final segments of the path P,

we create a red cycle C1 of size n − Θ(n(lnn)−0.45). This is done whilst ensuring some technical

conditions needed for later phases.

Phase II: Let U := V \ V (C1). In this phase, starting from the partition V = V (C1) ∪ U ,

we recolour a random subset of white edges in U and partition U into three sets EXP1, SMALL1

and TINY. The set EXP1 will be such that the minimum red degree inside it is Ω
(
(lnn)0.4

)
and

|U \ EXP1| = o (n/ lnn). Later, we recolour all the white edges between U \ EXP1 and V (C1). A

partition U \EXP1 = SMALL1∪TINY is then obtained by letting SMALL1 be the set of all vertices

of “large” red degree into a “large” subset M1 of V (C1). Finally, we recolour all the white edges

inside U touching vertices of TINY. All of this is achieved by recolouring red only o(n) edges during

this phase.

Phase III: The goal of this phase is to “swallow” the vertices of TINY one at a time into the red

cycle C1 obtained in Phase I. This is achieved by creating at each time a larger red cycle that contains

a new vertex of TINY and some vertices of EXP1, until a red cycle C2 such that V (C1)∪TINY ⊆ V (C2)

is obtained. We ensure that whp only o(n) edges are recoloured red during this phase. At the end of

this phase we get a partition of the vertex set V = V (C2) ∪ EXP2 ∪ SMALL2 where EXP2 ⊆ EXP1

9

is a “good expander” and SMALL2 ⊆ SMALL1 is a set of vertices of “large” degree into a “large”

subset M2 ⊆M1 of V (C2).

Phase IV: The goal of this phase is to “swallow” the vertices of SMALL2 one at a time into

the red cycle C2 obtained in Phase III. This is achieved by creating at each time a larger red cycle

that contains a new vertex of SMALL2, until a red cycle C3 such that V (C2) ∪ SMALL2 ⊆ V (C3) is

obtained. We ensure that whp only o(n) edges are recoloured red during this phase. Moreover, at

the end we get a partition of the vertex set V = V (C3) ∪ EXP3 where EXP3 ⊆ EXP2 is a “good

expander”.

Phase V: In this phase we create a Hamilton cycle in the red graph by merging the red cycle

C3 with the set EXP3. We start by recolouring red Θ(1) white edges in EXP3 in order to make the

red graph in EXP3 become connected. Afterwards, we consider two adjacent vertices v, w in the red

cycle C3 which have large white degree onto EXP3. By recolouring edges between v, w and EXP3

we then find x, y ∈ EXP3 such that vx and wy are coloured red. Finally, using the fact that the red

graph in EXP3 is a connected expander we recolour red at most |EXP3| edges in order to find a red

Hamilton path from x to y inside the set EXP3. This path together with the red path C3 \ {vw} and

the red edges vx and wy then provides the desired red Hamilton cycle in V . All of this is achieved

by recolouring red only o(n) edges during this phase.

4.2 Phase I

The algorithm for this phase is divided into two stages. In Stage 1 we use a randomised version

of the Depth First Search exploration algorithm to obtain a “long” red path P. In Stage 2 of the

algorithm we use the red path P to find a red cycle C1 of size n−Θ(n(lnn)−0.45), by recolouring red

exactly one white edge between an initial and a final interval of P.

(Stage 1) In this stage we run a (slightly modified version of) DFS algorithm on the vertex

set V = [n]. Recall that DFS is an algorithm to explore all the connected components of a graph

G = (V,E), while finding a spanning tree of each of them in the following way. It maintains

a tripartition (C,A,U) of the vertex set V , letting C be the set of vertices whose exploration is

complete, U be the set of unvisited vertices and A = V \ (C ∪ U) (the vertices which are “active”),

where the vertices of A are kept in a stack (last in first out). It starts with C = A = ∅ and U = V

and runs until A ∪U = ∅. In each round of the algorithm, if A 6= ∅, then it identifies the last vertex

a ∈ A, and starts to query U for neighbours of a, according to the natural ordering on them. If

such a neighbour exists, let u ∈ U be the first such neighbour, then the algorithm moves u from U

to A. Otherwise, the algorithm moves a from A to C. If A = ∅, then the algorithm moves the first

(according to the natural ordering) vertex in U to A.

The following properties of DFS will be relevant for us and follow immediately from its description.

(O1) At any point during the algorithm, it is true that all the pairs between C and U have been

queried, and none of them are edges of G.

(O2) Throughout the algorithm, the explored graph is a forest.

(O3) At each round of the algorithm exactly one vertex moves, either from U to A or from A to C.

(O4) The set A always spans a path.

10

For our purposes, we run DFS on a random input in the following way. At each round of the

algorithm let e be the relevant pair waiting to be queried. We first decide with probability q =

(lnn)−1/2 whether we want to recolour this pair. If yes, we recolour the pair e red with probability

p (and consider it as an edge for DFS) and blue otherwise (and consider it as a non-edge for DFS).

If no, we consider e to be a non-edge for DFS. All these actions happen independently at random.

We stop this algorithm as soon as |C| = |U | (and not when A ∪ U = ∅), with the set A spanning a

red path P = a1a2 . . . a|A| of size |A| = n− |C| − |U |. Claim 4.1 below ensures that whp at the end

of the routine one has k := n(lnn)−0.45 ≥ |C| = |U |, so that |A| ≥ n − 2k. We assume henceforth

that this holds and we proceed to Stage 2.

(End of Stage 1)

(Stage 2) Consider the intervals I1 := {a1, a2, . . . , ak} and I2 := {an−3k+1, an−3k+2, . . . , an−2k}
of P and let D be the set of white edges between I1 and I2. Following a fixed ordering of the set

D, at each step first decide with probability q whether this edge should be recoloured. If yes, then

recolour it red with probability p (and blue otherwise). All these actions are taken independently.

The stage is completed successfully when the first red edge from D is discovered. Claim 4.1 below

ensures that whp there will be such an edge. Assuming this, let aiaj ∈ D be this edge, where ai ∈ I1

and aj ∈ I2. The algorithm terminates by setting C1 to be the red cycle formed by the vertices

ai, ai+1, . . . , aj with the red edges of P together with the red edge aiaj .

(End of Stage 2)

In the next claim we prove that some properties which are assumed in the algorithm hold whp.

Claim 4.1. The following properties hold whp:

(i) At the end of Stage 1 we have |C| = |U | ≤ k := n(lnn)−0.45.

(ii) During Stage 2, at least one edge in D is recoloured red.

Proof of Claim 4.1. In order to prove (i), note that during the algorithm, each pair which has been

queried has been recoloured red with probability pq ≥ n(lnn)−1/2, independently at random. More-

over, it follows from (O1) that none of the pairs between C and U have been coloured red. Note

that by exploring all the edges of the graph we obtain a graph which is distributed as G(n, pq). Now,

since

pq ≥ (lnn)0.5

n
≥ 1.35(lnn)0.45 ln lnn

n
=

3 ln (n/k)

k

it follows from Lemma 3.4 that this graph is whp k-pseudorandom and therefore, unless |C| = |U | ≤ k,

there must be red edges between these sets.

Property (ii) follows from a similar argument.

Assuming that the properties of Claim 4.1 hold, denoting by R1, W1 and B1 the sets of red, white

and blue edges, respectively, at the end of this phase’s algorithm, we show that whp the following

technical conditions hold:

I.1 the graph R1 contains a cycle C1 of size t, where 2n(lnn)−0.45 < n− t ≤ 4n(lnn)−0.45.

I.2 at most n white edges are recoloured red during this phase, i.e. |R1| ≤ n.

I.3 for every v ∈ V we have dW1(v, V (C1)) ≥ n− 5n(lnn)−0.45 = (1− o(1))n.

11

I.4 letting U := V \ V (C1), we have dR1∪B1(v,U) ≤ 4n(lnn)−0.5 = o (|U|) for every v ∈ V .

Claim 4.2. Properties I.1-I.4 hold (whp).

Proof of Claim 4.2. Note that the red cycle C1 formed by the vertices ai, ai+1, . . . , aj obtained at the

end of the algorithm has size t := j − i + 1. Moreover, assuming Claim 4.1, since 1 ≤ i ≤ k and

n− 3k+ 1 ≤ j ≤ n− 2k we obtain that n− 4k < n− 4k+ 2 ≤ j− i+ 1 = t ≤ n− 2k. This settles I.1.

Since a forest in a graph of order n has less than n edges, it is clear by (O2) that in Stage 1

of the algorithm less than n edges are recoloured red. Moreover, since in Stage 2 only one edge is

recoloured red, it follows that in the whole phase at most n edges are recoloured red, settling I.2.

Next, note that R1 ∪ B1 can be seen as part of a graph distributed as G(n, q). Thus, by (P1) of

Lemma 3.5 it follows that I.4 holds whp. Furthermore, by I.1 and I.4 we have that for every v ∈ V

dW1(v, V (C1)) ≥ |V (C1)| − 1− dR1∪B1(v, V (C1))

≥ n− 4n(lnn)−0.45 − 1−∆(R1 ∪B1) ≥ n− 5n(lnn)−0.45

which settles I.3.

We have shown that whp at the end of this phase all the properties I.1-I.4 hold. We shall assume

henceforth that they hold for the sets R1, W1 and B1 obtained after this Phase.

4.3 Phase II

In this phase we partition U into three sets U = EXP1 ∪ SMALL1 ∪ TINY as described in the

outline. The algorithm for this phase is divided into the following three stages.

(Stage 1) Let F be a subset of W1[U] obtained by independently adding each edge in W1[U] to

F with probability q′ := 6(lnn)−0.15. Claim 4.3 below ensures that whp 2
3 |U|q

′ ≤ δ(F) ≤ ∆(F) ≤
4
3 |U|q

′. Assuming this, recolour all the edges in F .

Taking the set F at random serves two purposes. Firstly, it ensures that not too many edges are

recoloured red in this phase. Secondly, it leaves a certain amount of randomness for the edges in

W1[U] \ F , which will be used in later phases.
(End of Stage 1)

(Stage 2) Let R1 denote the set of red edges after Stage 1 and set T0 := {v ∈ U : dR1\R1
(v,U) <

1
3 |U|pq

′}. Claim 4.3 ensures that whp |T0| ≤ ne−(lnn)0.4 . Assuming this, starting with i = 0, as long

as there exists a vertex v ∈ U \ Ti having at least 3 red neighbours in Ti, choose such a vertex v and

set Ti+1 := Ti ∪ {v}. Let Tf be the last set obtained in this process. Claim 4.3 below shows that

whp f ≤ |T0|. Assuming that, define EXP1 := U \ Tf .

