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Abstract

In this paper we analyze biased Maker-Breaker games and Avoider-Enforcer games,
both played on the edge set of a random board G ∼ G(n, p). In Maker-Breaker games
there are two players, denoted by Maker and Breaker. In each round, Maker claims one
previously unclaimed edge of G and Breaker responds by claiming b previously unclaimed
edges. We consider the Hamiltonicity game, the perfect matching game and the k-vertex-
connectivity game, where Maker’s goal is to build a graph which possesses the relevant
property. Avoider-Enforcer games are the reverse analogue of Maker-Breaker games with
a slight modification, where the two players claim at least 1 and at least b previously
unclaimed edges per move, respectively, and Avoider aims to avoid building a graph which
possesses the relevant property.

Maker-Breaker games are known to be “bias-monotone”, that is, if Maker wins the (1, b)
game, he also wins the (1, b− 1) game. Therefore, it makes sense to define the critical bias
of a game, b∗, to be the “breaking point” of the game. That is, Maker wins the (1, b) game
whenever b < b∗ and loses otherwise. An analogous definition of the critical bias exists for
Avoider-Enforcer games: here, the critical bias of a game b∗ is such that Avoider wins the
(1, b) game for every b ≥ b∗, and loses otherwise.

We prove that, for every p = ω
(
lnn
n

)
, G ∼ G(n, p) is typically such that the critical

bias for all the aforementioned Maker-Breaker games is asymptotically b∗ = np
lnn . We also

prove that in the case p = Θ
(
lnn
n

)
, the critical bias is b∗ = Θ

(
np
lnn

)
. These results settle

a conjecture of Stojaković and Szabó. For Avoider-Enforcer games, we prove that for
p = Ω

(
lnn
n

)
, the critical bias for all the aforementioned games is b∗ = Θ

(
np
lnn

)
.

1 Introduction

Let X be a finite set and let F ⊆ 2X . In an (a, b) Maker-Breaker game F , the two players –
Maker and Breaker – alternately claim a and b previously unclaimed elements of the board X,
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respectively. Maker’s goal is to claim all the elements of some target set F ∈ F . If Maker does
not fully claim any target set by the time all board elements are claimed, then Breaker wins
the game. When a = b = 1, the game is called unbiased, otherwise it is called biased. It is easy
to see that being the first player is never a disadvantage in a Maker-Breaker game. Indeed,
suppose the first player has some strategy as the second player. He can play arbitrarily in
his first move and pretend that he didn’t make this move and he now starts a new game as a
second player; whenever his strategy tells him to claim some edge he had previously claimed
he just claims arbitrarily some edge. So, in order to prove that Maker wins a certain game, it
is enough to prove that he can win as a second player. Throughout the paper we assume that
Maker is the second player to move.

In an (a, b) Avoider-Enforcer game played on a hypergraph F ⊆ 2X , the two players are called
Avoider and Enforcer, alternately claim at least a and at least b previously unclaimed elements
of the board X per move, respectively. Avoider loses the game if at some point during the
game he fully claims all the elements of some target set F ∈ F . Otherwise, Avoider wins.

In both Maker-Breaker games and Avoider-Enforcer games (also referred to as Positional
Games), we may assume that there are no F1, F2 ∈ F such that F1 ⊂ F2, since in this case
Maker wins (or Avoider loses) once he claims all the elements in F1, and so the two (a, b)
games F and F \ {F2} are identical.

It is natural to play Positional Games on the edge set of a graph G. In this case, the board is
X = E(G), and the target sets are all the edge sets of subgraphs H ⊆ G which possess some
given monotone increasing graph property P. In the connectivity game C(G), the target sets
are all edge sets of spanning trees of G. In the perfect matching game M(G) the target sets
are all sets of b|V (G)|/2c independent edges of G. Note that if n is odd, then such a matching
covers all vertices of G but one. In the Hamiltonicity game H(G) the target sets are all edge
sets of Hamilton cycles of G. Given a positive integer k, in the k-connectivity game Ck(G) the
target sets are all edge sets of k-vertex-connected spanning subgraphs of G.

Maker-Breaker games played on the edge set of the complete graph Kn are well studied. In
this case, many natural unbiased games are drastically in favor of Maker (see, e.g., [19], [12],
[16], [8]). Hence, in order to even out the odds, it is natural to give Breaker more power by
increasing his bias (that is, to play a (1, b) game instead of a (1, 1) game), and/or to play on
different types of boards.

Maker-Breaker games are bias monotone. That means that if Maker wins some game with bias
(a, b), he also wins this game with bias (a′, b′), for every a′ ≥ a, b′ ≤ b. Similarly, if Breaker
wins a game with bias (a, b), he also wins this game with bias (a′, b′), for every a′ ≤ a, b′ ≥ b.
Avoider-Enforcer games are also bias monotone in the version considered in this paper (this
version is called the monotone version, as opposed to the strict version, where Avoider and
Enforcer claim exactly a and b elements per move, respectively. The strict version is not bias
monotone.). It means that if Avoider wins some game with bias (a, b), he also wins this game
with bias (a′, b′), for every a′ ≤ a, b′ ≥ b, and that if Enforcer wins a game with bias (a, b), he
also wins this game with bias (a′, b′), for every a′ ≥ a, b′ ≤ b.

This bias monotonicity of Maker-Breaker games allows us to define the critical bias (also
referred to as the threshold bias): for a given Maker-Breaker game F , the critical bias b∗ is the
value for which Maker wins the game F with bias (1, b) for every b < b∗, and Breaker wins the
game F with bias (1, b) for every b ≥ b∗. Similarly, in an Avoider-Enforcer game, the critical
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bias b′ (which is in general different from the critical bias in the Maker-Breaker game) is the
value for which Avoider wins the game F with bias (1, b) for every b ≥ b′, and Enforcer wins
the game F with bias (1, b) for every b < b′.

In their seminal paper [6], Chvatál and Erdős proved that playing the (1, b) connectivity game
on the edge set of the complete graph Kn, for every ε > 0 and n sufficiently large, Breaker wins
for every b ≥ (1+ε)n

lnn , and Maker wins for every b ≤ n
(4+ε) lnn . They stated that the threshold

bias for this game ought to come around b = n
lnn , and Beck [3] later explicitly conjectured that

this is indeed asymptotically the case. Gebauer and Szabó [11] proved the conjecture. Later
on, Krivelevich proved in [17] that b = n

lnn is also the threshold bias for the Hamiltonicity
game.

Stojaković and Szabó suggested in [21] to play Maker-Breaker games on the edge set of a
random board G ∼ G(n, p). In this well known and well studied model, the graph G consists
of n labeled vertices, and each pair of vertices is chosen to be an edge in the graph independently
with probability p. They examined some games on this board such as the connectivity game,
the perfect matching game, the Hamiltonicity game and “building a k-clique” game. Since then,
much progress has been made in understanding Maker-Breaker games played on G ∼ G(n, p).

For example, it was proved in [13] and [4] that for p = (1+o(1)) lnn
n , G ∼ G(n, p) is typically (i.e.

with probability tending to 1 as n tends to infinity) such that Maker wins the (1, 1) games
M(G), H(G) and Ck(G). Moreover, the proofs in [4] are of a “hitting time” type. It means
that in the random graph process (see [5]), typically at the moment the graph reaches the
needed minimum degree for Maker to win the desired game, Maker indeed wins this game.
Later on, in [7], fast winning strategies for Maker in various games played on G ∼ G(n, p) were
considered, and in [20] a hitting time result was established for the “building a triangle” game,
and it was proved that the threshold probability for the property “Maker can build a k-clique”
game is p = Θ

(
n−2/(k+1)

)
.

In [21], Stojaković and Szabó conjectured the following:

Conjecture 1.1 ([21], Conjecture 1) There exists a constant C such that for every p ≥
C lnn
n , a random graph G ∼ G(n, p) is typically such that the threshold bias for the game H(G)

is b∗ = Θ
( np

lnn

)
.

In this paper we prove Conjecture 1.1, and in fact, for p = ω
(

lnn
n

)
we prove the following

stronger statement:

Theorem 1.2 Let p = ω
(

lnn
n

)
. Then G ∼ G(n, p) is typically such that np

lnn is the asymptotic
threshold bias for the games M(G), H(G) and Ck(G).

In order to prove Theorem 1.2 we prove the following two theorems:

Theorem 1.3 Let 0 ≤ p ≤ 1, ε > 0 and b ≥ (1 + ε) nplnn . Then G ∼ G(n, p) is typically
such that in the (1, b) Maker-Breaker game played on E(G), Breaker has a strategy to isolate
a vertex in Maker’s graph, as a first or a second player.
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Theorem 1.4 Let p = ω
(

lnn
n

)
, ε > 0 and b = (1− ε) np

lnn . Then G ∼ G(n, p) is typically such
that Maker has a winning strategy in the (1, b) games M(G), H(G), and Ck(G) for a fixed
positive integer k, as a first or a second player.

