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Abstract

We provide sufficient conditions for the existence of long cycles in locally expanding graphs,

and present applications of our conditions and techniques to Ramsey theory, random graphs

and positional games.

1 Introduction and main results

In this paper, we are concerned with the following question, or rather question type: how long a

cycle can we find in a graph G, assuming its vertex subsets up to a certain size, or in a certain

range of sizes, expand? Of course, one needs to formalize the local expansion assumption to lay

down concrete results.

As usually, for a graph G = (V,E) and a vertex set W ⊂ V we denote by NG(W ) the external

neighborhood of W in G, i.e.,

NG(W ) = {v ∈ V \W : v has a neighbor in W} .

Using this notation, we can make one more step in specifying our meta-question: suppose we are

given that in a graph G = (V,E), the set NG(W ) is large for all subsets W ⊂ V up to a certain

size, or in a certain range of sizes. What can be guaranteed then for the length of a longest cycle

in G? We urge the reader to notice that conditions on external neighborhoods can be imposed for

sets up to a certain size, independent of the order of the graph; thus in a sense assumptions of this

sort are of local nature and can be viewed as local expansion conditions. (See [31, 34] for a general

background on expanders and pseudo-random graphs.)

The above setting appears to be quite natural; moreover, results of this sort can be handy in

a variety of scenarios and applications (of which we will see some later in the paper). Yet, to the

best of our knowledge there are few results of this sort available in the literature.
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The most notable previous relevant result of this type is probably that of Brandt, Broersma,

Diestel and Kriesell [15]. In order to state their result and for future use in our paper, let us

introduce the following notation. For a positive integer k and a positive real α, a graph G is

called (k, α)-expander if |NG(W )| ≥ α|W | for all subsets W ⊂ V of size |W | ≤ k. Brandt et al.

proved in particular that if G is a (k, α)-expander and α ≥ 2, then G contains a cycle of length

at least (α + 1)k (see Lemma 2.7 and the proof of Theorem 2.4 in their paper). The assumption

α ≥ 2 plays a crucial role in their argument, as it allows to utilize the famed rotation-extension

technique of Pósa [39]; the argument essentially breaks down completely even for α = 1.99, say, in

the assumption above.

One should notice that finding long paths, rather than cycles, in locally expanding graphs is a

much easier task, see, e.g., Chapter 1 of [33] for a survey of some techniques and results available.

We will encounter substantial differences between paths and cycles in this context later in the

paper. More generally, local expansion conditions have been used in results about embedding large

bounded degree trees, see, e.g., [23, 26, 3].

Our first result shows the existence of long cycles in locally expanding graphs.

Theorem 1. Let k > 0, t ≥ 2 be integers. Let G = (V,E) be a graph on more than k vertices,

satisfying:

|NG(W )| ≥ t, for every W ⊂ V, k
2
≤ |W | ≤ k .

Then G contains a cycle of length at least t+ 1.

Hence for every positive α, a (k, α)-expander contains a cycle of length at least αk
2 . The linear

dependence on α is optimal in the range 0 < α < 1, as shown by the example of the complete

bipartite graph with parts of size k and dαke; a longest cycle here has length 2dαke. The above

theorem is a (rather far-reaching) generalization of the classical and simple graph theoretic result,

postulating that every graph G of minimum degree t ≥ 2 contains a cycle of length at least t+ 1;

we obtain it by choosing k = 1 in Theorem 1.

Our second result also provides sufficient conditions for the existence of long cycles. It is

formulated in quite different terms and assumes in particular local sparseness of a given graph.

Though the statement looks very different from the previous theorem, the proof is in fact fairly

similar, as the reader will get to see.

Theorem 2. Suppose reals c1 > c2 > 1 and a positive integer k satisfy:
(
k
2 − 1

)((
c1
c2

)1/2
− 1

)
≥ 2.

Let G = (V,E) be a graph on more than k vertices, having the following properties:

1. |E(G)| ≥ c1|V (G)|;

2. every subset R of V (G) of size |R| ≤ k spans at most c2|R| edges in G.

Then G has a cycle of length at least
(
k
2 − 1

)((
c1
c2

)1/2
− 1

)
+ 1.
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In words, the statement says that if the local density (in sets of size at most k) is notably

smaller than the global density of G, then G contains a long cycle; “long” here means linear in k,

for absolute constants c1, c2.