Note that every vertex v ∈ EXP1 has at most two red neighbours in Tf . Thus, by I.1 for every

v ∈ EXP1 we have dR1\R1
(v,EXP1) ≥ 1

3 |U|pq
′ − 2 ≥ 3(lnn)0.4.

(End of Stage 2)

(Stage 3) Let P1, . . . , Pm be vertex disjoint subpaths of the red cycle C1, each of size 100, where

m =
⌊
|V (C1)|

100

⌋
, and set M1 to be the union of all the vertices in the subpaths P1, . . . , Pm which are

not endpoints. These paths will be used in later phases for technical reasons to ensure that certain

vertices are not neighbours on the red cycle C1.

Next, recolour all the white edges between Tf and V (C1), set SMALL1 to be the set of all vertices

in Tf with at least (lnn)0.5 red neighbours in M1 and set TINY := Tf \ SMALL1. The algorithm

for this phase ends by recolouring all the edges in W1[U] \ F touching at least one vertex in TINY.

12

(End of Stage 3)

In the next claim we prove that some properties which are assumed in the algorithm hold whp.

Claim 4.3. All of the following properties hold whp:

(i) In Stage 1 one has 2
3 |U|q

′ ≤ δ(F) ≤ ∆(F) ≤ 4
3 |U|q

′.

(ii) In Stage 2 one has |T0| ≤ ne−(lnn)0.4 and f ≤ |T0|.

Proof. First we prove that (i) holds whp. For estimating δ(F), note that by I.4 we have dW1(v,U) =

(1− o(1))|U| for every v ∈ U . Thus, by Chernoff’s inequality we conclude that for a vertex v ∈ U we

have

Pr

[
dF (v) <

2

3
|U|q′

]
≤ e−Θ(|U|q′) = e−Θ(n(lnn)−0.6).

Now, by applying the union bound over all vertices of v ∈ U , it follows that whp δ(F) ≥ 2
3 |U|q

′. In

a similar way, we can also conclude that whp ∆(F) ≤ 4
3 |U|q

′. This settles (i).

Assuming (i), we show next that whp |T0| ≤ ne−(lnn)0.4 . Indeed, by Chernoff’s inequality we see

that for every v ∈ U :

Pr [v ∈ T0] = Pr

[
dR1\R1

(v,U) <
1

3
|U|pq′

]
≤ Pr

[
Bin

(
2

3
|U|q′, p

)
≤ 1

3
|U|pq′

]
≤ e−(lnn)0.4 ,

where in the last inequality we used the fact that |U|pq′ ≥ 12(lnn)0.4 by I.1. Therefore, the expected

value of |T0| is at most |U|e−(lnn)0.4 . Hence, using Markov’s inequality we obtain that whp |T0| ≤
ne−(lnn)0.4 , as desired.

Finally, we show that if |T0| ≤ ne−(lnn)0.4 then whp f ≤ |T0|. Suppose that f > |T0|. Then, note

that the set T|T0| contains precisely 2|T0| vertices and induces at least 3|T0| = 1.5|T|T0|| red edges,

since for every i ≤ |T0| the vertex in Ti \ Ti−1 has at least 3 red neighbours in Ti−1. By (P2) of

Lemma 3.5 (with c = 1.5), since p ≤ 10 lnn
n , we know that whp every subset of vertices X of size

|X| ≤
(

1

lnn
· 31.5

e2.5np1.5

)2

≤ 33

e5 · 103
· n

(lnn)5

induces less than 1.5|X| red edges. Since |T|T0|| = 2|T0| ≤ 2ne−(lnn)0.4 = o(n(lnn)−5) it follows that

whp f ≤ |T0|. Thus, we conclude that whp (ii) holds as claimed.

Assuming that the properties of Claim 4.3 hold, denoting by R2, W2 and B2 the sets of red, white

and blue edges at the end of this phase, we show that whp the following technical conditions hold:

II.1 Properties of the set EXP1:

(a) |EXP1| ≥
(

1− 1
(lnn)3

)
|U| ≥ (2− o(1))n(lnn)−0.45.

(b) for every v ∈ EXP1 we have dR2\R1
(v,EXP1) ≥ 3(lnn)0.4.

(c) for every set U ⊆ EXP1 of size |U | ≥
(
1− 1

lnn

)
|EXP1|:

i. if S ⊆ U is a set such that (R2 \ R1)[S] has minimum degree at least (lnn)0.4 then

for any set X ⊆ S of size |X| ≤ 1
6000n(lnn)−0.45 we have |NR2[S](X) ∪X| ≥ 5|X|.

13

ii. there is a set S ⊆ U of size |S| ≥ 1
240n(lnn)−0.45 such that R2[S] has diameter at

most 2 lnn.

(d) Let H be the collection of all connected graphs H whose vertex set V (H) is a subset

of EXP1 and whose edge set is of the form K1 ∪K2 where K1 = R2[V (H)] is such that

|NK1(X)∪X| ≥ 5|X| for every X ⊆ V (H) of size |X| ≤ 1
6000n(lnn)−0.45 and K2 ⊆

(
V (H)

2

)
is a set of size |K2| ≤ |V (H)| + 24000. Then whp for every H ∈ H and every e = xy ∈(
V (H)

2

)
, if the graph H ∪ {e} does not contain a Hamilton cycle which uses the edge e,

then the number of e-boosters for H in the set W2[V (H)] is at least 10−8n2(lnn)−0.9.

II.2 Properties of the set SMALL1:

(a) |SMALL1| ≤ 2ne−(lnn)0.4 .

(b) dR2(u,M1) ≥ (lnn)0.5 for every vertex u ∈ SMALL1.

II.3 Properties of the set TINY:

(a) |TINY| ≤ n0.04.

(b) the event “there is no red path of size at most 1000 between any two vertices of TINY

after recolouring all the edges in W2” holds whp.

(c) dR2(u) ≥ 2 for every vertex u ∈ TINY.

II.4 Only o(n) edges in W1 are recoloured red during this phase.

It is clear that properties II.1(a), II.1(b), II.2(a) and II.2(b) follow immediately from the algorithm.

Moreover, note that at the end of this phase all the edges touching vertices in TINY are either red

or blue. Thus, since the event N.2 holds whp it follows that property II.3(c) also holds whp. The

next few claims ensure that the remaining properties all hold whp.

Claim 4.4. Property II.1(c) holds whp.

Proof of Claim 4.4. Consider the following two events:

(E1) eR2\R1
(S) < C(lnn)0.4|S| for any set S ⊆ EXP1 of size |S| ≤ C

120n(lnn)−0.45, for C ∈
{

1
10 ,

1
2

}
.

(E2) eR2(X,Y) > 0 for every pair of disjoint sets X,Y ⊆ U each of size at least 1
6000n(lnn)−0.45.

We shall prove that these two events all hold whp and then that II.1(c) holds whenever N.1, II.1(b),

(E1) and (E2) all hold.

The event (E1) holds whp according to (P3) of Lemma 3.5 (with C in the Lemma being C(lnn)0.4

here) since in Stage 1 every edge in W1[U] is recoloured red independently with probability pq′ ≤
60(lnn)0.85

n . Next we show that the event (E2) also holds whp. By I.4, after Phase I we have

eW1(X,Y) ≥ (1−o(1))s2 for any pair of disjoint setsX,Y ⊆ U each of size at least s := 1
6000n(lnn)−0.45.

Thus, by applying Chernoff’s bound and the union bound we obtain

Pr [∃ such sets X,Y with eR2(X,Y) = 0] ≤
(
n

s

)2

(1− pq′)(1−o(1))s2

≤
(en
s

)2s
e−(1−o(1))pq′s2 ≤ eO(n(lnn)−0.45 ln lnn)e−Ω(n(lnn)−0.05) = o(1).

14

implying that (E2) holds whp as desired.

Suppose now that N.1, II.1(b), (E1) and (E2) all hold. Let U ⊆ EXP1 be a subset of size

|U | ≥
(
1− 1

lnn

)
|EXP1| and denote R2 \R1 simply by R′.

Suppose S ⊆ U is such that R′[S] has minimum degree at least (lnn)0.4 and that there exists a

set X ⊆ S of size |X| ≤ 1
6000n(lnn)−0.45 such that |NR′[S](X)∪X| < 5|X|. Since R′[S] has minimum

degree at least (lnn)0.4 it follows that

eR′(NR′[S](X) ∪X) ≥ 1

2
(lnn)0.4|X| ≥ 1

10
(lnn)0.4|NR′[S](X) ∪X|.

Thus, by (E1) we have |NR′[S](X) ∪ X| ≥ 1
1200n(lnn)−0.45, which leads to |X| > 1

6000n(lnn)−0.45,

contradicting our choice of X. We conclude that for every set X ⊆ S of size |X| ≤ 1
6000n(lnn)−0.45

we have |NR2[S](X) ∪X| ≥ |NR′[S](X) ∪X| ≥ 5|X|. This settles i. of II.1(c).

Observe now that by N.1 and II.1(b) we have

eR′(U) ≥ eR′(EXP1)−∆(R′) · |EXP1 \ U | ≥
3

2
(lnn)0.4|EXP1| − 40 lnn · |EXP1|

lnn
≥ (lnn)0.4|U |.

Thus, by Lemma 3.7 there exists a set S ⊆ U such that R′[S] is a connected graph with minimum

degree at least (lnn)0.4. In particular, we have

eR′(S) ≥ 1

2
(lnn)0.4|S|

and so by (E1) it follows that |S| ≥ 1
240n(lnn)−0.45.

For z ∈ S, set N0(z) := {z} and, for i ≥ 1, define N i(z) := NR2[S](N
i−1(z)) ∪ N i−1(z).

Note crucially that every vertex in N i(z) is at distance at most i of z in R2[S] and that, by the

above, we have |N i(z)| ≥ 5|N i−1(z)|, provided |N i−1(z)| ≤ 1
6000n(lnn)−0.45. Thus, if we take

` := log5

(
1

6000n(lnn)−0.45
)
, we see that |N `(z)| ≥ 1

6000n(lnn)−0.45 for any z ∈ S. Now, let x, y ∈ S
be distinct. Note that if N `(x) ∩ N `(y) 6= ∅ then x is at distance at most 2` from y in R2[S]. If

instead we have N `(x)∩N `(y) = ∅ then by (E2) there is at least one edge in R2 between N `(x) and

N `(y), implying that x and y are at distance at most 2` + 1 in R2[S]. Since 2` + 1 < 2 lnn, this

settles ii. of II.1(c). We conclude that II.1(c) holds whp as claimed.

Claim 4.5. Property II.1(d) holds whp.

