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Abstract

We show that if G is a graph on n vertices, with all degrees comparable to some d “ dpnq,

and without a sparse cut, for a suitably chosen notion of sparseness, then it contains a

complete minor of order

Ω

˜

d

nd

log d

¸

.

As a corollary we determine the order of a largest complete minor one can guarantee in

d-regular graphs for which the second largest eigenvalue is bounded away from d{2, in

pd{n, opdqq-jumbled graphs, and in random d-regular graphs, for almost all d “ dpnq.

1 Introduction

We say that a graph G contains a graph H as a minor (H ă G for short) if we can obtain H from

G by a series of contractions of edges and deletions of vertices and edges of G. Equivalently,

H ă G if there are vpHq disjoint subsets tThuhPV pHq of V pGq such that each Th induces a

connected graph and there is an edge between Th and Th1 for every th, h1u P EpHq. The

contraction clique number of G, denoted by cclpGq, is defined as the largest integer r P N such

that Kr ă G.

Due to the importance of minors in graph theory it is natural to expect abundance of various

results and conjectures providing sufficient conditions for the existence of large complete minors.

One such example is Hadwiger’s conjecture from 1943 which states cclpGq ě χpGq, where χpGq

denotes the chromatic number of G. If true, this would be a far reaching generalisation of the

four-colour theorem [5]. So far it has only been resolved in the case where χpGq ď 6 (see, e.g.,

[34]). For larger values of χ not even the weaker bound cclpGq “ ΩpχpGqq is known to be true.

Currently the best bound is of order cclpGq “ ΩpχpGq{
a

logpχpGqq, obtained independently by

Kostochka [17] and by Thomason [29]. Bollobás, Catlin, and Erdős [7] showed that if there exists

a counter-example to the Hadwiger’s conjecture then it has to be atypical, that is the conjecture

holds for almost all graph. More precisely, they showed that Gpn, 1{2q, a binomial random graph

with edge probability 1{2, with high probability satisfies cclpGpn, 1{2qq “ Θpn{
?

log nq whereas

it is known that χpGpn, 1{2qq “ p1˘ op1qqn{p2 log nq (see, e.g., [15]).

Other examples include results on large complete minors in graphs with large girth [10, 19,

21, 32], Ks,t-free graphs [19, 22], graphs without small vertex separators [3, 16, 27], lifts of
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graphs [12], random graphs [13] and random regular graphs [14], and others. Krivelevich and

Sudakov [19] studied the complete minors in graphs with good vertex expansion properties. We

complement this by investigating a connection between the contraction clique number of a graph

and its edge expansion properties. It turns out that, in some cases, this is the right parameter

to look at: as a straightforward corollary of Theorem 1.1 we determine the order of magnitude

of a largest clique minor one can guarantee in classes of random and pseudo-random graphs,

for which a result from [19] falls short by a factor of Op
?

log nq. Another advantage over vertex

expansion is that often edge expansion is easier to verify.

Let G “ pV,Eq be a graph with n vertices. Given a subset S Ď V , the edge-expansion of S is

defined as

hpSq “
epS, V zSq

|S|
.

In other words, hpSq denotes the average number of edges a vertex in S sends across the cut.

The Cheeger constant hpGq of G is then defined as the smallest edge expansion over all subsets

of size at most n{2:

hpGq “ minthpSq : S Ď V, |S| ď n{2u.

It is a standard exercise to show that every graph with e edges admits a nearly balanced cut

which contains at most ep1{2 ` op1qq edges, thus hpGq ď dp1{2 ` op1qq for any graph G with

average degree d. However, it could happen that in highly unbalanced cuts pS, V zSq we actually

have a stronger expansion. To capture this, for 1 ď k ď n{2 we introduce a restricted Cheeger

constant hkpGq defined as follows:

hkpGq “ minthpSq : S Ď V, |S| ď ku.

With this notation at hand, we are ready to state our main result.

Theorem 1.1. For every ε ą 0 there exist β ą 0 and n0, d0 P N such that the following holds

for all n ě n0 and d ě d0. Let G be a graph with n ě n0 vertices and maximum degree at most

d. If hpGq ě εd and hεnpGq ě p1{2` εqd then

cclpGq ě β

d

nd

log d
.

It should be noted that in Theorem 1.1 we allow d to depend on n. This is also the case in all

other stated results.

