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Abstract

The classical result of Erdős and Rényi asserts that the random graph G(n, p) experiences

sharp phase transition around p = 1

n
– for any ǫ > 0 and p = 1−ǫ

n
, all connected components

of G(n, p) are typically of size Oǫ(log n), while for p = 1+ǫ

n
, with high probability there exists

a connected component of size linear in n. We provide a very simple proof of this fundamental

result; in fact, we prove that in the supercritical regime p = 1+ǫ

n
, the random graph G(n, p)

contains typically a path of linear length. We also discuss applications of our technique to other

random graph models and to positional games.

1 Introduction

In their groundbreaking paper [8] from 1960, Paul Erdős and Alfréd Rényi made the following

fundamental discovery: the random graph G(n, p) undergoes a remarkable phase transition around

the edge probability p(n) = 1
n . For any constant ǫ > 0, if p = 1−ǫ

n , then G(n, p) has whp1

all connected components of size at most logarithmic in n, while for p = 1+ǫ
n whp a connected

component of linear size, usually called the giant component, emerges in G(n, p) (they also showed

that whp there is a unique linear sized component). The Erdős-Rényi paper, which launched the

modern theory of random graphs, has had enormous influence on the development of the field and

is generally considered to be a single most important paper in Probabilistic Combinatorics, if not

in all of Combinatorics.

∗School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,

Tel Aviv, 69978, Israel. Email: krivelev@post.tau.ac.il. Research supported in part by a USA-Israel BSF grant and

by a grant from the Israel Science Foundation.
†Department of Mathematics, UCLA, Los Angeles, CA 90095. Email: bsudakov@math.ucla.edu. Research sup-

ported in part by NSF grant DMS-1101185, by AFOSR MURI grant FA9550-10-1-0569 and by a USA-Israel BSF

grant.
1We say that an event En occurs with high probability, or whp for brevity, in the probability space G(n, p) if

limn→∞ Pr[G ∼ G(n, p) ∈ En] = 1.
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There are now several proofs available for this result. Erdős and Rényi (who actually worked

in the model G(n,m) of random graphs) used counting arguments. Some of later proofs relied

on the machinery of branching processes. As one can expect for a result of this magnitude of

importance, there have been countless ramifications and extensions proven over the years, and by

now the evolution of random graphs is very well understood. We refer the reader to the standard

sources in the theory of random graphs [10], [7] for a detailed account.

In 1981, Ajtai, Komlós and Szemerédi proved [1] that in the supercritical regime p = 1+ǫ
n , not

only the random graph G(n, p) contains whp a linear sized connected component, but it typically

has a path of length linear in n.

The purpose of this note is to present a very simple and self-contained proof of the Erdős-Rényi

result, as well of the result of Ajtai, Komlós and Szemerédi. We do not strive to derive the best

possible absolute constants, aiming rather for simplicity.

Our notation is fairly standard. We set N =
(

n
2

)

. Floor and ceiling signs will be systematically

omitted for the sake of clarity of presentation.

2 Main result

Our argument will utilize the notion of the Depth First Search (DFS). This is a well known graph

exploration algorithm, and we thus will describe it rather briefly.

Recall that the DFS (Depth First Search) is a graph search algorithm that visits all vertices of

a (directed or undirected) graph G = (V,E) as follows. It maintains three sets of vertices, letting

S be the set of vertices whose exploration is complete, T be the set of unvisited vertices, and

U = V \ (S ∪ T ), where the vertices of U are kept in a stack (the last in, first out data structure).

It is also assumed that some order σ on the vertices of G is fixed, and the algorithm prioritizes

vertices according to σ. The algorithm starts with S = U = ∅ and T = V , and runs till U ∪ T = ∅.