In the case p = Θ
(

lnn
n

)
we establish two non-trivial bounds for the critical bias b∗. This also

settles Conjecture 1.1 for this case but does not determine the exact value of b∗ (notice that
in this case, b∗ is a constant!).

Theorem 1.5 Let p = K lnn
n , where K > 105 and let ε > 0. Then G ∼ G(n, p) is typically

such that the threshold bias for the games M(G), H(G) and Ck(G) lies between K/10 and
K + ε.

Remark: In the terms of Theorem 1.5, if 1 < K ≤ 105, we get by Theorem 1.3 that b∗ ≤ c+ε,
and by the main result of [4] that b∗ > 1, so indeed b∗ = Θ

( np
lnn

)
in this case as well.

We also consider the analogous Avoider-Enforcer games played on the edge set of a random
board G ∼ G(n, p). Here Avoider aims to avoid claiming all the edges of a graph which
contains a perfect matching, a Hamilton cycle, or that is k-connected (according to the game),
and Enforcer tries to force him claiming all the edges of such a subgraph. We prove the
following analog of Conjecture 1.1:

Theorem 1.6 Let 70000 lnn
n ≤ p ≤ 1. A random graph G ∼ G(n, p) is typically such that the

asymptotic threshold bias for the (1,b) Avoider-Enforcer games M(G), H(G) and Ck(G) (for
a fixed positive integer k) is b∗ = Θ

( np
lnn

)
.

As in the Maker-Breaker case, we divide our result into two separate theorems, one which
establishes Avoider’s win, and one which establishes Enforcer’s win:

Theorem 1.7 Let 0 ≤ p ≤ 1 and b ≥ 26np
lnn . Then G ∼ G(n, p) is typically such that in the

(1, b) Avoider-Enforcer game played on E(G), Avoider has a strategy to isolate a vertex in his
graph, as a first or a second player.

Theorem 1.8 Let 70000 lnn
n ≤ p ≤ 1 and b ≤ np

20000 lnn . Then G ∼ G(n, p) is typically such
that Enforcer has a winning strategy in the (1, b) games M(G), H(G) and Ck(G) (for every
positive integer k), as a first or a second player.

1.1 Notation and terminology

Our graph-theoretic notation is standard and follows that of [22]. In particular, we use the
following:

For a graph G, let V = V (G) and E = E(G) denote its sets of vertices and edges, respectively.
For subsets U,W ⊆ V , and for a vertex v ∈ V , we denote by EG(U) all the edges with both
endpoints in U , by EG(U,W ) all the edges e with both endpoints in U ∪W , for which e∩U 6= ∅
and e∩W 6= ∅, and by EG(v, U) all the edges with one endpoint being v and the other endpoint
in U . We further denote eG(U) := |E(U)|, eG(U,W ) := |E(U,W )| and eG(v, U) := |E(v, U)|.
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For a subset U ⊆ V (G) we denote by NG(U) the external neighborhood of U , that is: NG(U) :=
{v ∈ V \ U : ∃u ∈ U s.t. uv ∈ E}. For simplicity of notation, whenever the underlying graph
is clear from the context we omit the graph from the index.

Assume that some Maker-Breaker game, played on the edge set of some graph G, is in progress.
At any given moment during the game, we denote the graph formed by Maker’s edges by M ,
the graph formed by Breaker’s edges by B, and the edges of G \ (M ∪B) by F . For any vertex
v ∈ V , dM (v) and dB(v) denote the degree of v in M and in B, respectively. The edges of
G \ (M ∪B) are called free edges, and dF (v) denotes the number of free edges incident to v,
for any v ∈ V .

Whenever we say that G ∼ G(n, p) typically has some property, we mean that G has that
property with probability tending to 1 as n tends to infinity.

We use the following notation throughout this paper:

f(n) :=
np

lnn
.

For the sake of simplicity and clarity of presentation, and in order to shorten some of our
proofs, no real effort has been made here to optimize the constants appearing in our results.
We also omit floor and ceiling signs whenever these are not crucial. Most of our results are
asymptotic in nature and whenever necessary we assume that n is sufficiently large.

2 Auxiliary results

In this section we present some auxiliary results that will be used throughout the paper.

2.1 Binomial distribution bounds

We use extensively the following well known bound on the lower and the upper tails of the
Binomial distribution due to Chernoff (see, e.g., [1]):

Lemma 2.1 If X ∼ Bin(n, p), then

• Pr (X < (1− a)np) < exp
(
−a2np

2

)
for every a > 0.

• Pr (X > (1 + a)np) < exp
(
−a2np

3

)
for every 0 < a < 1.

The following is a trivial yet useful bound:

Lemma 2.2 Let X ∼ Bin(n, p) and k ∈ N. Then

Pr(X ≥ k) ≤
(enp
k

)k
.

Proof. Pr (X ≥ k) ≤
(
n
k

)
pk ≤

( enp
k

)k
. 2
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2.2 Basic positional games results

2.2.1 Maker-Breaker games

The following fundamental theorem, due to Beck [2], is a useful sufficient condition for Breaker’s
win in the (a, b) game (X,F). It will be used in the proof of Theorem 1.4.

Theorem 2.3 ([2], Theorem 20.1) Let X be a finite set and let F ⊆ 2X . Breaker, as a
first or a second player, has a winning strategy in the (a, b) game (X,F), provided that:∑

F∈F
(1 + b)−|F |/a <

1

1 + b
.

While Theorem 2.3 simply shows that Breaker can win certain games, the following lemma
shows that Maker can win certain games quickly (see [2]):

Lemma 2.4 (Trick of fake moves) Let X be a finite set and let F ⊆ 2X . Let b′ < b be
positive integers. If Maker has a winning strategy for the (1, b) game (X,F), then he has a

strategy to win the (1, b′) game (X,F) within
⌈
|X|
b+1

⌉
moves.

The main idea of the proof of Lemma 2.4 is that, in every move of the (1, b′) game (X,F),
Maker (in his mind) gives Breaker b−b′ additional board elements. The straightforward details
can be found in [2].

Recall the classic box game which was first introduced by Chvátal and Erdős in [6]. In the Box
Game Box(m, `, b) there are m pairwise disjoint boxes A1, . . . , Am, each of size `. In every
round, the first player, called BoxMaker, claims b elements of

⋃m
i=1Ai and then the second

player, called BoxBreaker, destroys one box. BoxMaker wins the game Box(m, `, b) if and only
if he is able to claim all elements of some box before it is destroyed. We use the following
theorem which was proved in [6]:

Theorem 2.5 Let m, ` be two integers. Then, BoxMaker wins the game Box(m, `, b) for every
b > `

lnm + 1.

2.2.2 Avoider-Enforcer games

Similarly to Theorem 2.3, we have the following sufficient condition for Avoider’s win, which
was proved in [14]:

Lemma 2.6 ([14], Theorem 1.1) Let X be a finite set and let F ⊆ 2X . Avoider, as a first
or a second player, has a winning strategy in the (a, b) game (X,F), provided that:

∑
F∈F

(
1 +

1

a

)−|F |
<

(
1 +

1

a

)−a
.
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In the proof of Theorem 1.7 we use the Avoider-Enforcer version of the box game – monotone-
rBox (b1, . . . , bn, (p, q)) which was analyzed in [9]. In this game there are n disjoint boxes of
sizes 1 ≤ b1 ≤ . . . ≤ bn, Avoider claims at least p elements per move, Enforcer claims at least
q elements per move, and Avoider loses if and only if he claims all the elements in some box
by the end of the game. The following lemma can be easily derived from Theorem 1.7 and
Remark 3.2 in [9]:

Lemma 2.7 Let b, k be positive integers. For every integer n ≥ 2ek/b and for every sequence
of integers 1 ≤ b1 ≤ . . . ≤ bn ≤ k, Enforcer wins the game monotone-rBox (b1, . . . , bn, (b, 1))
as a first or a second player.

2.3 (R, c)-Expanders

Definition 2.8 For every c > 0 and every positive integer R we say that a graph G = (V,E)
is an (R, c)-expander if |N (U) | ≥ c|U | for every subset of vertices U ⊆ V such that |U | ≤ R.

In the proof of Theorem 1.4 Maker builds an expander and then he turns it into a Hamilto-
nian graph. In order to describe the relevant connection between Hamiltonicity and (R, c)-
expanders, we need the notion of boosters.

Given a graph G, we denote by ` (G) the maximum length of a path in G.

Definition 2.9 For every non-Hamiltonian graph G, we say that a non-edge uv /∈ E (G) is
a booster with respect to G, if either G ∪ {uv} is Hamiltonian or ` (G ∪ {uv}) > ` (G). We
denote by BG the set of boosters with respect to G.

The following is a well-known property of (R, 2)-expanders (see e.g. [10]).