The conditions assumed by Theorem 2 may appear rather artificial, but they come in fact quite

naturally in the setting of random graphs, as given by the following proposition.

Proposition 3. Let c1 > c2 > 1 be reals. Define δ =
(
c2
5c1

) c2
c2−1

. Let G be a random graph drawn

from the probability distribution G
(
n, c1n

)
. Then whp every set of k ≤ δn vertices of G spans fewer

than c2k edges.

We now proceed to describe applications of our results. The first application is in the realm of

Ramsey theory. As customary, for graphs G,H and a positive integer r we write G→ (H)r if every

r-coloring of the edges of G produces a monochromatic copy of H. Furthermore, the r-color size

Ramsey number R̂(H, r) is defined as the minimal possible number of edges in a graph G, for which

G → (H)r. Size Ramsey numbers is a frequently studied subject in Ramsey theory, see [21] for a

survey. Here we concentrate actually on size Ramsey numbers of paths, rather than cycles (see [27]

for a result on size Ramsey numbers of cycles). In the groundbreaking paper [4] Beck, resolving

a $100 question of Erdős, proved that R̂(Pn, 2) = O(n), where Pn is an n-vertex path. (Recently,

there has been a race to improve the multiplicative constant in this bound, see [19, 36, 20]; the best

result is due to Dudek and Pra lat, who showed in [20] that R̂(Pn, 2) ≤ 74n for large enough n.)

Beck’s argument is density-type and can easily be adapted to show that R̂(Pn, r) = Or(n). The next

question to ask then is what is the hidden dependence on r in this linear in n bound. This question

has recently been addressed by Dudek and Pra lat; they proved [20] that R̂(Pn, r) ≥ (r+3)r
4 n−O(r2)

for all large enough n. In Section 5 we will provide an alternative proof of the lower bound of the

size Ramsey number of paths. As for the upper bound in terms of r, in the same paper it was

shown that R̂(Pn, r) ≤ 33r4rn for all large enough n. These two bounds are quite far apart in

terms of dependence on r, leaving the exponential gap. Here we nearly close the gap by showing

that the dependence on r is (nearly) quadratic.

Theorem 4. The size Ramsey number R̂(Pn, r) satisfies: R̂(Pn, r) ≤ r2+or(1)n, for all sufficiently

large n.

The next problem to discuss is positioned at the intersection of Ramsey theory and random

graphs. Given a random graph G, drawn from the probability distribution G(n, p), how large a

monochromatic connected component can one typically find in every r-coloring of the edges of G?

This problem has been considered by Bohman, Frieze, Krivelevich, Loh and Sudakov [14], and

independently by Spöhel, Steger and Thomas [41]. It turns out that the answer is closely related

to the threshold for the so-called r-orientability. For a positive integer r, a graph G is called r-

orientable if one can direct its edges in such a way that all out-degrees in the resulting digraph are at

most r. Obviously if G = (V,E) is r-orientable then so is every subgraph of it, and therefore every
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vertex subset U ⊂ V of G contains at most r|U | edges and spans a subgraph with average degree

at most 2r. Cain, Sanders and Wormald [16], and Fernholz and Ramachandran [22] discovered

independently that the threshold for r-orientability in G(n, p) coincides with the number of edges

needed to make the (r + 1)-core have average degree above 2r. More concretely, they showed that

for any integer r ≥ 2, there is an explicit threshold ψr such that the following holds. For any ε > 0,

if p > ψr+ε
n , then whp G ∼ G(n, p) contains a subgraph with average degree at least 2r+ δ, where

δ = δ(ε) > 0 (and is thus not r-orientable). On the other hand, if p < ψr−ε
n , then G is r-orientable

whp. [14, 41] used these results to argue that any ε > 0, if p > ψr+ε
n , then whp G ∼ G(n, p)

is such that every r-coloring of E(G) has a monochromatic connected component of size at least

c(ε)n, whereas if p < ψr−ε
n , then whp the edges of G ∼ G(n, p) can be r-colored with every color

class having all components of order o(n). Here we prove that in the supercritical case p > ψr+ε
n ,

the random graph G(n, p) is typically such that every r-coloring of its edges produces a linearly

long monochromatic cycle:

Theorem 5. Given any fixed r ≥ 2, let ψr be the threshold for r-orientability. Then for any ε > 0

there exists δ > 0 such that if p(n) ≥ ψr+ε
n , then a random graph G ∼ G(n, p) is whp such that

every r-coloring of E(G) produces a cycle of length at least δn in one of the colors.