Using a first-moment calculation, Fountoulakis, Kühn, and Osthus [13] showed that with high

probability

cclpGpn, pqq ď p1` op1qq

d

n2p

logpnpq
, (1)

for C{n ď p ă 1{2.1 For such p we have that Gpn, pq with high probability contains a large

induced subgraph that satisfies assumptions of Theorem 1.1 with, say, d “ 1.1np and some

parameter ε, thus the bound on cclpGq given in Theorem 1.1 is, in general, optimal up to a

constant factor.

While the second requirement on the expansion in Theorem 1.1 (hεnpGq ě p1{2`εqd) might seem

restrictive at first, it will easily be satisfied in all our applications. The role of this assumption

1log denotes the natural logarithm.
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will become apparent in the proof. It remains an interesting problem to determine if one can

guarantee the same lower bound on cclpGq only assuming hpGq ě εd, where d is the maximum

degree of G. Adapting the proof of Theorem 1.1, in [18] we showed that this is the case when d

is a constant.

Theorem 1.2. For every ε ą 0 there exist β ą 0 and n0 P N such that the following holds. Let

G be a graph with n ě n0 vertices and maximum degree at most d ě 3. If hpGq ě εd then

cclpGq ě β
?
n.

Note that Theorem 1.2 is applicable with any d “ dpnq, however, as already remarked, it is most

likely optimal only in the case d is a constant.

1.1 Applications

As a straightforward corollary of Theorem 1.1, we improve and extend (and re-prove) several

results. Previous proofs of some of these results relied on more specific, and difficult to show,

properties of studied graphs.

One attractive corollary of Theorem 1.1 relates the size of a largest complete minor in a d-regular

graph to the second largest eigenvalue λ2 of its adjacency matrix. This is not surprising knowing

that λ2 governs the number of edges in a cut (see, e.g., [4, Theorem 9.2.1]).

Corollary 1.3. For every ε ą 0 there exist β ą 0 and n0 P N such that the following holds. Let

G be a d-regular graph with n ě n0 vertices, for some d ě 3, and let λ2 be the second largest

eigenvalue of the adjacency matrix of G. If λ2 ă p1{2´ εqd, then cclpGq ě β
a

nd{ log d.

Proof. By [4, Theorem 9.2.1] we have that epA,Bq ě pd ´ λ2q|A||B|{n for any disjoint subsets

A,B Ď V pGq. Therefore, for any S Ď V pGq we have

epS, V pGqzSq

|S|
ě p1{2` εqd ¨

|S|pn´ |S|q

|S|n
“ p1{2` εqd ¨ p1´ |S|{nq.

For |S| ď n{2 this shows hpSq ě d{4, thus hpGq ě d{4. On the other hand, for |S| ď εn{4

we have hpSq ą p1{2 ` ε{2qd, thus hεn{4pGq ě p1{2 ` ε{2qd. The conclusion of the corollary

now follows from Theorem 1.1 if d ě d0, for some (large) constant d0, or from Theorem 1.2

otherwise.

Using known bounds on the likely value of λ2 of the adjacency matrix of a random d-regular

graph [8, 20, 33] (these results bound the second largest absolute eigenvalue, which is stronger

than what we need) in the case d ě d0, for sufficiently large constant d0, and a result by Bollobás

[6] on the Cheeger constant of random d-regular graphs for d ă d0, we immediately obtain the

following result from Corollary 1.3 and Theorem 1.2.

Corollary 1.4. For any d ě 3, a d-regular graph Gd chosen uniformly at random among all

d-regular graphs with n vertices with high probability satisfies

cclpGq “ Ω

˜

d

nd

log d

¸

.
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This extends a result by Fountoulakis, Kühn, and Osthus [14] who showed the same statement

for constant d ě 3 (whereas we allow d to be a function of n). Optimality of Corollary 1.4 can be

derived as follows: Calculations in [13] show that with probability at least 1´expp´Cn logpnpqq

we have cclpGpn, pqq “ Op
a

n2p{ logpnpqq, for a constant C of our choice (having an impact on

the hidden constant in Op¨q). For d “ dpnq ă n{2, the number of (labelled) d-regular graphs

with n vertices is of order

Θ

ˆ

pqqp1´ qq1´qqp
n
2q

ˆ

n´ 1

d

˙n˙

where q “ d{n (see [23, 24, 25]). A simple calculation using Stirling’s approximation shows that

by taking p “ d{n the random graphGpn, pq is d-regular with probability at least expp´C 1n log dq,

for some absolute constant C 1 ą 0. Therefore we conclude that a random d-regular graph Gd
satisfies cclpGdq “ Op

a

nd{ log dq with high probability.