Proof. Note first that by Lemma 3.9, given such an H ∈ H and e ∈
(
V (H)

2

)
, the number of e-boosters

for H in
(
V (H)

2

)
is at least 1

72·106
n2(lnn)−0.9. Moreover, since e-boosters of H are not edges of H

and since all the edges in R2[V (H)] are edges of H, it follows that every e-booster for H is either in

B2[V (H)] or in W2[V (H)]. Note that by properties I.4 and I.1 we have

eB1(V (H)) ≤ 1

2
· 4n(lnn)−0.5 · |U| ≤ 8n2(lnn)−0.95 = o

(
n2(lnn)−0.9

)
.

Furthermore, observe that for every e-booster of H which is not in B1[V (H)], the probability that it

is in W2[V (H)] is at least the probability that it does not belong to F and so at least 1−q′ = 1−o(1).

Moreover, it is clear that the latter events are independent. Thus, the probability that less than

10−8n2(lnn)−0.9 e-boosters for H are in the set W2[V (H)] is at most

Pr

[
Bin

(
(1− o(1))

1

72 · 106
n2(lnn)−0.9, 1− o(1)

)
< (1− o(1))10−8n2(lnn)−0.9

]
≤ e−Θ(n2(lnn)−0.9)

15

by Chernoff’s bound (Lemma 3.1).

Suppose now that |R2| ≤ 20n lnn. Assuming this, it is clear that any graph in H has at most

20n lnn+ n edges and so

|H| ≤
20n lnn+n∑

i=0

(
n2

i

)
≤ (20n lnn+ n+ 1)

(
n2

20n lnn+ n

)
≤ e100n(lnn)2 .

Thus, using the union bound we see that the probability that, for some H ∈ H and some e = xy ∈(
V (H)

2

)
such that the graph H ∪ {e} does not contain a Hamilton cycle which uses the edge e, the

number of e-boosters for H in the set W2[V (H)] is less than 10−8n2(lnn)−0.9, conditioning on the

fact that |R2| ≤ 20n lnn, is at most

e100n(lnn)2n2e−Θ(n2(lnn)−0.9) = o(1).

Since whp we have |R2| ≤ 20n lnn according to N.1, the claim follows.

Claim 4.6. Properties II.3(a) and II.3(b) hold whp.

Proof of Claim 4.6. Note, by the definition of the setM1, that |M1| ≥ 0.98|V (C1)| − 100 and recall

that by I.3, at the end of Phase I, for every v ∈ V we have dW1(v, V (C1)) ≥ n − 5n(lnn)−0.45.

Therefore, for every v ∈ V we have (say) dW1(v,M1) ≥ 0.97n. Note that for a vertex v ∈ Tf we have

dR2\R1
(v,M1) ∼ Bin(dW1(v,M1), p). Thus, since lnn ≤ np ≤ 10 lnn, it follows that for any vertex

v ∈ Tf :

Pr[v ∈ TINY] ≤ Pr[Bin(0.97n, p) ≤ (lnn)0.5] ≤
(lnn)0.5∑
i=0

(
n

i

)
pi(1− p)0.97n−i

≤ (1− p)0.97n

(lnn)0.5∑
i=0

(
enp

i(1− p)

)i
≤ e−0.97 lnn((lnn)0.5 + 1)(2enp)(lnn)0.5 ≤ n−0.96 ,

and therefore E [|TINY|] ≤ |Tf |n−0.96 ≤ 2n0.04e−(lnn)0.4 (recall that whp |Tf | ≤ 2ne−(lnn)0.4). There-

fore, we conclude by Markov’s inequality that whp |TINY| ≤ n0.04, settling II.3(a).

Now we show that II.3(b) also holds whp. Let R2 and W 2 denote the sets of red and white edges

after Stage 2. We assume throughout that ∆(R2) ≤ 40 lnn (which holds whp by N.1). Suppose that

in Stage 3 instead of only recolouring all the edges in W 2 between Tf and V (C1) we had decided to

recolour all the edges in W 2. Let R denote the set of red edges after this recolouring process. We

would like to stress at this point that the edges in R2 ⊆ R are considered to be fixed and only the

edges in W 2 are regarded as being randomly and independently assigned to R with probability p.

Let P be the set of all paths in Kn of size at most 1000. For each P ∈ P consider the indicator

random variable XP of the event that P is a path in the graph formed by the edges in R. Finally,

let X =
∑

P∈P XP denote the total number of paths in P which are paths in R. Note that for each

v ∈ V , the number of paths in P starting with v which are also paths in R is at most ∆(R)+∆(R)2 +

. . .+ ∆(R)1000 ≤ 1000 ·∆(R)1000. Thus, it is clear that X ≤ 1000n ·∆(R)1000 and so we have

E
[
X|∆(R) ≤ (lnn)2

]
≤ 1000n(lnn)2000 ≤ n1.1.

Moreover, note that as ∆(R2) ≤ 40 lnn we have by Lemma 3.2:

Pr
[
∆(R) > (lnn)2

]
≤ Pr

[
∆(R \R2) > 0.5(lnn)2

]
≤
∑
v∈V

Pr
[
dR\R2(v) > 0.5(lnn)2

]
16

≤ nPr
[
Bin(n, p) > 0.5(lnn)2

]
≤ n

(
10e lnn

0.5(lnn)2

)0.5(lnn)2

≤ e−(lnn)2 .

For every pair of vertices {u, v} ⊆ Tf let Pu,v ⊆ P be the collection of paths in Kn of size at most

1000 with endpoints u and v. For every u, v ∈ Tf and P ∈ Pu,v consider now the families

Au,v := {A ⊆W 2 : u, v ∈ TINY if R = R2 ∪A} and BP := {B ⊆W 2 : E(P) ⊆ R if R = R2 ∪B}.

Observe that the families Au,v and BP are monotone decreasing and monotone increasing in the

universe W 2, respectively. Furthermore, note crucially that the event “u, v ∈ TINY” is exactly the

event “R \ R2 ∈ Au,v” and that the event “E(P) ⊆ R” is exactly the event “R \ R2 ∈ BP ”. Since

each edge in W 2 is in R \ R2 independently with probability p it follows from Theorem 6.3.2 of [1]

that for every u, v ∈ Tf and P ∈ Pu,v we have:

Pr [u, v ∈ TINY and E(P) ⊆ R] ≤ Pr [u, v ∈ TINY] · Pr [E(P) ⊆ R] .

Thus, using the union bound and the estimates above, the probability that there exist u, v ∈ TINY

and P ∈ Pu,v for which E(P) ⊆ R is at most∑
{u,v}⊆Tf

∑
P∈Pu,v

Pr [u, v ∈ TINY and E(P) ⊆ R] ≤
∑

{u,v}⊆Tf

∑
P∈Pu,v

Pr [u, v ∈ TINY] · Pr [E(P) ⊆ R]

≤
∑

{u,v}⊆Tf

∑
P∈Pu,v

(
n−0.96

)2 · (Pr
[
E(P) ⊆ R|∆(R) ≤ (lnn)2

]
+ Pr

[
∆(R) > (lnn)2

])
≤ n−1.92

∑
{u,v}⊆Tf

∑
P∈Pu,v

(
E
[
XP |∆(R) ≤ (lnn)2

]
+ e−(lnn)2

)
≤ n−1.92

(
E
[
X|∆(R) ≤ (lnn)2

]
+ e−(lnn)2 |P|

)
≤ n−1.92

(
n1.1 + e−(lnn)21000n1000

)
= o(1) ,

where in the second inequality we used the fact that the events u ∈ TINY and v ∈ TINY are

independent. This settles II.3(b).

Claim 4.7. Property II.4 holds whp.

Proof of Claim 4.7. In this phase edges are recoloured once in Stage 1 and in two instances in Stage

3. We shall bound the number of edges recoloured red in these three instances.

In Stage 1 we recoloured all the edges of F , of which there are at most 1
2∆(F) · |U|. Since by the

algorithm we have whp that ∆(F) ≤ 4
3 |U|q

′ we conclude using Chernoff’s bounds and I.1 that whp

the number of edges recoloured red in Stage 1 is at most

∆(F) · |U| · p ≤ 4

3
|U|q′ · |U|p = O

(
n

(lnn)0.05

)
= o(n) .

In Stage 3 we recoloured all the white edges between Tf and V (C1) and all the white edges

touching vertices of TINY. Since, from the algorithm, |Tf | ≤ 2|T0| ≤ 2ne−(lnn)0.4 , we conclude from

Chernoff’s bounds that whp the number of edges between Tf and V (C1) which are recoloured red is

at most

2|Tf | · |V (C1)| · p ≤ 4ne−(lnn)0.4 · n · p = O

(
n lnn

e(lnn)0.4

)
= o(n) .

17

Finally, since there are at most |TINY|n edges touching vertices of TINY, we can use Chernoff’s

bounds together with II.3(a) to conclude that whp the number of edges touching vertices of TINY

which are recoloured red is at most

2|TINY| · n · p = O
(
n0.04 lnn

)
= o(n) .

Thus, whp o(n) edges in W1 are recoloured red in this phase, proving the claim.

We have shown that whp at the end of this phase all of the properties II.1–II.4 hold. We shall

assume henceforth that all these properties hold for the sets R2, W2 and B2.

4.4 Phase III

In this phase, we want to find a red cycle C2 containing TINY∪V (C1) as described in the outline.

Recall that in Stage 3 of Phase II we nearly decomposed the red cycle C1 into m =
⌊
|V (C1)|

100

⌋
red paths

P1, . . . , Pm, needed for technical reasons for later phases. We ensure in this phase that the red cycle

C2 will be such that most of these paths are also paths in C2. Concretely, we obtain a set J ⊆ [m] of

size |J | ≥ (1 − o(1))m such that all the paths (Pj)j∈J are paths in the red cycle C2. At the end of

this phase we get a partition of the vertex set V = V (C2) ∪ EXP2 ∪ SMALL2 where EXP2 ⊆ EXP1

is a “good expander” and SMALL2 ⊆ SMALL1 is such that every vertex v ∈ SMALL2 has “large”

red degree onto the set M2 which is the union of all the vertices of the paths (Pj)j∈J which are not

endpoints.

The algorithm for this phase is divided into t = |TINY| parts. For each i ∈ [t] we define during

Part i the following sets:

• Ri and W i which denote, respectively, the sets of all edges which are coloured red and white

at the end of Part i.

• EXPi ⊆ EXP1, SMALLi ⊆ SMALL1 and U i ⊆ U , the latter being the union of EXPi, SMALLi

and t− i vertices of TINY.

