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Abstract

We present a general approach connecting biased Maker-Breaker games and prob-
lems about local resilience in random graphs. We utilize this approach to prove new
results and also to derive some known results about biased Maker-Breaker games. In
particular, we show that for b = o (

√
n), Maker can build a pancyclic graph (that is,

a graph that contains cycles of every possible length) while playing a (1 : b) game on
E(Kn). As another application, we show that for b = Θ (n/ lnn), playing a (1 : b)
game on E(Kn), Maker can build a graph which contains copies of all spanning trees
having maximum degree ∆ = O(1) with a bare path of linear length (a bare path in
a tree T is a path with all interior vertices of degree exactly two in T ).

1 Introduction

Let X be a finite set and let F ⊆ 2X be a family of subsets. In the (a : b) Maker-Breaker
game F , two players, called Maker and Breaker, take turns in claiming previously unclaimed

∗Institute of Theoretical Computer Science, ETH Zurich, 8092 Zurich, Switzerland. Email:
asaf.ferber@inf.ethz.ch.
†School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv

University, Tel Aviv, 69978, Israel. Email: krivelev@post.tau.ac.il. Research supported in part by
USA-Israel BSF Grant 2010115 and by grant 912/12 from the Israel Science Foundation.
‡Department of Mathematics, ETH, 8092 Zurich, Switzerland and Department of Mathematics, UCLA,

Los Angeles, CA 90095 USA. Email: hnaves@math.ucla.edu.

1



elements of X. The set X is called the board of the game and the members of F are referred
to as the winning sets. Maker claims a board elements per turn, whereas Breaker claims b
elements. The parameters a and b are called the bias of Maker and of Breaker, respectively.
Maker wins the game as soon as he occupies all elements of some winning set. If Maker
does not fully occupy any winning set by the time every board element is claimed by either
of the players, then Breaker wins the game. We say that the (a : b) game F is Maker’s win
if Maker has a strategy that ensures his victory against any strategy of Breaker, otherwise
the game is Breaker’s win. The most basic case is a = b = 1, the so-called unbiased game,
while for all other choices of a and b the game is called a biased game. Note that being the
first player is never a disadvantage in a Maker-Breaker game. Therefore, in order to prove
that Maker can win some Maker-Breaker game as the first or the second player it is enough
to prove that he can win this game as a second player. In this paper we are concerned with
providing winning strategies for Maker and hence we will always assume that Maker is the
second player to move.

It is natural to play Maker-Breaker games on the edge set of a graph G = (V,E). In
this case, X = E and the winning sets are all the edge sets of the edge-minimal subgraphs
of G which possess some given monotone increasing graph property P . We refer to this
game as the (a : b) game P(G). In the connectivity game Maker wins if and only if his
edges contain a spanning tree. In the perfect matching game the winning sets are all sets
of b|V (G)|/2c independent edges of G. Note that if |V (G)| is odd, then such a matching
covers all vertices of G but one. In the Hamiltonicity game the winning sets are all edge
sets of Hamilton cycles of G. Given a positive integer k, in the k-connectivity game the
winning sets are all edge sets of k-vertex-connected spanning subgraphs of G. Given a
graph H, in the H-game played on G, the winning sets are all the edge sets of copies of H
in G.

Playing unbiased Maker-Breaker games on the edge set of Kn is frequently in favor of
Maker. For example, it is easy to see (and also follows from [21]) that for every n ≥ 4,
Maker can win the unbiased connectivity game in n − 1 moves (which is clearly also the
fastest possible strategy). Other unbiased games played on E(Kn) like the perfect matching
game, the Hamiltonicity game, the k-vertex-connectivity game and the T -game where T is
a spanning tree with bounded maximum degree, are also known to be easy win for Maker
(see e.g, [10], [11], [16]). It is thus natural to give Breaker more power by allowing him to
claim b > 1 elements in each turn.

Note that Maker-Breaker games are known to be bias monotone. That means that
none of the players can be harmed by claiming more elements. Therefore, it makes sense
to study (1 : b) games and the parameter b∗ which is the critical bias of the game, that is,

2



b∗ is the maximal bias b for which Maker wins the corresponding (1 : b) game F .

There is a striking relation between the theory of biased Maker-Breaker games and the
theory of random graphs, frequently referred to as the Erdős paradigm. Roughly speak-
ing, it suggests that the critical bias for the game played by two “clever players” and
the appropriately defined critical bias for the game played by two “random players” are
asymptotically the same. In this “random players” version of the game, both players use the
random strategy, i.e., Maker claims one random unclaimed element, while Breaker claims
b random unclaimed elements from the board E(Kn), per move. Note that the resulting
graph occupied by Maker at the end of the game is the random graph G(n,m), chosen
uniformly among all graphs with n vertices and m = b 1

1+b

(
n
2

)
c edges. Therefore, if the

winning sets consist of all the edge sets of subgraphs of Kn which possess some monotone
graph property P , a natural guess for the critical bias is b∗ for which m∗ = 1

1+b∗

(
n
2

)
is the

threshold for the property that G(n,m) typically possesses P . For this reason, the Erdős
paradigm is also known as the random graph intuition.

Chvátal and Erdős were the first to indicate this phenomenon in their seminal paper
[9]. They showed that Breaker, playing with bias b = (1+ε)n

lnn
, can isolate a vertex in Maker’s

graph while playing on the board E(Kn). It thus follows that Breaker wins every game for
which the winning sets consist of subgraphs of Kn with positive minimum degree. What is
most surprising about their result is that at the end of the game, Maker’s graph consists
of roughly m = 1

2
n lnn edges which is (asymptotically) the threshold for a random graph

G(n,m) to stop “having isolated vertices” (for more details on properties’ thresholds for
random graphs, the reader is referred to [7] and [17]). In this spirit, the results of Chvátal
and Erdős in [9] hint that b∗ = n

lnn
is actually the critical bias for many games whose target

sets consist of graphs having some property P , for which the threshold is m∗ = 1
2
n lnn

(such as the connectivity game, the perfect matching game and the Hamiltonicity game).
Gebauer and Szabó showed in [15] that the critical bias for the connectivity game played
on E(Kn) is asymptotically equal to n/ lnn. In a relevant development, Krivelevich proved
in [18] that the critical bias for the Hamiltonicity game is indeed (1 + o(1))n/ lnn.

Another striking result exploring the relation between results in Maker-Breaker games
played on graphs and threshold probabilities for properties of random graphs is due to
Bednarska and  Luczak in [4]. Given a graph G on at least three vertices we define

m(G) = max

{
|E(H)| − 1

|V (H)| − 2
: H ⊆ G and |V (H)| ≥ 3

}
.

Bednarska and  Luczak proved that the critical bias for the H-game is of order Θ
(
n1/m(H)

)
.

The most surprising part in their proof is the side of Maker, where they proved the following:
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Theorem 1.1 (Theorem 2 in [4]). For every graph H which contains a cycle there exists
a constant c0 such that for every sufficiently large integer n and b ≤ c0n

1/m(H) Maker has
a random strategy for the (1 : b) H-game played on E(Kn) that succeeds with probability
1− o(1) against any strategy of Breaker.

Stating it intuitively, they proved that an “optimal” strategy for Maker is just to claim
edges at random without caring about Breaker’s moves! Note that since a Maker-Breaker
game is a deterministic game, it follows that if Maker has a random strategy that works with
non-zero probability against any given strategy of Breaker, then the game is Maker’s win
(otherwise Maker’s strategy should work with probability zero against Breaker’s winning
strategy).

In the proof of Theorem 1.1, the graph obtained by Maker at the end of the game is not
exactly a random graph, since some failure edges might exist (that is, it might happen that
by choosing random edges, Maker attempts occasionally to pick an edge e which already
belongs to Breaker). Thus, in order to prove their result, Bednarska and  Luczak not only
proved that random graphs typically contain copies of the target graph H, but they also
showed that with a positive probability, even after removing a small fraction of the total
number of edges, these graphs still contain many copies of H. This particular statement
relates to the resilience of random graphs with respect to the property “containing a copy
of H”.