Lemma 2.10 If G is a connected non-Hamiltonian (R, 2)-expander, then |BG| ≥ R2/2.

Our goal is to show that during a game on an appropriate graph G, assuming Maker can build
a subgraph of G which is an (R, 2)-expander, he can also claim sufficiently many such boosters,
so that his (R, 2)-expander becomes Hamiltonian. In order to do so, we need the following
lemma:

Lemma 2.11 Let a > 0 and p > 50000a lnn
n . Then G ∼ G(n, p) is typically such that every

subgraph Γ ⊆ G which is a non-Hamiltonian (n/5, 2)-expander with an lnn
2 ln lnn ≤ |E(Γ)| ≤ 100an lnn

ln lnn

satisfies |E(G) ∩ BΓ| > n2p
100 .

Proof. First, notice that any (n/5, 2)-expander is connected. Indeed, let C be a connected
component of G. If |C| ≤ n/5 then clearly C has neighbors outside, a contradiction. Otherwise,
since G is an (n/5, 2)-expander, C must be of size at least 3n/5 > n/2. Hence there is exactly
one such component and G is connected. Now, fix a non-Hamiltonian (n/5, 2)-expander Γ in
the complete graph Kn. Then clearly Pr (Γ ⊆ G) = p|E(Γ)|. By definition, the set of boosters
of Γ, BΓ, is a subset of the potential edges of G. Therefore, |E(G)∩BΓ| ∼ Bin (|BΓ|, p) and the
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expected number of boosters is |BΓ|p ≥ n2p
50 by Lemma 2.10. Now, by Lemma 2.1 we get that

Pr
(
|E(G) ∩ BΓ| ≤ n2p

100

)
≤ exp

(
−n2p

8

)
. Running over all choices of Γ with an lnn

2 ln lnn ≤ |E(Γ)| ≤
100an lnn

ln lnn and using the union bound we get

Pr

(
∃ Γ such that Γ ⊆ G, an lnn

2 ln lnn
≤ |E(Γ)| ≤ 100an lnn

ln lnn
, and |E(G) ∩ BΓ| ≤

n2p

100

)

≤

100an lnn
ln lnn∑

m= an lnn
2 ln lnn

((n
2

)
m

)
pm exp

(
−n

2p

400

)

≤

100an lnn
ln lnn∑

m= an lnn
2 ln lnn

(
en2p

2m

)m
exp

(
−n

2p

400

)

≤

100an lnn
ln lnn∑

m= an lnn
2 ln lnn

exp

(
m ln

(
en2p

2m

)
− n2p

400

)
= ♥

To complete the proof we should show that ♥ = o(1). For that goal we consider each of the
cases np = ω

(
ln2 n

)
and np = O

(
ln2 n

)
separately. For the former we have that

♥ ≤

100an lnn
ln lnn∑

m= an lnn
2 ln lnn

exp

(
n ln2 n− n2p

400

)
= o(1);

and for the latter, recalling that p > 50000a lnn
n , we have

♥ ≤

100an lnn
ln lnn∑

m=an lnn
ln lnn

exp

(
100an lnn

ln lnn
ln

(
enp ln lnn

a lnn

)
− n2p

400

)

≤

100an lnn
ln lnn∑

m= an lnn
2 ln lnn

exp

(
100an lnn

ln lnn
ln (C lnn ln lnn)− n2p

400

)

=

100an lnn
ln lnn∑

m= an lnn
2 ln lnn

exp

(
(1 + o(1)) 100an lnn− n2p

400

)

<
100an lnn

ln lnn
exp (−24an lnn) = o(1).

This completes the proof. 2

The following lemma shows that an (R, c)-expander with the appropriate parameters is also
k-vertex-connected.

Lemma 2.12 ([4], Lemma 5.1) For every positive integer k, if G = (V,E) is an (R, c)-
expander such that c ≥ k, and Rc ≥ 1

2(|V |+ k), then G is k-vertex-connected.
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2.4 Properties of G ∼ G(n, p)

Throughout this paper we use the following properties of G ∼ G(n, p):

Theorem 2.13 Let p ≥ lnn
n and recall our notation f(n) := np

lnn . A random graph G ∼ G(n, p)
is typically such that the following properties hold:

(P1) For every v ∈ V , d(v) ≤ 4np. For every α > 0 there are only o(n) vertices with degree
at least (1 + α)np.
If f(n) = ω(1) then for every 0 < α < 1 and for every v ∈ V ,

(1− α)np ≤ d(v) ≤ (1 + α)np.

(P2) For every subset U ⊆ V , e(U) ≤ max
{

3|U | lnn, 3|U |2p
}

.

(P3) For every subset U ⊆ V of size |U | ≤ 3n ln lnn
lnn , e(U) ≤ 100|U |f(n) ln lnn.

(P4) Let ε > 0. For every constant α > 0 and for every subset U ⊆ V where 1 ≤ |U | ≤ α
p ,

|N(U)| ≥ β|U |np, for β =
1−
√

(2+ε)(α+1)
f(n)

α+1 .

(P5) For every U ⊆ V , 1
p ≤ |U | ≤

n
lnn , |N(U)| ≥ n/4.

(P6) Let ε > 0. For every α ≥
√

4
f(n) + ε and for every set U ⊆ V , the number of edges

between the set and its complement U c satisfies:

e(U,U c) ≥ (1− α)|U |(n− |U |)p.

(P7) Let ε, α be two positive constants which satisfy α2εf(n) > 4, and denote m := εn ln lnn
lnn .

For every two disjoint subsets A,B ⊆ V with |A| = |B| = m, e(A,B) ≥ (1− α)m2p.

(P8) e(A,B) ≥ (1 − α)|A||B|p for every two disjoint subsets A,B ⊆ V with |A| = 10000n
ln lnn ,

|B| = n/10 and for every α > 0.

(P9) For every subset U ⊆ V such that 1 ≤ |U | ≤ n
ln2 n

, and for every ε > 0,
∣∣{v ∈ V \ U : d(v, U) ≤ εnp

lnn

}∣∣ =
(1− o(1))n.

Proof. For the proofs of (P4),(P5) below we will use the following:

Let U ⊆ V . For every vertex v ∈ V \ U we have that Pr (v ∈ N(U)) = 1 − (1 − p)|U |

independently of all other vertices. Therefore |N(U)| ∼ Bin
(
n− |U |, 1− (1− p)|U |

)
. Notice

that for any 0 < p < 1 (all the properties above trivially hold for p = 1) and for any positive
integer k we have the following variation of Bernoulli’s inequality: (1−p)−k ≥ 1+kp. Therefore,(
1− (1− p)|U |

)
≥
(

1− 1
1+|U |p

)
= |U |p

1+|U |p . It follows that:

E (|N(U)|) = (n− |U |)
(

1− (1− p)|U |
)
≥ (n− |U |) |U |p

1 + |U |p
. (1)
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(P1) For every v ∈ V , since d(v) ∼ Bin(n− 1, p) , it follows by Lemma 2.2 that

Pr (d(v) ≥ 4np) ≤
(
enp

4np

)4np

< e−1.2np ≤ e−1.2 lnn = n−1.2.

Applying the union bound we get that

Pr (∃v ∈ V with d(v) ≥ 4np) ≤ n · n−1.2 = o(1).

Now let α > 0. By Lemma 2.1 we get that for every v ∈ V :

Pr (d(v) > (1 + α)np) ≤ exp
(
−α′np

)
≤ n−α′ ,

for some constant α′. Denote by S the set of all vertices with such degree. E(|S|) ≤ n1−α′ .
|S| is a nonnegative random variable, so by Markov’s inequality we get that:

Pr
(
|S| > n1−α

′
2

)
≤ n1−α′

n1−α′
2

= n−
α′
2 = o(1).

Therefore, w.h.p. |S| ≤ n1−α
′
2 = o(n).

Assume now that f(n) = ω(1), and let 0 < α < 1 be a constant. By Lemma 2.1 and the
union bound we get that

Pr (∃v ∈ V with d(v) ≥ (1 + α)np) ≤ n exp

(
−α

2

3
np

)

= n exp

(
−α

2

3
f(n) lnn

)
= n−ω(1) = o(1).

The lower bound is achieved in a similar way.

(P2) Since e(U) ∼ Bin
((|U |

2

)
, p
)

, using Lemma 2.2 and the union bound we get that:

Pr
(
∃U ⊆ V with e(U) > max

{
3|U | lnn, 3|U |2p

})
≤

lnn
p∑
t=1

(
n

t

)(
e
(
t
2

)
p

3t lnn

)3t lnn

+

n∑
t= lnn

p

(
n

t

)(
e
(
t
2

)
p

3t2p

)3t2p

≤

lnn
p∑
t=1

[
n

(
tp

2 lnn

)3 lnn
]t

+

n∑
t= lnn

p

[
n

(
1

2

)3tp
]t

≤
n∑
t=1

(e
8

)t lnn
≤

n∑
t=1

n−t = o(1).