During Part i, we recolour “some” edges in W i−1 in order to obtain a red cycle Ci (i.e. consisting

solely of edges in Ri) such that V (Ci) = V \ U i contains V (C1), i vertices from TINY and “few”

vertices from U . During this phase’s algorithm we keep track of which red paths (Pj)j∈[m] are also

paths in the red cycle C2. To this end, we use the function j : V → {0, 1, . . . ,m} defined as:

j(v) :=

{
j if v ∈ V (Pj) for j ∈ [m]

0 if v /∈
⋃m
j=1 V (Pj)

.

During Part i we maintain a set J i ⊆ [m] such that for every j ∈ J i the path Pj is a path in the

cycle Ci. The algorithm for this phase is as follows:

Algorithm: Fix an enumeration x1, x2, . . . , xt of the vertices in TINY, where t = |TINY|, and

set C0 := C1, U0 := U , EXP0 := EXP1, SMALL0 := SMALL1, R0 := R2, W 0 := W2 and J0 := [m].

For i = 1, 2, . . . , t execute the following routine which shows how to add xi to the red cycle Ci−1:

Routine: Recall from II.3(c) that dR2(xi) ≥ 2. Thus, since R2 ⊆ Ri−1, exactly one of the

following holds:

(a) dRi−1(xi, V (Ci−1)) ≥ 1 and dRi−1(xi,U i−1) ≥ 1.

18

(b) dRi−1(xi, V (Ci−1)) ≥ 2 and dRi−1(xi,U i−1) = 0.

(c) dRi−1(xi, V (Ci−1)) = 0 and dRi−1(xi,U i−1) ≥ 2.

We proceed depending on which of the cases above holds. For each of these cases we consider two red

neighbours of xi and depending on whether they lie in V (Ci−1) or in U i−1 we use them in a certain

way to incorporate xi into the red cycle Ci−1. For the sake of simplicity, we only describe here how

to proceed if (a) holds. However, we stress that this case contains all the ideas necessary for treating

the other two cases. Essentially, for case (b) (resp. (c)) the two red neighbours of xi considered

should be treated as the red neighbour of xi in case (a) which lies in V (Ci−1) (resp. U i−1). If case

(a) holds, proceed as follows:

Fix a cyclic enumeration v1v2 . . . v` of the vertices in the red cycle Ci−1, where ` = |V (Ci−1)|
(indices considered modulo `), and let zi1 ∈ V (Ci−1) and zi2 ∈ U i−1 be two red neighbours of xi.

Without loss of generality we assume that zi1 = v`.

Set BADi := {v ∈ EXPi−1 : dR2(v,EXPi−1) < 3(lnn)0.4} to be the set of all vertices in EXPi−1

with “low” red degree inside EXPi−1 and set GOODi := EXPi−1 \ (BADi ∪NR2(BADi)∪{zi2}). Let

Si ⊆ GOODi be a subset of size at least 1
240n(lnn)−0.45 such that Ri−1[Si] is a connected graph of

diameter at most 2 lnn. Claim 4.8 below ensures that whp such a set Si exists and we assume this

henceforth.

For each vj ∈ V (Ci−1) define s+(vj) := vj+1 and s−(vj) := vj−1 to be the “successor” and

“predecessor” of vj in the cycle V (Ci−1) (notice that s+(zi1) = s+(v`) = v1). Recolour all the

edges in W i−1 between {s+(zi1), zi2} and V (C1) and, letting Ri1 and W i
1 denote, respectively, the

sets of red and white edges at this point, consider the sets Ai1 := NRi
1
(s+(zi1), V (C1)) \ {zi1} and

Ai2 := NRi
1
(zi2, V (C1)) \ {zi1, s+(zi1)}. Note that for any two vertices va ∈ Ai1 and vb ∈ Ai2 we have a

red path

P (va, vb) :=

{
va−1va−2 . . . v2v1vava+1 . . . vb−1vbz

i
2xivlvl−1 . . . vb+1 if 1 < a ≤ b < l

va−1va−2 . . . vb+1vbz
i
2xivlvl−1 . . . va+1vav1v2 . . . vb−1 if 1 < b < a < l

from s−(va) = va−1 to either s+(vb) = vb+1 or s−(vb) = vb−1 such that V (P (va, vb)) = V (Ci−1) ∪
{xi, zi2}. Define Bi

1 := {s−(v) : v ∈ Ai1} to be the set of possible initial vertices of these paths.

Recolour all the edges in W i
1 between vertices in Bi

1 and Si and, letting Ri2 and W i
2 denote,

respectively, the sets of red and white edges at this point, let yi1 ∈ Bi
1 and ui1 ∈ Si be such that

yi1u
i
1 ∈ Ri2. Claim 4.8 ensures that whp such vertices exist and we assume this henceforth. Define

now Bi
2 to be the set of possible final vertices of the paths P (s+(yi1), v) where v ∈ Ai2.

Recolour all the edges in W i
2 between vertices in Bi

2 and Si and, letting Ri and W i denote,

respectively, the sets of red and white edges at this point, let yi2 ∈ Bi
2 and ui2 ∈ Si be such that

yi2u
i
2 ∈ Ri. Claim 4.8 ensures that whp such vertices exist and we assume this henceforth. Moreover,

let s(yi2) ∈ {s+(yi2), s−(yi2)} be the vertex of V (Ci−1) such that yi2 is the final vertex of the red path

P (s+(yi1), s(yi2)).

Let P (ui1, u
i
2) be a path inside Si from ui1 to ui2 of length at most 2 lnn consisting solely of edges

in Ri (such a path exists by the choice of Si) and set Ci to be the red cycle formed by joining

the red paths P (s+(yi1), s(yi2)) and P (ui1, u
i
2) with the red edges yi1u

i
1 and yi2u

i
2. Furthermore, set

J i := J i−1 \ ({j(zi1)} ∪ {j(yi1)} ∪ {j(yi2)}) to be the set of indices obtained by deleting the indices of

the paths we “broke” during this routine, and note that every path Pj with j ∈ J i is still a subpath

of the red cycle Ci (provided it was also a subpath of Ci−1). Finally, set EXPi := EXPi−1 \ V (Ci),
SMALLi := SMALLi−1 \ V (Ci) and U i := U i−1 \ V (Ci).

19

(End of Routine)

To end the algorithm set EXP2 := EXPt, SMALL2 := SMALLt, C2 := Ct, J := J t andM2 to be the

union of all the inner vertices of the paths (Pj)j∈J .
(End of Algorithm)

We make a few observations about the procedure above which will be important for later:

(O1) For every i ∈ [t] we have |EXPi−1 \ EXPi| ≤ 2 lnn + 3. This is because in Part i we have

EXPi−1 \ EXPi ⊆ V (P (ui1, u
i
2)) ∪ {zi1, zi2} where P (ui1, u

i
2) is a path of size at most 2 lnn + 1

(we might need to remove not just zi2 but also zi1 from EXPi−1 if case (c) in the algorithm

holds). Moreover, since by II.1(b) we have dR2(v,EXP1) ≥ 3(lnn)0.4 for every v ∈ EXP1,

every vertex v ∈ BADi must have at least one red neighbour in EXP1 \ EXPi−1. Thus, we

have |BADi| ≤ |EXP1 \ EXPi−1| ·∆(R2) ≤ (2 lnn+ 3)(i− 1) ·∆(R2).

(O2) For every i ∈ [t] and every j ∈ {1, 2} we have dRi(vij , V (C1)) − 2 ≤ |Bi
j | ≤ dRi(vij , V (C1)) for

some vertex vij which is at distance at most 2 from xi in R2. For example, if case (a) holds

in Part i then we have vi1 = s+(zi1) and vi2 = zi2. Moreover, for every i ∈ [t] and every vertex

v ∈ Bi
1 ∪ Bi

2 there is a path in Ri of length at most 4 from xi to v. This follows immediately

from the definition of the sets Bi
j .

(O3) We have NW i−1(v,EXPi−1) = NW1(v,EXPi−1) for every v ∈ V (C1) \
(⋃i−1

j=1

(
Bj

1 ∪B
j
2

))
and

every i ∈ [t+ 1]. This is because between Phase I and Part i of this phase’s algorithm the only

edges that are recoloured between V (C1) and EXPi−1 touch vertices of
⋃i−1
j=1

(
Bj

1 ∪B
j
2

)
.

Also, for the rest of this phase, we shall assume that the following event occurs:

(E1) for every i ∈ [t] there is no path of size at most 1000 consisting solely of edges in Ri between

any two vertices in TINY.

Note that this event occurs whp as indicated in II.3(b). In the next claim we prove that some

properties which are assumed in the algorithm hold whp.

Claim 4.8. All of the following properties hold whp:

(i) For any i ∈ [t] there always exists a set Si ⊆ GOODi of size at least 1
240n(lnn)−0.45 such that

Ri−1[Si] is a connected graph of diameter at most 2 lnn.

(ii) For any i ∈ [t], in Part i, after recolouring all the edges in W i−1 between the sets Si and

Bi
1 ∪Bi

2, there exist yi1 ∈ Bi
1, yi2 ∈ Bi

2 and ui1, u
i
2 ∈ Si such that yiju

i
j ∈ Ri for j ∈ {1, 2}.

Proof of Claim 4.8. We start by proving that (i) holds whp. Assuming that ∆(R2) ≤ 40 lnn (which

holds whp after Phase II, by N.1), we have by (O1), II.1(a) and II.3(a) that

|GOODi| ≥ |EXPi−1| − |BADi ∪NR2(BADi)| − 2

≥ |EXP1| − (2 lnn+ 3) · (i− 1)− |BADi| · (1 + 40 lnn)− 2 ≥
(

1− 1

lnn

)
|EXP1|.

We remark that the −2 after the first inequality is necessary if case (c) holds (for case (a) one only

needs −1). Thus, by II.1(c) there is always a set Si ⊆ GOODi with the desired properties.

20

Next we show that (ii) holds whp. By (O2) we know that for every i ∈ [t] and every j ∈ {1, 2}
we have |Bi

j | ≥ dRi(vij , V (C1)) − 2 for some vertex vij which is at distance at most 2 from xi in R2.

We claim that whp dRi(vij , V (C1)) ≥ (lnn)0.5 for every i ∈ [t] and j ∈ {1, 2}.
Note that vij /∈ TINY as otherwise vij and xi would be two vertices in TINY at distance at most

2 in Ri, contradicting (E1). Moreover, recall from II.2(b) that if vij ∈ SMALL1 then dRi(v, V (C1)) ≥
(lnn)0.5. If vij ∈ EXP1 ∪ V (C1) then recall from I.3 that dW1(vij , V (C1)) = (1 − o(1))n and note

that dW2(vij , V (C1)) = dW1(vij , V (C1)) as no edges between the sets EXP1 ∪ V (C1) and V (C1) were

recoloured during Phase II. Thus, using the union bound, Lemma 3.1 and II.3(a) we see that the

probability that dRi(vij , V (C1)) < (lnn)0.5 for some i ∈ [t] and j ∈ {1, 2} is at most

2t · Pr
[
Bin((1− o(1))n, p) < (lnn)0.5

]
≤ 2n0.04 · e−(1

2
−o(1)) lnn = o(1) ,

as claimed. Hence, whp |Bi
j | ≥ (lnn)0.5−2 for every i ∈ [t] and j ∈ {1, 2}. We assume this hereafter.

