Induced subgraphs of prescribed size

Noga Alon* Michael Krivelevich† Benny Sudakov ‡

Abstract

A subgraph of a graph G is called trivial if it is either a clique or an independent set. Let $q(G)$ denote the maximum number of vertices in a trivial subgraph of G. Motivated by an open problem of Erdős and McKay we show that every graph G on n vertices for which $q(G) \leq C \log n$ contains an induced subgraph with exactly y edges, for every y between 0 and $n^{\delta(C)}$. Our methods enable us also to show that under much weaker assumption, i.e., $q(G) \leq n/14$, G still must contain an induced subgraph with exactly y edges, for every y between 0 and $e^{\Omega(\sqrt{\log n})}$.

1 Introduction

All graphs considered here are finite, undirected and simple. For a graph $G = (V,E)$, let $\alpha(G)$ denote the independence number of G and let $w(G)$ denote the maximum number of vertices of a clique in G. Let $q(G) = \max\{\alpha(G), w(G)\}$ denote the maximum number of vertices in a trivial induced subgraph of G. By Ramsey Theorem (see, e.g., [10]), $q(G) \geq \Omega(\log n)$ for every graph G with n vertices. Let $u(G)$ denote the maximum integer u, such that for every integer y between 0 and u, G contains an induced subgraph with precisely y edges. Erdős and McKay [5] (see also [6], [7] and [4], p. 86) raised the following conjecture:

Conjecture 1.1 For every $C > 0$ there is a $\delta = \delta(C) > 0$, such that every graph G on n vertices for which $q(G) \leq C \log n$ satisfies $u(G) \geq \delta n^2$.

Very little is known about this conjecture. In [3] it is proved for random graphs. For non-random graphs, Erdős and McKay proved the following much weaker result: if G has n vertices and $q(G) \leq C \log n$, then $u(G) \geq \delta(C) \log^2 n$. Here we prove the following, which improves the $\Omega(\log^2 n)$ estimate considerably, but is still far from settling the conjecture.

*Institute for Advanced Study, Princeton, NJ 08540, USA and Department of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: nogaa@post.tau.ac.il. Research supported in part by a State of New Jersey grant, by a USA-Israeli BSF grant, by a grant from the Israel Science Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.

†Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: krivelev@post.tau.ac.il. Research supported in part by a USA-Israel BSF Grant, by a grant from the Israel Science Foundation and by a Bergmann Memorial Grant.

‡Department of Mathematics, Princeton University, Princeton, NJ 08540, USA and Institute for Advanced Study, Princeton, NJ 08540, USA. Email address: bsudakov@math.princeton.edu. Research supported in part by NSF grants DMS-0106589, CCR-9987845 and by the State of New Jersey.
Theorem 1.2 For every $C > 0$ there is a $\delta = \delta(C) > 0$, such that every graph G on n vertices for which $q(G) \leq C \log n$ satisfies $u(G) \geq n^\delta$.

We suspect that $u(G)$ has to be large even if $q(G)$ is much larger than $C \log n$. In fact, we propose the following conjecture.

Conjecture 1.3 Every graph $G = (V, E)$ on n vertices for which $q(G) \leq n/4$ satisfies $u(G) \geq \Omega(|E|)$.

By Corollary 3.6 below the assertion of this conjecture implies that of Conjecture 1.1. Notice that the assumption $q(G) \leq n/4$ cannot be replaced by the weaker assumption $q(G) \leq n/3 + O(1)$, as a graph G composed of two cliques and one independent set, of size $n/3$ each, does not contain an induced subgraph with five edges.

Our methods enable us to show that the following weaker statement holds for any graph G satisfying the above assumption.

Theorem 1.4 There exists a constant $c > 0$, such that every graph G on n vertices for which $q(G) \leq n/14$ satisfies $u(G) \geq e^{c\sqrt{\log n}}$.

Throughout the paper we omit all floor and ceiling signs whenever these are not crucial. All logarithms are in base 2, unless otherwise specified. We make no attempt to optimize the absolute constants in our estimates and assume, whenever needed, that the number of vertices n of the graph considered is sufficiently large.

2 Sets with large intersection and large complements-intersection

Lemma 2.1 Let \mathcal{F} be a family of s subsets of $M = \{1, 2, \ldots, m\}$, and suppose that each $F \in \mathcal{F}$ satisfies $\epsilon m \leq |F| \leq (1 - \epsilon)m$. Suppose, further, that there are integers a, b, t such that

$$s(\epsilon(1 - \epsilon))^t - \binom{s}{a}\delta^t > b - 1.$$

Then there is a subset $\mathcal{G} \subset \mathcal{F}$ of b members of \mathcal{F} such that the intersection of every a members of \mathcal{G} has cardinality larger than δm, and the intersection of the complements of every a members of \mathcal{G} has cardinality larger than δm.