At each round of the algorithm, if the set U is non-empty, the algorithm queries T for neighbors

of the last vertex v that has been added to U , scanning T according to σ. If v has a neighbor u

in T , the algorithm deletes u from T and inserts it into U . If v does not have a neighbor in T ,

then v is popped out of U and is moved to S. If U is empty, the algorithm chooses the first vertex

of T according to σ, deletes it from T and pushes it into U . In order to complete the exploration

of the graph, whenever the sets U and T have both become empty (at this stage the connected

component structure of G has already been revealed), we make the algorithm query all remaining

pairs of vertices in S = V , not queried before.

Observe that the DFS algorithm starts revealing a connected component C of G at the moment

the first vertex of C gets into (empty beforehand) U and completes discovering all of C when U

becomes empty again. We call a period of time between two consecutive emptyings of U an epoch,
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each epoch corresponds to one connected component of G.

The following properties of the DFS algorithm will be relevant to us:

• at each round of the algorithm one vertex moves, either from T to U , or from U to S;

• at any stage of the algorithm, it has been revealed already that the graph G has no edges

between the current set S and the current set T ;

• the set U always spans a path (indeed, when a vertex u is added to U , it happens because u

is a neighbor of the last vertex v in U ; thus, u augments the path spanned by U , of which v

is the last vertex).

We will run the DFS on a random input G ∼ G(n, p), fixing the order σ on V (G) = [n] to be

the identity permutation. When the DFS algorithm is fed with a sequence of i.i.d. Bernoulli(p)

random variables X̄ = (Xi)
N
i=1, so that is gets its i-th query answered positively if Xi = 1 and

answered negatively otherwise, the so obtained graph is clearly distributed according to G(n, p).

Thus, studying the component structure of G can be reduced to studying the properties of the

random sequence X̄. In particular, observe crucially that as long as T 6= ∅, every positive answer

to a query results in a vertex being moved from T to U , and thus after t queries and assuming T 6= ∅

still, we have |S ∪ U | ≥
∑t

i=1Xi. (The last inequality is strict in fact as the first vertex of each

connected component is moved from T to U “for free”, i.e., without need to get a positive answer

to a query.) On the other hand, since the addition of every vertex, but the first one in a connected

component, to U is caused by a positive answer to a query, we have at time t: |U | ≤ 1 +
∑t

i=1Xi.

The probabilistic part of our argument is provided by the following quite simple lemma.

Lemma 1 Let ǫ > 0 be a small enough constant. Consider the sequence X̄ = (Xi)
N
i=1 of i.i.d.

Bernoulli random variables with parameter p.

1. Let p = 1−ǫ
n . Let k = 7

ǫ2
lnn. Then whp there is no interval of length kn in [N ], in which at

least k of the random variables Xi take value 1.

2. Let p = 1+ǫ
n . Let N0 = ǫn2

2 . Then whp

∣

∣

∣

∑N0
i=1Xi −

ǫ(1+ǫ)n
2

∣

∣

∣
≤ n2/3.

Proof. 1) For a given interval I of length kn in [N ], the sum
∑

i∈I Xi is distributed binomially

with parameters kn and p. Applying the standard Chernoff-type bound (see, e.g., Theorem A.1.11

of [2]) to the upper tail of B(kn, p), and then the union bound, we see that the probability of the

existence of an interval violating the assertion of the lemma is at most

(N − k + 1)Pr[B(kn, p) ≥ k] < n2 · e−
ǫ2

3
(1−ǫ)k < n2 · e−

ǫ2(1−ǫ)
3

7
ǫ2

lnn = o(1) ,

for small enough ǫ > 0.
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2) The sum
∑N0

i=1Xi is distributed binomially with parameters N0 and p. Hence, its expectation is

N0p = ǫn2p
2 = ǫ(1+ǫ)n

2 , and its standard deviation is of order n. Applying the Chebyshev inequality,

we get the required estimate.

Now we are ready to formulate and to prove our main result.

Theorem 1 Let ǫ > 0 be a small enough constant. Let G ∼ G(n, p).