(P3) Let U ⊂ V be a subset of size at most 3n ln lnn
lnn . Since e(U) ∼ Bin

((|U |
2

)
, p
)

, by Lemma

2.2 we get that

Pr (e (U) ≥ 10|U |f (n) ln lnn) ≤
(

e|U |2p
20|U |f (n) ln lnn

)10|U |f(n) ln lnn

.
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Applying the union bound we get that

Pr

(
∃ U such that |U | ≤ 3n ln lnn

lnn
with e (U) ≥ 10|U |f (n) ln lnn

)

≤

3n ln lnn
lnn∑
k=1

(
n

k

)(
ek2p

20kf (n) ln lnn

)10kf(n) ln lnn

≤

3n ln lnn
lnn∑
k=1

[
en

k

(
ekp

20f (n) ln lnn

)10f(n) ln lnn
]k

=

3n ln lnn
lnn∑
k=1

[
e2np

20f (n) ln lnn

(
ekp

20f (n) ln lnn

)10f(n) ln lnn−1
]k

≤

3n ln lnn
lnn∑
k=1

[
e2 lnn

20 ln lnn

(
3enp ln lnn

20f (n) lnn ln lnn

)10f(n) ln lnn−1
]k

≤

3n ln lnn
lnn∑
k=1

[
e2 lnn

20 ln lnn

(
3e

20

)10f(n) ln lnn−1
]k

=o (1) .

(P4) Since n− |U | = (1− o (1))n in this range, by (1) we have that:

E (|N (U) |) ≥ (n− |U |) |U |p
1 + |U |p

≥ (1− o (1))
|U |np
α+ 1

.

By Lemma 2.1 we have that for any δ > 0:

Pr (|N (U) | < (1− δ)E (|N (U) |)) ≤ e−
δ2

2
E(|N(U)|) ≤ e−α′|U |np,

where α′ = δ2

(2+o(1))(α+1) . Now, by taking δ =
√

(2+ε)(α+1)
f(n) (for some ε > 0) we get that

α′f (n) > 1 + ε
3 , and so by applying the union bound we get that:

Pr

(
∃U ⊆ V, |U | ≤ α

p
, |N(U)| < (1− δ)E(|N(U)|)

)
≤

α/p∑
k=1

(
n

k

)
e−α

′knp ≤
α/p∑
k=1

[
ne−α

′f(n) lnn
]k

= o (1) .

Therefore, w.h.p. for every U of size at most α/p, we obtain |N (U) | ≥ (1− δ)E (|N (U) |) ≥

β|U |np with β =
1−
√

(2+ε)(α+1)
f(n)

α+1 .

(P5) Let 1
p ≤ |U | ≤

n
lnn . By (1), E (|N (U) |) ≥ (n−|U |)|U |p

1+|U |p ≥ n/3.

By Lemma 2.1 we have that Pr (|N (U) | ≤ n/4) ≤ e−0.01n.

Applying the union bound we get that

Pr (∃ such U) ≤
n/ lnn∑
k=1/p

(
n

k

)
e−0.01n ≤ n

(
n
n

lnn

)
e−0.01n

11



≤ n (e lnn)
n

lnn e−0.01n = n exp
( n

lnn
ln (e lnn)− 0.01n

)
= o (1) .

(P6) Assume first that |U | ≤ n/2, otherwise switch the roles of U and U c. Since every edge
between U and U c is chosen independently, e (U,U c) ∼ Bin (|U ||U c|, p). By Lemma 2.1
we have that for given α > 0 and U ⊆ V :

Pr (e (U,U c) < (1− α) |U | (n− |U |) p) ≤ exp

(
−α

2

2
|U | (n− |U |) p

)

≤ exp

(
−α

2

4
|U |np

)
≤ exp

(
−
(

1

f (n)
+ δ

)
|U |np

)
= exp (−|U | (lnn+ δnp)) ,

for some δ = δ (ε) > 0. By the union bound we get that:

Pr (∃ such U) ≤
n/2∑
k=1

(
n

k

)
exp (−k (lnn+ δnp)) ≤

n/2∑
k=1

[n exp (− lnn− δnp)]k

=

n/2∑
k=1

(
n−δf(n)

)k
= o (1) .

(P7) Similarly to (P6), given A,B ⊂ V , |A| = |B| = m, e (A,B) ∼ Bin
(
m2, p

)
. Therefore,

by Lemma 2.1 we have that:

Pr
(
e (A,B) ≤ (1− α)m2p

)
≤ exp

(
−α

2

2
m2p

)
.

Applying the union bound we get that:

Pr (∃ such A,B) ≤
(
n

m

)2

exp

(
−α

2

2
m2p

)
≤
[(en

m

)2
exp

(
−α

2

2
mp

)]m

=

[(
e lnn

ε ln lnn

)2

exp

(
−α

2

2
εf (n) ln lnn

)]m
<
( e

ε ln lnn

)2m
= o (1) .

(P8) Given subsets A,B ⊆ V as described, since e (A,B) ∼ Bin (|A||B|, p), by Lemma 2.1 we
get that

Pr (e (A,B) ≤ (1− α) |A||B|p) ≤ exp

(
−α

2

2
|A||B|p

)
= exp

(
−α

′n2p

ln lnn

)
,

for some constant α′. Applying the union bound we get that:

Pr (∃ such A,B) ≤
(

n
10000n
ln lnn

)(
n

n/10

)
exp

(
−α

′n2p

ln lnn

)
≤ 4n exp (−ω (n)) = o (1) .
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(P9) Suppose towards a contradiction that there exists a subset U ⊆ V such that 1 ≤ |U | ≤
n

ln2 n
and that there are Θ (n) vertices v ∈ V \ U with d (v, U) ≥ εnp

lnn . Therefore, the

average degree of the vertices in U is at least Ω
(
n · nplnn ·

1
|U |

)
= Ω (np lnn). But by (P1),

d (v) ≤ 4np for every v ∈ V — a contradiction. Hence,
∣∣{v ∈ V \ U : d (v, U) ≤ εnp

lnn

}∣∣ =
o (n). 2

The following two lemmas may seem somewhat unnatural, but they will be crucial for our
purposes. The first one will be useful in the proof of Theorem 1.8:

Lemma 2.14 Let p ≥ 80 lnn
n . A random graph G ∼ G(n, p) is typically such that for every

set U ⊆ V of size 80
p ≤ |U | ≤

n
lnn , and for every set W ⊆ N (U) of size |W | = 1

2 |N (U) |, the
following holds:

e (U,W ) ≥ 1

50
|U |np.

Proof. First, we prove the following claim:

Claim 2.15 For p ≥ 80 lnn
n , G ∼ G(n, p) is typically such that for every two disjoint sets

U,W ⊆ V such that 80
p ≤ |U | ≤

n
lnn and |W | = n

100 , e (U,W ) ≤ 1.5|U ||W |p.

Proof of Claim 2.15. Let U,W ⊆ V as described above. Since e (U,W ) ∼ Bin (|U ||W |, p),
by Lemma 2.1 we have that:

Pr
(
e (U,W ) > 1.5|U | n

100
p
)
≤ e−

1
1200
|U |np.

By the union bound we get that:

Pr (∃ such U,W ) ≤

n
lnn∑
k= 80

p

(
n

k

)(
n

n/100

)
e−

1
1200

knp

≤

n
lnn∑
k= 80

p

[(en
k

)
(100e)n/100k e−np/1200

]k
≤

n
lnn∑
k= 80

p

[(enp
80

) (
e6
)np/8000

e−np/1200
]k

≤

n
lnn∑
k= 80

p

[
np exp

(
− np

12000

)]k
= o (1) .

2

Now we return to the proof of Lemma 2.14, and we assume that G satisfies the properties of
Theorem 2.13 and Claim 2.15. Let U ⊆ V , 80

p ≤ |U | ≤
n

lnn , fix some W ⊆ N (U) such that

|W | = 1
2 |N (U) |, and denote W ′ = N (U) \W . Denote by E1 the number of edges between

U and W , and by E2 the number of edges between U and W ′. Notice that for these sizes of

U , n − |U | = (1− o (1))n, and that
√

4
80 < 0.23, so by (P6) of Theorem 2.13 we have that

E1 + E2 ≥ 0.77|U |np.
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Now partition W ′ into subsets of size n
100 (the last one may be of smaller size). Since |W ′| ≤ n

2 ,
50 such subsets suffice. By Claim 2.15, there are at most 1.5

100 |U |np edges between U and
each of the subsets, so E2 ≤ 0.75|U |np. Putting the two inequalities together, we get that
E1 ≥ 1

50 |U |np. 2

The second lemma will be a key ingredient in the main proof of the next subsection.

Lemma 2.16 Let p = ω
(

lnn
n

)
. Then G ∼ G (n, p) is typically such that the following holds:

For every subset JN = {v1, . . . , vN} ⊆ V we have that

N∑
j=1

e (vj , Jj)

j
= o (np)

where N = n
ln3 n

and Jj = {v1, . . . , vj}, 1 ≤ j ≤ N .