Proof. We apply a modified version of an argument used in [2]. Let A_1 and A_2 be two random subsets of M, each obtained by picking, randomly, independently and with repetitions, t members of M. Define $\mathcal{G}' = \{F \in \mathcal{F} : A_1 \subset F, F \cap A_2 = \emptyset\}$. The probability that a fixed set $F \in \mathcal{F}$ lies in \mathcal{G}' is

$$\left(\frac{|F|}{m}\right)^t \left(\frac{m - |F|}{m}\right)^t \geq (\epsilon(1 - \epsilon))^t.$$

Call a subfamily S of a members of \mathcal{F} bad if either the cardinality of the intersection of all members of S or the cardinality of the intersection of all the complements of these members is at most δm. If
S is such a bad subfamily, then the probability it lies in G' is at most δ^t. Indeed, if the cardinality of the intersection of all members of S is at most δm, then the probability that all members of A_1 lie in all these members is at most δ^t, and if the cardinality of the intersection of the complements is at most δm, then the probability that all members of A_2 lie in all complements is at most δ^t. By linearity of expectation, it follows that the expected value of the random variable counting the size of G' minus the number of bad a-tuples contained in G' is at least

$$s\left(\epsilon(1-\epsilon)\right)^t - \left(\frac{s}{a}\right)\delta^t > b - 1.$$

Hence there is a particular choice of A_1, A_2 such that the corresponding difference is at least b. Let \mathcal{G} be a subset of G' of cardinality b obtained from \mathcal{G} by removing at least one member from each bad a-tuple. This \mathcal{G} clearly possesses the required properties. □

We need the following two special cases of the last lemma.

Corollary 2.2 Let \mathcal{F} be a family of subsets of $M = \{1, 2, \ldots, m\}$, and suppose that each $F \in \mathcal{F}$ satisfies $\epsilon m \leq |F| \leq (1-\epsilon)m$.

(i) If $|\mathcal{F}| \geq (4/\epsilon)^2$ then \mathcal{F} contains two sets such that the size of their intersection and the size of the intersection of their complements are both at least $(\epsilon/4)^2 m$.

(ii) If m is large enough, $|\mathcal{F}| \geq m^{3/4}$ and $\epsilon(1-\epsilon) \geq m^{-1/30}$, then \mathcal{F} contains a family of at least $m^{0.6}$ sets, so that the intersection of each three of them is of size at least $m^{1/2}$, and the intersection of the complements of each three of them is of size at least $m^{1/2}$.

Proof. Part (i) follows by applying the lemma with $s = (4/\epsilon)^2$, $a = b = t = 2$ and $\delta = (\epsilon/4)^2$. Part (ii) follows by applying the lemma with $s = m^{3/4}$, $a = 3$, $t = 4$, $\delta = m^{-1/2}$ and $b = m^{0.6}$. □

3 Density and induced subgraphs

For a real $\gamma < 1/2$ and an integer t, call a graph G (γ, t)-balanced if the number of edges in the induced subgraph of G on any set of $r \geq t$ vertices is at least $\gamma \binom{r}{2}$ and at most $(1-\gamma) \binom{r}{2}$ edges. We need the following simple fact.

Lemma 3.1 Let $G = (V, E)$ be a $(\gamma, n/3)$-balanced graph on n vertices. Then there is a set U of $\gamma n/6$ vertices of G such that for $W = V - U$ and for each $u \in U$, u has at least $\gamma |W|/6$ and at most $(1-\gamma/6)|W|$ neighbors in W.

Proof. If G has at least $n/2$ vertices of degree at most $(n-1)/2$, let V_1 be a set of $n/2$ such vertices. By assumption there are at least $\gamma \left(\frac{n}{2}\right)$ edges in the induced subgraph on V_1, and hence it contains a vertex of degree bigger than $\gamma n/3$. Omitting this vertex from V_1 and applying the same reasoning to the remaining subgraph, we get another vertex of degree at least $\gamma n/3$. Continue in this manner $\gamma n/6$ steps to get a set U of $\gamma n/6$ vertices. This set clearly satisfies the requirements. Indeed, by definition, every vertex in U has at most $(n-1)/2 < (1-\gamma/6)^2 n = (1-\gamma/6)|V - U|$
neighbors. On the other hand it has at least $\gamma n / 3 - \gamma n / 6 = \gamma n / 6$ neighbors outside U. If G does not have at least $n/2$ vertices of degree at most $(n - 1)/2$, we apply the same argument to its complement.

The following lemma is crucial in the proof of the main results.