1. Let p = 1−ǫ
n . Then whp all connected components of G are of size at most 7

ǫ2
lnn.

2. Let p = 1+ǫ
n . Then whp G contains a path of length at least ǫ2n

5 .

In both cases, we run the DFS algorithm on G ∼ G(n, p), and assume that the sequence X̄ = (Xi)
N
i=1

of random variables, defining the random graph G ∼ G(n, p) and guiding the DFS algorithm,

satisfies the corresponding part of Lemma 1.

Proof. 1) Assume to the contrary that G contains a connected component C with more than

k = 7
ǫ2

lnn vertices. Let us look at the epoch of the DFS when C was created. Consider the

moment inside this epoch when the algorithm has found the (k + 1)-st vertex of C and is about to

move it to U . Denote ∆S = S ∩ C at that moment. Then |∆S ∪ U | = k, and thus the algorithm

got exactly k positive answers to its queries to random variables Xi during the epoch, with each

positive answer being responsible for revealing a new vertex of C, after the first vertex of C was put

into U in the beginning of the epoch. At that moment during the epoch only pairs of edges touching

∆S ∪U have been queried, and the number of such pairs is therefore at most
(

k
2

)

+ k(n− k) < kn.

It thus follows that the sequence X̄ contains an interval of length at most kn with at least k 1’s

inside – a contradiction to Property 1 of Lemma 1.

2) Assume that the sequence X̄ satisfies Property 2 of Lemma 1. We claim that after the first

N0 = ǫn2

2 queries of the DFS algorithm, the set U contains at least ǫ2n
5 vertices (with the contents

of U forming a path of desired length at that moment). Observe first that |S| < n
3 at time N0.

Indeed, if |S| ≥ n
3 , then let us look at a moment t where |S| = n

3 (such a moment surely exists as

vertices flow to S one by one). At that moment |U | ≤ 1 +
∑t

i=1Xi <
n
3 by Property 2 of Lemma 1.

Then |T | = n−|S|− |U | ≥ n
3 , and the algorithm has examined all |S| · |T | ≥ n2

9 > N0 pairs between

S and T (and found them to be non-edges) – a contradiction. Let us return to time N0. If |S| < n
3

and |U | < ǫ2n
5 then, we have T 6= ∅. This means in particular that the algorithm is still revealing

the connected components of G, and each positive answer it got resulted in moving a vertex from

T to U (some of these vertices may have already moved further from U to S). By Property 2 of

Lemma 1 the number of positive answers at that point is at least ǫ(1+ǫ)n
2 − n2/3. Hence we have

|S ∪U | ≥ ǫ(1+ǫ)n
2 − n2/3. If |U | ≤ ǫ2n

5 , then |S| ≥ ǫn
2 + 3ǫ2n

10 − n2/3. All |S||T | ≥ |S|
(

n− |S| − ǫ2n
5

)

pairs between S and T have been probed by the algorithm (and answered in the negative). We
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thus get:

ǫn2

2
= N0 ≥ |S|

(

n− |S| −
ǫ2n

5

)

≥

(

ǫn

2
+

3ǫ2n

10
− n2/3

)(

n−
ǫn

2
−

ǫ2n

2
+ n2/3

)

=
ǫn2

2
+

ǫ2n2

20
−O(ǫ3)n2 >

ǫn2

2

(we used the assumption |S| < n
3 ), and this is obviously a contradiction, completing the proof.

3 Discussion

1. Observe that using a Chernoff-type bound for the tales of the binomial random variable instead

of the Chebyshev inequality would allow to claim in the second part of Lemma 1 that the sum
∑N0

i=1Xi is close to ǫ(1+ǫ)n
2 with probability exponentially close to 1. This would show in turn,

employing the argument of Theorem 1, that G(n, p) with p = 1+ǫ
n contains a path of length linear

in n with exponentially high probability, namely, with probability 1 − exp{−c(ǫ)n}.