Proof. Let t = blog2 (N + 1)c. We have that:

N∑
j=1

e (vj , Jj)

j
≤

t∑
i=0

min(N,2i+1−1)∑
j=2i

e (vj , Jj)

2i
≤

t∑
i=1

e (J2i+1)

2i
= ♠.

Now, note that |Jj | = j for every 1 ≤ j ≤ N and distinguish between the following two cases:

(i) pn = ω
(
ln2 n

)
. In this case, using Property (P2) of Theorem 2.13 we have that:

♠ ≤
log2

(
lnn
p

)∑
i=1

3|J2i+1 | lnn
2i

+

t∑
i=log2

(
lnn
p

)
3|J2i+1 |2p

2i

≤
log2

(
lnn
p

)∑
i=1

3 · 2i+1 lnn

2i
+

t∑
i=log2

(
lnn
p

)
3 · 22i+2p

2i

≤ log2

(
lnn

p

)
6 lnn+ 12p · 2t+1 − 1

2− 1
≤ c1 ln2 n+ c2Np,

for some positive constants c1 and c2. This is clearly o (np) as desired.

(ii) pn = O
(
ln2 n

)
. In this case we need a more careful calculation. First, we prove the

following claim:

Claim 2.17 If np = O
(
ln2 n

)
, then for every c > 3, G ∼ G (n, p) is typically such that

e (X) ≤ c|X| for every subset X ⊆ V of size |X| ≤ n
ln3 n

.
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Proof of Claim 2.17. Let X ⊂ V be a subset of size at most n
ln3 n

. Since e (X) ∼

Bin
((|X|

2

)
, p
)

, by Lemma 2.2 we get that Pr (e (X) ≥ c|X|) ≤
(
e|X|2p
c|X|

)c|X|
. Applying

the union bound we get that

Pr

(
∃X such that |X| ≤ n

ln3 n
and e (X) ≥ c|X|

)

≤

n
ln3 n∑
k=1

(
n

k

)(
ek2p

ck

)ck
≤

n
ln3 n∑
k=1

[
en

k

(
ekp

c

)c]k

=

n
ln3 n∑
k=1

[
e2np

c

(
ekp

c

)c−1
]k
≤

n
ln3 n∑
k=1

[
O
(
ln2 n

)
O
(
ln−1 n

)c−1
]k

=

n
ln3 n∑
k=1

[
O (lnn)3−c

]k
= o (1) .

2

Now, applying Claim 2.17 with c = 4, we get that

♠ ≤
t∑
i=1

4|J2i+1 |
2i

≤
t∑
i=1

8 = O (lnn) = o (np) .

This completes the proof of Lemma 2.16. 2

2.5 The minimum degree game

In the proof of Theorem 1.4, Maker has to build a suitable expander which possesses some
relevant properties. The first step towards creating a good expander is to create a spanning
subgraph with a large enough minimum degree. The following theorem was proved in [11]:

Theorem 2.18 ([11], Theorem 1.3) Let ε > 0 be a constant. Maker has a strategy to
build a graph with minimum degree at least ε

3(1−ε) lnn while playing against Breaker’s bias of

(1− ε) n
lnn on E (Kn).

In fact, the following theorem can be derived immediately from the proof of Theorem 2.18:

Theorem 2.19 Let ε > 0 be a constant. Maker has a strategy to build a graph with minimum
degree at least c = c (n) = ε

3(1−ε) lnn while playing against a Breaker’s bias of (1− ε) n
lnn on

E (Kn). Moreover, Maker can do so within cn moves and in such a way that for every vertex
v ∈ V (Kn), at the same moment v becomes of degree c in Maker’s graph, there are still Θ (n)
free edges incident with v.

Using Theorem 2.19, the third author of this paper proved in [17] that Maker has a strategy
to build a good expander. Here, we wish to prove an analog of Theorem 2.19 for G(n, p):
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Theorem 2.20 Let p = ω
(

lnn
n

)
, ε > 0 and let b = (1− ε) np

lnn . Then G ∼ G(n, p) is typically
such that in the (1, b) Maker-Breaker game played on E (G), Maker has a strategy to build a
graph with minimum degree c = c (n) ≤ ε

6 lnn. Moreover, Maker can do so within cn moves
and in such a way that for every vertex v ∈ V (G), at the same moment that v becomes of
degree c in Maker’s graph, at least εnp/3 edges incident with v are free.

Proof of Theorem 2.20. The proof is very similar to the proof of Theorem 2.18 so we omit
some of the calculations (for more details, the reader is referred to [11]). Since claiming an
extra edge is never a disadvantage for any of the players, we can assume that Breaker is the
first player to move. A vertex v ∈ V is called dangerous if dM (v) < c. The game ends at
the first moment in which either none of the vertices is dangerous (and Maker won), or there
exists a dangerous vertex v ∈ V with less than εnp/3 free edges incident to it (and Breaker
won). For every vertex v ∈ V let dang (v) := dB (v)− 2b · dM (v) be the danger value of v. For

a subset X ⊆ V , we define dang (X) =
∑
v∈X dang(v)

|X| (the average danger of vertices in X).

The strategy proposed to Maker is the following one:

Maker’s strategy SM : As long as there is a vertex of degree less than c in Maker’s graph,
Maker claims a free edge vu for some v which satisfies dang (v) = max {dang (u) : u ∈ V } (ties
are broken arbitrarily).

Suppose towards a contradiction that Breaker has a strategy SB to win against Maker who
plays according to the strategy SM as suggested above. Let g be the length of this game and
let I = {v1, . . . , vg} be the multi-set which defines Maker’s game, i.e, in his ith move, Maker
plays at vi (in fact, according to the assumption Maker does not make his gth move, so let
vg be the vertex which made him lose). For every 0 ≤ i ≤ g − 1, let Ii = {vg−i, . . . , vg}.
Following the notation of [11], let dangBi (v) and dangMi

(v) denote the danger value of a
vertex v ∈ V directly before Breaker’s and Maker’s ith move, respectively. Notice that in his
last move, Breaker claims b edges to decrease the minimum degree of the free graph to at
most εnp/3. In order to be able to do that, directly before Breaker’s last move Bg, there
must be a dangerous vertex vg with dM (vg) ≤ c − 1 and dF (vg) ≤ εnp

3 + b. By (P1) of
Theorem 2.13 we can assume that δ (G) ≥

(
1− ε

12

)
np. Therefore we have that dangBg (vg) ≥(

1− ε
12 −

ε
3

)
np− (c− 1)− b− 2b (c− 1) =

(
1− 5

12ε
)
np− (c− 1)− b (2c− 1) >

(
1− 3

4ε
)
np.

Analogously to the proof of Theorem 2.18 in [11], we state the following lemmas which estimate
the change of the average danger after each move of any of the players. In the first lemma we
estimate the change after Maker’s move:

Lemma 2.21 Let i be an integer, 1 ≤ i ≤ g − 1. Then

(i) if Ii 6= Ii−1, then dangMg−i (Ii)− dangBg−i+1
(Ii−1) ≥ 0, and

(ii) if Ii = Ii−1, then dangMg−i (Ii)− dangBg−i+1
(Ii−1) ≥ 2b

|Ii| .

In the second lemma we estimate the change of the average danger during Breaker’s moves:

Lemma 2.22 Let i be an integer, 1 ≤ i ≤ g − 1. Then

(i) dangMg−i (Ii)− dangBg−i (Ii) ≤ 2b
|Ii| , and
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(ii) dangMg−i (Ii) − dangBg−i (Ii) ≤ b+e(vg−i,Ii)+a(i−1)−a(i)
|Ii| , where a (i) denotes the number of

edges spanned by Ii which Breaker claimed in the first g − i− 1 rounds.

Combining Lemmas 2.21 and 2.22, we get the following corollary which estimates the change
of the average danger after a full round:

Corollary 2.23 Let i be an integer, 1 ≤ i ≤ g − 1. Then

(i) if Ii = Ii−1, then dangBg−i (Ii)− dangBg−i+1
(Ii−1) ≥ 0,

(ii) if Ii 6= Ii−1, then dangBg−i (Ii)− dangBg−i+1
(Ii−1) ≥ − 2b

|Ii| , and

(iii) if Ii 6= Ii−1, then dangBg−i (Ii) − dangBg−i+1
(Ii−1) ≥ − b+e(vg−i,Ii)+a(i−1)−a(i)

|Ii| , where a (i)
denotes the number of edges spanned by Ii which Breaker took in the first g − i− 1 rounds.

In order to complete the proof, we prove that before Breaker’s first move, dangB1
(Ig−1) > 0,

thus obtaining a contradiction.

Let N := n
ln3 n

. For the analysis, we split the game into two parts: the main game, and the
end game which starts when |Ii| ≤ N .