The last group of applications of our results is in positional games. (The reader can consult

monographs [5, 28] for a general background on this fascinating subject.) Here we consider only

games played on the edge set of the complete graph Kn. In a Maker-Breaker game two players,

called Maker and Breaker, claim alternately free edges of the complete graph, with Maker moving

first. Maker claims one edge at a time, while Breaker claims b ≥ 1 edges (or all remaining fewer

than b edges if this is the last round of the game). The integer parameter b is the so-called game

bias. Maker wins the game if the graph of his edges in the end possesses a given graph theoretic

property, Breaker wins otherwise, with draw being impossible. The type of Maker-Breaker games

we consider here are cycle creation games. Bednarska and Pikhurko proved in [9] that Maker can

create a cycle in this game if and only if b < dn/2e − 1. (See their other paper [10] for results on

odd and even cycle creation games.) Here we prove that shortly before the game bias b crosses the

critical point n/2, Maker can in fact create a linearly long cycle.

Theorem 6. For every 0 < ε < 1 there exists n0 such that for all n > n0, Maker has a strategy to

create a linearly long cycle in the (1 : b) Maker-Breaker game on the edges of the complete graph

Kn on n vertices, for all b ≤ (1− ε)n/2.

It is instructive to observe a very substantial difference between long cycles and long paths in

this context. Indeed, Bednarska and  Luczak proved in [8] that if b ≥ (1 + ε)n then Breaker can

prevent a component of size larger than 1/ε in Maker’s graph in the (1 : b) Maker-Breaker game

on E(Kn). From the other side, Krivelevich and Sudakov showed in [35] that for b ≤ (1 − ε)n
Maker has a strategy to create a linearly long path. It thus follows that for the (long) path game
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the threshold bias lies around b = n — quite different from the (long) cycle game, where it is

asymptotically equal to n/2.

Finally we consider Client-Waiter long cycle games. Client-Waiter games (also called Chooser-

Picker games) have become a relatively popular research subject recently, see, e.g., [6, 29, 30, 17].

In a (1 : b) Client-Waiter game played on E(Kn), in each turn Waiter offers Client a subset of at

least one and at most b+1 unclaimed edges, from which Client claims one, and the rest are claimed

by Waiter. The game ends when all edges have been claimed. If Client’s graph has a given graph

property P by the end of the game, then he wins the game, otherwise Waiter is the winner; the

game never ends in a draw. Hefetz et al. observed in [29] that it follows more or less immediately

from the prior result of Bednarska-Bzdȩga, Hefetz,  Luczak and the author [7] that if b ≥ n/2− 1,

then Waiter has a strategy to keep Client’s graph acyclic throughout the game. From the other

side, Dean and the author argued in [17] that for b ≤ (1− ε)n/2 Client has a strategy to create a

linearly long path in the Client-Waiter game on E(Kn). Here we strengthen the latter result by

going from long paths to long cycles.

Theorem 7. For every 0 < ε < 1 there exists n0 such that for all n > n0, Client has a strategy

to create a linearly long cycle in the (1 : b) Client-Waiter game on the edges of the complete graph

Kn on n vertices, for all b ≤ (1− ε)n/2.

It thus follows that for the (long) cycle Client-Waiter game the threshold bias is asymptotic to

b = n/2.

The rest of the paper is structured as follows. In the next section we introduce several technical

tools, to be utilized by forthcoming proofs. Section 3 is devoted to the proofs of Theorems 1 and

2. In Section 4 we present proofs of the results about random graphs (Proposition 3 and Theorem

5). In Section 5 we prove bounds on multi-color size Ramsey numbers of paths. In Section 6 we

give proofs of results about positional games, Theorems 6 and 7.