As our last application we mention a problem of estimating the contraction clique number in

jumbled graphs, first studied by Thomason [30]. Let G be a graph with n vertices and let

p “ ppnq P p0, 1q and β “ βpnq ą 1. We say that G is pp, βq-jumbled if for every subset

X Ď V pGq we have
ˇ

ˇ

ˇ

ˇ

epXq ´ p

ˆ

|X|

2

˙
ˇ

ˇ

ˇ

ˇ

ď β|X|,

where epXq denotes the number of edges of G with both endpoints in X. Krivelevich and

Sudakov [19] showed that every pp, opnpqq-jumbled graph contains a complete minor of order

cclpGpn, pqq “ Ω

˜
d

n2p

logpn
?
pq

¸

, (2)

and the question of whether this bound can be improved to Ωp
a

n2p{ logpnpq was raised in

[14]. Note that this matches the bound in (2) in case p “ nc for a constant 0 ă c ă 1, while

for p “ C{n it falls short by a factor of
?

log n. Here we settle it in the affirmative for all

p “ Ωp1{nq.

Corollary 1.5. Let G be a pp, opnpqq-jumbled graph with n vertices, for some C{n ď p ď 1

where C is a sufficiently large constant. Then

cclpGq “ Ω

˜

d

n2p

logpnpq

¸

.

Proof. By [19, Lemma 6.1], every pp, opnpqq-jumbled graph G contains an induced subgraph G1

with n1 “ p1´ op1qqn vertices such that

epS, V pG1qzSq ě p1´ op1qqp|S|pn1 ´ |S|q

for every S Ď V pG1q. Therefore G1 satisfies the requirement of Theorem 1.1 for, say, ε “ 0.1.

2 Preliminaries

We use standard graph-theoretic notation. In particular, given a graph G and a vertex v P V pGq,

we denote by Npvq the neighbourhood of v. Given a subset S Ď V pGq, we abbreviate with NpSq

the external neighbourhood of S, that is

NpSq “

˜

ď

vPS

Npvq

¸

zS.
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The distance between two vertices in G is defined as the length (number of edges) of a shortest

path between them (thus every vertex is at distance 0 from itself). We say that a subset of

vertices S Ď V pGq is connected if it induces a connected subgraph of G.

We start by relating the Cheeger constant to the vertex expansion of a graph and, as a corollary,

give a lower bound on the size of a ball around a subset of vertices.

Lemma 2.1. Let G be a graph with n vertices and maximum degree d “ dpnq. Then for every

subset X Ď V pGq of size |X| ď n{2 we have

|NGpXq| ě hpGq|X|{d.

Proof. By the definition of hpGq there are at least |X|hpGq edges between X and V pGqzX. The

desired inequality follows from the fact that every vertex in V pGqzX is incident to at most d of

these edges.

The following lemma shows that the ball around a subset of vertices grows exponentially until

it expands to at least half of the vertex set.

Lemma 2.2. Let G be a graph with n vertices and maximum degree d “ dpnq. Then for every

subset of vertices U Ď V pGq and any i P N, the set

BpU, iq “ tv P V pGq : v is at distance at most i from some u P Uu

is of size at least

|BpU, iq| ě minpn{2, |U |p1` hpGq{dqiq.

Proof. Let U Ď V pGq be an arbitrary subset. We prove the lower bound on BpU, iq by induction.

The claim trivially holds for i “ 0. Suppose it holds for some i ě 0. If |BpU, iq| ě n{2 then

|BpU, i` 1q| ě n{2 as well, in which case we are done. Otherwise, if |BpU, iq| ď n{2 then we can

apply Lemma 2.1 to conclude |NpBpU, iqq| ě |BpU, iq|hpGq{d. The desired bound now follows

from BpU, i` 1q “ BpU, iq YNpBpU, iqq.

The following lemma shows that one can find a subset of V pGq of prescribed size that has

significantly larger external neighbourhood than the one given by Lemma 2.1, and moreover

induces a connected subgraph. The proof and the latter use of the lemma are inspired by a

similar statement from [19].

Lemma 2.3. Let ε ą 0, and suppose G is a graph with n vertices and maximum degree d “

dpnq ě 2. If hεnpGq ą 1 then for every integer 1 ď s ď εn{p2dq and a vertex v P V pGq, there

exists a connected subset X Ď V pGq of size |X| “ s which contains v and

|NGpXq| ě |X|phεnpGq ´ 1q.