Given a monotone increasing graph property P and a graph G which satisfies P , the
resilience of G with respect to P measures how much one should change G in order to
destroy P (here we assume that an edgeless graph does not satisfy P). There are two
natural ways to define it quantitatively. The first one is the following:

Definition 1.2. For a monotone increasing graph property P, the global resilience of G
with respect to P is the minimum number 0 ≤ r ≤ 1 such that by deleting r · e(G) edges
from G one can obtain a graph G′ not having P.

Since one can destroy many natural properties by small changes (for example, by iso-
lating a vertex), it is natural to limit the number of edges touching any vertex that one is
allowed to delete. This leads to the following definition of local resilience.

Definition 1.3. For a monotone increasing graph property P, the local resilience of G
with respect to P is the minimum number 0 ≤ r ≤ 1 such that by deleting at each vertex v
at most r · dG(v) edges one can obtain a graph not having P.

Sudakov and Vu initiated the systematic study of resilience of random and pseudoran-
dom graphs in [23]. Since then, this field has attracted substantial research interest (see,

4



e.g. [2, 5, 6, 8, 14, 19, 20]).

Going back to Theorem 1.1, Bednarska and  Luczak actually proved that playing accord-
ing to the random strategy, Maker can typically build a graph G ∼ G(n,m) minus some
ε-fraction of its edges. They then showed that for a given graph H and an appropriate m,
the global resilience of a typical G ∼ G(n,m) with respect to the property “containing a
copy of H” is at least ε. It is thus natural to seek an alternative theorem which provides
the analogous local resilience argument.

The main result in this paper uses a sophisticated version of the argument in [4]. Let
G be a graph and let 0 < p < 1. The model G(G, p) is a random subgraph G′ of G,
obtained by retaining each edge of G in G′ independently at random with probability p.
For the special case where G = Kn, we denote G(n, p) := G(Kn, p), which is the well-known
Erdős-Rényi model of random graphs. Let P be a graph property, and consider sequences
of graphs {Gn}∞n=1 (indexed by the number of vertices) and probabilities {p(n)}∞n=1. We say
that G(Gn, p(n)) ∈ P asymptotically almost surely, or a.a.s. for brevity, if the probability
that G(Gn, p(n)) ∈ P tends to 1 as n goes to infinity. In this paper, we often abuse notation
and simply write G = Gn and p = p(n) to denote those sequences. Before stating our main
result we need the following definition:

Definition 1.4. Let P be a monotone increasing graph property, let G = Gn denote a family
of graphs (where Gn is a graph on n vertices), let 0 < p = p(n) < 1 and let 0 ≤ r ≤ 1. We
say that P is (G, p, r)-resilient if the local resilience of a graph G′ ∼ G(G, p) with respect
to P is a.a.s. at least r.

Our main result is the following.

Theorem 1.5. For every constant 0 < ε ≤ 1/100 and a sufficiently large integer n the
following holds. Suppose that

(i) 0 < p = p(n) < 1,

(ii) G is a graph with |V (G)| = n,

(iii) δ(G) ≥ 10 lnn
εp

, and

(iv) P is a monotone increasing graph property which is (G, p, ε)-resilient.

Then Maker has a winning strategy in the (1 : b ε
20p
c) game P(G).
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Theorem 1.5 connects between Maker’s side in biased Maker-Breaker games on graphs
and local resilience; it thus allows to use (known) results about local resilience to give
a lower estimate for the critical bias in biased Maker-Breaker games. We now present
our concrete results for biased games, all of them are applications of Theorem 1.5 and
corresponding local resilience results for random graphs.

First, as a warm up we prove the following theorem which shows that the critical bias
for the Hamiltonicity game played on E(Kn) is Θ( n

lnn
).

Theorem 1.6. There exists a constant α > 0 for which for every sufficiently large integer
n the following holds. Suppose that b ≤ αn/ lnn, then Maker has a winning strategy in the
(1 : b) Hamiltonicity game played on E(Kn).

This result is presented here mainly for illustrative purposes, and also due to the histor-
ical importance of the biased Hamiltonicity game and the long road it took before having
been resolved finally in [18].

As a second application we show that by playing a (1 : b) game on E(Kn), if b = o(
√
n),

then Maker wins the pancyclicity game. That is, Maker can build a graph which consists
of cycles of any given length 3 ≤ ` ≤ n.

Theorem 1.7. Let b = o(
√
n). Then in the (1 : b) game played on E(Kn), Maker has a

winning strategy in the pancyclicity game.

Note that the result is asymptotical tight possible in the sense that for b ≥ 2
√
n, Chvátal

and Erdős showed in [9] that Maker cannot even build a triangle.

Ferber, Hefetz, and Krivelevich showed in [12] that if T is a tree on n vertices and
∆(T ) ≤ n0.05 then the following holds. In the (1 : b) game, Maker has a strategy to win the
T -game in n + o(n) moves, for every b ≤ n0.005. They also asked for improvements of the
parameter b (regardless of the number of moves required for Maker to win). In this paper,
as a third application of our main result, we show how to obtain such an improvement for a
large family of trees. Those are trees T with ∆(T ) = O(1) containing a bare path of length
Θ(n), where a bare path is a path for which all the interior vertices are of degree exactly
two in T . In fact we prove the following much stronger result:

Theorem 1.8. For every α > 0 and ∆ > 0 there exists a δ := δ(α,∆) > 0 such that for
every sufficiently large integer n the following holds. For b ≤ δn

logn
, in the (1 : b) Maker-

Breaker game played on E(Kn), Maker has a strategy to build a graph which contains copies
of all the spanning trees T such that:
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(i) ∆(T ) ≤ ∆, and

(ii) T has a bare path of length at least αn.

Remark 1.9. Note that the bias b in Theorem 1.8 is tight (up to a constant factor), as

Chvátal and Erdős showed [9] that for b = b (1+ε)n
lnn
c Breaker can isolate a vertex in Maker’s

graph.

The rest of the paper is organized as follows. In Section 2 we present some auxiliary
results. In Section 3 we prove Theorem 1.5, and in Section 4 we show how to apply
Theorem 1.5 combined with local resilience statements (introduced in Subsection 2.3) to
various games.

1.1 Notation

A graph G is given by a pair of its (finite) vertex set V (G) and edge set E(G). For a
subset X of vertices, we use E(X) to denote the set of edges spanned by X, and for two
disjoint sets X, Y , we use E(X, Y ) to denote the number of edges with one endpoint in X
and the other in Y . Let G[X] denote the subgraph of G induced by a subset of vertices
X. We write N(X) to denote the collection of vertices that have at least one neighbor
in X. When X consists of a single vertex, we abbreviate N(v) for N({v}), and let d(v)
denote the cardinality of N(v), i.e., the degree of v. Moreover, if X is a set of vertices, we
let G \X to be the induced subgraph G[V (G) \X]. When there are several graphs under
consideration, we use subscripts such as NG(X) indicating the relevant graph of interest.

To simplify the presentation, we often omit floor and ceiling signs whenever these are
not crucial and make no attempts to optimize the absolute constants involved. We also
assume that the parameter n (which always denotes the number of vertices of the host
graph) tends to infinity and therefore is sufficiently large whenever necessary. All our
asymptotic notation symbols (O, o, Ω, ω, Θ) are relative to this variable n.

2 Auxiliary results

In this section we present some auxiliary results that will be used throughout the paper.
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2.1 Binomial distribution bounds

We use extensively the following well-known bound on the lower and the upper tails of the
Binomial distribution due to Chernoff (see, e.g., [1]).

Lemma 2.1. If X ∼ Bin(n, p), then

• P [X < (1− a)np] < exp
(
−a2np

2

)
for every a > 0.