Notation. Our notation is mostly standard. As stated before, for a graph G = (V,E) and a vertex

subset W ⊂ V we denote by NG(W ) the external neighborhood of W in G. Given a rooted tree

T with root r and vertex set V , for v ∈ V we denote by s(T, v) the size (number of vertices) of

the subtree of T rooted at v (where as usually the subtree of T rooted at v includes exactly those

vertices whose path to the root contains v). We suppress the rounding notation occasionally to

simplify the presentation.

2 Tools

In this section, we gather several notions and technical tools, needed for the proofs in subsequent

sections.

Finding subtrees of prescribed total size under a vertex. The following simple proposition

will be used to find a collection of subtrees close to a prescribed total size, rooted at a vertex of a
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given rooted tree.

Proposition 2.1. Let T = (V,E) be a rooted tree on more than k vertices. Then there exists a

vertex v ∈ V (T ) and a subset X of the children of v in T such that k
2 ≤

∑
u∈X s(T, u) ≤ k.

Proof. Let r be the root of T . Going down the tree from the root, find a vertex v such that

s(T, v) > k but s(T, u) ≤ k for every child u of v in T . Let X0 be the set of chidlren of v in T .

Then
∑

u∈X0
s(T, u) ≥ k, but s(T, u) ≤ k for every u ∈ X0. If there exists a vertex u ∈ X0 for

which s(T, u) ≥ k/2, take X = {u}. Otherwise, let X ⊆ X0 be a maximal by inclusion subset of

X0 for which
∑

u∈X s(T, u) ≤ k. Then
∑

u∈X s(T, u) ≥ k/2, as otherwise one can add an arbitrary

vertex u ∈ X0 \X to X and produce a larger subset whose subtree sizes still sum up to at most k

– a contradiction to the choice of X.

Depth First Search. The Depth First Search is a well known graph exploration algorithm,

usually applied to discover connected components of an input graph. This algorithm has proven

itself particularly suitable for finding long paths in graphs, see [1, 2, 15, 11, 12, 38, 19, 36, 20] for

some examples. Here we will actually use it for finding cycles rather than paths. Since this is a

fairly standard graph exploration algorithm, discussed in details in every basic algorithmic book,

we will be somewhat succinct in its description below.

Recall that the DFS (Depth First Search) is a graph search algorithm that visits all vertices of

a graph. The algorithm receives as an input a graph G = (V,E); it is also assumed that an order σ

on the vertices of G is given, and the algorithm prioritizes vertices according to σ. The algorithm

maintains three sets of vertices, letting S be the set of vertices whose exploration is complete, T be

the set of unvisited vertices, and U = V \ (S ∪ T ), where the vertices of U are kept in a stack (the

last in, first out data structure). It initiliazes with S = U = ∅ and T = V , and runs till U ∪ T = ∅.
At each round of the algorithm, if the set U is non-empty, the algorithm queries T for neighbors

of the last vertex v that has been added to U , scanning T according to σ. If v has a neighbor u in

T , the algorithm deletes u from T and inserts it into U . If v does not have a neighbor in T , then

v is popped out of U and is moved to S. If U is empty, the algorithm chooses the first vertex of T

according to σ, deletes it from T and pushes it into U . The algorithm outputs a spanning forest F

of G, where the connected components of G and of F coincide, and each component of F is a tree

rooted at the first (according to σ) vertex of the corresponding component.

We will need the following elementary, but perhaps less known, property of the DFS algorithm.

It has been used in particular in [2], see also [32, 40] for similar arguments.

Proposition 2.2. Let G = (V,E) be a graph, and let F be a forest produced by the DFS algorithm

applied to G with some ordering σ of the vertices of G. If (u, v) ∈ E(G) \E(F ), then one of {u, v}
is a predecessor of the other in F .

Proof. Since u, v are connected by an edge, they obviously belong to the same connected component

C of G (which is also a connected component of F , vertex-wise). Assume that v was discovered
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by the algorithm (and moved to U) earlier than u. If u is not under v in the corresponding rooted

tree T of F , then the algorithm has completed exploring v and moved it over to S before getting

to explore u (and to move it to U) – obviously a contradiction.

Client’s win in Client-Waiter games. We will use the following (reduced form of a) criterion

for Client’s win in biased Client-Waiter games.

Theorem 2.3. [17] Let b be a positive integer, let F be a family of subgraphs of Kn. Assume that

∑
F∈F

(
1

b+ 1

)|E(F )|
<

1

2
.