Proof. We prove the claim by induction on s. For s “ 1 we take X “ tvu. As δpGq ě hεnpGq,

X satisfies the desired property. Suppose now that the statements holds for some 1 ď s ď

εn{p2dq ´ 1. Let X 1 be one such subset of size |X 1| “ s and Y “ NGpX
1q be its neighbourhood.

If |Y | ě hεnpGqps` 1q then we can take X to be the union of X 1 and an arbitrary vertex in Y .

Otherwise, from hεnpGq ď d we have |X 1 Y Y | ă εn, thus there are

epX 1 Y Y, V pGqzpX 1 Y Y qq ě |X 1 Y Y |hεnpGq ą |Y |hεnpGq
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edges between X 1Y Y and the rest of the graph. As none of these edges is incident to X 1, there

exists a vertex w P Y such that |NGpwqzpX
1 Y Y q| ě hεnpGq. Adding such a vertex to X 1 gives

a desired set X.

2.1 Random walks

A lazy random walk on a graph G “ pV,Eq with the vertex set V “ t1, . . . , nu is a Markov chain

whose matrix of transition probabilities P “ P pGq “ ppi,jq is defined by

pi,j “

$

’

’

&

’

’

%

1
2 degGpiq

, if ti, ju P EpGq

1
2 , if i “ j,

0, otherwise.

In other words, if at some point we are at vertex i then with probability 0.5 we stay in i and

with probability 0.5 we move to a randomly chosen neighbour. It is easy to verify (and is well

known) that this Markov chain has the stationary distribution π given by πpiq “ degGpiq{2epGq.

The following lemma gives an upper bound on the probability that a lazy random walk avoids

some subset U Ď V pGq.

Lemma 2.4. Let G be a graph with n vertices and maximum degree d “ dpnq. Then for

any U Ď V pGq the probability that a lazy random walk on G which starts from the stationary

distribution π and makes ` steps does not visit U is at most

exp

ˆ

´
hpGq3

8d3
¨
|U |`

n

˙

.

For the rest of this section we prove Lemma 2.4.

Let λ1 ě λ2 ě . . . ě λn be eigenvalues of the transition matrix P . The spectral gap of P is

defined as δλ “ λ1 ´ λ2 “ 1´ λ2. The following result of Mossel et al. [26] (more precisely, the

first case of [26, Theorem 5.4]) relates the spectral gap to the probability that a lazy random

walk does not leave a specific subset. We state a version tailored to our application.

Theorem 2.5. Let G be a connected graph with n vertices and let δλ be the spectral gap of the

transition matrix P “ P pGq. Then the probability that a lazy random walk of length ` which

starts from a vertex chosen according to the stationary distribution π does not leave a non-empty

subset A Ď V pGq is at most

πpAqp1´ δλp1´ πpAqqq
`.

The second ingredient is a result of Jerrum and Sinclair [28, Lemma 3.3] which relates the

spectral gap of P pGq to its conductance ΦpGq, defined as

ΦpGq “ min
SĎV

0ăπpSqď1{2

ř

iPS,jRS πpiqpi,j

πpSq
“ min

SĎV
0ăπpSqď1{2

epS, V zSq

2
ř

vPS degpvq
.

Note that ΦpGq ě hpGq{p2dq, where d “ dpGq denotes the maximum degree of G.

Lemma 2.6. Let G “ pV,Eq be a connected graph. Then the spectral gap δλ of G is at least

δλ ě ΦpGq2{2.

We are now ready to prove Lemma 2.4.
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Proof of Lemma 2.4. Consider some non-empty subset U Ă V pGq. Theorem 2.5 states that a

lazy random walk never leaves the set A “ V pGqzU with probability at most

πpAqp1´ δλp1´ πpAqqq
` “ p1´ πpUqqp1´ δλπpUqq

`

ď expp´δλ`πpUqq ď exp

ˆ

´
hpGq2

8d2
¨ `πpUq

˙

, (3)

where in the last inequality we used Lemma 2.6 and ΦpGq ě hpGq{p2dq. Note that the events

’leave A’ and ’visit U ’ are the same. From a trivial bound 2epGq ď dn and δpGq ě hpGq we get

πpUq ě
|U |hpGq

2epGq
ě |U |

hpGq

dn
,

which after plugging into (3) gives the desired probability that a random walk misses U .