Let |Ig−1| = r and let i1 < . . . < ir−1 be those indices for which Iij 6= Iij−1. Note that
|Iij | = j + 1. Note also that since Iij−1 = Iij−1 and ij−1 ≤ ij − 1, a (ij − 1) ≤ a (ij−1).

Recall that the danger value of vg directly before Bg is at least

dangBg (vg) >

(
1− 3

4
ε

)
np. (2)

Assume first that r < N .

dangB1
(Ig−1) = dangBg (I0) +

g−1∑
i=1

(
dangBg−i (Ii)− dangBg−i+1

(Ii−1)
)

≥ dangBg (I0) +
r−1∑
j=1

(
dangBg−ij

(
Iij
)
− dangBg−ij+1

(
Iij−1

))
[by Corollary 2.23(i)]

≥ dangBg (I0)−
r−1∑
j=1

b+ e
(
vg−ij , Iij

)
+ a (ij − 1)− a (ij)

j + 1
[by Corollary 2.23(iii)]

≥ dangBg (I0)− b ln r −
r−1∑
j=1

e
(
vg−ij , Iij

)
j + 1

− a (0)

2
+

r−1∑
j=2

a (ij−1)

(j + 1) j
+
a (ir−1)

r

≥ dangBg (I0)− b ln r − o (np) [by Lemma 2.16]

>

(
1− 3

4
ε

)
np− (1− ε+ o (1))np [by (2)]

> 0. (3)
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Assume now that r ≥ N .

dangB1
(Ig−1) = dangBg (I0) +

g−1∑
i=1

(
dangBg−i (Ii)− dangBg−i+1

(Ii−1)
)

≥ dangBg (I0) +
r−1∑
j=1

(
dangBg−ij

(
Iij
)
− dangBg−ij+1

(
Iij−1

))
[by Corollary 2.23(i)]

= dangBg (I0) +
N−1∑
j=1

(
dangBg−ij

(
Iij
)
− dangBg−ij+1

(
Iij−1

))
+

r−1∑
j=N

(
dangBg−ij

(
Iij
)
− dangBg−ij+1

(
Iij−1

))

≥ dangBg (vg)−
N−1∑
j=1

b

j + 1
− o (np)−

r−1∑
j=N

2b

j + 1
[by Corollary 2.23(ii) and (3)]

≥
(

1− 3

4
ε

)
np− b lnn− o (np)− 2b

(
lnn− ln

n

ln3 n

)
[by (2)]

=

(
1− 3

4
ε

)
np− (1− ε)np− o (np)− 6b ln lnn

=
ε

4
np− o (np)

> 0.

This completes the proof. 2

3 Maker-Breaker games on G(n, p)

3.1 Breaker’s win

In this subsection we prove Theorem 1.3.

Chvátal and Erdős proved in [6] that playing on the edge set of the complete graph Kn, if
Breaker’s bias is b = (1 + ε) n

lnn , then Breaker is able to isolate a vertex in his graph and thus
to win a lot of natural games such as the perfect matching game, the Hamiltonicity game and
the k-connectivity game.

In their proof, Breaker wins by creating a large clique which is disjoint of Maker’s graph and
then playing the box game on the stars centered in this clique. Our proof is based on the same
idea.

Proof of Theorem 1.3: First, we may assume that p ≥ lnn
n , since otherwise G ∼ G(n, p)

typically contains isolated vertices and Breaker wins no matter how he plays. Now we introduce
a strategy for Breaker and then we prove it is a winning strategy. At any point during the
game, if Breaker cannot follow the proposed strategy then he forfeits the game. Breaker’s
strategy is divided into the following two stages:
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Stage I: Throughout this stage Breaker maintains a subset C ⊆ V which satisfies the following
properties:

(i) EG (C) = EB (C).

(ii) dM (v) = 0 for every v ∈ C.

(iii) dG (v) ≤ (1 + ε/2)np for every v ∈ C.

Initially, C = ∅. In every move, Breaker increases the size of C by at least one. This stage
ends after the first move in which |C| ≥ n

ln2 n
.

Stage II: For every v ∈ C, let Av = {vu ∈ E (G) : vu /∈ E (B)}. In this stage, Breaker claims
all the elements of one of these sets.

It is evident that if Breaker can follow the proposed strategy, then he isolates a vertex in
Maker’s graph and wins the game. It thus remains to prove that Breaker can follow the
proposed strategy. We consider each stage separately.

Stage I: Notice that in every move Maker can decrease the size of C by at most one. Hence,
it is enough to prove that in every move Breaker is able to find at least two vertices which are
isolated in Maker’s graph and have bounded degree as required, and to claim all the free edges
between them and C, as well as the edge between the two vertices, if it exists in G. For this
it is enough to prove that Breaker can always find two vertices u, v ∈ V \ C which have the
proper degree in G and are isolated in Maker’s graph, and such that e (u,C), e (v, C) ≤ b−1

2 .
Since this stage lasts o (n) moves, and the number of vertices with too high degree in G is o (n)
by property (P1) of Theorem 2.13, the existence of such vertices is trivial by property (P9) of
Theorem 2.13.

Stage II: Notice that |C| ≥ n
ln2 n

and that Av ∩ Au = ∅ for every two vertices u 6= v in C. In
addition, by the way Breaker chooses his vertices we have that |Av| ≤ (1 + ε/2)np for every

v ∈ C. Recall that b = (1 + ε) np
lnn > (1+ε/2)np

ln |C| + 1. Therefore, by Theorem 2.5 Breaker (as

BoxMaker) wins the Box Game on these sets.

This completes the proof. 2

3.2 Maker’s win

In this subsection we prove Theorems 1.4 and 1.5. We start with providing Maker with a
winning strategy in the Hamiltonicity game for each case (which implies the perfect matching
game) and then we sketch the changes which need to be done in order to turn it into a winning
strategy in the k-connectivity game as well.

Proof of Theorem 1.4. First we describe a strategy for Maker and then prove it is a winning
strategy.

At any point during the game, if Maker is unable to follow the proposed strategy (including
the time limits), then he forfeits the game. Maker’s strategy is divided into the following three
stages:
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Stage I: Maker builds an
(

10000n
ln lnn , 2

)
-expander within 100n lnn

ln lnn moves.

Stage II: Maker makes his graph an (n/5, 2)-expander within additional 300n lnn
ln lnn moves.

Stage III: Maker makes his graph Hamiltonian by adding at most n boosters.

It is evident that if Maker can follow the proposed strategy without forfeiting the game he
wins. It thus suffices to prove that indeed Maker can follow the proposed strategy. We consider
each stage separately.

Stage I: In his first 100n lnn
ln lnn moves, Maker creates a graph with minimum degree c = c (n) =

100 lnn
ln lnn . Maker plays according to the strategy proposed in Theorem 2.20 except of the seem-

ingly minor but crucial change that in every move, when Maker needs to claim an edge incident
with a vertex v, Maker randomly chooses such a free edge. We prove that, with a positive prob-
ability, this non-deterministic strategy ensures that Maker’s graph is an

(
10000n
ln lnn , 2

)
-expander

and then, since our game is a perfect information game, we conclude that indeed there exists a
deterministic such strategy for Maker. Recall that according to the strategy proposed in The-
orem 2.20, at any move Maker claims a free edge vu with dang (v) = max {dang (u) : u ∈ V }.
In this case we say that the edge vu is chosen by v. We wish to show that the probability of
having a subset A ⊆ V with |A| ≤ 10000n

ln lnn and |NM (A) | ≤ 2|A| − 1 is o (1). To that end, we
can assume that G satisfies all the properties listed in Theorem 2.13 and Theorem 2.20.

Assume that there exists a subset A ⊂ V of size |A| ≤ 10000n
ln lnn such that after this stage NM (A)

is contained in a set B of size at most 2|A| − 1. This implies that

|EM (A,A ∪B) | ≥ c|A|/2 =
50|A| lnn

ln lnn
.

Recall that f (n) := np
lnn . We distinguish between the following two cases:

Case I: At least c|A|/4 edges of Maker which are incident to A were chosen by vertices from
A.