Lemma 3.2 Let $G = (V, E)$ be a $(6\varepsilon, n^{0.2})$-balanced graph on n vertices, and suppose that $\varepsilon \geq n^{-0.01}$. Define $\delta = 0.5(\varepsilon/4)^2$ and put $k = 0.3 \frac{\log n}{\log(1/\delta)} - 1$. Then there are pairwise disjoint subsets of vertices $A_0, A_1, \ldots, A_{k+1}, B_0, B_1, \ldots, B_{k+1}$ with the following properties:

(i) $|A_i| = 2^i$ for each i.

(ii) $|B_0| = 3$ and $|B_i| = 2$ for each $i \geq 1$.

(iii) B_0 is an independent set in G.

(iv) Each vertex of B_i is connected to each vertex of A_i, and is not connected to any vertex of A_j for $j > i$.

(v) There are no edges connecting vertices of two distinct sets B_i.

(vi) The induced subgraph of G on A_i contains at least $6\varepsilon \binom{|A_i|}{2}$ edges.

Proof. By Lemma 3.1 there is a set U_0 of εn vertices of G, so that for $W_0 = V - U_0$, $|W_0| = m_0$, each vertex of U has at least εm_0 and at most $(1 - \varepsilon)m_0$ neighbors in W_0. Therefore, by Corollary 2.2, part (ii), there is a set S of at least $m_0^{0.6} > n^{0.5}$ vertices in U_0, so that any three of them have at least $m_0^{0.5} \geq n^{0.5}/2$ common neighbors and at least $m_0^{0.5} \geq n^{0.5}/2$ common non-neighbors in W_0. Since G is $(6\varepsilon, n^{0.2})$-balanced, its induced subgraph on S contains an independent set of size three (simply by taking, repeatedly, a vertex of minimum degree in this subgraph, and omitting all its neighbors). Let A_0 be a set consisting of an arbitrarily chosen common neighbor of these three vertices, and let B_0 be the set of these three vertices. Define also C_1 to be the set of all common non-neighbors of the vertices in B_0 inside W_0. Therefore $|C_1| \geq n^{0.5}/2$. By Lemma 3.1 applied to the induced subgraph on C_1, it contains a set U_1 of $\varepsilon |C_1| \geq (4/\varepsilon)^2$ vertices such that for $W_1 = C_1 - U_1$, $|W_1| = m_1$, each vertex of U_1 has at least εm_1 and at most $(1 - \varepsilon)m_1$ neighbors in W_1. By Corollary 2.2, part (i), there is a set B_1 of two vertices of U_1, having at least $(\varepsilon/4)^2 m_1 \geq 0.5(\varepsilon/4)^2 |C_1| = \delta |C_1| \geq 0.5\delta n^{0.5}$ common non-neighbors and at least $0.5\delta n^{0.5}$ common neighbors in W_1. Let A_1 be a set of two of these common neighbors that contains the maximum number of edges among all possible choices for the set A_1 (one edge in this particular case), and let C_2 be the set of all common non-neighbors. Note that by averaging, and as G is $(6\varepsilon, n^{0.2})$-balanced, the number of edges on A_1 is at least $6\varepsilon \binom{|A_1|}{2}$. Note also that there are no edges between B_0 and A_1.

Applying the same argument to the induced subgraph on C_2 we find in it pairwise disjoint sets B_2 of two vertices, A_2 of four vertices, and C_3 of size at least $0.5\delta^2 n^{0.5}$, so that each member of B_2 is connected to each member of A_2 but to no member of C_3, and A_2 contains at least $6\varepsilon \binom{|A_2|}{2}$ edges. We can clearly continue this process as long as the resulting sets C_i are of size that exceeds $n^{0.2}$, thus obtaining all sets A_i, B_i. The construction easily implies that these sets satisfy all the required conditions (i)-(vi).

□

4
Corollary 3.3 Let G, e, n, δ and k be as in Lemma 3.2. Then $w(G) \geq 6e\left(\frac{\rho^k}{2}\right)$, that is, for every integer y between 0 and $6e\left(\frac{\rho^k}{2}\right)$, G contains an induced subgraph with precisely y edges.

Proof. Let $a_1, a_2, a_3, \ldots, a_p$ be an ordering of all vertices of $\bigcup_i A_i$ starting with the unique vertex of A_0, followed by those in A_1, then by those in A_2, etc. Given an integer y in the range above, let j be the largest integer such that the induced subgraph of G on $A = \{a_1, a_2, \ldots, a_j\}$ has at most y edges. Let z denote the number of edges in this induced subgraph. Notice that as $y \leq 6e\left(\frac{\rho^k}{2}\right)$ and the set A_k spans at least $6e\left(\frac{\rho^k}{2}\right)$ edges, we get $j < p$. By the maximality of j, the number of neighbors of a_{j+1} in A is bigger than $y - z$, and hence $|A| > y - z$. To complete the proof we show that one can append to A appropriate vertices from the sets B_i to get an induced subgraph with the required number of edges. Note that the set A consists of the union of all sets A_i for i between 0 and some $d \leq k$, together with some vertices of A_{d+1}. Therefore we have $|A| \leq \sum_{i=0}^{d+1} 2^i$. Observe also that for each $1 \leq i \leq d$ and $b \in B_i$,

$$2^i = |A_i| = d(b, A_i) \leq d(b, A) \leq \sum_{j=0}^{i} |A_j| = 1 + \ldots + 2^i < 2^{i+1},$$

where $d(v, U)$ denotes the number of neighbors of v in a subset U of V.