3 Proof of Theorem 1.1

The proof of Theorem 1.1 combines an approach of Plotkin, Rao, and Smith [27] with an idea

of Krivelevich and Sudakov [19] to use random walks to find connected subsets of V pGq with

some desired properties. That being said, the main new ingredient is the following lemma.

Lemma 3.1. For every ε P p0, 1{2q there exist positive K “ Op1{ε3q and n0 P N such that the

following holds. Let G be a graph with n ě n0 vertices, maximum degree at most d “ dpnq, and

hpGq ě εd. Given s “ spnq and q “ qpnq ď n such that sq ě 2n, and subsets U1, . . . , Uq Ď V pGq

where each Ui is of size |Ui| ě s, there exists a connected set T Ď V pGq of size at most

|T | ď K ¨
n

s
log

´qs

n

¯

which intersects every Ui.

We mention in passing that, for many pairs of values of spnq and qpnq, by choosing subsets

Ui Ă rns of size s at random one can see that there is a family tUiu
q
i“1 whose covering number

has order of magnitude pn{sq logpqs{nq. Thus Lemma 3.1 delivers a nearly optimal promise of

the size of a hitting set, with an additional – and for us very important – benefit of this set

inducing a connected subgraph in G.

Proof. Let

` “
16

ε3
¨
n

s
log

´qs

n

¯

,

and consider a lazy random walk W in G which starts from the stationary distribution and

makes ` steps. A desired connected subset T is constructed by taking the union of W with a

shortest path between Uj and W , for each j P rqs. We argue that with positive probability T is

of required size.

For 1 ď j ď q, let Xj be the random variable measuring the distance from Uj to W in G. Then

the set T has expected size at most `` 1`
řq
j“1ErXjs.

In order to estimate the expectation of Xj , for a positive integer z write pj,z “ PrrXj “ zs and

pj,ěz “ PrrXj ě zs. Trivially pj,z “ pj,ěz ´ pj,ěz`1 and, as G is connected, pj,n “ 0. Hence

ErXjs “

n
ÿ

zě1

zpj,z “
n
ÿ

zě1

z ppj,ěz ´ pj,ěz`1q ď
n
ÿ

zě1

pj,ěz .
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G

Figure 1: A random walk in G (the bold path) together with a shortest path (dashed paths) to every subset.

By Lemma 2.2 we have that BpUj , zq, the ball of radius z around Uj , is of size at least

minpn{2, sp1 ` εqzq. As Xj ě z is equivalent to the event that W misses BpUj , z ´ 1q, us-

ing Lemma 2.4 we get the following estimate for 1 ď z ď z0 :“ 1` logpn{2q{ logp1` εq:

pj,ěz ď exp

"

´
ε3p1` εqz´1s`

8n

*

“

´qs

n

¯2p1`εqz´1

.

This implies pj,ěz1 ď 2´n for every z1 ě z0. Straightforward calculation shows:

ErXjs ď

n
ÿ

zě1

pj,ěz “ O

˜

ˆ

n

qs

˙2
¸

,

hence, finally,

Er|T |s “ ``

q
ÿ

j“1

ErXjs “ ``O

˜

q

ˆ

n

qs

˙2
¸

“ ``Opn{sq “ Op`q .

The proof of Theorem 1.1 splits into three cases, depending on the value of d and ε: the dense

case d ě γn, for some γ “ γpεq, the intermediate case γn ą d ě n0.5, and the most difficult

sparse case d ă n0.5. In the first two cases we shall make use of a classical result obtained

independently by Kostochka [17] and by Thomason [29], which states that for any graph G

with average degree d1 we have cclpGq “ Ωpd1{
a

logpd1qq. Remarkably, Thomason [31] has later

determined the correct constant in the leading term.

Let us say a few words about the similarities and differences between the sparse and intermediate

case. In both cases we follow almost the same arguments, however with different goals. As

already said, in the intermediate case we do not directly show that G contains a large complete

minor, but rather only a minor of some graph H with m “ Ωp
?
ndq vertices and linear (in m)

average degree. Applying the Kostochka-Thomason result on H gives a complete minor of order
a

nd{ log n “ Θp
a

nd{ log dq. Note that this is the same strategy as taken by Krivelevich and

Sudakov [19], with the main technical ingredient being Lemma 2.4. However, in the sparse case

such a bound falls short of the desired one, and we have to show directly that G contains a large

complete minor. The most important difference is that instead of Lemma 2.4 we use Lemma

3.1.