Note that for i 6= i′ we have (Bi
1 ∪ Bi

2) ∩ (Bi′
1 ∪ Bi′

2) = ∅ since otherwise (O2) would imply that

there is a path in Ri of length at most 8 between xi and xi′ , contradicting (E1). Thus, by (O3) and

I.4, we see that dW i−1(v, Si) = dW1(v, Si) = (1− o(1))|Si| for every v ∈ Bi
1 ∪Bi

2 and every i ∈ [t].

Now, for each i ∈ [t] and j ∈ {1, 2}, let Cij ⊆ Bi
j be a subset of size at least

(
1
2 − o(1)

)
|Bi

j | ≥
1
3(lnn)0.5 such that Ci1 ∩Ci2 = ∅. We then see that for any i ∈ [t] and j ∈ {1, 2} the probability that

there is no edge in Ri between Cij and Si is at most:

Pr
[
Bin

(
(1− o(1))|Si| · |Cij |, p

)
= 0
]

= (1− p)(1−o(1))|Si|·|Ci
j | ≤ e−

lnn
n
· 1−o(1)

240
n(lnn)−0.45· 1

3
(lnn)0.5 ≤ 1

n
.

Using II.3(a) and the union bound we see that the probability that for some i ∈ [t] and j ∈ {1, 2}
there is no edge in Ri between Bi

j and Si is at most 2t · 1
n = o(1). This shows that (ii) holds whp.

Assuming that the properties of Claim 4.8 hold, denoting by R3, W3 and B3 the sets of red,

white and blue edges at the end of this phase’s algorithm, we show that whp the following technical

conditions hold:

III.1 Properties of EXP2:

(a) |EXP2| ≥
(

1− 1
(lnn)2

)
|U| ≥ (2− o(1))n(lnn)−0.45.

(b) for every v ∈ EXP2 we have dR3\R1
(v,EXP2) ≥ 2(lnn)0.4.

III.2 Properties of SMALL2:

(a) |SMALL2| ≤ |SMALL1| ≤ 2ne−(lnn)0.4 .

(b) for every v ∈ SMALL2 we have dR3(v,M2) ≥ (lnn)0.5 − 400.

(c) for every v ∈ SMALL2 we have NW3(u,EXP2) 6= NW1(u,EXP2) for at most 100 vertices

u ∈ V (C1) which are at distance at most 2 from v in R3.

III.3 All the paths (Pj)j∈J are paths in the red cycle C2.

III.4 In this phase only o(n) edges of W2 are recoloured red.

21

Note that property III.2(a) is just a consequence of the fact that SMALL2 ⊆ SMALL1 together

with II.2(a). Moreover, property III.3 follows immediately from the algorithm. Indeed, E(Ci−1) \
E(Ci) consists of at most 4 edges (only 3 edges if case (a) holds but 4 if case (b) holds) and, from

the definition of J i, for each such edge e we remove j(v) from J i−1 for one vertex v ∈ e. Thus, it is

clear that Pj is still a path in the red cycle Ci for every j ∈ J i. The next few claims show that the

remaining properties all hold whp, assuming that the properties of Claim 4.8 hold.

Claim 4.9. Properties III.1(a) and III.1(b) hold whp.

Proof of Claim 4.9. It follows from (O1), I.1, II.1(a) and II.3(a) that:

|EXP2| = |EXP1| −
t∑
i=1

|EXPi−1 \ EXPi| ≥
(

1− 1

(lnn)3

)
|U| − t · (2 lnn+ 3) ≥

(
1− 1

(lnn)2

)
|U|

and so this shows that III.1(a) holds.

We now show that III.1(b) also holds whp. Suppose dR3\R1
(v,EXP2) < 2(lnn)0.4 for some

v ∈ EXP2 and let i ∈ [t] be the largest possible integer such that dR2\R1
(v,EXPi−1) ≥ 3(lnn)0.4

(this is well defined by II.1(b)). Note that since R3[U] = R2[U] we have

dR3\R1
(v,EXP2) = dR2\R1

(v,EXPi−1)−
t∑
j=i

dR2\R1
(v,EXPj−1 \ EXPj).

Recall that EXPj−1 \ EXPj ⊆ V (P (uj1, u
j
2)) ∪ {zj1, z

j
2} ⊆ GOODj ∪ {zj1, z

j
2} where zj1 and zj2 are

neighbours of xj in R2. Moreover, note that by the choice of i we have v ∈ BADj for every j > i.

Thus, since GOODj ∩NR2(BADj) = ∅ we get that

dR3\R1
(v,EXP2) ≥ dR2\R1

(v,EXPi−1)− dR2(v, V (P (ui1, u
i
2)))−

t∑
j=i

dR2(v, {zj1, z
j
2}).

Observe now that if dR2(v, {zj1, z
j
2}) > 0 and dR2(v, {zj

′

1 , z
j′

2 }) > 0 for j 6= j′ then there would exist a

path in R3 of length at most 4 between xj and xj′ , contradicting (E1). Thus, we can conclude that

dR3\R1
(v,EXP2) ≥ dR2\R1

(v,EXPi−1)−dR2(v, V (P (ui1, u
i
2)))−2 ≥ 3(lnn)0.4−dR2(v, V (P (ui1, u

i
2)))−2.

Since we assumed that dR3\R1
(v,EXP2) < 2(lnn)0.4, we must have that

dR2(v, V (P (ui1, u
i
2))) > (lnn)0.4 − 2.

It is easy to see that this implies the existence of two cycles of length O((lnn)0.6) sharing only the

vertex v in the graph R2 since the red path P (ui1, u
i
2) has length at most 2 lnn. However, if N.3 holds

then this does not happen. Since N.3 holds whp we conclude that III.1(b) holds whp as desired.

Claim 4.10. Properties III.2(b) and III.2(c) hold whp.

Proof of Claim 4.10. First we show that whp III.2(b) holds. Note that for every v ∈ SMALL2 we

have

dR3(v,M2) ≥ dR3(v,M1)−
t∑
i=1

∑
j∈Ji−1\Ji

dR3(v, V (Pj))

22

since M1 \
(⋃t

i=1

⋃
j∈Ji−1\Ji V (Pj)

)
⊆ M2. Also, since |J i−1 \ J i| ≤ 4 and since |V (Pj)| = 100 we

have that for every i ∈ [t] ∑
j∈Ji−1\Ji

dR3(v, V (Pj)) ≤ 400.

Observe now that if for i 6= i′, j ∈ J i−1 \ J i and j′ ∈ J i
′−1 \ J i′ we have dR3(v, V (Pj)) > 0

and dR3(v, V (Pj′)) > 0 then there is a path in R3 of size at most 2 · 102 + 2 + 1 = 207 between

xi and xi′ . Indeed, this follows from the fact that every vertex in V (Pj) is at distance at most

3 + (|V (Pj)| − 1) = 102 of xi in Ri and similarly that every vertex in V (Pj′) is at distance at most

102 of xi′ in Ri
′
. However, if the event (E1) holds then there does not exist such a path. Since (E1)

holds whp we conclude that whp

dR3(v,M2) ≥ dR3(v,M1)− 400,

and so by II.2(b) we see that III.2(b) holds.

Now we show that whp III.2(c) holds. Note that by (O3) it is enough to show that for every

v ∈ SMALL2 there are at most 100 vertices u ∈
⋃t
j=1(Bj

1 ∪B
j
2) which are at distance at most 2 from

v in R3. Assume this is not the case for a vertex v ∈ SMALL2. Note first, if for some j 6= j′ the

sets Bj
1 ∪B

j
2 and Bj′

1 ∪B
j′

2 each contain a vertex which is at distance at most 2 from v in R3, then

by (O2) it follows that there is a red path from xj to xj′ of length at most 4 + 2 + 2 + 4 = 12 in

R3. However, this cannot occur if the event (E1) holds. Since (E1) holds whp we conclude that whp

for every v ∈ SMALL2 there is at most one j ∈ [t] for which Bj
1 ∪ B

j
2 contains a vertex which is at

distance at most 2 from v in R3. Moreover, if for some j ∈ [t] the set Bj
1 ∪B

j
2 contains at least 100

vertices which are at distance at most 2 from v in R3 then by (O2) one can find at least four trails

of length at most 4 + 2 = 6 between v and xj . However, this cannot occur if N.4 holds. Since N.4

holds whp we conclude that whp III.2(c) holds.

Claim 4.11. Property III.4 holds whp.

Proof of Claim 4.11. Recall that in Part i of the algorithm we recolour edges in two situations. In

the first situation we recolour edges between two vertices (if case (a) holds then these vertices are

s+(zi1) and zi2) and V (C1). In the second situation we recolour edges between vertices in Bi
1 ∪ Bi

2

and Si. From the algorithm it is easy to see that the number of edges in the first situation which are

recoloured red is at most |Bi
1| + |Bi

2| + 4. For each i ∈ [t] and j ∈ {1, 2} let Ei,j1 be the event that

|Bi
j | > (lnn)1.1 and let Ei,j2 be the event that eRi\Ri−1(Bi

j , Si) > 80(lnn)1.65. Notice that if none of

these events hold then clearly at most (2(lnn)1.1 + 4) · t+ 80(lnn)1.65 · 2t = o(n) edges are recoloured

red in this phase. Note that
∧
i∈[t],j∈{1,2}E

i,j
1 holds whp by (O2) and N.1. Moreover, using the fact

that Si ⊆ U and that |U| ≤ 4n(lnn)−0.45 by I.1, we have by Chernoff (Lemma 3.1) that

Pr
[
Ei,j2 ∧ E

i,j
1

]
≤Pr

[
Ei,j2 | E

i,j
1

]
≤ Pr

[
Bin

(
(lnn)1.1 · 4n(lnn)−0.45, p

)
> 80(lnn)1.65

]
≤Pr

[
Bin

(
4n(lnn)0.65,

10 lnn

n

)
> 80(lnn)1.65

]
≤ e−

40
3

(lnn)1.65 .