The proof will easily follow from the proposition below.

Proposition 3.4 If $2^{i+1} \leq y - z < 2^{i+2}$ for $1 \leq i \leq k$, then one can add some vertices from B_i to A to get $y - z' < 2^{i+1}$, where z' is the number of edges in the induced graph on the augmented set.

Proof of Proposition 3.4. Let $B_i = \{b_{i1}, b_{i2}\}$. First we add b_{i1} to A. Recalling (1), we get $y - z' < 2^{i+2} - 2^i = 3 \cdot 2^i$ (where z' is the number of edges in the new set A). If $y - z' < 2^{i+1}$, then we are done, otherwise $y - z' \geq 2^{i+1}$, while the degree of b_{i2} to the new set A is less than $2^{i+1} + 1$, i.e. at most 2^{i+1}, again due to (1). Adding b_{i2} decreases the difference $y - z$ by at least 2^i, thus making it less than $3 \cdot 2^i - 2^i = 2^{i+1}$. Also, the new difference $y - z'$ is still non-negative as z' increases by at most 2^{i+1} when adding b_{i2}. \hfill \Box

To prove the corollary, recall that initially $y - z < |A| \leq \sum_{i=0}^{d+1} |A_i| < 2^{d+2}$. As long as $y - z \geq 2^i$, we find an index $1 \leq i \leq d + 1$ such that $2^{i+1} \leq y - z < 2^{i+2}$ and apply Proposition 3.4 to reduce the difference $y - z$ below 2^{i+1}, using vertices from B_i. Once we reach $y - z < 2^2 = 4$, we add $y - z$ vertices from B_0, obtaining the required number of edges. \hfill \Box

Finally to prove Theorem 1.2 we need also the following lemma of Erdős and Szemerédi [8].

Lemma 3.5 Let G be a graph of order n with at most n^2/s edges. Then G contains a trivial subgraph on at least $\Omega\left(\frac{1}{\log s \log n}\right)$ vertices.

We rephrase Lemma 3.5 in the following more convenient form.

Corollary 3.6 Let G be a non-(ε, t)-balanced graph. Then $q(G) = \Omega\left(\frac{\log t}{\varepsilon \log(1/\varepsilon)}\right)$.

5
Proof. By assumption, there is a subset \(V_0 \subseteq V(G) \) of cardinality \(|V_0| \geq t\) such that \(V_0 \) spans either more than \((1 - \varepsilon)\binom{|V_0|}{2}\) or less than \(\varepsilon\binom{|V_0|}{2}\) edges. By averaging we can find a subset \(U_0 \subseteq V_0 \) of cardinality exactly \(t \) whose density in \(G \) is either more than \(1 - \varepsilon\) or less than \(\varepsilon\). In the first case we apply Lemma 3.5 to \(G[U_0] \), in the second to \(\overline{G[U_0]} \), where \(\overline{G} \) denotes the complement of \(G \). \(\square \)

Proof of Theorem 1.2. Let \(G = (V, E) \) be a graph with \(n \) vertices satisfying \(q(G) \leq C \log n \). By Corollary 3.6 it follows that there is an \(\beta = \beta(C) > 0 \), so that \(G \) is \((\beta, n^{0.2})\)-balanced. We may assume that \(n \) is large enough and thus \(\beta \geq n^{-0.01} \). By Corollary 3.3 this implies that \(u(G) \geq n^\delta \) for some constant \(\delta = \delta(C) > 0 \). \(\square \)

4 Graphs with large trivial subgraphs

In this section we present the proof of Theorem 1.4. First we need to obtain a lower bound on \(u(H) \) for a bipartite graph \(H \) with positive degrees. This is done in the following simple lemma, which may be of independent interest.

Lemma 4.1 Let \(H \) be a bipartite graph with classes of vertices \(A \) and \(B \) such that every vertex of \(A \) has a positive degree. Then \(u(H) \geq |A| \).