Then in the (1 : b) biased Client-Waiter game, played on the edges of Kn, Client has a strategy to

claim a subset E0 ⊂ E(Kn) of size |E0| ≥ b
(
n
2

)
/(b + 1)c not containing fully the edge set of any

F ∈ F .

Dense subgraphs. This claim shows that every graph contains a relatively dense induced sub-

graph of prescribed order.

Proposition 2.4. Let k1, k2 be positive integers, and let G = (V,E) be a graph on |V | = k1 + k2

vertices with m edges. Then there exists a subset R ⊂ V of cardinality |R| = k1, spanning more

than m
(

k1−1
k1+k2−1

)2
edges of G.

Proof. This is a simple averaging argument. Choose a subset R of k1 vertices uniformly at random.

Then for a given edge e ∈ E(G), the probability that both endpoints of e fall into R is(
k1+k2−2
k1−2

)(
k1+k2
k1

) =
k1(k1 − 1)

(k1 + k2)(k1 + k2 − 1)
>

(
k1 − 1

k1 + k2 − 1

)2

.

Then by the linearity of expectation, the expected number of edges of G falling into R is more than

m
(

k1−1
k1+k2−1

)2
. Hence there exists a choice of R spanning at least that many edges.

3 Proofs of Theorems 1 and 2

Proof of Theorem 1. Observe first that G has a connected component C on more than k

vertices. Indeed, by the theorem’s assumption G has no connected components whose sizes fall

between k/2 and k. If every connected component of G has fewer than k/2 vertices, then, recalling

that |V (G)| > k, we can take W to be a maximal by inclusion collection of connected components

whose total size is at most k. Then k/2 ≤ |W | ≤ k, and NG(W ) = ∅ – a contradiction.

Let T be the tree rooted at r, obtained by applying the DFS algorithm to C, under an arbitrary

order of its vertices. Then |V (T )| = |V (C)| > k. Apply Proposition 2.1 to T to find a vertex v and

7



a subset X of its children such that k/2 ≤
∑

u∈X s(T, u) ≤ k. Let W be the union of the subtrees of

T rooted at the vertices of X. Denote by P the path in T from the root r to v. Then k/2 ≤ |W | ≤ k,

and by Proposition 2.2 we have: NG(W ) ⊆ V (P ). Let v∗ ∈ V (P ) be the farthest from v vertex in

NG(W ) ∩ V (P ) = NG(W ). Clearly its distance from v it as at least |NG(W )| − 1 ≥ t − 1, by the

theorem’s assumption. Let w be a neighbor of v∗ in W . Then the cycle, formed by the path in T

from w to v∗ (which includes the part of P from v to v∗) and the edge (w, v∗), has length at least

t+ 1. 2

Remark. The proof presented is obtained partially in cooperation with Noga Alon.

Proof of Theorem 2. Let G0 be a minimal by inclusion non-empty induced subgraph of G,

satisfying |E(G0)|
|V (G0)| ≥ c1. Then G0 has the following properties:

1. |V (G0)| > k;

2. G0 is connected;

3. every subset W ⊆ V (G0) is incident to at least c1|W | edges in G0 (otherwise deleting W from

G0 produces a smaller subgraph of admissible density).

Let T be the tree rooted at r, obtained by applying the DFS algorithm to G0, under an arbitrary

order of its vertices. Then |V (T )| = |V (G0)| > k. Apply Proposition 2.1 to T to find a vertex v

and a subset X of its children such that k/2 ≤
∑

u∈X s(T, u) ≤ k. Let P be the path in T from r to

v. Let W be the union of the subtrees of T rooted at the vertices of X. We have: k/2 ≤ |W | ≤ k.

Also, by Proposition 2.2, NG(W ) ⊆ V (P ). Denote U := NG0(W ), k1 := |W |, k2 := |U |. The set

U ∪W spans all edges of G0 incident to W , whose number is at least c1k1, by Property 3) above.