• P [X > (1 + a)np] < exp
(
−a2np

3

)
for every 0 < a ≤ 1.

The following is a trivial yet useful bound.

Lemma 2.2. Let X ∼ Bin(n, p) and k ∈ N. Then

P[X ≥ k] ≤
(enp
k

)k
.

Proof. P[X ≥ k] ≤
(
n
k

)
pk ≤

(
enp
k

)k
.

2.2 The MinBox game

Consider the following variant of the classical Box Game introduced by Chvátal and Erdős
in [9], which we refer to as the MinBox game. The game MinBox(n,D, α, b) is a (1 : b)
Maker-Breaker game played on a family of n disjoint sets (boxes), each having size at
least D. Maker’s goal is to claim at least α|F | elements from each box F . In the proof
of our main result, we make use of a specific strategy S for Maker in the MinBox game.
This strategy not only ensures his victory, but also allows Maker to maintain a reasonable
proportion of elements in all boxes throughout the game.

Before describing the strategy, we need to introduce some notation. Assume that a
MinBox game is in progress, let wM(F ) and wB(F ) denote the number of Maker’s and
Breaker’s current elements in box F , respectively. Furthermore, let dang(F ) := wB(F ) −
b · wM(F ) be the danger value of F . Finally, we say that a box F is free if it contains
an element not yet claimed by either player, and it is active if wM(F ) < α|F |. Maker’s
strategy is as follows:

Strategy S: In any move of the game, Maker identifies one free active box having
maximal danger value (breaking ties arbitrarily), and claims one arbitrary free element
from it.
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We are ready to state the following theorem.

Theorem 2.3. Let n, b, and D be positive integers, and 0 < α < 1. Assume that Maker
plays the game MinBox(n,D, α, b) according to the strategy S described above. Then he
ensures that, throughout the game, every active box F satisfies

dang(F ) ≤ b(lnn+ 1).

In particular, if α < 1
1+b

and D ≥ b(lnn+1)
1−α(b+1)

, then S is a winning strategy for Maker in this
game.

The proof of this result can be found in the Appendix. We remark that it is very similar
to the proof of Theorem 1.2 in [15].

2.3 Local resilience

In this subsection we describe several results related to local resilience of monotone graph
properties. The main result of this paper (Theorem 1.5) shows a connection between local
resilience of graphs and Maker-Breaker games, therefore, in order to be able to apply it, we
first need to present some results related to local resilience of various properties of random
graphs.

The first statement of this section is a theorem from [20] providing a good bound on the
local resilience of a random graph with respect to the property “being Hamiltonian”. This
result will be used in the proof of Theorem 1.6 for the Hamiltonicity game. We remark
that for our purposes, prior (and weaker) results on the local resilience of a random graph
with respect to Hamiltonicity (for example those in [14]) would suffice.

Theorem 2.4 (Theorem 1.1, [20]). For every positive ε > 0, there exists a constant C =
C(ε) such that for p ≥ C lnn

n
, a graph G ∼ G(n, p) is a.a.s. such that the following holds.

Suppose that H is a subgraph of G for which G′ = G \ H has minimum degree at least
(1/2 + ε)np, then G′ is Hamiltonian.

The following result from [19] is related to the local resilience of a typical G ∼ G(n, p)
with respect to pancyclicity.

Theorem 2.5 (Thereom 1.1, [19]). If p = ω(n−1/2), then the local resilience of G ∼ G(n, p)
with respect to the property “being pancyclic” is a.a.s. 1/2 + o(1).
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The following theorem shows that a sparse random graph G ∼ G(n, p) is typically
such that even if one deletes a small fixed fraction of edges from each vertex v ∈ V (G),
it still contains a copy of every tree T having a bare path of linear length and having
bounded maximum degree. This result relates to the local resilience of the property of
being universal for this particular class of trees, and it is an essential component in the
proof of Theorem 1.8.

Theorem 2.6. For every α > 0 and ∆ > 0, there exist ε > 0 and C0 such that for every
p ≥ C0 lnn/n, G ∼ G(n, p) is a.a.s. such that the following holds. For every subgraph
H ⊆ G with ∆(H) ≤ εnp, the graph G′ = G \ H contains copies of all spanning trees T
such that:

(i) ∆(T ) ≤ ∆, and

(ii) T contains a bare path of length at least αn.

In order to prove Theorem 2.6 we need the following theorem due to Balogh, Csaba
and Samotij [2] about the local resilience of random graphs with respect to the property
“containing all the almost spanning trees with bounded degree”.

Theorem 2.7 (Theorem 2, [2]). Let β and γ be positive constants, and assume that ∆ ≥ 2.
There exists a constant C0 = C0(β, γ,∆) such that for every p ≥ C0/n, a graph G ∼ G(n, p)
is a.a.s. such that the following holds. For every subgraph H of G for which dH(v) ≤
(1/2 − γ)dG(v) for every v ∈ V (G), the graph G′ = G \ H contains all trees of order at
most (1− β)n and maximum degree at most ∆.

Proof of Theorem 2.6 . Let α > 0 and ∆ > 0 be two positive constants. Let ε := ε(α) > 0
be a sufficiently small constant and let C0 = C0(ε,∆) > 0 be a sufficiently large constant.
Let G ∼ G(n, p) be a random graph, H ⊆ G be any subgraph with ∆(H) ≤ εnp and denote
G′ = G \ H. We wish to show that G′ contains a copy of every spanning tree T which
satisfies (i) and (ii). This can be done as follows. Assume that G has been generated by a
two-round-exposure and is presented as G = G1∪G2, where G1 ∼ G(n, p/2), G2 ∼ G(n, q),
and q is a positive constant for which 1 − p = (1 − p/2)(1 − q). Observe that q > p/2.
Let V0 be a random subset of V (G) of size |V0| = 0.99αn and denote G′1 = G1 \ V0. Note
that G′1 ∼ G((1 − 0.99α)n, p/2) and that a.a.s. dG′1(v) ≥ (1 − 0.99α − ε)np/2 for every
v ∈ V (G′1) (this can be easily shown using Chernoff’s inequality, choosing C0 appropriately,
and applying the union bound). In addition, note that for every v ∈ V (G), the degree of
v into V0 (in G1) is at least (0.99α − ε)np/2. Let T be a tree which satisfies (i) and (ii),
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and let P = v0v1 . . . vt be a bare path of T with t = αn. Let T ′ be the tree obtained from
T by deleting v1, . . . , vt−1 and adding the edge v0vt. Note that |V (T ′)| = (1− α)n+ 1.

Let β be such that (1− β)|V (G′1)| = |V (T ′)|. Applying Theorem 2.7 to G′1, with (say)
γ = 1/4 and β, using the fact that ε is sufficiently small we conclude that there exists a
copy T ′′ of T ′ in G′1 \ H. Let x and y denote the images (in T ′′) of v0 and vt (from T ′),
respectively.

Let V ′ = (V (G) \ V (T ′′)) ∪ {x, y}. In order to complete the proof, we should be
able to show that (G \ H)[V ′] contains a Hamilton path with x and y as its endpoints.
Note that V0 ⊆ V ′ and that V ′ \ V0 and the two designated vertices x and y heavily
depend on the tree T which we are trying to embed. Therefore, we wish to show that
G is a.a.s. such that for every possible option for V ′ (with two designated vertices x and
y), (G \ H)[V ′] contains a Hamilton path with x and y as its endpoints. For this, note
that a.a.s. δ ((G1 \H) [V ′]) ≥ 0.491αnp. Indeed, as we previously remarked, a.a.s. every
v ∈ V (G) has degree (in G1) at least (0.99α − ε)np/2 into V0. Since ε is small enough, it
follows that δ(G1[V ′]) ≥ (0.99α− ε)np/2 ≥ 0.494αnp. Combining the last inequality with
the fact that ∆(H) ≤ εnp, we obtain δ((G1 \H)[V ′]) ≥ (0.494α− ε)np ≥ 0.491αnp. Now,
using the following claim (will be proven later) we deduce that a graph G1 ∼ G(n, p/2)
is a.a.s. such that any subgraph D ⊆ G1 on αn + 1 vertices with δ(D) ≥ 0.49αnp has
“good” expansion properties (our candidate for D will be (G1 \H) [V ′], and we assume
that ε < 0.001α).