Proof. Let \(B' \subseteq B \) be a subset of minimum cardinality of \(B \) such that each vertex of \(A \) has at least one neighbor in \(B' \). Put \(|A| = n\), and let \(d_1 \leq d_2 \leq \ldots \leq d_n \) be the degrees of the vertices of \(A \) in the induced subgraph \(H' \) of \(H \) on \(A \cup B' \). We assume that the vertices of \(A \) are \(1, \ldots, n \). Also for every \(j \in A \), let \(N_j \) be the set of neighbors of this vertex in \(B' \). By the minimality of \(B' \), \(d_1 = 1 \). Similarly, by the minimality of \(B' \) for each \(i > 1 \) we have \(d_i \leq d_1 + d_2 + \ldots + d_{i-1} \). Otherwise we can delete an arbitrary vertex of \(B' \) not in \(\bigcup_{j=1}^{i-1} N_j \), keeping all degrees in \(A \) positive and contradicting the minimality. Therefore it is easy to see that every integer up to \(\sum_{i=1}^{n} d_i \geq n \) can be written as a sum of a subset of the set \(\{d_1, \ldots, d_n\} \), and is thus equal to the number of edges in the corresponding induced subgraph of \(H' \) (and hence of \(H \)). \(\square \)

Remark. This result is clearly tight, as shown by a star (that is, by the trivial case \(|B| = 1\)) or by a complete bipartite graph on \(A \) and \(B \) with \(|B| \leq |A| \), in case \(|A| + 1 \) is a prime.

Next we need the following easy lemma which deals with the possible sizes of induced subgraphs in a graph which is either a disjoint union of cycles or a long path.

Lemma 4.2 Let \(k \) be an integer and let \(H \) be a graph which is either (i) a disjoint union of \(k \) cycles or (ii) a path of length \(3k - 1 \). Then for every integers \(m \leq k \) and \(t \leq m - 2 \) there exists an induced subgraph of \(H \) with exactly \(m \) vertices and \(t \) edges.

Proof. Since we can always consider a subgraph of \(H \) induced by the union of the first \(m \) cycles in case (i) or a subpath of length \(3m - 1 \) in case (ii), it is enough to prove this statement only for \(m = k \).
(i) Denote by \(c_1, \ldots, c_k \) the lengths of the cycles forming \(H \). Given an integer \(t \leq k - 2 \), let \(j \) be the index such that \(c_1 + \cdots + c_{j-1} \leq t < c_1 + \cdots + c_j \). If \(c_1 + \cdots + c_j \geq t + 2 \) then we can delete a few consecutive vertices from the \(j \)-th cycle to obtain a graph with exactly \(t \) edges. It is easy to see that the number of vertices of this graph is \(t + 1 < k \). Otherwise \(c_1 + \cdots + c_j = t + 1 \). Then we can delete one vertex from the \(j \)-th cycle and add any two vertices which form an edge from the next cycle. In this case we obtain a graph with \(t \) edges and \(t + 2 \leq k \) vertices. Note that in both cases we constructed an induced subgraph of \(H \) with exactly \(t \) edges and at most \(k \) vertices. Since the total number of disjoint cycles is \(k \) we can now add to our graph one by one isolated vertices from the remaining cycles until we obtain a graph with exactly \(k \) vertices.

(ii) To prove the assertion of the lemma in this case just pick the first \(t + 1 \) vertices of the path and add an independent set of size \(k - (t + 1) \) which is a subset of the last \(2k - 2 \) vertices of the path.

A number is triangular if it is of the form \(\binom{a}{2} \) for some positive integer \(a \). We need the following well known result proved by Gauss (see, e.g., [9], p 179).

Proposition 4.3 Every positive integer is a sum of at most three triangular numbers.

Having finished all the necessary preparations we are now ready to complete the proof of our second theorem.

Proof of Theorem 1.4. Let \(G = (V, E) \) be a graph of order \(n \) such that \(q(G) \leq n/14 \) and let \(I \) be a largest independent set in \(G \). Denote by \(G' \) the subgraph of \(G \) induced by the set \(V' = V - I \) and let \(I' \) be the maximum independent set in \(G' \). By the definition of \(I \), every vertex of \(I' \) has at least one neighbor in \(I \). Therefore the set \(I \cup I' \) induces a bipartite subgraph \(H \) of \(G \) which satisfies the condition of Lemma 4.1. This implies that \(u(G) \geq u(H) \geq |I'| \). Thus, if \(|I'| \geq e^{0.2\sqrt{\log n}} \) then we are done. Otherwise we have \(\alpha(G') \leq e^{0.2\sqrt{\log n}} \).

Next suppose that there is a subset \(X \subseteq V' \) of size at least \(n^{1/2} \) such that the induced subgraph \(G'[X] \) contains no clique of order at least \(e^{0.2\sqrt{\log n}} \). Then, by the above discussion, \(q(G'[X]) \leq e^{0.2\sqrt{\log n}} \) and it follows easily from Corollary 3.6 that \(G'[X] \) is \((e^{-0.2\sqrt{\log n}}, |X|^{0.2})\)-balanced. Now Lemma 3.2 and Corollary 3.3 imply that \(u(G) \geq u(G'[X]) \geq e^{0.2\sqrt{\log n}} \) and we are done again.