Thus, using the union bound and II.3(a), we see that the probability that the number of edges

recoloured red during this phase is larger than (2(lnn)1.1 + 4) · t+ 80(lnn)1.65 · 2t is at most

Pr

 ∨
i∈[t],j∈{1,2}

Ei,j1

+
∑

i∈[t],j∈{1,2}

Pr
[
Ei,j2 ∧ E

i,j
1

]
≤ o(1) + 2t · e−

40
3

(lnn)1.65 = o(1)

23

This, together with II.3(a), shows that whp III.4 holds.

We have shown that whp at the end of this phase all of the properties III.1-III.4 hold. We shall

assume henceforth that all these properties hold for the sets R3, W3 and B3.

4.5 Phase IV

In this phase, we want to recolour some edges in W3 in order to find a red cycle C3 containing

SMALL2 ∪ V (C2) in a such a way that EXP3 = V \ V (C3) is a “good expander” as described in

the outline. The algorithm for this phase is similar in spirit to the one of Phase III. It is divided

into three stages. In Stage 1 we define notation and sets that will be useful for us throughout the

algorithm. Stage 2 is the main stage of the algorithm and is divided into s = |SMALL2| parts. For

each i ∈ [s] we denote by Ri and W i, respectively, the sets of all edges which are coloured red and

white at the end of Part i. During Part i, we recolour “some” edges in W i−1 in order to obtain a

red cycle Ci (i.e. consisting solely of edges in Ri) such that V (Ci) contains V (C2), i vertices from

SMALL2 and the vertex set of a “small” red path in EXP2. Finally, in Stage 3 we define sets needed

for later phases. The algorithm for this phase is as follows:

Algorithm: Fix an enumeration y1, y2, . . . , ys of the vertices in SMALL2, where s = |SMALL2|,
set C0 := C2, EXP0 := EXP2, R0 := R3 and W 0 := W3 and for each j ∈ J let Mj denote the set of

inner vertices of the path Pj .

Let (Ji)i∈[s] be disjoint subsets of J of size 103(lnn)0.45 such that dR3(yi,Mj) > 0 for every j ∈ Ji.
Claim 4.12 ensures that such sets exist and we assume that henceforth. For each j ∈ Ji let mj ∈Mj

be such that yimj ∈ R3. For i = 1, 2, . . . , s execute the following routine:

Routine: Fix a cyclic orientation of the vertices in the red cycle Ci−1 and denote for each

v ∈ V (Ci−1) by s+(v) and s−(v) the successor and predecessor of v in the cycle Ci−1 according to

this orientation, respectively.

Set BADi := {v ∈ EXPi−1 : dR3(v,EXPi−1) < 2(lnn)0.4}, GOODi := EXPi−1 \ (BADi ∪
NR3(BADi)) and let Si ⊆ GOODi be a subset of size at least 1

240n(lnn)−0.45 such that Ri−1[Si]

is a connected graph of diameter at most 2 lnn. Claim 4.12 ensures that whp such a set Si always

exists and we assume that henceforth.

Define Ai := {s+(mj) : j ∈ Ji} and recolour all the edges in W i−1 between the set Ai and Si.

Letting Ri and W i to be respectively the sets of red and white edges at this point, let ui1, u
i
2 ∈ Si

and ji1, j
i
2 ∈ Ji be distinct indices such that s+(mji1

)ui1 ∈ Ri and s+(mji2
)ui2 ∈ Ri. Claim 4.12 ensures

that whp such vertices ui1, u
i
2 and distinct indices ji1, j

i
2 always exist and we assume that hereafter.

Set

Qi1 := s+(mji1
) . . . s−(mji2

)mji2
yimji1

s−(mji1
) . . . s+(mji2

)

to be the red path from s+(mji1
) to s+(mji2

) which contains yi and is obtained from Ci−1 by deleting

the red edges mji1
s+(mji1

) and mji2
s+(mji2

) and adding the red edges mji2
yi and yimji1

. Let Qi2 be a

path inside Si from ui1 to ui2 of length at most 2 lnn consisting solely of edges in Ri (such a path

exists by the choice of Si). Set Ci to be the red cycle formed by joining the red paths Qi1 and Qi2
with the red edges s+(mji1

)ui1 and s+(mji2
)ui2. To end the routine, set EXPi := EXPi−1 \ V (Ci).

(End of Routine)

To finish the algorithm set EXP3 := EXPs and C3 := Cs.
(End of Algorithm)

24

We make a few observations about the procedure above which will be useful for later:

(O1) For every i ∈ [s] we have |EXPi−1 \EXPi| ≤ 2 lnn+1 since EXPi−1 \EXPi = V (Qi2) which has

size at most 2 lnn+ 1. Moreover, since by III.1(b) we have dR3(v,EXP2) ≥ 2(lnn)0.4 for every

v ∈ EXP2, every vertex in BADi must have at least one red neighbour in EXP2 \ EXPi−1.

Thus, we have |BADi| ≤ |EXP2 \ EXPi−1| ·∆(R3) ≤ (2 lnn+ 1)(i− 1) ·∆(R3).

(O2) For every i ∈ [s + 1] we have NW i−1(v,EXPi−1) = NW3(v,EXPi−1) provided v ∈ V (C2) \(⋃i−1
k=1Ak

)
. Indeed, this holds since before Part i of the routine we only recolour edges between

the sets Ak and EXPk−1 for k ∈ [i− 1].

(O3) For every i ∈ [s + 1] and every j ∈ J \
(⋃i−1

k=1{jk1 , jk2}
)

the path Pj is still a path in the red

cycle Ci−1. Indeed, this follows by induction on i using the facts that mjk1
∈ Mjk1

, mjk2
∈ Mjk2

and that the sets Jk are disjoint for k ∈ [i− 1].

(O4) The sets (Ai)i∈[s] are disjoint and NW i−1(v,EXPi−1) = NW3(v,EXPi−1) for every v ∈ Ai and

every i ∈ [s]. Indeed, (O3) together with the fact that mj ∈ Mj for every j ∈ Ji ensures that

Ai ⊆
⋃
j∈Ji V (Pj) for every i ∈ [s]. Since the sets (Ji)i∈[s] are disjoint, the first observation

follows. The second observation follows from the first one together with (O2).

In the next claim we prove that some properties which are assumed in the algorithm hold whp.

Claim 4.12. All of the following properties hold whp:

(i) There exist disjoint subsets (Ji)i∈[s] of J of size 103(lnn)0.45 such that dR3(yi,Mj) > 0 for every

j ∈ Ji.

(ii) For every i ∈ [s] there exists Si ⊆ GOODi of size at least 1
240n(lnn)−0.45 such that Ri−1[Si] is

a connected graph of diameter at most 2 lnn.

(iii) For every i ∈ [s], after recolouring the edges in W i−1 between the sets Ai and Si, there exist

ui1, u
i
2 ∈ Si and distinct indices ji1, j

i
2 ∈ Ji such that s+(mji1

)ui1 ∈ Ri and s+(mji2
)ui2 ∈ Ri.

Proof of Claim 4.12. We show first that whp (i) holds. Let Gaux be the bipartite graph with parts

[s] and J and edge set {ij : i ∈ [s], j ∈ J, dR3(yi,Mj) > 0}. We want to show that whp there are

disjoint subsets (Ji)i∈[s] of J of size 103(lnn)0.45 such that Ji ⊆ NGaux(i) for every i ∈ [s]. In light of

Lemma 3.8 it suffices to show that whp |NGaux(I)| ≥ 103(lnn)0.45|I| for every I ⊆ [s]. With this in

mind, suppose that I ⊆ [s] is such that |NGaux(I)| < 103(lnn)0.45|I|, and set X := {yi : i ∈ I} and

Y :=
⋃
j∈NGaux (I)Mj . Note that we have

|X ∪ Y | = |X|+ 98|NGaux(I)| < 105(lnn)0.45|X|

and, using III.2(b) and the fact that NR3(X) ∩M2 ⊆ Y , we also have

eR3(X ∪ Y) ≥ ((lnn)0.5 − 400)|X| > (lnn)0.5 − 400

105(lnn)0.45
|X ∪ Y | > (lnn)0.05

106
|X ∪ Y |.

By (P3) of Lemma 3.5 we see then that whp |X∪Y | > 1
106

(lnn)0.05 · 1
20n(lnn)−1 = 1

2×107
n(lnn)−0.95.

But in that case we have

|SMALL2| ≥ |X| >
|X ∪ Y |

105(lnn)0.45
>

n

2× 1012(lnn)1.4

25

which contradicts III.2(a). We conclude that whp (i) holds.

Next we show that whp (ii) also holds. Indeed, assuming that ∆(R3) ≤ 40 lnn (which holds whp

after Phase III, by N.1), we have by (O1), III.1(a) and III.2(a) that

|GOODi| ≥ |EXPi−1| − |BADi ∪NR3(BADi)|

≥ |EXP2| − (2 lnn+ 1) · (i− 1)− |BADi| · (1 + 40 lnn) ≥
(

1− 1

lnn

)
|EXP1|.

Thus, by II.1(c) there is always a set Si ⊆ GOODi with the desired properties.

Finally, we show that whp (iii) also holds. By (O4), for every i ∈ [s] we have dW i−1(u, Si) =

dW3(u, Si) for every u ∈ Ai. Moreover, since every vertex u ∈ Ai is at distance at most 2 in R3 from

yi ∈ SMALL2, it follows from III.2(c) and I.4 that dW i−1(u, Si) = dW1(u, Si) = (1− o(1))|Si| for all

but at most 100 vertices u ∈ Ai. Let Di be the set of these “bad” vertices. For j ∈ {1, 2} and i ∈ [s]

let Bi
j ⊆ Ai \ Di be sets of size at least 400(lnn)0.45 such that Bi

1 ∩ Bi
2 = ∅ (this is possible since

|Ai| = |Ji| = 103(lnn)0.45 and |Di| ≤ 100). Thus, for any i ∈ [s] and j ∈ {1, 2} the probability that

there is no edge in Ri between Bi
j and Si is at most:

Pr
[
Bin

(
(1− o(1))|Si| · |Bi

j |, p
)

= 0
]

= (1− p)(1−o(1))|Si|·|Bi
j | ≤ e−

lnn
n
· 1−o(1)

240
n(lnn)−0.45·400(lnn)0.45 ≤ 1

n
.

Using III.2(a) and the union bound we see that the probability that for some i ∈ [s] and j ∈ {1, 2}
there is no edge in Ri between Bi

j and Si is at most 2s · 1
n = o(1). Since the sets Bi

1 and Bi
2 were

chosen to be disjoint, we conclude that whp (iii) holds. This completes the proof of the claim.

Assuming that the properties of Claim 4.12 hold, denoting by R4, W4 and B4 the sets of red,

white and blue edges at the end of this phase’s algorithm, we show that whp the following technical

conditions hold:

IV.1 Properties of EXP3:

(a) |EXP3| ≥
(
1− 1

lnn

)
|U| ≥ (2− o(1))n(lnn)−0.45.