Claim 2.8. A graph G1 ∼ G(n, p/2) (where p is the same as in Theorem 2.6) is a.a.s.
such that for any subgraph D ⊂ G1 with |V (D)| = αn + 1 and with δ(D) ≥ 0.49αnp, the
following holds:

|ND(X) \X| ≥ 2|X|+ 2

for every X ⊆ V (D) with |X| ≤ |V (D)|/5.

Next, we show how to use the edges of G2 in order to turn the graph (G1 \H)[V ′] into
a graph which contains a Hamilton path connecting x and y. A routine way to turn a
non-Hamiltonian graph D that satisfies some expansion properties (as in Claim 2.8) into
a Hamiltonian graph is by using boosters. A booster is a non-edge e of D such that the
addition of e to D creates a path which is longer than a longest path of D, or turns D into
a Hamiltonian graph. In order to turn D into a Hamiltonian graph, we start by adding
a booster e of D. If the new graph D ∪ {e} is not Hamiltonian then one can continue
by adding a booster of the new graph. Note that after at most |V (D)| successive steps
the process must terminate and we end up with a Hamiltonian graph. The main point
using this method is that it is well-known (for example, see [7]) that a non-Hamiltonian
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graph D with “good” expansion properties has many boosters. However, our goal is a bit
different. We wish to turn D into a graph that contains a Hamilton path with x and y as
its endpoints. In order to do so, we add one (possibly) fake edge xy to D and try to find a
Hamilton cycle that contains the edge xy. Then, the path obtained by deleting this edge
from the Hamilton cycle will be the desired path. For that we need to define the notion of
e-boosters.

Given a graph D and a pair e ∈
(
V (D)

2

)
, consider a path P of D ∪ {e} of maximal

length which contains e as an edge. A non-edge e′ of D is called an e-booster if D ∪ {e, e′}
contains a path P ′ which passes through e and which is longer than P , or that D ∪ {e, e′}
contains a Hamilton cycle that uses e. The following lemma shows that every connected
and non-Hamiltonian graph D with “good” expansion properties has many e-boosters for
every possible e.

Lemma 2.9. Let D be a connected graph for which |ND(X)\X| ≥ 2|X|+2 holds for every
subset X ⊆ V (D) of size |X| ≤ k. Then, for every pair e ∈

(
V (D)

2

)
such that D ∪ {e} does

not contain a Hamilton cycle which uses the edge e, the number of e-boosters for D is at
least (k + 1)2/2.

The proof of the previous lemma is very similar to the proof of the well-known Pósa’s
lemma using the ordinary boosters ([14], Lemma 4), and hence we postpone it to the
appendix. The only difference is that in the proof of Lemma 2.9 we forbid rotations that
destroy the edge e; and so the number of possible rotations with a given fixed endpoint
drops by at most two.

Note that in order to turn (G1 \H)[V ′] into a graph that contains a Hamiltonian cycle
passes through e, one should repeatedly add e-boosters, one by one, at most |V ′| = αn
times. Therefore, in order to complete the proof, it is enough to show that a.a.s. a graph
G2 ∼ G(n, q) is such that G2 \H contains “many” e-boosters for any graph obtained from
(G1 \ H)[V ′] by adding a set of edges E0 of size at most αn. In the following lemma we
formalize and prove this statement. This is the final ingredient in the proof of Theorem 2.6.

Lemma 2.10. Assume that G1 satisfies the conclusion of Claim 2.8. Then G2 ∼ G(n, q)
is a.a.s. such that the following holds. Suppose that

(i) V ′ ⊆ V (G1) is a subset of size |V ′| = αn+ 1,

(ii) H ⊂ G1 is a subgraph such that δ((G1 \H)[V ′]) ≥ 0.49αnp,

(iii) e = xy ∈
(
V ′

2

)
, and

12



(iv) E0 is a subset of at most αn pairs of V ′.

Then, GE0,e,V ′,H = (G1 \H)[V ′] ∪ E0 ∪ {e} contains a Hamilton cycle that passes through
e, or E(G2) contains at least α2n2p/200 e-boosters for GE0,e,V ′,H .

Proof. Since G1 satisfies the conclusion of Claim 2.8, by combining it with Lemma 2.9,
it follows that for every V ′ ⊆ V (G1) of size αn + 1 and e ∈

(
V ′

2

)
, for every subset E0 of

at most αn pairs of V ′, for every H with δ(G1 \ H)[V ′] ≥ 0.49αnp, the graph GE0,e,V ′,H

has at least α2n2/50 e-boosters. Fix such V ′, e, E0 and H, and observe that the expected
number of e-boosters in G2 is at least (α2n2/50) · q ≥ α2n2p/100 (recall that q > p/2).
Therefore, by Chernoff’s inequality (Lemma 2.1) it follows that the probability for E(G2)
to have at most α2n2p/200 e-boosters for GE0,e,V ′,H is at most exp(−Cn2p), where C is a
constant which depends only on α. Applying the union bound, running over all the options
for choosing V ′, H, e and E0, we obtain that the probability for having such V ′, e, H and
E0 for which G2 contains at most α2n2p/200 e-boosters for GE0,e,V ′,H is at most

εn2p∑
t=1

2n
(
e(G1[V ′])

t

)
n2

(
α2n2

αn

)
exp(−Cn2p) ≤

2nεn4p

(
eα2n2p

εn2p

)εn2p

(eαn)αn exp(−Cn2p) = o(1).

where the last inequality holds for ε which is much smaller than α and for p ≥ C0 lnn/n
where C0 is sufficiently large. This completes the proof.

Before we complete the proof of Theorem 2.6, we prove Claim 2.8.

Proof of Claim 2.8. Let S ⊆ V (G1) be any subset of vertices of size |S| ≤ 2αn√
lnn

, and note

that |E(G1[S])| ∼ Bin(
(|S|

2

)
, p/2). Therefore, using Lemma 2.2 we obtain that

P[|E(G1[S])| ≥ |S|np/ ln lnn] ≤
(
e|S|2p ln lnn

4|S|np

)|S|np/ ln lnn

=

(
e|S| ln lnn

4n

)|S|np/ ln lnn

. (1)

Let E denote the event “there exists a subset S ⊆ V (G1) of size |S| ≤ 2αn√
lnn

for which

|E(G1[S])| ≥ |S|np/ ln lnn”. By applying the union bound and the estimate (1) we obtain
that

13



Pr [E ] =

2αn√
lnn∑
s=1

(
n

s

)(
es ln lnn

4n

)snp/ ln lnn

≤

2αn√
lnn∑
s=1

(en
s

)s(es ln lnn

4n

)snp/ ln lnn

= o(1). (2)

Now, let D ⊆ G1 be a subgraph on αn+ 1 vertices with δ(D) ≥ 0.49αnp, and we wish
to show that for every X ⊆ V (D), if |X| ≤ |V (D)|/5, then |ND(X) \X| ≥ 2|X|+ 2. First,
we consider the case |X| ≤ αn

3
√

lnn
. Assume that there exists a subset X ⊆ V (G1) in this

range for which |ND(X) \ X| ≤ 2|X| + 1. Using the fact that δ(D) = Θ(np) we obtain
|E(D[X ∪ND(X)])| ≥ |X| ·Θ(np). Now, since |E(D[X ∪ND(X)])| ≤ |E(G1[X ∪ND(X)])|
and since |X ∪ ND(X)| ≤ αn√

lnn
+ 2 < 2αn√

lnn
, by (2) it happens with probability o(1).