Denote by \(m \) the number of vertices in \(G' \). Then \(m \geq 13n/14 \) and \(q(G') \leq q(G) \leq n/14 \leq m/13 \). In addition, we now may assume that every subset of vertices of \(G' \) of order at least \(2m^{1/2} > n^{1/2} \) contains a clique of size larger than \(e^{0.2\sqrt{\log n}} > e^{0.2\sqrt{\log m}} \). Since \(u(G) \geq u(G') \) it is enough to bound \(u(G') \). Our plan is as follows. We will find six large disjoint cliques \(W_1, \ldots, W_6 \) of comparable sizes in \(G' \) such that for every pair \((W_i, W_j)\) the corresponding bipartite graph \(G'[W_i, W_j] \) either has almost all edges or almost no edges. By Ramsey, for some three of the cliques the corresponding bipartite graphs are either all very sparse or all very dense. In the former case we will find three non-connected large cliques and then apply Proposition 4.3; in the latter case we will look at the complement of \(G' \) and apply Lemma 4.2 there.

We start with \(G' \) and delete repeatedly maximal sized cliques till we are left with less than \(2m^{1/2} \) vertices. Let \(W_1, \ldots, W_k \) be the deleted cliques, and let \(w_1 \geq \cdots \geq w_k \) be their corresponding sizes.
According to the above discussion \(w_1 \leq m/13 \) and \(w_k > e^{0.2\sqrt{\log m}} \). Also, \(\sum_{i=1}^{k} w_i \geq m - 2m^{1/2} \).

If for all \(1 \leq i \leq k - 5 \) we have \(w_{i+5}/w_i < 3/5 \), then \(w_j < (3/5)^j w_1 \) for all \(j \geq 5 \), and thus \(\sum_{i=1}^{k} w_i \leq 5 \sum_{i=0}^{k/5-1} 5^{k/5-1} (3/5)^j w_1 < 25w_1/2 \leq 25m/26 \) - a contradiction. Hence we conclude that there is an \(i_0 \), \(1 \leq i_0 \leq k - 5 \), such that \(w_j \geq (3/5)^j w_{i_0} \) for \(i_0 + 1 \leq j \leq i_0 + 5 \).

For a vertex \(v \in W_j \) denote by \(N_{W_i}(v) \) the set of neighbors of \(v \) in \(W_i \), \(i \neq j \). First consider the case when for some \(v \), both \(N_{W_i}(v) \) and \(W_i - N_{W_i}(v) \) have size at least \(e^{0.01\sqrt{\log m}} \). Then for every two integers \(0 \leq a \leq e^{0.01\sqrt{\log m}} \) and \(0 \leq b \leq a - 1 \) if we pick any \(b \) vertices from \(N_{W_i}(v) \) and \(a - b \) vertices from \(W_i - N_{W_i}(v) \), then together with \(v \) we obtain a set which spans exactly \(\binom{a}{2} + b \) edges. This immediately implies that \(u(G) \geq e^{0.01\sqrt{\log m}} - e^{\Omega(\sqrt{\log m})} \). Hence we can assume that for all \(i \neq j \), the degree \(d_{W_i}(v) \) of every vertex \(v \in W_j \) is either less than \(e^{0.01\sqrt{\log m}} \) or larger than \(\frac{1}{2} |W_i| - e^{0.01\sqrt{\log m}} \).

Denote by \(e(W_i, W_j) \) the number of edges between \(W_i \) and \(W_j \). Let \(X \subseteq W_j \) be the set of all vertices with degree in \(W_i \) less than \(e^{0.01\sqrt{\log m}} \) and suppose that \(|X| \geq e^{0.01\sqrt{\log m}} \). Let \(X' \) be a subset of \(X \) of size \(e^{0.01\sqrt{\log m}} \) and let \(Y' \) be the set of all neighbors of vertices from \(X' \) in \(W_i \). Clearly \(|Y'| \leq e^{0.01\sqrt{\log m}} |X'| = e^{0.02\sqrt{\log m}} \). Consider a vertex \(u \in W_i - Y' \). This vertex is not adjacent to any vertex of \(X' \) and hence has at least \(e^{0.01\sqrt{\log m}} \) non-neighbors in \(W_j \). Thus, by the above discussion, we know that \(d_{W_j}(u) \leq e^{0.01\sqrt{\log m}} \). Using the fact that \(|W_i|, |W_j| \geq e^{0.2\sqrt{\log m}} \) we can conclude that

\[
e(W_i, W_j) \leq e^{0.1\sqrt{\log m}} |W_i - Y'| + |Y'||W_j| \leq e^{0.01\sqrt{\log m}} |W_i| + e^{0.02\sqrt{\log m}} |W_j| \leq e^{0.1\sqrt{\log m}} |W_i||W_j|.
\]