(b) for every v ∈ EXP3 we have dR4\R1
(v,EXP3) ≥ (lnn)0.4.

IV.2 In this phase only o(n) edges of W3 are recoloured red.

The next few claims show that properties IV.1-IV.2 all hold whp, assuming that the properties

of Claim 4.12 hold.

Claim 4.13. Properties IV.1(a) and IV.1(b) hold whp.

Proof of Claim 4.13. Note that by (O1), III.1(a) and III.2(a) we have:

|EXP3| = |EXP2| −
s∑
i=1

|EXPi−1 \ EXPi| ≥
(

1− 1

(lnn)2

)
|U| − s · (2 lnn+ 1) =

(
1− 1

lnn

)
|U|

and so this together with I.1 shows that IV.1(a) holds.

We now show that IV.1(b) holds whp. Suppose dR4\R1
(v,EXP3) < (lnn)0.4 for some v ∈ EXP3

and let i ∈ [t] be the largest possible integer such that dR3\R1
(v,EXPi−1) ≥ 2(lnn)0.4 (this is well

defined by III.1(b)). Note that by the choice of i we have v ∈ BADj for every j > i. Moreover, since

26

R4[U] = R3[U], EXPj−1 \ EXPj = V (Qj2) ⊆ GOODj and GOODj ∩ NR3(BADj) = ∅ for any j > i

we have

dR4\R1
(v,EXP3) = dR3\R1

(v,EXPi−1)−
s∑
j=i

dR3\R1
(v, V (Qj2)) ≥ 2(lnn)0.4 − dR3(v, V (Qi2)).

Thus, since we assume that dR4\R1
(v,EXP3) < (lnn)0.4, we must have that dR3(v, V (Qi2)) > (lnn)0.4.

It is easy to see that this implies that there exist two cycles of length O((lnn)0.6) sharing only the

vertex v in the graph R3 (since Qi2 is a path in R3 of length at most 2 lnn+1). However, if N.3 holds

then this does not happen. Since N.3 holds whp we conclude that IV.1(b) holds whp as desired.

Claim 4.14. Property IV.2 holds whp.

Proof of Claim 4.14. Recall from the algorithm that in this phase the only edges recoloured are the

ones in W3 between the sets Ai and Si for each i ∈ [s]. Since for each i ∈ [s] we have |Ai| = |Ji| =
103(lnn)0.45 and |Si| ≤ |U| ≤ 4n(lnn)−0.45 by I.1, the total number of edges which are recoloured

in this phase is at most s · 4 · 103n ≤ 8 · 103n2e−(lnn)0.4 , by III.2(a). Thus, using Chernoff (Lemma

3.1) and the fact that np ≤ 10 lnn we see that the probability that more than 1.6 · 105ne−(lnn)0.4 lnn

edges in W3 are recoloured red in this phase is at most:

Pr
[
Bin

(
8 · 103n2e−(lnn)0.4 , p

)
> 1.6 · 105ne−(lnn)0.4 lnn

]
< e−

1
3
·8·104ne−(lnn)0.4 lnn = o(1).

Since 1.6 · 105ne−(lnn)0.4 lnn = o(n), this concludes the proof of the claim.

We have shown that whp at the end of this phase all of the properties IV.1-IV.2 hold. We shall

assume henceforth that all these properties hold for the sets R4, W4 and B4.

4.6 Phase V

In this phase we create a Hamilton cycle in the red graph by merging the red cycle C3 with the set

EXP3, by recolouring red o(n) edges. To this end, note first that R4[EXP3] has a bounded number

of connected components. Indeed, suppose C is a connected component of R4[EXP3]. It follows

from properties IV.1(a), IV.1(b), i. of II.1(c) and the fact that R4[EXP3] = R2[EXP3], that the set

C has size |C| > 1
6000n(lnn)−0.45 (since NR2[S](C) ⊆ C). However, since by I.1, the set EXP3 has

size |EXP3| ≤ 4n(lnn)−0.45, we can conclude that the graph R4[EXP3] has at most 24000 connected

components. By recolouring red less than 24000 white edges in EXP3 we can then whp make the

red graph in EXP3 connected.

Afterwards, we consider two adjacent vertices v, w in the red cycle C3 which have large white degree

onto EXP3. By recolouring edges between v, w and EXP3 we can then whp find x 6= y ∈ EXP3 such

that vx and wy are red edges. Finally, by recolouring red at most |EXP3| edges inside EXP3 we can

find a red Hamilton path from x to y inside the set EXP3. This path together with the red path

C3 \ {vw} and the red edges vx and wy then provides the desired red Hamilton cycle in V . The

algorithm for this phase is as follows:

Algorithm: Let C1, . . . , C` be the connected components of the graph R4[EXP3] where, as

indicated above, we have ` ≤ 24000 and |Ci| > 1
6000n(lnn)−0.45 for every i ∈ [`]. For 1 ≤ i < `

recolour white edges between Ci and Ci+1 one by one until exactly one edge is recoloured red for

27

each such i. Claim 4.15 ensures that this happens whp and we assume this henceforth. Note that

this procedure makes the red graph in EXP3 connected.

Next, let v, w be adjacent vertices of C3 such that dW4(v,EXP3) ≥ 2
3 |EXP3| and dW4(w,EXP3) ≥

2
3 |EXP3|. Recolour edges in W4 between {v, w} and EXP3 until there exist two edges vx and wy

which are red, where x, y ∈ EXP3 are distinct vertices. Claim 4.15 ensures that whp such vertices v,

w, x and y exist and we assume this henceforth. Now, set e = xy and run the following routine:

Routine: Consider the graph H which is the current red graph on EXP3. If H ∪ {e} does not

contain a Hamilton cycle that uses the edge e, recolour e-boosters of H which are white edges one

by one until one of them is recoloured red. Repeat this procedure until the graph H ∪{e} considered

contains a Hamilton cycle which uses the edge e.
(End of Routine)

Claim 4.15 ensures that whp this procedure is successful and we assume this henceforth. A

Hamilton cycle in H ∪ {e} which uses the edge e then provides a red Hamilton path in EXP3 from

x to y. This red path together with the red path C3 \ {vw} and the red edges vx and wy forms the

desired red Hamilton cycle in V .
(End of Algorithm)

In the next claim we prove that some properties which are assumed in the algorithm hold whp.

Claim 4.15. All of the following properties hold whp:

(i) For every 1 ≤ i < `, if we recolour all the white edges between Ci and Ci+1 then at least one

edge is recoloured red.

(ii) There exist adjacent vertices v, w in C3 such that dW4(v,EXP3) ≥ 2
3 |EXP3| and dW4(w,EXP3) ≥

2
3 |EXP3|. Moreover, after recolouring all the edges in W4 between {v, w} and EXP3, there exist

distinct vertices x, y ∈ EXP3 such that vx and wy are red edges.

(iii) At any point during the routine, if H is the graph considered and if we recolour all the e-boosters

of H which are white edges then there will be one which is recoloured red.

Proof. We start by showing that (i) holds whp. Indeed, this follows from Lemma 3.4 since for every

i we have |Ci| > 1
6000n(lnn)−0.45.

Next we show that (ii) holds whp. Recall from I.4 that for every u ∈ V (C1) we have dW1(u,U) =

(1−o(1))|U|. Moreover, since |EXP3| = (1−o(1))|U| by IV.1(a) it follows that for every u ∈ V (C1) we

have dW1(u,EXP3) = (1− o(1))|EXP3|. Recall now that in Phase II there were no edges recoloured

between EXP3 and V (C1) and that in Phases III and IV the number of vertices u ∈ V (C1) for which

we recoloured edges touching u and vertices of EXP3 is o(n). Thus, it follows that for all but o(n)

vertices u ∈ V (C1) we have dW4(u,EXP3) = (1− o(1))|EXP3|. Since |V (C3) \ V (C1)| = o(n) we can

find two vertices v, w ∈ V (C1) which are adjacent in C3 and for which dW4(v,EXP3) ≥ 2
3 |EXP3| and

dW4(w,EXP3) ≥ 2
3 |EXP3|, as claimed.

Partition now the set EXP3 into two sets Av and Aw of size as equal as possible. If we recolour

all the edges in W4 between {v, w} and EXP3 then the probability that afterwards either there is no

red edge vx with x ∈ Av or wy with y ∈ Aw is at most

2 Pr

[
Bin

((
1

6
− o(1)

)
|EXP3|, p

)
= 0

]
= 2(1− p)(

1
6
−o(1))|EXP3| ≤ e−(1

6
−o(1))|EXP3|p = o(1)

by IV.1(a). We conclude that property (ii) of the claim holds whp.

28

Finally we show that (iii) also holds whp. Note first that the routine can be executed at most

|EXP3| times since each time the size of a longest path in the graph considered increases by at

least one. Now, let H be one of the graphs considered during the routine. Note that the edge set

E(H) of H is of the form E(H) = K1 ∪K2 where K1 = R4[EXP3] and K2 ⊆ EXP3 is a set of size

|K2| < |EXP3| + `. Indeed, K2 = E(H) \ K1 consists of the ` − 1 red edges added in this phase

connecting the connected components of K1 and at most |EXP3| red edges added during the routine.

Moreover, note that the graph H is connected since the red graph on EXP3 is already connected

when the routine is executed. Since R4[EXP3] = R2[EXP3] and since the graph (R4 \ R1)[EXP3]

has minimum degree at least (lnn)0.4 by IV.1(b), it follows from i. of II.1(c) that for any set

X ⊆ EXP3 of size |X| ≤ 1
6000n(lnn)−0.45 we have |NH(X) ∪ X| ≥ 5|X|. Thus, again using the

fact that R4[EXP3] = R2[EXP3] and that ` ≤ 24000 we conclude from II.1 (d) that the number of

e-boosters for H in the set W2[EXP3] is at least 10−8n2(lnn)−0.9.

Recall now that in Phases III and IV no white edges inside EXP3 were recoloured and so

W4[EXP3] = W2[EXP3]. Moreover, as indicated above, in Phase V we recolour red less than

` + |EXP3| white edges inside EXP3. The probability that at least 10−9n2(lnn)−0.9 white edges

are recoloured blue during Phase V is then at most the probability that at most ` + |EXP3| − 1 ≤
5n(lnn)−0.45 white edges are recoloured red before 10−9n2(lnn)−0.9 white edges are recoloured blue,

which is at most

5n(lnn)−0.45∑
j=0

(
10−9n2(lnn)−0.9 + j

j

)
(1− p)10−9n2(lnn)−0.9

pj

≤ O(n(lnn)−0.45) ·
(
O(n2(lnn)−0.9)

5n(lnn)−0.45

)
· p5n(lnn)−0.45 · e−p·Ω(n2(lnn)−0.9)

≤ O(n(lnn)−0.45) · (O((lnn)0.55))5n(lnn)−0.45 · e−Ω(n(lnn)0.1) = o(1) .