Therefore, we conclude that a.a.s. |ND(X)\X| ≥ 2|X|+2 holds for every subset X ⊆ V (D)
of size at most αn

3
√

lnn
.

Second, assume αn
3
√

lnn
< |X| ≤ |V (D)|/5. In this range it is enough to show that

a.a.s. for every two disjoint subsets of vertices X, Y ⊆ V (D) of sizes |X| = αn
3
√

lnn
and

|Y | = αn/10 we have |ED(X, Y )| 6= 0. Indeed, let X ⊆ V (D) be a subset in this range and
assume that |ND(X) \ X| ≤ 2|X| + 2. In particular, since |X| ≤ |V (D)|/5 we conclude
that |X ∪ND(X)| ≤ |X|+ 2|X|+ 2 ≤ 4|V (D)|/5. Therefore, one can find X ′ ⊆ X of size
|X ′| = αn

3
√

lnn
and Y ⊆ V (D) \ (X ∪ND(X)) of size |Y | = αn/10 for which |ED(X, Y )| = 0,

a contradiction.

In order to show that the above mentioned property a.a.s. holds, let X, Y ⊆ V (G1) be
two disjoint subsets of sizes |X| = αn

3
√

lnn
and |Y | = αn/10. For a vertex x ∈ X, let dG1(x, Y )

denote the number of neighbors of x in Y , and observe that dG1(x, Y ) ∼ Bin(|Y |, p/2).
Therefore, the probability that dG1(x, Y ) is outside the interval (|Y |p/3, 2|Y |p) is at most
e−Θ(|Y |p|) = e−Θ(np). Since all the events dG1(x

′, Y ) /∈ (|Y |p/3, 2|Y |p) (x′ ∈ X) are mutually
independent, we conclude that

P[ for at least
ln lnn

p
vertices x ∈ X we have dG1(x, Y ) /∈ (|Y |p/3, 2|Y |p)]

≤
(

n

ln lnn/p

)
e−Θ(np·ln lnn/p) = e−Θ(n ln lnn).
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Now, by applying Chernoff’s inequality and the union bound, we obtain that the prob-
ability for having two such sets X and Y such that for at least ln lnn

p
vertices x ∈ X we

have dG1(x, Y ) /∈ (|Y |p/3, 2|Y |p), is at most(
n

αn/(3
√

lnn)

)(
n

αn/10

)
e−Θ(n ln lnn) ≤ 4ne−Θ(n ln lnn) = o(1).

Next, we wish to show that a.a.s. in G1, there are at most ln lnn
p

vertices v ∈ V (D)

with dG1(v, V (D)) /∈ (0.99|V (D)|p/2, 1.01|V (D)|p/2). This can be done in the follow-
ing way: for each subset of vertices D ⊂ V (G1) of size αn + 1, we fix an arbitrary
orientation of the complete graph induced by V (D) which is as regular as possible and
consider G1[V (D)] as an oriented graph. Now, note that clearly the event “ there are
at most ln lnn

p
vertices v ∈ V (D) with dG1(v, V (D)) /∈ (0.99|V (D)|p/2, 1.01|V (D)|p/2)”

is contained in the event E ′ = “ there are at most ln lnn
p

vertices v ∈ V (D) with at

least one of d+
G1

(v, V (D)) or d−G1
(v, V (D)) not in (0.99|V (D)|p/4, 1.01|V (D)|p/4)”. Let

σ ∈ {+,−}, D and v ∈ V (D), and note that dσG1
(v, V (D)) ∼ Bin(|V (D)|/2, p/2) and

that the random variables {dσG1
(v, V (D)) : v ∈ V (D)} are mutually independent. There-

fore, using a similar calculation as before and taking the union bound over σ ∈ {+,−}
we obtain the claim. Assuming this, let X and Y be two subsets of sizes |X| = αn

3
√

lnn

and |Y | = αn/10. By the above mentioned arguments, there exists a vertex x ∈ X with
dG1(x, Y ) ∈ (|Y |p/3, 2|Y |p) and dG1(x, V (D)) ∈ (0.99|V (D)|p/2, 1.01|V (D)|p/2). Now,
since δ(D) ≥ 0.49αnp = 0.98αnp/2, it follows that there are at most 0.03αnp/2 edges
touching x in G1 which do not appear in V (D). Since dG1(x, Y ) ≥ |Y |p/3 ≥ αnp/30, it
follows D still contains edges between x and Y , and therefore |ED(X, Y )| 6= 0. All in all,
we conclude that |ND(X) \X| ≥ 2|X|+ 2 holds for every |X| ≤ |V (D)|/5. This completes
the proof.

This also completes the proof of Theorem 2.6.

3 Proof of the main result

Proof of Theorem 1.5 . In order to prove the theorem, we provide Maker with a random
strategy that enables him to generate a random graph G′ ∼ G(G, p), and a.a.s. claim at
least 1 − ε fraction of the edges of G′ touching each vertex. We then use the fact that P
is (G, p, ε)-resilient to conclude that G′ a.a.s. satisfies P . Note that since a Maker-Breaker
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game is deterministic, and since the strategy we describe a.a.s. ensures Maker’s win against
any strategy of Breaker, it follows that Maker also has a deterministic winning strategy.

We now present the random strategy for Maker. In this strategy, Maker will gradually
generate a random graph G′ ∼ G(G, p), by tossing a biased coin on each edge of G, and
declaring that it belongs to G′ independently with probability p. Each edge which Maker
has tossed a coin for is called exposed, and we say that Maker is exposing an edge e ∈ E(G)
whenever he tosses a coin to decide about the appearance of e in G′. To keep track of the
unexposed edges, Maker maintains a set Uv ⊆ NG(v) of the unexposed neighbors of v, for
each vertex v in G; i.e. u ∈ Uv if and only if the edge vu remains to be exposed. Initially,
Uv = NG(v) for all v ∈ V (G). We remark that Maker will expose all edges of G, even those
that belong to Breaker.

In every turn, Maker chooses an exposure vertex v (we will later discuss the choice of
the exposure vertex) and starts to expose edges connecting v to vertices in Uv, one by one
in an arbitrary order, until one edge in G′ is found (that is, until he has a first success).
If this exposure happens to reveal an edge vu ∈ E(G′) not yet claimed by Breaker, Maker
claims it and completes his move. Otherwise, either the exposure failed to reveal a new
edge in G′ (failure of type I ), or the newly found edge already belongs to Breaker (failure
of type II ). In either case, Maker skips his move. Let fI(v) and fII(v) denote the number
of failures of type I and II, respectively, for the exposure vertex v. We remind the reader
that Maker’s goal is to make sure that at the end of the game fII(v) is relatively small,
namely, fII(v) ≤ εdG′(v) for all v ∈ V (G′). We do not know a priori what is the degree of
v in G′, since G′ is random. However, it is true that a.a.s.

dG′(v) ≥ 9

10
dG(v)p (3)

holds for all v ∈ V (G). To see this, recall that dG(v) ≥ δ(G) ≥ 10 lnn
εp

, so for any fixed

v ∈ V (G), Lemma 2.1 implies that P[Bin(dG(v), p) < 9
10
dG(v)p] = o( 1

n
). Hence, by the

union bound, a.a.s. (3) holds for all vertices in G.

In view of (3), to complete the proof of Theorem 1.5 it suffices to show that a.a.s. Maker
can ensure that fII(v) ≤ 9

10
εdG(v)p for all vertices v ∈ V (G) at the end of the game. Since

Maker’s goal here is to build a random graph, if a failure of type I occurs it does not harm
Maker.

To keep the failures of type II under control, concurrently to the game played on G,
we simulate a game MinBox(n, 4δ(G), p/2, 2b). In this simulated game, there is one box
Fv for each v ∈ V (G) which helps us to keep track of the exposure of edges touching v.
Initially, we set the sizes of the boxes as |Fv| = 4dG(v). Now, we describe Maker’s strategy.
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Maker’s strategy SM : Maker’s strategy is divided into the following two stages.