On the other hand, if \(|X| \leq e^{0.01\sqrt{\log m}} \) then all the vertices in \(W_j - X \) have at least \(|W_i| - e^{0.01\sqrt{\log m}} \) neighbors in \(|W_i| \). This, together with the fact that \(|W_i|, |W_j| \geq e^{0.2\sqrt{\log m}} \), implies

\[
e(W_i, W_j) \geq \left(|W_j| - e^{0.01\sqrt{\log m}} \right) \left(|W_i| - e^{0.01\sqrt{\log m}} \right) \geq \left(1 - e^{-0.1\sqrt{\log m}} \right) |W_i||W_j|.
\]

Now we can assume that for every \(i_0 \leq j_1 < j_2 \leq i_0 + 5 \) either

\[
e(W_{j_1}, W_{j_2}) \leq e^{-0.1\sqrt{\log m}} \quad \text{or} \quad e(W_{j_1}, W_{j_2}) \geq 1 - e^{-0.1\sqrt{\log m}}.
\]

Then, by the well known, simple fact that the diagonal Ramsey number \(R(3, 3) \) is 6 the above set of cliques \(W_{i_0}, \ldots, W_{i_0+5} \) contains a triple \(W_{j_1}, W_{j_2}, W_{j_3} \), \(i_0 \leq j_1 < j_2 < j_3 \leq i_0 + 5 \), in which either all the pairs satisfy the first inequality or all the pairs satisfy the second inequality. To finish the proof of the theorem it is enough to consider the following two cases.

Case 1. For every \(1 \leq i_1 < i_2 \leq 3 \), \(e(W_{j_1}, W_{j_2}) \leq e^{-0.1\sqrt{\log m}} \). Then an easy counting shows that there are at least \(|W_{j_1}|/3 \) vertices in \(W_{j_1} \) with at most \(3e^{-0.1\sqrt{\log m}} |W_{j_2}| \) neighbors in \(W_{j_2} \), \(i = 2, 3 \). Let \(X_1 \) be any set of such vertices of size \(e^{0.05\sqrt{\log m}} \) and let \(W'_{j_1}, W'_{j_2}, W'_{j_3} \) be the sets of all neighbors of vertices from \(X_1 \) in \(W_{j_2} \) and \(W_{j_3} \), respectively. Then by definition, \(|W'_{j_1}| \leq 3e^{-0.1\sqrt{\log m}} |X_1| = 3e^{-0.05\sqrt{\log m}} |W_{j_2}| \). Also, since \(e(W_{j_2}, W_{j_3}) \leq e^{-0.1\sqrt{\log m}} |W_{j_2}||W_{j_3}| \) there exist at least \(2|W_{j_2}|/3 \) vertices in \(W_{j_2} \) with at most \(3e^{-0.1\sqrt{\log m}} |W_{j_3}| \) neighbors in \(W_{j_2} \). Let \(X_2 \) be a set of such vertices of size \(e^{0.05\sqrt{\log m}} \) which is disjoint from \(W'_{j_2} \). Note that the existence of
X_2 follows from the fact that $2|W_{j_1}|/3 \geq |W_{j_2}|$. Let W'_{j_3} be the set of all neighbors of vertices from X_2 in W_{j_3}. Then $|W'_{j_3}| \leq 3e^{-0.05\sqrt{\log m}}|W_{j_3}|$ and hence $|W_{j_3}| \geq |W'_{j_3}| + |W_{j_3}^t|$. Finally let X_3 be any subset of W_{j_3} of size $e^{0.05\sqrt{\log m}}$ which is disjoint from $W_{j_3}^t \cup W'_{j_3}$. Then $\bigcup_{i} X_i$ induces a subgraph H of G, which is a disjoint union of cliques of order $e^{0.05\sqrt{\log m}}$ with no edges between them. Clearly, every number of the form $\left(\frac{x}{y}\right) + \left(\frac{y}{z}\right) + \left(\frac{z}{x}\right)$, $0 \leq x, y, z \leq e^{0.05\sqrt{\log m}}$ can be obtained as the number of edges in an appropriate induced subgraph of H. Therefore, by Proposition 4.3, $u(G) \geq u(H) \geq e^{0.05\sqrt{\log m}} = e^{O(\sqrt{\log n})}$.