Apply Proposition 2.4 to G0[U ∪W ] to find a set R of cardinality |R| = k1, spanning more than

c1k1

(
k1−1

k1+k2−1

)2
edges. Notice that |R| = |W | ≤ k, and hence by the theorem’s assumption R

spans at most c2|R| = c2k1 edges. Comparing, we obtain:

c2k1 ≥ c1k1
(

k1 − 1

k1 + k2 − 1

)2

,

which after simple arithmetic manipulations produces:

k2 ≥

((
c1
c2

)1/2

− 1

)
(k1 − 1) ≥

((
c1
c2

)1/2

− 1

)(
k

2
− 1

)
.

Arguing as in the proof of Theorem 1, we obtain a cycle of length at least

|NG0(W )|+ 1 ≥ k2 + 1 ≥

((
c1
c2

)1/2

− 1

)(
k

2
− 1

)
+ 1 ,

as required. 2

Remark. In fact, the proof above utilizes a weaker assumption about local density – we used only

that every subset R, whose size is between k/2 and k, spans at most c2|R| edges in G.
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4 Results about random graphs

Proof of Proposition 3. The probability in G(n, c1/n) that there exists a vertex subset violating

the required property is at most

∑
i≤δn

(
n

i

)((i
2

)
c2i

)
· pc2i ≤

∑
i≤δn

(en
i

)i
·
(
eip

2c2

)c2i
=
∑
i≤δn

[
en

i
·
(
ec1i

2c2n

)c2]i

=
∑
i≤δn

[
ec2+1cc21
(2c2)c2

·
(
i

n

)c2−1]i
.

Denote the i-th summand of the last sum by ai. Then, if i ≤ n1/2 we get: ai ≤
(
O(1)n−

c2−1
2

)i
,

implying
∑

i≤n1/2 ai = o(1). For n1/2 ≤ i ≤ δn, we have, recalling the expression for δ:

ai ≤
[
ec2+1cc21
(2c2)c2

·
(
c2
5c1

)c2]i
≤
(
e ·
( e

10

)c2)i
= o(n−1) .

It follows that
∑

i≤δn ai = o(1), and the desired property of the random graphs holds whp. 2

Proof of Theorem 5. Fix r ≥ 2, ε > 0. Due to monotonicity it is enough to prove the statement

for p = ψr+ε
n . According to the results from [16, 22], there exists an ε′ > 0 such that a random

graph G ∼ G(n, p) contains whp a subgraph G0 for which |E(G0)|
|V (G0)| ≥ r(1 + ε′). We can assume

ε′ < ε. By Proposition 3 with c1 = ψr + ε, c2 = 1 + ε′/2, there is δ > 0 such that whp every

k ≤ δn vertices of G span at most k(1 + ε′/2) edges. So assume that G has the above stated typical

properties. Let φ : E(G0) → [r] be an r-coloring of E(G0). Choose E0 ⊆ E(G0) to be a majority

color in φ. Then |E0| ≥ |E(G0)|
r ≥ (1 + ε′)|V (G0)|. Applying Theorem 2 to the spanning subgraph

of G0 with edge set E0 in place of G, c1 = 1 + ε′, c2 = 1 + ε′/2, k = δn, we get a cycle of length at

least (
δn

2
− 1

)((
1 + ε′

1 + ε′/2

)1/2

− 1

)
+ 1 = Θ(n) ,

as required. 2

5 Multi-color size Ramsey numbers of paths

Lower bound. We prove the following result:

Theorem 8. For r ≥ 3 such that r − 2 is a prime power, and all sufficiently large n, the r-color

size Ramsey number R̂(Pn, r) satisfies: R̂(Pn, r) > (r− 2)2n−C
√
n, where C = C(r) is a constant

depending only on r.

Proof. The argument here has some similarities to the argument about coloring the edges of the

complete graph without creating large monochromatic connected components, see [25, 24, 13]. Let
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G = (V,E) be a graph with |E| ≤ (r − 2)2n − C
√
n edges; we can assume G has no isolated

vertices. Our aim is to show that there exists an r-coloring φ of E without a monochromatic path

on n vertices.

Denote q = r−2, and let Aq be an affine plane of order q. (The reader unfamiliar with the notion

and terminology of affine planes is advised to consult any standard book about finite geometries,

say [18] – or to settle for the following brief description adapted for our purposes. An affine plane of

order q is a q-uniform hypergraph on q2 vertices (points) with q2 + q edges (lines), such that every

pair of points is contained in a unique line, and the lines can be split into q + 1 disjoint families

(ideal points) so that the lines in every ideal point do not intersect. Such a system is known to

exist for every prime power q.) We assume that the vertex set of Aq is {1, . . . , q2}, and the ideal

points are X1, . . . , Xq+1.