Stage 1: Before his move, Maker updates the status of the simulated game by pretend-
ing that Breaker claimed one free element from both Fv and Fu, for each edge vu occupied
in Breaker’s last move. Maker then identifies a free active box Fv having highest danger
value in the simulated game (breaking ties arbitrarily). If there is no such box, Maker
proceeds to the second stage of the strategy. Otherwise, let Fv be such a box. Maker
claims one free element from Fv, and selects v as the exposure vertex. Let σ : [m]→ Uv be
an arbitrary permutation on Uv, where m := |Uv|. Maker starts tossing a biased coin for
vertices in Uv, independently at random, according to the ordering of σ.

(a) If there were no successes, then Maker declares this turn as a failure of type I, thereby
incrementing fI(v), and skips his move in the original game. Maker then claims dp

2
·

|Fv|e − 1 additional free elements from Fv (or all the remaining free elements of Fv if
there are not enough such elements) in the simulated game, and updates Uv := ∅, and
Uσ(i) := Uσ(i) \ {v} for each i ≤ m.

Assume that Maker’s first success has happened at the kth coin tossing.

(b) If the edge vσ(k) is not free, then Maker declares vσ(k) as a failure of type II, increments
fII(v) by one, and skips his move in the original game. Maker then updates Uv :=
Uv \ {σ(i) : i ≤ k}, and Uσ(i) := Uσ(i) \ {v} for each i ≤ k.

(c) Otherwise, Maker claims the edge vσ(k). In this case Maker also claims a free element
from box Fσ(k) and then updates Uv := Uv \ {σ(i) : i ≤ k}, and Uσ(i) := Uσ(i) \ {v} for
each i ≤ k.

Stage 2: In this stage, there are no free active boxes. Let U := {vu : v ∈ V (G), u ∈ Uv}.
For each e = vu ∈ U , Maker declares a failure of type II on both u and v (i.e., increments
both fII(u) and fII(v) by one) with probability p, independently at random. After the end
of this stage, Maker stops playing the game altogether, and skips all his subsequent moves.

We now prove that by following SM , Maker typically achieves his goal. For the sake
of notation, at any point during the game, we denote by dM(v) and dB(v) the degrees of
v in the subgraphs currently occupied by Maker and Breaker, respectively. The proof will
follow from the next four claims.

In the first claim, we prove that no box in the simulated game is ever exhausted of free
elements. This implies that Maker is always able to effectively simulate all the moves in
the original game, that is, the moves from Breaker (which in the simulated game causes
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two elements to be claimed), and also the moves from Maker. In particular, whenever a
failure of type I occurs, Maker will claim exactly dp

2
· |Fv|e−1 additional free elements from

the relevant box, as Maker’s strategy for Stage 1 (case (a)) dictates.

Claim 3.1. At any point during the first stage, we have wM(Fv) < 1 + (1 + 2p)dG(v) and
wB(Fv) ≤ dG(v) for every box Fv in the simulated game. In particular, wM(Fv)+wB(Fv) ≤
4dG(v) thus no box is ever exhausted of free elements.

Proof. Clearly wB(Fv) = dB(v) ≤ dG(v), and dM(v)+fII(v) ≤ dG(v). Moreover, wM(Fv) =
dM(v) + dp

2
|Fv|efI(v) + fII(v). We claim that fI(v) ≤ 1. This is true because otherwise

Fv would still have free elements after the first failure of type I on v, and hence Maker
would have claimed at least dp

2
· |Fv|e elements from Fv. This is a contradiction, because Fv

would then be inactive, and thus Maker will never play on v again, which implies fI(v) ≤ 1.
Therefore wM(Fv) < 1 + dG(v) + p

2
· |Fv| ≤ 1 + (1 + 2p)dG(v), as required.

Claim 3.2. For every v ∈ V (G), Fv becomes inactive before dB(v) ≥ εdG(v)/4.

Proof. Let v ∈ V (G) be any vertex of V (G). Note that in the simulated game, Maker
always claims a free element from one free active box having highest danger value. This,
however, does not imply that Maker exactly follows the strategy described in Theorem 2.3,
as he might occasionally claim more than one free element when a failure of type I occurs.
Nonetheless, we claim that the assertion of Theorem 2.3 still holds in this case because of
the following reason. If Maker has a winning strategy in a (1 : b) Maker-Breaker game,
then he also has a winning strategy in a game in which he is occasionally allowed to claim
more than one position per move. This is due to the monotonic nature of these types of
games (recall that MinBox is a Maker-Breaker game). Hence, by Theorem 2.3, we have

dang(Fv) = wB(Fv)− 2b · wM(Fv) ≤ 2b(lnn+ 1) (4)

for every active box Fv. Assume that there exists a vertex v ∈ V (G) for which Fv is still
active and wB(Fv) = dB(v) ≥ εdG(v)/4. Recall that b = b ε

20p
c, and by (4) it follows that

wM(Fv) ≥
wB(Fv)

2b
− (lnn+ 1) ≥ 5

2
dG(v)p− (lnn+ 1).

By the assumption that δ(G) ≥ 10 lnn
εp

, we conclude that wM(Fv) > 2dG(v)p = p
2
|Fv|.

However, since we assumed that Fv is active in MinBox(n, 4δ(G), p/2, 2b), we must have
wM(Fv) ≤ p

2
|Fv|, which is a contradiction.

Claim 3.3. Asymptotic almost surely all edges of G′ are exposed before Stage 2.
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Proof. Suppose there exists a vertex v at the beginning of the second stage, such that
Uv 6= ∅. Since Uv 6= ∅, we must have fI(v) = 0. Moreover, because Fv is not active,
we must also have wM(Fv) = dM(v) + fII(v) ≥ p

2
|Fv| = 2dG(v)p. This implies that

dG′(v) ≥ dM(v) + fII(v) ≥ 2dG(v)p. Now, since dG′(v) ∼ Bin(dG(v), p), using Chernoff’s
inequality, it follows that

P[Bin(dG(v), p) ≥ 2dG(v)p] ≤ e−dG(v)p/3 = o

(
1

n

)
.

Applying the union bound, it thus follows that with probability 1 − o(1), there exists no
such vertex, proving the claim.

Claim 3.4. Asymptotically almost surely, for every v ∈ V (G) we have fII(v) ≤ 9
10
εdG(v)p.

Proof. Let v ∈ V (G) be any vertex. By Claim 3.2, during Stage 1 Breaker can touch v at
most εdG(v)/4 times before Fv becomes inactive. Moreover, by Claim 3.3, with probability
1− o(1) all the edges of G′ were exposed before the beginning of Stage 2. Since a failure of
type II in Stage 1 is equivalent to Maker having a success on one of Breaker’s edges, it follows
that fII(v) is stochastically dominated by Bin(m, p), where m = εdG(v)/4. Applying
Lemma 2.2 to fII(v) we conclude that the probability for having more than εdG(v)p edges
vu which are failures of type II is at most

P
[
Bin(εdG(v)/4, p) ≥ 9

10
εdG(v)p

]
≤
(
eεdG(v)p/4

9
10
εdG(v)p

) 9
10
εdG(v)p

= o

(
1

n

)
.

Applying the union bound we obtain that the probability that there is such a vertex is
o(1). Therefore, a.a.s. fII(v) ≤ 9

10
εdG(v)p for all v ∈ V (G).

This completes the proof of Theorem 1.5.

4 Applications

In this section we show how to apply Theorem 1.5 in order to prove Theorems 1.6, 1.7
and 1.8. We also derive a directed graph analog of Theorem 1.5. We start with proving
Theorem 1.6, which states that Maker can win the Hamiltonicity game played on E(Kn)
against an asymptotically optimal (up to a constant factor) bias of Breaker.
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Proof of Theorem 1.6 . Let C1 = C(1
6
) be as in Theorem 2.4, and let C2 := max{C1, 1000}.