Notice that if |A| ≤ n ln lnn
lnn , then there are at most o (|A|) vertices v ∈ A such that e (v,A ∪B) =

Ω
(
f (n) (ln lnn)2

)
, since otherwise we have that e (A ∪B) = Ω

(
f (n) (ln lnn)2|A|

)
which con-

tradicts (P3) of Theorem 2.13. Furthermore, if n ln lnn
lnn < |A| ≤ 10000n

ln lnn , then there are at most
o (|A|) vertices v ∈ A such that e (v,A ∪B) = Ω (np) (follows from (P2) of Theorem 2.13).
Consider an edge e = ab with a ∈ A and b ∈ A∪B and assume that e has been chosen by a. No-
tice that by Theorem 2.20, when Maker chose e, the vertex a had at least εnp/3 free neighbors.
Therefore, for at least (1− o (1)) |A| such vertices a ∈ A, the probability that Maker chose an

edge with a second endpoint in A ∪B is at most
(
f(n)(ln lnn)2

εnp/3

)
= 3(ln lnn)2

ε lnn when |A| ≤ n ln lnn
lnn

or an arbitrarily small constant δ > 0 when n ln lnn
lnn < |A| ≤ 10000n

ln lnn . Therefore, the probability

that all of Maker’s edges incident to A were chosen in A∪B is at most
(

3(ln lnn)2

ε lnn

)(1−o(1))c|A|/4

for |A| ≤ n ln lnn
lnn and at most δ(1−o(1))c|A|/4 otherwise. Applying the union bound we get that

the probability that there exists such A (with |NM (A) | ≤ 2|A| − 1 and at least c|A|/4 edges
chosen by A) is at most

∑
|A|<n ln lnn

lnn

(
n

|A|

)(
n

2|A| − 1

)(
3 (ln lnn)2

ε lnn

)(1−o(1))c|A|/4

+

10000n
ln lnn∑

|A|=n ln lnn
lnn

(
n

|A|

)(
n

2|A| − 1

)
δ(1−o(1))c|A|/4
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≤
∑

|A|<n ln lnn
lnn

n3|A|

(
3 (ln lnn)2

ε lnn

) 24|A| lnn
ln lnn

+

10000n
ln lnn∑

|A|=n ln lnn
lnn

(
e3n3

4|A|3

)|A|
δ

24|A| lnn
ln lnn

≤
∑

|A|<n ln lnn
lnn

[
n3 exp

(
24 lnn

ln lnn
ln

(
3 (ln lnn)2

ε lnn

))]|A|
+

10000n
ln lnn∑

|A|=n ln lnn
lnn

(
α

ln3 n

(ln lnn)3
δ

24 lnn
ln lnn

)|A|
≤

∑
|A|<n ln lnn

lnn

[
n3 exp (− (1− o (1)) 24 lnn)

]|A|
+ o (1) = o (1) .

Case II: At least c|A|/4 edges of Maker which are incident to A were chosen by vertices from
B.

As in Case I, notice that there are at most o (|B|) vertices v ∈ B such that e (v,A) ≥
f (n) (ln lnn)2 when |B| ≤ 2n ln lnn

lnn and at most o (|B|) vertices v ∈ B such that e (v,A) =

Ω (np) when 2n ln lnn
lnn ≤ |B|20000n

ln lnn . Similar to the previous case, with the only difference being
that not all the edges which were chosen by vertices from B have to touch A, we get that the
probability that all Maker’s edges incident to A were chosen in A ∪B is at most(

c|B|
c|A|/4

)(
3 (ln lnn)2

ε lnn

)(1−o(1))c|A|/4

or (
c|B|
c|A|/4

)
δ(1−o(1))c|A|/4,

for an arbitrarily small δ, for |B| ≤ 2n ln lnn
lnn or 2n ln lnn

lnn ≤ |B| ≤ 20000n
ln lnn , respectively (the

binomial coefficient corresponds to the number of possible choices of edges from EM (A,B) out
of all edges chosen by vertices from B). Applying the union bound, similar to the computations
in Case I, we get that the probability that there exists such A (with |NM (A) | ≤ 2|A| − 1 and
at least c|A|/4 edges incident to A chosen by N(A)) is o (1).

This completes the proof that Maker can build a
(

10000n
ln lnn , 2

)
-expander fast and thus is able to

follow Stage I of the proposed strategy.

Stage II: It is enough to prove that Maker has a strategy to ensure that EM (A,B) 6= ∅ for
every two disjoint subsets A,B ⊆ V of sizes |A| = 10000n

ln lnn and |B| = n/10. Indeed, if there
exists a subset X ⊆ V of size 10000n

ln lnn ≤ |X| ≤ n/5 such that |X ∪ N (X) | < 3|X|, then there
exist two subsets A ⊆ X and B ⊆ V \ (X ∪N (X)) with |A| = 10000n

ln lnn and |B| = n/10 such
that EM (A,B) = ∅.

Recall that by Property (P8) of Theorem 2.13, G ∼ G(n, p) is typically such that for every
two such subsets A,B ⊆ V and for sufficiently small α > 0 we have that

eG (A,B) ≥ (1− α) |A||B|p ≥ 999n2p

ln lnn
.

To achieve his goal for this stage, Maker can use the trick of fake moves and to play as F-

Breaker in the
(
np ln lnn
100 lnn , 1

)
Maker-Breaker game where the winning sets are

F =

{
EF (A,B) : A,B ⊆ V , A ∩B = ∅, |A| = 10000n

ln lnn
and |B| = n/10

}
.

21



Notice that since so far Breaker has played at most 100n lnn
ln lnn rounds, we get that eF (A,B) ≥

899n2p
ln lnn for every A,B ⊂ V (G) of sizes |A| = 10000n

ln lnn and |B| = n/10. Finally, since the following
inequality holds (

n
10000n
ln lnn

)(
n

n/10

)
2−89900n lnn/(ln lnn)2 ≤ 4n2−ω(n) = o (1)

it follows by Theorems 2.3 and 2.4 that indeed Maker (or, as we called him in this stage,

F-Breaker) can achieve his goals for this stage within e(G)
np ln lnn/100 lnn <

300n lnn
ln lnn moves (recall

that e (G) ≤ 3n2p).

Stage III: So far Maker has played at most 400n lnn
ln lnn moves (and at least 50n lnn

ln lnn moves) and
his graph is an (n/5, 2)-expander. Notice that for the choice a = 2 Lemma 2.11 holds. In
addition, Maker and Breaker together claimed o

(
n2p
)

edges of G. Therefore, there are still
Θ
(
n2p
)

free boosters in G, so Maker can easily claim n boosters and to turn his graph into a
Hamiltonian graph.

This completes the proof that Maker wins the gameH (G) (and of course also the gameM (G)).
2

Now, we briefly sketch the proof of Theorem 1.5.

Sketch of proof of Theorem 1.5. Let K > 105, p = Kn
lnn and G ∼ G(n, p). The upper

bound on b∗ is obtained immediately from Theorem 1.3. We wish to show that G is typically
such that given b ≤ K/10, Maker has a winning strategy in the (1, b) game H (G). First, we
make the following modifications to Theorem 2.20:

• In the statement of the theorem, p = K lnn
n , b ≤ np

10 lnn = K
10 , and ε is some positive

constant.

• By similar calculations to those in (P1) of Theorem 2.13, we can assume that δ (G) ≥ 1
2np.

• We conclude that dangBg (vg) ≥
(

1
2 −

ε
3

)
np− (c− 1)− b (2c− 1) >

(
1
2 −

ε
3 −

ε
60

)
np.

• Finally, we use the following calculation:

dangB1
(Ig−1) ≥ dangBg (I0) +

r−1∑
j=1

(
dangBg−ij

(
Iij
)
− dangBg−ij+1

(
Iij−1

))

≥ dangBg (I0)−
r−1∑
j=1

2b

j + 1

≥ dangBg (I0)− 2b lnn

≥
(

1

2
− ε

3
− ε

60

)
np− 1

5
np

> 0

to get a contradiction (for sufficiently small ε).
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With this variant of Theorem 2.20, adapted to the case p = Θ
(

lnn
n

)
, the proof of Theorem 1.5

goes the same as the proof of Theorem 1.4, mutatis mutandis. 2

Remark: To win the k-connectivity game, Maker follows Stages I and II of the proposed
strategy SM with the following parameter changes:

• In Stage I, Maker creates an
(

10000n
ln lnn , k

)
-expander by creating a graph with minimum

degree at least c = 100k lnn/ ln lnn. The calculations are almost identical to these
appear in the proof of Theorem 1.4, Stage I.

• In Stage II, Maker makes his graph an
(
n+k
2k , k

)
-expander by claiming an edge between

any two disjoint subsets A,B ⊆ V such that |A| = 10000n
ln lnn , |B| = n

10k , in a similar way as
in Stage II of Theorem 1.4.

Then, by Lemma 2.12, Maker’s graph is k-connected and he wins the game. We omit the
straightforward details and the calculations, which are almost identical to those of the Hamil-
tonicity game.

4 Avoider-Enforcer games on G(n, p)

4.1 Avoider’s win

In this subsection we prove Theorem 1.7.

Proof. In order to isolate a vertex in his graph Avoider does the following: before his first
move (regardless of the identity of the first player) Avoider identifies a set U ⊆ V of size

√
n

lnn
with e (U) ≤ np

lnn (he can find such a set very easily since this number is twice larger than
the expected number of edges inside a set of this size). Assume |U | ≡ 0 (mod 3) (otherwise
Avoider removes from U a vertex or two and everything works the same). Then, in his first
move, Avoider claims all the edges not incident to U . He then ignores – until he can no longer
do so – all the edges inside U and pretends he is Enforcer in the following reverse box game:
he partitions the vertices of U into triplets – each triplet is a box. The elements in each box
are all the edges between the three vertices of the box and V \ U . For better readability, we
will now call him Box-Enforcer.