2. The dependencies on ǫ in both parts of Theorem 1 are of the correct order of magnitude – for

p = 1−ǫ
n a largest connected component of G(n, p) is known to be whp of size Θ(ǫ−2) log n (see, e.g.,

Cors. 5.8 and 5.11 of [7]), while for p = 1+ǫ
n a longest cycle of G(n, p) is whp of length Θ(ǫ2)n (see,

e.g., Th. 5.17 of [10]); the standard trick of sprinkling further random edges with edge probability

p′ = o(n−1) shows that if G(n, p) contains whp a path of length αn for some constant α > 0, then

G(n, p+ p′) contains whp a cycle of length at least (α− o(1))n. Note also that although we stated

our result in Theorem 1 for a constant ǫ > 0, our argument is in fact valid for ǫ = ǫ(n) → 0 as

well, with a bit more careful treatment of the error terms in our proofs. Actually, we can take ǫ(n)

to be as low as ǫ ≫ n−1/3 log1/3 n in our arguments (including the theorem in the next remark) –

which nearly borders the critical window ǫ = Θ(n−1/3).

3. The giant component itself in the regime p = 1+ǫ
n , ǫ > 0 a constant, is known to be substantially

larger typically than a longest path – it has whp Θ(ǫ)n vertices (see, e.g., Th. 5.4 of [10]). Using

very similar techniques, we can show the probable existence of a connected component of size Ω(ǫ)n

in this range, as given by the following theorem.

Theorem 2 Let p = 1+ǫ
n , for ǫ > 0 a small enough constant. Let G ∼ G(n, p). Then whp G has

a connected component with at least ǫn
2 vertices.

Proof. The proof is quite similar to that of Theorem 1, and therefore we will allow ourselves to

be rather concise. Here too we run the DFS algorithm on G ∼ G(n, p) and feed it with a sequence

X̄ of i.i.d. Bernoulli(p) random variables X̄ = (Xi)
N
i=1. Denote as before N0 = ǫn2

2 . We will need

the following typical properties of the sequence X̄, slightly generalizing those stated in Part 2. of

Lemma 1 and provable using the same Chernoff-type estimates:
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1.
∑n7/4

i=1 Xi ≤ n5/6;

2. For every n7/4 ≤ t ≤ N0,
∣

∣

∑t
i=1Xi − (1 + ǫ) t

n

∣

∣ ≤ n2/3.

Let us assume now that the sequence X̄ satisfies the above stated properties. We claim that after

the first N0 queries of the DFS algorithm, we are in the midst of revealing a connected component

whose size is at least ǫn
2 . Just as in the proof of Theorem 1 we have that |S| < n

3 at time N0, and T

is still non-empty. It follows that at any moment n7/4 ≤ t ≤ N0 we have: |S ∪U | ≥ (1 + ǫ) t
n −n2/3.

If at some moment t in this interval the set U becomes empty, the algorithm has asked all queries

between the set S and its complement T = [n] − S, implying:

t ≥ |S|(n− |S|) ≥

(

(1 + ǫ)
t

n
− n2/3

)(

n− (1 + ǫ)
t

n
+ n2/3

)

≥ (1 + ǫ)t− (1 + ǫ)2
t2

n2
− 2n5/3

≥ (1 + ǫ)
(

1 − (1 + ǫ)
ǫ

2

)

t− 2n5/3 = (1 + ǫ)

(

1 −
ǫ

2
−

ǫ2

2

)

t− 2n5/3 > t

– a contradiction, for small enough ǫ > 0. (We used |S| < n
3 in the above estimate.) Hence U is

never empty in the interval [n7/4, N0]. It follows that all vertices added to U during this interval

(of which some may have migrated further to S) are in the same connected component, and their

number is, by the properties of X̄ stated above,

N0
∑

i=n7/4

Xi ≥ (1 + ǫ)
N0

n
− n2/3 − n5/6 ≥ (1 + ǫ)

ǫn

2
− 2n5/6 ≥

ǫn

2
.