First, observe that for p ≥ C2 lnn
n

a.a.s. we have that G ∼ G(n, p) satisfies δ(G) ≥ 5
6
np (this

follows immediately from Chernoff’s inequality and the union bound). Next, note that
the property P :=“being Hamiltonian” is (Kn, p, 1/6) resilient for p ≥ C2 lnn

n
. Indeed, let

H ⊆ G be a subgraph for which dH(v) ≤ 1
6
dG(v). Observe that in G′ := G − H we have

dG′(v) ≥ 5
6
dG(v). Now, since a.a.s. δ(G) ≥ 5

6
np, it follows that δ(G′) ≥ 25

36
np > 2

3
np.

Therefore, by our choice of C2 and Theorem 2.4, it follows that G′ is Hamiltonian.

Lastly, applying Theorem 1.5 with ε = 1
100

(recall that we have an upper bound for

ε), Kn (as the host graph G), p = C2 lnn
n

and P , we obtain that Maker has a winning
strategy in the (1 : b 1

120p
c) game P(Kn). Note that 1

120p
= n

120C2 lnn
, and therefore, by

setting α := 1
120C2

we complete the proof.

Next, we prove Theorem 1.7

Proof of Theorem 1.7 . Let p = ω(n−1/2) and note that by Theorem 2.5, it follows that
the property P :=“being pancyclic” is (Kn, p, 1/2 + o(1))-resilient. Therefore, by applying
Theorem 1.5 with ε = 1/100, Kn (as the host graph), p and P , we obtain that Maker has
a winning strategy in the (1 : b 1

60p
c) game P(Kn). This completes the proof.

We turn to prove Theorem 1.8.

Proof of Theorem 1.8 . Let α > 0 and ∆ > 0 be two positive constants. Let ε > 0 and
C0 be as in Theorem 2.6 (applied to α and ∆). Let C1 ≥ max

{
C0,

20
ε

}
be a large enough

constant for which G ∼ G(n, p) a.a.s. satisfies ∆(G) ≤ (1 + ε)np, provided that p = C1 lnn
n

.
Let T be the set of all trees T on n vertices satisfying:

(i) ∆(T ) ≤ ∆, and

(ii) T contains a bare path of length at least αn,

and let P be the property “being T -universal” (that is, contains copies of all trees in T ).
Observe that P is

(
Kn, p,

ε
1+ε

)
resilient, and hence

(
Kn, p,

ε
2

)
resilient for p = C1 lnn

n
. Indeed,

let H be a subgraph of G for which dH(v) ≤ ε
1+ε
· dG(v), for all vertices v ∈ V (G). Thus

dH(v) ≤ ε
1+ε
·∆(G) ≤ εnp. Therefore, by Theorem 2.6, G′ := G \H satisfies P .

Lastly, by applying Theorem 1.5 with min{ε/2, 1/100} (as ε), Kn (as the host graph
G), p, and P , we obtain that Maker has a winning strategy in the (1 : b ε

40p
c) game P(Kn).

By setting δ = ε
40C1

, we complete the proof. Note that we used the fact that C1 ≥ 20
ε

in
order to verify assumption (iii) in Theorem 1.5.
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As a last application, we establish an analog of Theorem 1.5 to directed graphs. A
directed graph D consists of a set of vertices V (D), and a set of arcs (or directed edges)
E(D) composed of elements of the form (u, v) ∈ V (D) × V (D), where u 6= v. For a
directed graph D and a vertex v ∈ V (D) we let d+(v) and d−(v) denote the out- and in-
degrees of v, respectively. Furthermore, we define δ+(D) and δ−(D) to be the minimum
out- and in- degrees of D, respectively, and set δ0(D) = min{δ+(D), δ−(D)}. Analogously
to graphs, we define D(D, p) to be the model of random sub-directed graphs of D obtained
by retaining each arc of D with probability p, independently at random. We write D(n, p)
for D(D, p) in the special case where D is the complete directed graph on n vertices. That
is, V (D) = [n] and E(D) consists of all the possible arcs. Similarly as in Definition 1.4, for
a monotone increasing directed graph property P , we say that P is (D, p, r)-resilient if the
local resilience of D′ ∼ D(D, p) with respect to P is at least r, where here we mean that
by deleting at each vertex v at most r · d+

D(v) out- and r · d−D(v) in-edges one can obtain a
directed graph not having P .

Theorem 4.1. For every constant 0 < ε ≤ 1/100 and a sufficiently large integer n the
following holds. Suppose that

(i) 0 < p = p(n) < 1,

(ii) D is a directed graph with |V (D)| = n,

(iii) δ0(D) ≥ 10 lnn
εp

, and

(iv) P is a monotone increasing directed graph property which is (D, p, ε)-resilient.

Then Maker has a winning strategy in the (1 : b ε
20p
c) game P(D).

Proof. For a directed graph D one can define the following bipartite graph GD: the parts
of GD are two disjoint copies of V (D), denoted by A and B. For any a ∈ A and b ∈ B, the
(undirected) edge ab belongs to E(GD) if and only if the directed edge ab belongs to E(D).
Note that the mapping D → GD is an injection from the set of all directed graphs on n
vertices to the set of bipartite graphs with two parts of size n each, and apply Theorem 1.5
to GD in the obvious way. Note that the property P of digraphs naturally translates to a
property P ′ of bipartite graphs which is (GD, p, ε)-resilient.
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A Proofs of Theorem 2.3 and Lemma 2.9

We begin with the proof of the MinBox game.

Proof of Theorem 2.3 . The proof of this theorem is very similar to the proof of Theorem
1.2 in [15]. Since claiming an extra element is never a disadvantage for any of the players,
we can assume that Breaker is the first player to move. For a subset X of boxes, let

dang(X) =
∑
F∈X dang(F )

|X| denote the average danger of the boxes in X. The game ends when
there are no more free elements left.
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First we prove the upper bound for the danger values of active boxes. Suppose, towards
a contradiction, that there exists a strategy for Breaker that ensures the existence of an
active box F satisfying dang(F ) > b(lnn+ 1) at some point during the game. Denote the
first time when this happens by g. Let I = {F1, . . . , Fg} be the set which defines Maker’s
game, i.e, in his ith move, Maker plays at Fi for 1 ≤ i ≤ g − 1 and Fg is the first active
box satisfying dang(Fg) > b(lnn + 1). For every 0 ≤ i ≤ g − 1, let Ii = {Fg−i, . . . , Fg}.
Following the notation of [15], let dangBi(F ) and dangMi

(F ) denote the danger value of
a box F , directly before Breaker’s and Maker’s ith move, respectively. Notice that in his
gth move, Breaker increases the danger value of Fg to more than b(lnn + 1). This is only
possible if dangBg(Fg) > b(lnn+ 1)− b = b lnn.

Analogously to the proof of Theorem 1.2 in [15], we state the following lemmas which
estimate the change of the average danger after a particular move (by either player). In
the first lemma we estimate the changes after Maker’s moves.

Lemma A.1. Let i, 1 ≤ i ≤ g − 1,

(i) if Ii 6= Ii−1, then dangMg−i(Ii)− dangBg−i+1
(Ii−1) ≥ 0.

(ii) if Ii = Ii−1, then dangMg−i(Ii)− dangBg−i+1
(Ii−1) ≥ b

|Ii| .

Proof. For part (i) we have that Fg−i 6∈ Ii−1. Since danger values do not increase during
Maker’s move, we have dangMg−i(Ii−1) ≥ dangBg−i+1

(Ii−1). Before Mg−i, Maker selected
the box Fg−i because its danger was highest among the active boxes. Thus dang(Fg−i) ≥
max(dang(Fg−i+1), . . . , dang(Fg)), which implies dangMg−i(Ii) ≥ dangMg−i(Ii−1). Combining
the two inequalities establishes part (i).