Thus, whp less than 10−9n2(lnn)−0.9 white edges are recoloured blue in this phase. Thus, since the

set W4[EXP3] contains at least 10−8n2(lnn)−0.9 e-boosters for H we conclude that whp at any point

in the routine there are at least 9 · 10−9n2(lnn)−0.9 e-boosters for H which are white edges (at that

point). The probability that none of these e-boosters is recoloured red is then at most

Pr
[
Bin(9 · 10−9n2(lnn)−0.9, p) = 0

]
= (1−p)9·10−9n2(lnn)−0.9 ≤ e−p·9·10−9n2(lnn)−0.9 ≤ e−9·10−9n(lnn)0.1 .

Thus, since the routine is executed at most `+ |EXP3| ≤ 5n(lnn)−0.45 many times, we conclude by

the union bound that the probability that at some point in the routine all the e-boosters of H which

are white edges (where H is the graph being considered at that point) are recoloured blue is at most

5n(lnn)−0.45 · e−9·10−9n(lnn)0.1 = o(1) ,

and so property (iii) holds whp as claimed.

Assuming that the properties of Claim 4.15 hold and denoting by R5 the set of red edges at the

end of this phase’s algorithm, it is clear from it that the graph R5 contains a Hamilton cycle.

We claim now that |R5 \ R4| < ` + 3|EXP3| = o(n). Indeed, in the beginning of this phase’s

algorithm exactly `− 1 edges are recoloured red in order to make the red graph in EXP3 connected.

Later, we recoloured edges between {v, w} and EXP3 and so at that point at most 2|EXP3| edges are

recoloured red. Finally, we recoloured one edge red each time the routine was executed. However,

29

as indicated in the proof of Claim 4.15 the routine can be executed at most |EXP3| times. Thus, we

conclude that less than `+ 3|EXP3| = o(n) edges are recoloured red in this phase, as claimed.

To finish the proof of Theorem 1 we show that |R5| = n + o(n). Indeed by I.2, II.4, III.4, IV.2

and by the previous paragraph we conclude that

|R5| = |R1|+ |R5 \R1| = n+ o(n)

as desired.

5 Concluding remarks

In this paper we introduced a new type of problems in random graphs, where the goal is to expose

a subgraph which possesses some target property P, by asking as few queries as possible. Note that

this problem is general and can be considered in any model of random structures.

Although we chose to focus on the property of Hamiltonicity, our proof method can be applied to

prove analogous statements regarding other interesting properties. For example, one can show that

for p ≥ lnn+ω(1)
n , there exists an adaptive algorithm, interacting with the probability space G(n, p),

which whp finds a matching of size bn/2c (a perfect matching) after getting n/2 + o(n) positive

answers.

Let us now show that one cannot get rid of the o(n) term. More precisely, we show that whp at

least n + Ω
(√

1
p

)
positive answers are needed in order to find a Hamilton cycle. In particular, if

p = Θ
(

logn
n

)
then this means that at least Θ

(√
n

logn

)
extra positive answers are needed to find a

Hamilton cycle. For this aim, let k := k(n) be an integer and let G be a non-Hamiltonian graph on

n vertices with exactly n+ k edges. Suppose that there exist a non-edge xy of G for which G+xy is

Hamiltonian, and observe that G contains at most two vertices of degree 1 and no isolated vertices.

First, let us note that both x and y can have at most one neighbor in G which is of degree 2. Indeed,

every neighbor of (say) x which has degree exactly 2 must be connected to x on the Hamilton cycle

created by adding xy to G. Since xy must be an edge of this cycle, x cannot have more than one

such neighbor. Second, we try to estimate the number of pairs xy for which both x and y have at

most one neighbor of degree 2 in G. For this end, let A denote the set of all vertices in G of degree

distinct than 2, and let a := |A|. Since G has exactly n + k edges, and since there are at most 2

vertices of degree 1, it follows that 2 + 2(n− a) + 3(a− 2) ≤ 2n+ 2k. Therefore, we have a ≤ 2k+ 4.

Next, since 2(n− a) +
∑

v∈A dG(v) ≤ 2n+ 2k, using the estimate we obtained on a we conclude that

|N(A)| ≤
∑
v∈A

dG(v) = O(k).

Thus, all in all, we have |A∪N(A)| = O(k). Observe now crucially that if xy is a non-edge of G for

which G+xy is Hamiltonian then x and y must be in A∪N(A). Indeed, if (say) x /∈ A then x must

have degree 2 and so at least one of its neighbours lies in A (as discussed above) and so x ∈ N(A).

Hence, there are O(k2) pairs xy for which G+xy might be Hamiltonian. Suppose now that we have

an adaptive algorithm, interacting with the probability space G(n, p), which whp finds a Hamilton

cycle after getting at most n+ k + 1 positive answers. Let G be the random graph obtained by the

algorithm whose edges correspond to the positive answers until the step just before a Hamilton cycle

is found. Note that by hypothesis whp G has at most n+ k edges and so by the reasoning above, it

30

follows that there are at most O(k2) possible non-edges of G which can be queried to turn G into a

Hamiltonian graph. However, if k = o
(√

1
p

)
, since k2p = o(1), by conditioniong on what the graph

G can be, we see by Markov’s inequality that whp none of these pairs of vertices obtain positive

answers even if we query all of them. Thus, we conclude that no such algorithm exists.

Note that even though the general setting we introduced appears to be new, there has been some

previous work of this flavor in the literature, albeit inexplicit. For example, the DFS-based argument

of [15] indicates that in the super-critical regime p = 1+ε
n , Θ(ε)n positive answers suffice to uncover

typically a connected component of size proportional to εn, and this is clearly optimal. The analysis

from [15] also gives an adaptive algorithm for finding a path of length Θ(ε2)n (which is whp the

asymptotic order of magnitude of a longest path in such a random graph) after querying Θ(ε)n

edges successfully. What matters here is the dependence on ε, and the above stated algorithmic

bound is above the trivial lower bound by the 1/ε factor. In a companion paper [9] we show that

this gap cannot be bridged and the algorithm from [15] is essentially (up to a log(1/ε) factor) best

possible.

Another natural instance of the setting promoted in this paper is when the target property P is

the containment of a fixed graph H. In this case, the obvious lower bound for the total number of

queries needed is of order 1/p. It appears that the form of the optimal bound for the number of

queries may depend heavily on the value of p. Consider for example the case H = K3. For constant

p, one can just query the pairs in ω(1) pairwise disjoint triples of vertices to find w.h.p. a copy of the

triangle. However, say, for the case p = n−1/2 the right bound seems to be around n3/4. Indeed, a

simple algorithm asking a bit more than n3/4 queries would be first to query pairs containing a fixed

vertex v till ω(n1/4) edges touching v are found – this would take ω(n3/4) queries. Querying now all

pairs between the other points of these edges uncovers w.h.p. an edge (u,w) closing a triangle with

v. For the lower bound, one can argue that having o(n1/4) positive answers on the board produces

only o(n1/2) pairs of vertices at distance two, and w.h.p. none of these pairs will show up in the

random graph to close a desired triangle. This argument has certain similarities to the lower bound

for avoidance of a given graph in Achlioptas processes given in [14]. Of course the case of triangles

appears to be relatively easy, and we expect much more involved analysis for a general H.

Acknowledgements. We would like to thank the anonymous referees for carefully reading our

paper as well as for their helpful comments. Parts of this work were carried out when the second

author visited the Institute for Mathematical Research (FIM) of ETH Zürich, and also when the

third author visited the School of Mathematical Sciences of Tel Aviv University, Israel. We would like

to thank both institutions for their hospitality and for creating a stimulating research environment.

References

[1] N. Alon and J. H. Spencer, The Probabilistic Method, 3rd Ed., John Wiley & Sons, 2008.

[2] T. Bohman and A. Frieze, Hamilton cycles in 3-out, Random Structures & Algorithms, Vol. 35

(4), pp. 393–417, 2009.

[3] B. Bollobás. Random graphs, 2nd Ed., Cambridge University Press, 2001.

[4] B. Bollobás, The evolution of sparse graphs, In: Graph Theory and Combinatorics, Proceedings,

Cambridge Combinatorial Conf. in honour of Paul Erdős, ed. B. Bollobás, Academic Press, pp.

35–57, 1984.

31

[5] C. Cooper and A. Frieze, Hamilton cycles in a class of random directed graphs, Journal of

Combinatorial Theory B 62, 151–163, 1994.

[6] C. Cooper and A. Frieze, Hamilton cycles in random graphs and directed graphs, Random Struc-

tures & Algorithms, 16(4), 369–401, 2000.

[7] R. Diestel, Graph Theory, 4th Ed., Springer, 2010.

[8] A. Ferber, M. Krivelevich and H. Naves, Generating random graphs in biased Maker-Breaker

games, Random Structures & Algorithms, 47, 615–634, 2015.

[9] A. Ferber, M. Krivelevich, B. Sudakov and P. Vieira, Finding paths in sparse random graphs

requires many queries, Random Structures & Algorithms, to appear.

[10] A. Frieze and C. McDiarmid, Algorithmic theory of random graphs, Random Structures &

Algorithms, Vol. 10 (1-2), pp. 5–42, 1997.

[11] S. Janson, T. Luczak, and A. Ruciński, Random graphs, John Wiley & Sons, 2000.

[12] J. Komlós and E. Szemerédi, Limit distribution for the existence of Hamiltonian cycles in a

random graph, Discrete Mathematics, Vol. 43 (1), pp. 55–63, 1983.

[13] A. D. Korshunov, Solution of a problem of Erdős and Rényi on Hamilton cycles in non-oriented

graphs, Soviet Math. Dokl, Vol. 17, pp. 760–764, 1976.

[14] M. Krivelevich, P.-S. Loh and B. Sudakov, Avoiding small subgraphs in Achlioptas processes,

Random Structures & Algorithms, Vol. 34 (1), pp. 165–195, 2009.

[15] M. Krivelevich and B. Sudakov, The phase transition in random graphs: a simple proof, Random

Structures & Algorithms, Vol. 43 (2), pp. 131–138, 2013.

[16] L. Pósa. Hamiltonian circuits in random graphs. Discrete Mathematics, Vol. 14 (4), pp. 359–364,

1976.

[17] D. B. West, Introduction to Graph Theory, Prentice Hall, 2001.

32