For technical reasons our proof of the sparse case fails to work past d “ n{ log n, thus to avoid

worrying about exact calculations we choose n0.5 as the delimiter between the two cases. Since,
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as already mentioned, the arguments are quite similar we only spell out the details of the sparse

case and then describe the necessary changes for the intermediate one.

Proof of Theorem 1.1. The actual value of γ ą 0 is not important and it will be clear that the

calculations work if it is sufficiently small.

Dense case d ě γn. From hpGq ě εd “ Θpnq we conclude that G has linear minimum (and

thus average) degree. By the Kostochka-Thomason result it contains a complete minor of order

Ωpn{
?

log nq, as desired.

Sparse case d ă n0.5. Let ζ “ ε{8 and let K be a constant given by Lemma 3.1 (for ε :“ ζ).

Set

t “

d

2K

ζ2
¨
n logpζ3εdq

d
“ Θ

˜

c

n log d

d

¸

and r “
ζ2εn

2t
“ Θ

˜

d

nd

log d

¸

.

Here r denotes the size of the complete minor we aim to find and p1` ζqt is an upper bound on

the size of each subset Th in the witness for such Kr-minor (recall the definition of minors from

the very beginning of the paper).

Let P be the family of all ordered partitions V pGq “ D Y T1 Y . . . Y Tq Y U which satisfy the

following constraints:

(a) for each i P rqs we have |Ti| ď p1 ` ζqt, Ti induces a connected subgraph of G, and

|NpTiq| ě tp1{2` 2ζqd,

(b) all Ti’s are mutually disjoint and between every Ti and Tj there exists an edge,

(c) |D| ď 2n{3, and

(d) either |D| ď εn and epD,Uq ď |D|p1{2` 3ζqd, or |D| ą εn and epD,Uq ď 3ζ|D|d.

Taking D “ H, q “ 0 and U “ V pGq trivially satisfies all the conditions, thus P is non-empty.

Let V pGq “ DYT1Y . . .YTq YU be a partition in P which maximises |D| and, among all such

partitions, one which further maximises q. We show that then necessarily q ě r, which by (a)

and (b) gives a witness for Kr ă G. Suppose towards a contradiction that q ă r.

We first rule out D ě ζεn. If ζεn ď |D| ď εn then by the first part of (d) we have epD,Uq ď

|D|p1{2` 3ζqd. From hεnpGq ě p1{2` 8ζqd we obtain

epD,T1 Y . . .Y Tqq “ epD,V zDq ´ epD,Uq ě ζ|D|d,

with room to spare, thus by the assumption thatG has maximum degree d we get a contradiction:

p1` ζqtr ě |T1 Y . . .Y Tq| ě ζ2εn.

Otherwise, if |D| ě εn then from |D| ď 2n{3 and hpGq ě 8ζd we get

epD,V zDq ě min t|D|, n´ |D|uhpGq ě
|D|

2
8ζd “ |D|4ζd.

Therefore epD,T1 Y . . .Y Tqq ě ζ|D|d and a contradiction follows as in the previous case.
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For the rest of the proof we assume |D| ď ζεn. Let us collect some further properties of the

chosen partition. First, note that for every i P rqs we have

|NpTiq X U | ě ζtd. (4)

Indeed, if this was not the case then from the property (a) we get

epTi, Uq ď epTi, V zTiq ´ |NpTiqzU | ď |Ti|d´ ptp1{2` 2ζqd´ ζtdq ă |Ti|d{2. (5)

By adding Ti to D (recall that t “ opnq, thus the resulting set is smaller than εn), relabelling

tTjujPrqsztiu as tT1, . . . , Tq´1u and decreasing q we obtain a partition which satisfies the desired

constraints and has a larger set D, contradicting the fact that the chosen partition maximises

|D|.

Second, we verify that the subgraph GU “ GrU s of G induced by U satisfies hpGU q ě ζd and

hεn{2pGU q ě p1{2 ` 3ζqd. This is, again, a matter of routine calculations. If there would exist

X Ď U of size |X| ď εn{2 such that

epX,UzXq ă |X|p1{2` 3ζqd,

then by removing such X from U and adding it to D we obtain a new partition with the set

D of size at most εn which clearly satisfies all the constraints, again contradicting the choice of

the partition. Similarly, if there exists X Ď U of size εn{2 ď |X| ď |U |{2 such that

epX,UzXq ă |X|ζd, (6)

then from |D| ď ζεn we get

epD YX,UzXq ď epD,V zDq ` epX,UzXq ă ζεnd` |X|ζd ă 3ζ|X|d ď 3ζp|X| ` |D|qd,

which implies we can remove X from U and add it to D. Note that the new set D has size at

most ζεn` |U |{2 ď 2n{3, with room to spare, again yielding a contradiction.