All these vertices belong to the same connected component – whose size is then at least ǫn
2 , com-

pleting the proof.

4. As we have already mentioned, the DFS algorithm is applicable equally well to directed graphs.

Hence essentially the same argument as above, with obvious minor changes, can be applied to the

model D(n, p) of random digraphs. In this model, the vertex set is [n], and each of the n(n − 1)

ordered pairs (i, j), 1 ≤ i 6= j ≤ n, is a directed edge of D ∼ D(n, p) with probability p = p(n) and

independently from other pairs. In particular we can obtain the following theorem:

Theorem 3 Let p = 1+ǫ
n , for ǫ > 0 constant. Then the random digraph D(n, p) has whp a directed

path and a directed cycle of length Θ(ǫ2)n.

This recovers the classical result of Karp [11] for the model D(n, p).

5. The technique of Theorem 1 can be applied to further models of random graphs and digraphs.

One immediate application is to random subgraphs of graphs of large minimum degree. We have

the following theorem.
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Theorem 4 Let G be a finite graph with minimum degree at least n. Let p = 1+ǫ
n , for ǫ > 0

constant. Form a random subgraph Gp of G by including every edge of G into Gp independently

and with probability p. Then whp Gp has a path of length at least ǫ2n
5 .

The proof is essentially identical to that of Theorem 1. We run the DFS process on Gp and

feed it with a sequence X̄ of i.i.d. Bernoulli(p) random variables X̄ = (Xi)
N
i=1, where N = |E(G)|.

For the proof, we need only to notice that at any time the number of edges of G between S and

T can be estimated from below by |S|(δ(G) − |S| − |U |) ≥ |S|(n− |S| − |U |), the rest of the proof

is the same. Notice that getting a long cycle appears to be a much more challenging task in this

setting – the base graph G can be of girth (much) larger than n, and therefore sprinkling does not

necessarily help (immediately) to turn a long path into a long cycle whp .

6. Another example of applying our technique is random subgraphs of pseudo-random graphs. Let

G be an (n, d, λ)-graph (a d-regular graph on n vertices, in which all eigenvalues of the adjacency

matrix, but the first one, are at most λ in their absolute values – see, e.g. [12] for a thorough

discussion of this notion). It is well known that requiring λ ≪ d is enough to guarantee many

pseudo-random properties of such a graph. The model of taking a random subgraph Gp of an

(n, d, λ)-graph G has been considered by Frieze, Krivelevich and Martin in [9]. It is proven in [9]

that, assuming λ ≪ d, for p = 1+ǫ
d the random subgraph Gp of an an (n, d, λ)-graph G has whp

the unique connected component of size linear in n. We can apply the technique of Theorem 1 to

prove the following:

Theorem 5 Let G be an (n, d, λ)-graph with λ = o(d). Let p = 1+ǫ
d , for ǫ > 0 constant. Then the

random subgraph Gp contains whp a path of length Θ(ǫ2)n.

Here is a very brief sketch of the proof. We run the DFS algorithm on Gp till it queries ǫdn
2 edges

of G.

Similarly to Lemma 1, it gets whp about ǫ(1+ǫ)n
2 positive answers during this period, when fed

with a string of i.i.d. Bernoulli
(

1+ǫ
d

)

random variables. In order for the proof analogous to that of

Theorem 1 to go through, one only needs to be able to control the number of edges between any

two linear sized vertex subsets S, T in G. Such a control is indeed available for (n, d, λ)-graphs – it

is known that if G is an (n, d, λ)-graph, then for any two vertex subsets S, T ⊆ V (G) the number

eG(S, T ) of edges of G with one endpoint in S and another in T satisfies:

∣

∣

∣

∣

eG(S, T ) −
d

n
|S| |T |

∣

∣

∣

∣

≤ λ
√

|S||T |

(see, e.g. Corollary 9.2.5 of [2] or Theorem 2.11 of [12]). Assuming λ ≪ d is enough therefore

to guarantee that eG(S, T ) = (1 + o(1)) d
n |S|||T | in such a graph, and the proof for the random

subgraph proceeds as in Theorem 1. Here too sprinkling helps to turn a long path into a long cycle
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whp – we first get whp a linearly long path and then argue that due to the above estimate on the

edge distribution of G there are Θ(dn) edges between the prefix and the suffix of the path, and one

of them will whp fall into a sprinkled graph, thus closing a long cycle.

7. Yet another application of our proof strategy is to positional games. The following game L(n, b)

was considered by Bednarska and  Luczak in [3]. The game is played between two players, Maker and

Breaker, alternately claiming 1 and b edges, respectively, of the complete graph Kn on n vertices, till

all edges of Kn have been claimed by either of the players. Maker’s goal is to maximize the number

of vertices in a largest connected component in her graph by the end of the game, Breakers aims

to make it as small as possible. Bednarska and  Luczak discovered the following phase transition

phenomenon, obviously reminiscent of the Erdős-Rényi phase transition in random graphs. Let

ǫ > 0 be a constant. If b = (1 + ǫ)n then Breaker has a strategy to keep all of Maker’s connected

components of size O(1/ǫ). On the other hand, if b = (1− ǫ)n, then Maker has a strategy to create

a connected component of size Θ(ǫ)n. We can prove the following result.

Theorem 6 Let ǫ > 0. Then in the game L(n, b) with b = (1− ǫ)n, Maker has a strategy to create

a path of length Θ(ǫ2)n.

The winning strategy of Maker and the proof of its validity are fairly similar to the proof of Theorem

1. Maker maintains three sets S,U, T partitioning [n], starting with S = ∅, and U being an arbitrary

vertex from [n]. She makes sure that the set U always spans a path of her edges at any stage of the

game. At each Maker’s turn, she finds the last vertex v along the path in U for which there exists

an unclaimed edge (v, u) with u ∈ T , shifts all further vertices after v along U into S and claims

the edge (v, u), moving u from T to U . If no such vertex is available along the current path in U ,

Maker moves all of its vertices into S, loads U with an arbitrary vertex u from T and then proceeds

as described before. One can observe that, similarly to the analysis of the DFS algorithm, at any

stage of the game all edges between the current set S and the current set T have been claimed by

Breaker. Now, look at the situation in the game after ǫn
2 rounds. At that point |S ∪ U | ≥ ǫn

2 . If

one has |U | ≤ ǫ2n
5 , then all

|S| |T | ≥

(

ǫn

2
−

ǫ2n

5

)

(

n−
ǫn

2

)

>
ǫn

2
(1 − ǫ)n

edges between S and T have been claimed by Breaker – a contradiction, for small enough ǫ > 0.

The situation with making a cycle is quite different here – it has been shown by Bednarska and

Pikhurko [4] that if b = b(n) is such that Maker completes the game with at most n− 1 edges, then

Breaker has a strategy to force Maker to end up with a tree; thus b ≥ (1 + o(1))n/2 is required for

Maker to create a cycle of any length.

8. Some of the idea utilized in this paper have already been applied before. In particular, the DFS

algorithm has been used by Ben-Eliezer and the authors in [6] to prove the following statement:
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if in a graph G on n vertices there is an edge between every pair of disjoint vertex subsets of size

k, then G contains a path of length n− 2k + 1. This deterministic statement implies readily that

G(n, p) with p = c/n contains whp a path of length (1 − α(c))n, where α(c) → 0 as c → ∞. Also,

Benjamini and Schramm [5] used the idea of coupling a graph search algorithm with a sequence X̄ of

random bits, serving as answers to the algorithm’s queries, to derive some results about percolation

in expanding graphs.
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