Case 2. For every $1 \leq i_1 < i_2 \leq 3$, $e(W_{j_1}, W_{j_2}) \geq 1 - e^{-0.1\sqrt{\log m}}$. Denote by H the subgraph of G' induced by the union of sets $W_{j_1}, W_{j_2}, W_{j_3}$. Let \overline{H} be the complement of H and let l be the number of vertices in \overline{H}. Note that by our construction the set W_{j_1} corresponds to a largest independent set in \overline{H} and that $|W_{j_2}|, |W_{j_3}| \geq (3/5)|W_{j_1}|$. Therefore

$$\alpha(\overline{H}) \leq \frac{|W_{j_1}|}{\sum_{i=1}^{3} |W_{j_i}|} l \leq \frac{5}{11} l.$$

We also have that the number of edges in \overline{H} is bounded by $e^{-0.1\sqrt{\log m}}$. This implies that there are at least $21l/22$ vertices in \overline{H} with degree at most $22le^{-0.1\sqrt{\log m}}$. Denote this set by X_1 and consider the following process. Let C_1 be a shortest cycle in the induced subgraph $\overline{H}[X_1]$. Note that such a cycle must span no other edges of \overline{H}. The existence of C_1 follows from the fact that if X_1 spans an acyclic graph in \overline{H} then it should contain an independent set of size at least $|X_1|/2 \geq 21l/44 > 5l/11 \geq \alpha(\overline{H})$, contradiction. If the length of C_1 is larger than $3e^{0.01\sqrt{\log m}}$, then in particular \overline{H} contains an induced path of length $3e^{0.01\sqrt{\log m}} - 1$ and we stop. Otherwise, $|C_1| \leq 3e^{0.01\sqrt{\log m}}$. Let X_2 be the set of vertices of X_1 not adjacent to any vertex of C_1. Since all vertices in X_1 have degree at most $22le^{-0.1\sqrt{\log m}}$ and $|X_1| \geq 21l/22$ we obtain that

$$|X_2| \geq |X_1| - 22le^{-0.1\sqrt{\log m}}|C_1| \geq |X_1| - 66le^{-0.09\sqrt{\log m}} \geq \left(1 - e^{-0.05\sqrt{\log m}}\right)|X_1|.$$

We continue this process for $k = e^{0.01\sqrt{\log m}}$ steps. At step i, let C_i be a shortest cycle in the induced subgraph $\overline{H}[X_i]$ and let X_{i+1} be the set of all the vertices in X_i not adjacent to any vertex in C_i. We assume that $|C_i| \leq 3e^{0.01\sqrt{\log m}}$, otherwise we found an induced path of length $3e^{0.01\sqrt{\log m}} - 1$ and we can stop. Similarly, one can show that for every i,

$$|X_i| \geq \left(1 - e^{-0.05\sqrt{\log m}}\right)|X_{i-1}| \geq \left(1 - e^{-0.05\sqrt{\log m}}\right)^i |X_1| = (1 + o(1)) |X_1| > 2\alpha(\overline{H}).$$

Therefore the same argument as in the case of C_1 shows that a cycle C_i has to exist. In the end of the process we either constructed an induced path of length $3k - 1$ or a disjoint union of induced k cycles with no edges between them. In both cases this graph satisfies the assertion of Lemma 4.2. Therefore for any integers $0 \leq r \leq k = e^{0.01\sqrt{\log m}}$ and $0 \leq t \leq r - 2$, \overline{H} contains an induced subgraph on r vertices with exactly t edges. This implies that the same set of vertices spans $\binom{r}{t} - t$ edges in H. Since any number $0 \leq y \leq e^{0.01\sqrt{\log m}}$ can be written in this form we conclude that $u(G) \geq u(H) \geq e^{0.01\sqrt{\log m}} = e^{O(\sqrt{\log n})}$. This completes the proof of the theorem. \(\square\)
5 Concluding remarks

- There are several known results that show that graphs with relatively small trivial induced subgraphs have many distinct induced subgraphs of a certain type. In [11] it is shown that for every positive c_1 there is a positive c_2 such that every graph G on n vertices for which $q(G) \leq c_1 \log n$ contains every graph on $c_2 \log n$ vertices as an induced subgraph. In [1] it is shown that for every small $\epsilon > 0$, every graph G on n vertices for which $q(G) \leq (1 - 4\epsilon)n$ has at least en^2 distinct induced subgraphs, thus verifying a conjecture of Erdős and Hajnal. In [12] it is proved that for every positive c_1 there is a positive c_2 such that every graph G on n vertices for which $q(G) \leq c_1 \log n$ has at least $2^{c_2 n}$ distinct induced subgraphs, thus verifying a conjecture of Erdős and Rényi. The assertions of Conjectures 1.1 and 1.3, as well as our results here, have a similar flavour: if $q(G)$ is small, then G has induced subgraphs with all possible number of edges in a certain range.

- It may be interesting to have more information on the set of all possible triples (n, q, u) such that there exists a graph G on n vertices with $q(G) = q$ and $u(G) = u$. Our results here show that if q is relatively small, than u must be large. Note that the union of two vertex disjoint cliques of size $n/3$ each, and $n/3$ isolated vertices show that the triple $(n, n/3 + O(1), 4)$ is possible. It may be interesting to decide how large $u(G)$ must be for any graph G on n vertices satisfying $q(G) < n/(3 + \epsilon)$.

References