Having these properties at hand we are ready to proceed towards the final contradiction with

the maximality of q. From q ă r and |D| ď ζεn we get |U | ě n{2. As hpGU q ě ζd we can apply

Lemma 3.1 on GU and Ui “ NpTiq X U for i P rqs (we can take s “ ζtd by (4)). If sq ă 2|U |

then we add sufficiently many ‘dummy’ sets of size s. Let T Ď U be the obtained set of size

|T | ď K
|U |

s
log

ˆ

qs

|U |

˙

ă K
n

ζtd
log

ˆ

2rs

n

˙

ă ζt. (7)

For every i P rqs we have that T is disjoint from Ti and there is an edge between them. The only

thing that prevents us from declaring T as the new set Tq`1 in the partition (after removing

it from U) is that we are not able guarantee |NpT q| ě p1{2 ` 2ζqtd. In fact, as we have

chosen T to be rather small this cannot possibly be. However, even if had chosen T to be of

size t such a property would not necessarily hold. To fix this, we use that |T | ă ζt leaves us

plenty of space to extend it to a superset Tq`1 which satisfies this inequality. By Lemma 2.3

hεn{2pGU q ě p1{2` 3ζqd, there exists a connected subset T 1 Ď U of size t “ opn{dq such that T 1

contains some vertex from T and

|NpT 1q X U | ě t pp1{2` 3ζqd´ 1q ě tp1{2` 2.5ζqd.

It is worth noting that t “ opn{dq is the only place so far where we used an upper bound on d,

and the previous inequality is the only place where we used d ě d0 (for some sufficiently large

d0 “ d0pζq).
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The set Tq`1 “ T Y T 1 is still disjoint from all the sets Ti for i P rqs and satisfies

|NpTq`1q| ě |NpTq`1q X Uq| ě |NpT
1q X Uq| ´ |T | ě p1{2` 2ζqtd.

By removing Tq`1 from U and increasing q we obtain a new partition which by construction

satisfies all the constraints, the set D did not change and q has increased; thus a contradiction.

This proves that q ě r.

Remark: Application of Lemma 2.3 explains how we benefit from stronger expansion properties

of small subsets. Namely, hεn{2pGU q ě p1{2 ` 3ζqd and Lemma 2.3 gave us a connected set T 1

which has large external neighbourhood, and in particular large enough satisfy the property (a).

The property (a) is necessary for the equation (5) to hold which, in turn, shows that (4) holds.

Without the bound from (4) we would not be able to take s “ Θptdq which would, finally, result

in a larger set T in (7) than what we need.

Intermediate case n0.5 ď d ď γn. We borrow an idea from the proof of [19, Theorem 4.4]: in

order to obtain a desired bound on cclpGq it suffices to show that G contains a minor of a graph

H with r “ Θp
?
ndq vertices and average degree at least 0.1r. By the Kostochka-Thomason

result such a graph H contains a complete minor of order
a

nd{ log n thus, as log n “ Θplog dq,

we obtain the desired bound.

We show that G contains a minor of such a graph H by modifying the proof of the sparse case

as follows. Instead of asking in (b) that between every Ti and Tj there exists an edge, we ask

that there are, say, 0.1q2 pairs pTi, Tjq for which this holds. Consequently, for this it suffices to

take t “ Θp
a

n{dq.

The argument now remains the same until the point where we seek a contradiction with the

maximality of q. The crucial observation is that we do not need to find a set T in U which

intersects every NpTiq XU , but only a 0.1-fraction of them. A simple application of Lemma 2.4

gives such a set of size Op
a

n{dq. Exactly the same as in the proof of the sparse case, we extend

such T to Tq`1 by finding a connected subset T 1 which has good vertex expansion properties.

Here it is crucial that t is much smaller than n{d, which we can achieve by choosing γ to be

sufficiently small. We leave the details to the reader.

The proof of Theorem 1.2 follows the same lines as the presented proof, thus we give a short

sketch of the necessary changes. For the full proof see [18].

Proof of Theorem 1.2 (sketch). Define both t and r to be of order
?
n. In the definition of P, we

drop the requirement |NpTiq| ě tp1{2` 2ζqd in (a), and in (d) we only require epD,Uq ă ε|D|d.