For part (ii) we have that Fg−i ∈ Ii−1. In Mg−i, wM(Fg−i) increases by 1 and wM(F )
does not change for any other box F ∈ Ii. Besides, the values of wB(·) do not change
during Maker’s move. So dang(Fg−i) decreases by b, whereas dang(F ) do not increase for
any other box F ∈ Ii. Hence dang(Ii) decreases by at least b

|Ii| , which implies (ii).

In the second lemma we estimate the changes after Breaker’s moves.

Lemma A.2. Let i be an integer, 1 ≤ i ≤ g − 1. Then,

dangMg−i(Ii)− dangBg−i(Ii) ≤
b

|Ii|
.

Proof. The increase of
∑

F∈Ii wB(F ) during Bg−i is at most b. Moreover, since the values

of wM(F ) for F ∈ Ii do not change during Breaker’s move, the increase of dang(Ii) (during
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Bg−i) is at most b
|Ii| , which establishes the lemma.

Combining Lemmas A.1 and A.2, we obtain the following corollary which estimates the
change of the average danger after a full round.

Corollary A.3. Let i be an integer, 1 ≤ i ≤ g − 1.

(i) if Ii = Ii−1, then dangBg−i(Ii)− dangBg−i+1
(Ii−1) ≥ 0.

(ii) if Ii 6= Ii−1, then dangBg−i(Ii)− dangBg−i+1
(Ii−1) ≥ − b

|Ii|

Next, we prove that before Breaker’s first move, dangB1
(Ig−1) > 0, thus obtaining a

contradiction. To that end, let |Ig−1| = r and let i1 < . . . < ir−1 be those indices for which
Iij 6= Iij−1. Note that |Iij | = j + 1. Recall that dangBg(Fg) > b lnn, therefore

dangB1
(Ig−1) = dangBg(I0) +

g−1∑
i=1

(
dangBg−i(Ii)− dangBg−i+1

(Ii−1)
)

≥ dangBg(I0) +
r−1∑
j=1

(
dangBg−ij (Iij)− dangBg−ij+1

(Iij−1)
)

[by Corollary A.3 (i)]

≥ dangBg(I0)−
r−1∑
j=1

b

j + 1
[by Corollary A.3 (ii)]

≥ dangBg(I0)− b lnn > 0,

and this contradiction establishes the upper bound for the danger values of active boxes.

Lastly, consider a MinBox(n,D, α, b) game where α < 1
b+1

and D ≥ b(lnn+1)
1−α(b+1)

. We will
prove that S is a winning strategy for Maker in this setting. With this in mind, it suffices
to show that there are no active boxes left at the very end of the game. Suppose not, and
let F be a box which remained active, i.e., wM(F ) < α|F |. Clearly F is not free, since
the game has ended. Thus we have wM(F ) + wB(F ) = |F |. Moreover, since Maker played
according to S, we must have dang(F ) ≤ b(lnn+ 1). Hence

b(lnn+ 1) ≥ dang(F ) = wB(F )− b · wM(F ) = |F | − (b+ 1)wM(F ) > (1− α(b+ 1))|F |.

This implies that D ≤ |F | < b(lnn+1)
1−α(b+1)

, which is a contradiction, thereby proving that Maker
is the winner, and concluding the proof of the theorem.
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We turn to prove the variant of Pósa’s lemma for e-boosters.

Proof of Lemma 2.9 . Let D be a connected graph for which |ND(X)\X| ≥ 2|X|+2 holds
for every subset X ⊆ V (D) of size |X| ≤ k. Let e ∈

(
V (D)

2

)
be a pair such that the graph

D ∪ {e} does not contain a Hamilton cycle which uses e. We will prove that the number
of e-boosters for D is at least (k + 1)2/2.

The idea behind the proof is fairly natural and is based on Pósa’s rotation-extension
technique. Let P = x0x1 . . . xh be a path in D ∪ {e}, starting at a fixed endpoint x0.
Suppose P contains e, say e = xixi+1 for some 0 ≤ i < h. If D contains an edge xjxh for
some 0 ≤ j < h− 1 such that j 6= i, then one can obtain a new path P ′ of the same length
as P which contains e. The new path is P ′ = x0x1 . . . xjxhxh−1 . . . xj+1, obtained by adding
the edge xjxh and deleting xjxj+1. This operation is called an elementary rotation at xj
with a fixed endpoint x0. We can apply other elementary rotations repeatedly, and if after
a number of rotations, an endpoint x of the obtained path Q is connected by an edge to a
vertex y outside Q, then Q can be extended by adding the edge xy.

The power of the rotation-extension technique of Pósa hinges on the following fact. Let
P = x0 . . . xh be a longest path in D ∪ {e} containing e. Let P be the set of all paths
obtainable from P by a sequence of elementary rotations with fixed x0. Denote by R the
set of the other endpoints (not x0) of paths in P , and by R− and R+ the sets of vertices
immediately preceding and following the vertices of R along P , respectively. We claim
that:

Claim A.4. ND(R) \R ⊆ R− ∪R+ ∪ e.

Proof of Claim A.4. Fix u ∈ R, let v ∈ V (D) \ (R ∪ R− ∪ R+ ∪ e), and consider a path
Q ∈ P ending at u. If v ∈ V (D) \ V (P ), then uv 6∈ E(D), as otherwise the path Q can
be extended by adding v, thus contradicting our assumption that P is a longest path in
D ∪ {e} containing e. Suppose now that v ∈ V (P ) \ (R ∪ R− ∪ R+ ∪ e). Then v has the
same two neighbors in every path in P , because an elementary rotation that removed one
of its neighbors along P would, at the same time, put either this neighbor or v itself in R
(in the former case v ∈ R− ∪R+). Then if u and v are adjacent, an elementary rotation at
v can be applied to Q (since v 6∈ e), and produces a path in P whose endpoint is a neighbor
of v along P , a contradiction. Therefore in both cases u and v are non-adjacent, thereby
proving Claim A.4.

Equipped with Claim A.4 we turn back to the proof of the lemma. Again, let P =
x0x1 . . . xh be a longest path in D∪{e} containing e, and let R, R−, R+ be as in Claim A.4.
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Note that |R−| ≤ |R| and |R+| ≤ |R| − 1, since xh ∈ R has no following vertex on P , and
thus does not contribute an element to R+. According to Claim A.4, we have

|ND(R) \R| ≤ |R− ∪R+ ∪ e| ≤ 2|R|+ 1,

and it follows that |R| > k. We claim that, for each v ∈ R, the pair x0v is an e-booster
for D. To prove this claim, fix v ∈ R, and let Q ∈ P be a path ending at v. Note that by
adding x0v to Q, we turn Q into a cycle C containing e. This cycle is either Hamiltonian
or V (Q) 6= V (D). The former case would immediately imply that x0v is an e-booster for
D. Thus we may assume that V (C) = V (Q) 6= V (D). Since D is connected, there exists
an edge yz ∈ E(D) connecting y ∈ V (C) to z 6∈ V (C). We can use the edge yz to obtain
a path P ′ that contains e of length h + 1 in the following way. In C there are two edges
incident to y, and at least one of them is not e. By removing that edge from C and adding
the edge yz, we obtain such path P ′ of length h + 1. On the other hand, because we
assumed that P was the longest path in D ∪ {e} containing e, we must conclude that x0v
is an e-booster for D, thereby proving our claim.

To finish the proof of the lemma, fix a subset {y1, . . . , yk+1} of R. For every yi, there
exists a path Pi ending at yi, that can be obtained from P by a sequence of elementary
rotations. Now fix yi as the starting point of Pi and let Yi be the set of other endpoints of
all paths obtained from Pi by a sequence of elementary rotations with fixed yi. As before,
|Yi| ≥ k + 1, and all edges connecting yi to a vertex in Yi are e-boosters for D. Altogether
we have found (k + 1)2 pairs yizij for zij ∈ Yi. As every booster is counted at most twice,
the conclusion of the lemma follows.
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