Let V0 = {v ∈ V (G) : dG(v) ≥ 6r2}. Obviously |V0| ≤ n/3. Partition V \ V0 at random into

q2 parts V1, . . . , Vq2 by putting every vertex v ∈ V \ V0 into Vx, 1 ≤ x ≤ q2, independently and

with probability 1/q2. Given a partition (V1, . . . , Vq2), we define φ as follows. If e is an edge of G

crossing between Vx and Vy for 1 ≤ x < y ≤ q2, and L is the unique line of Aq passing through x, y,

then φ(e) = i, where Xi is the ideal point containing L. If e falls inside one of the parts Vx, color

it in an arbitrary color different from r in φ. Finally, color all edges touching V0 by color r in φ.

Observe that the subgraph of the edges colored r under φ has its covering number bounded by

|V0| ≤ n/3; therefore, this color does not contain the path Pn, whose covering number is at least

n/2. Consider now color i, 1 ≤ i ≤ q + 1 = r − 1. Every connected subgraph in color i has its

vertex set inside ∪x∈LVx, for some line L of Aq. (Recall that the lines of the ideal point Xi are

pairwise disjoint.) Therefore, it will suffice to argue that with positive probability (under a random

partition V \ V0 = V1 ∪ . . . ∪ Vq2), for every line L the corresponding vertex subset ∪x∈LVx spans

fewer than n− 1 edges.

Consider an edge e ∈ E(G). For a given line L of Aq, the probability that e ⊆ ∪x∈LVx is exactly(
|L|
q2

)2
= 1

q2
= 1

(r−2)2 . Thus, introducing random variables AL = |E(∪x∈LVx)|, we obtain by the

linearity of expectation that:

E[AL] ≤ |E(G)| · 1

(r − 2)2
≤ n− C

(r − 2)2
√
n .

Now we need to argue that the random variables AL are concentrated. Observe that changing

the location (part Vx) of a vertex v ∈ V \V0 changes the count in any AL by at at most d(v) ≤ 6r2.

Hence, applying, say, the bounded differences inequality of McDiarmid [37], we derive that the

probability that the value of AL deviates from its expectation to reach n−1 is at most δ(C), where

limC→∞ δ = 0. Applying the union bound over all lines L of Aq and taking C = C(r) to be large

enough, we conclude that with positive probability a random partition (V1, . . . , Vq2) satisfies the

desired property.

Remark. In fact essentially the same proof, mutatis mutandis, gives the following Ramsey-type
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result: let H be a connected graph with n edges, whose covering number τ(H) satisfies τ(H)�
√
n.

Then R̂(H, r) = Ω(r2)n. The assumption about τ(H) is essential to argue about concentration of

the random variables AL in the above proof. Some lower bound assumption on the covering number

of H is needed here – if H is the star K1,n, then R̂(H, r) = r(n − 1) + 1 (take G to be the star

K1,r(n−1)+1), providing a linear in r coefficient in front of n.

Proof of Theorem 4. It will suffice to prove the following result instead:

Theorem 5.1. For every C > 5, r ≥ 2, and all large enough n, the r-color size Ramsey number

R̂(Pn, r) satisfies: R̂(Pn, r) < 4005Cr2+
1

C−4n.

Proof. Consider a random graph G drawn from the probability distribution G(n, p) with p = Cr
n .

With high probability, G has between Crn
3 and Crn edges, and satisfies the property stated in

Proposition 3 with c1 = Cr and c2 = C/4. (The value of δ from that proposition then is δ =

(20r)−
C
C−4 .) So assume that G has indeed these likely properties.

Let φ : E(G)→ [r] be an r-coloring of E(G). We need to argue that φ contains a monochromatic

long path. Let E0 be a majority color under φ. Obviously, |E0| ≥ |E(G)|
r ≥ Cn

3 . Apply Theorem

2 with k = δn, c1 = C
3 , c2 = C

4 , to the graph G0 = ([n], E0). We get a cycle (and thus a path) of

length at least:(
k

2
− 1

)((
C/3

C/4

)1/2

− 1

)
+ 1 ≥ k

20
=

(
1

20r

) C
C−4

· n
20

>

(
1

400r

) C
C−4

n .