Box-Enforcer does not claim edges inside U unless he has to. The former Enforcer, however,
in his new role as Box-Avoider in the reverse box game, may claim occasionally edges inside
U . However, since his bias is too big, in each move he must make at least b− e (U) ≥ 25np

lnn of
his steps “in the boxes” (between U and its complement).

We may assume that p ≥ lnn
n , since otherwise G ∼ G(n, p) typically contains isolated vertices

and Box-Enforcer wins no matter how he plays. Therefore, by (P1) we can bound from above
the degree of every vertex in the graph by 4np, and so the size of each box is bounded from
above by 12np. The number of boxes in this game is 1

3

√
n

lnn . Box-Avoider’s bias is 1 and

Box-Enforcer’s bias is at least 25np
lnn . Putting it all together in the terms of Lemma 2.7 we get
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that, as

2 exp

(
12np
25np
lnn

)
< exp (0.49 lnn) = o

(
1

3

√
n

lnn

)
,

Box-Enforcer wins this game, i.e. Box-Avoider is forced to claim all the elements in one of the
boxes.

Now let’s go back to the original game. By what we have just shown, as long as Avoider (or,
as we called him, Box-Enforcer) does not claim edges inside U , he has at least three isolated
vertices in his graph. So if he can avoid claiming edges inside U throughout the game, he wins.
If he is forced to claim an edge inside U , it means that all the remaining free edges on the
board are inside U . By claiming one edge he will touch at most two of his isolated vertices,
and Enforcer (as Box-Avoider in this game) in his next move will be forced to claim all the
remaining edges on the board, leaving at least one isolated vertex in Avoider’s graph. 2

4.2 Enforcer’s win

In this subsection we prove Theorem 1.8. For this proof we would like to use similar techniques
to those used by Krivelevich and Szabó in [18]. We use the following Hamiltonicity criterion
by Hefetz et al:

Lemma 4.1 ([15], Theorem 1.1) Let 12 ≤ d ≤ e
3√

lnn and let G be a graph on n vertices
satisfying properties (R1), (R2) below:

(R1) For every S ⊆ V , if |S| ≤ k1 (n, d) := n ln lnn ln d
d lnn ln ln lnn then |N (S) | ≥ d|S|.

(R2) There is an edge in G between any two disjoint subsets A,B ⊆ V such that |A|, |B| ≥
k2 (n, d) := n ln lnn ln d

4130 lnn ln ln lnn .

Then G is Hamiltonian, for sufficiently large n.

Clearly, if by the end of the game Avoider’s graph is Hamiltonian, it also contains a perfect
matching. In addition, the proof of Theorem 6 in [18] shows that, in the terms of Lemma
4.1, if G satisfies (R1) and (R2) then G is d-connected. In particular, if d = ω (1), then G is
k-connected for any fixed k. Theorem 1.8 is now an immediate corollary of Lemma 4.1 and
the following theorem:

Theorem 4.2 Let p ≥ 70000 lnn
n and b ≤ np

20000 lnn . In a biased (1, b) Avoider-Enforcer game,
Enforcer has a strategy to force Avoider to create a graph satisfying (R1) and (R2) with d =
d (n) = ln lnn provided n is large enough.

Proof. As we set d = d (n) = ln lnn we use the following notation:

k∗1 = k∗1 (n) = k1 (n, d) =
n

lnn
,

k∗2 = k∗2 (n) = k2 (n, d) =
n ln lnn

4130 lnn
.
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For every 1 ≤ k ≤ k∗1 and for every S ⊆ V , |S| = k, define the hypergraph F (S) on N (S)
in the following way: partition the vertices of N (S) into a family A of 2dk subsets, each of
size |N (S) |/2dk (by (P5) and (P4) the size of N (S) is much greater than 2dk, so this is well
defined). An edge F ∈ F(S) is the set of edges between S and any combination of dk subsets
from A.

For a given S of size k, if by the end of the game in Avoider’s graph (let us denote it by Av) the
set S is connected by an edge to every hyperedge of F (S), then |NAv (S) | > dk. Otherwise,
there are dk subsets disconnected from S which form a hyperedge in F (S). So in order to
force (R1) in Avoider’s graph, it suffices to ensure that in his graph, for every 1 ≤ k ≤ k∗1, for
every S ⊆ V , |S| = k, and for every F ∈ F (S), there is an edge between S and F .

Notice that for every F ∈ F (S), e (S, F ) ≥ 1
180 |S|np. Indeed, if 1 ≤ |S| ≤ 80

p , then by (P4)

we obtain |N (S) | ≥ 1
90 |S|np, and so the number of edges in G between S and half of its

external neighborhood is at least the number of vertices there, which is at least 1
180 |S|np. If

80
p ≤ |S| ≤

n
lnn , then by Lemma 2.14 the number of edges in G between S and half of its

external neighborhood is at least 1
50 |S|np >

1
180 |S|np.

In order to force (R2) in Avoider’s graph, it is enough to ensure that he claims an edge between
any two disjoint sets of size k∗2. By (P7), for any such sets A,B, e (A,B) ≥ 0.5 (k∗2)2 p.

Finally, in order to conclude that Enforcer can force Avoider to claim all these edges, we apply
Lemma 2.6, where Enforcer in his head did a change of roles, pretending to be Avoider with
the target sets E(S, F ) for every F ∈ F(S), and E(A,B) for all pairs of disjoint sets A,B of
size k∗2. It is now sufficient to verify that:

k∗1∑
k=1

∑
|S|=k

|F (S) |
(

1 +
1

b

)− 1
180
|S|np

+
∑

|A|,|B|=k∗2

(
1 +

1

b

)− 1
2(k∗2)

2
p

<

(
1 +

1

b

)−b
.

By using the well known estimate 1 + x = ex+Θ(x2) for x→ 0, we can bound the term on the
right hand side from below by (say) e−2.

Observing that 1 + 1
b ≥ exp (0.9/b), we can estimate the first summand on the left hand side

from above by:

k∗1∑
k=1

(
n

k

)(
2dk

dk

)
e−

knp
200b ≤

k∗1∑
k=1

[
n (2e)d e

− np
200np

20000 lnn

]k

≤
k∗1∑
k=1

[
ne2 ln lnne−100 lnn

]k
= o (1) .

The second summand on the left hand side can be estimated from above by:(
n

k∗2

)2

e−
0.5(k∗2)2p

b ≤

[(
en

k∗2

)2

e−
104k∗2 lnn

n

]k∗2

=

[(
4130e lnn

ln lnn

)2

e−
104

4130
ln lnn

]k∗2
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≤

[
(lnn)2−2.4

]k∗2
= o (1) .

This completes the proof. 2

5 Concluding remarks and open questions

In this paper we analyzed Maker-Breaker games and Avoider-Enforcer games played on the
edge set of a random graph G ∼ G(n, p). We have shown that a.a.s. the following is true:

Maker-Breaker games: for p = ω
(

lnn
n

)
, the critical bias in the Hamiltonicity, perfect

matching and k-connectivity games is b∗ = (1 + o(1)) nplnn . For p = K lnn
n (where K > 1),

there exist b1 = b1 (K) and b2 = b2 (K) such that the critical bias in these games satisfies:
b1 ≤ b∗ ≤ b2.

Avoider-Enforcer games: for p ≥ c lnn
n (where c > 70000), there exist c1 and c2 such

that the critical bias in the Hamiltonicity, perfect matching and k-connectivity games satisfies:
c1np
lnn ≤ b

∗ ≤ c2np
lnn .

Notice that while in the first case (Maker-Breaker with p = ω
(

lnn
n

)
) we establish the exact

threshold bias, in the latter two (Maker-Breaker with p = Θ
(

lnn
n

)
, and Avoider-Enforcer) we

only establish the order of magnitude of the threshold bias. Although it is possible to achieve
somewhat better constants than those appearing in this paper, we were not able to close the
gap completely. It would be nice to get to the exact constant in these cases as well.

Acknowledgement. The authors wish to thank the referees of this paper for their careful
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References

[1] N. Alon and J. H. Spencer, The Probabilistic Method, Wiley, New-York, 2008.

[2] J. Beck, Combinatorial Games: Tic-Tac-Toe Theory, Cambridge University
Press, 2008.

[3] J. Beck, Remarks on positional games, Acta Math. Acad. Sci. Hungar. 40 (1982), 65–71.

[4] S. Ben-Shimon, A. Ferber, D. Hefetz and M. Krivelevich, Hitting time results for
Maker-Breaker games, Random Structures and Algorithms 41 (2012), 23–46.

[5] B. Bollobás, Random Graphs, Cambridge University Press, 2001.
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