It is only left to recalculate the parameters. Denote

n0 =

(
1

400r

) C
C−4

n .

Then

|E(G)| ≤ Crn = Cr1+
C
C−4 400

C
C−4n0 ≤ 4005Cr2+

1
C−4n0 ,

and G→ (Pn0)r.

6 Results about positional games

Proof of Theorem 6. We can assume that the constant ε > 0 is small enough. Maker’s strategy

is very simple: during the first (1 + ε
2)n rounds he plays randomly, i.e. chooses a uniformly random

edge to claim out of the set of all available edges at that moment. Observe that in each of these

rounds, the number of available edges is at least(
n

2

)
− (b+ 1)

(
1 +

ε

2

)
n ≥ ε

3
n2 ,

11



meaning that the probability an edge e is chosen by Maker is at most 3/(εn2), regardless of the

history of the game.

We aim to argue that with positive probability Maker creates a relatively dense graph without

dense local spots after the first (1 + ε
2)n rounds. This is in fact fairly easy to verify: the probability

that there exists a set V0 ⊂ [n] of |V0| ≤ δn vertices spanning at least (1 + ε
4)|V0| edges of Maker

(with δ = δ(ε) > 0 being a small enough constant, to be set soon) is at most∑
i≤δn

(
n

i

)( (
i
2

)
(1 + ε

4)i

)((
1 +

ε

2

)
n
)(1+ ε

4
)i
(

1
ε
3n

2

)(1+ ε
4
)i

(choose a violating set V0 of size |V0| = i ≤ δn first, then choose a set of (1 + ε
4)i edges inside V0,

then choose in which rounds of the game these edges are claimed by Maker, and finally require that

all of these edges are indeed claimed at the corresponding rounds). Continuing the above estimate,

we get that the probability in question is at most:∑
i≤δn

[
en

i

(
ei

2(1 + ε
4)
·
(

1 +
ε

2

)
n · 1

ε
3n

2

)1+ ε
4

]i

≤
∑
i≤δn

[
en

i

(
5i

n

)1+ ε
4

]i
≤
∑
i≤δn

[
20

(
i

n

)ε/4]i
.

Taking δ = 25−4/ε gives that the above expression, and thus the probability under estimate, are

both o(1).

Since the game analyzed is a perfect information game with no chance moves, it is enough to

prove that Maker’s strategy succeeds to create a locally sparse graph with positive probability. (We

proved in fact that his strategy succeeds with probability approaching 1.)

To summarize, Maker has a strategy to create after the first (1 + ε
2)n rounds a graph M on n

vertices with |E(M)| = (1 + ε
2)n edges, and such that every set V0 of i ≤ δn vertices spans at most(

1 + ε
4

)
i edges. Invoking Theorem 2, we obtain that Maker’s graph contains a cycle of length at

least (
δn

2
− 1

)((
1 + ε

2

1 + ε
4

)1/2

− 1

)
+ 1 = Θ(n) ,

as required. 2

Proof of Theorem 7. The proof is quite similar to the previous one, and thus we will be somewhat

brief. Due to the bias monotonicity, it is enough to prove the statement for b = (1 − ε)n/2. Let

F be the family of all subgraphs of Kn on at most δn vertices with density 1 + ε
2 . Client’s goal

will be to avoid claiming any such subgraph in a subset of his edges of size (1 + ε)n. In order to

argue this is feasible, we apply Theorem 2.3. We need to estimate the LHS of the criteria of that

theorem. We have: ∑
i≤δn

(
n

i

)( (
i
2

)
(1 + ε

2)i

)
·
(

1

(1− ε)n2 + 1

)(1+ ε
2
)i

= o(1) ,
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for small enough δ = δ(ε) > 0.

Hence, it follows from Theorem 2.3 that Client has a strategy to claim a set E0 of |E0| ≥(
n
2

)
/(b+ 1) ≥ (1 + ε)n edges, where every i ≤ δn vertices span at most (1 + ε

2)i edges of E0. Apply

Theorem 2 to the graph G0 = ([n], E0) to get a linearly long cycle in Client’s graph, as desired. 2
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