The rest of the argument proceeds in the same way, with some small further changes. In

particular, we replace (4) by a weaker condition

epTi, Uq ą εtd.

If this is not true then we can safely move Ti to D and epD,Uq ă ε|D|d would remain satisfied.

Such a lower bound on the number of edges and maximum degree imply |NpTiqXU | ě εt, which

allows us to take only s “ Θptq, instead of s “ Θptdq. Lemma 3.1 then gives us a set T of size

O
´n

t
log

rs

n

¯

“ Op
?
nq,

and we completely omit the use of Lemma 2.3 as we no longer require Tq`1 to have (exceptionally)

large external neighbourhood.
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4 Concluding remarks

We showed that a good edge expander contains a large complete minor. As a corollary, we

determined the size of a largest complete minor in random d-regular graphs and some families of

pseudo-random graphs. These results extend and improve some of the previously known results

in a unified way.

Without any doubt, Theorem 1.1 would be aesthetically more appealing if the same order of

cclpGq would hold without the stronger edge expansion assumption on (very) unbalanced cuts.

Of course, having the present proof of Theorem 1.1 in mind one can also come up with different

assumptions which would work. For example, hpGq ě εd and every set of size Op
a

n log d{dq

sends at most op
?
nd log dq edges to every set of size Θp

?
nd log dq. From the point of view of

given applications such an assumption would suffice, however it feels more artificial compared

to hεnpGq ą p1{2` εqd. That being said, we ask the following question.

Question 4.1. Let G be a graph with n ě n0 vertices, maximum degree at most d “ dpnq ě 3,

and hpGq ě εd, for some constant ε ą 0. Is it true that cclpGq “ Ω
´

a

nd{ log d
¯

?

In other words, Question 4.1 asks if one can strengthen the conclusion of Theorem 1.2 to match

the one of Theorem 1.1.

A possible further direction would be to weaken the assumption that the maximum degree and

hpGq are of the same order. Unfortunately, such a weakening is no longer sufficient to guarantee

even a minor of order
?
n. This can be seen by the following example. Let G be a complete

bipartite graph where one side has n and the other side has n1{3 vertices. Even though this graph

has a very large Cheeger constant, namely hpGq “ Θpn1{3q, it does not contain a complete minor

of size n1{3`2: every but at most one set Th has to contain a vertex from the smaller class. It is

worth noting that this is in contrast with the case of vertex expansion. A result of Kawarabayashi

and Reed [16] shows that if a graph G is such that every subset of vertices S Ď V pGq of size

n{3 ď |S| ď 2n{3, where n is the number of vertices of G, has the external neighbourhood of

size at least ε|S| for some ε ą 0, then G contains a complete minor of order Ωpε
?
nq. This being

said, it remains an interesting question to determine the correct dependency of cclpGq on hpGq

and its maximum degree. Some dependency could be retrieved from the proof of Theorem 1.2,

however we did not try to optimise it.

Another interesting class of graphs studied by Krivelevich and Sudakov [19] are Ks,t-free graphs.

While the proof from [19] relies on establishing vertex expansion properties through edge ex-

pansion, it is plausible that using some of the ideas presented here could simplify their proof.

However, as the optimal results in this direction were already obtained in [19] and they do not

seem to follow from our main theorems used as a black box, we did not pursue this.

We now discuss the algorithmic aspect of the problem and the proof of Theorem 1.1. First,

some background on the spectral graph theory (for a thorough introduction to the topic, see,

e.g., [9]). Given a graph G, let h1pGq be defined as follows:

h1pGq “ min
H‰SĹV pGq

epS, V pGqzSq

mintvolpSq, volpV pGqzSqu
,

where volpSq “
ř

vPS degpvq. In case G is a d-regular graph we have hpGq “ h1pGq{d, and it is

actually h1pGq that some authors refer to as the Cheeger constant. While we could have stated

Theorem 1.1 in terms of h1pGq, we have opted for hpGq for convenience. The famous Cheeger
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inequality for graphs [1, 2, 11] states that

λpGq{2 ď h1pGq ď
a

2λpGq, (8)

where λpGq denotes the second smallest eigenvalue of the normalised Laplacian of G. A proof

of the right hand side of (8) yields a polynomial time algorithm which produces a set S Ď V pGq

such that volpSq ď volpV pGqq{2 and epS, V pGqzSq ď volpSq
a

2λpGq.

We can now describe (somewhat informally) a randomized algorithm which, given a graph G

satisfying assumptions of Theorem 1.1, with high probability succeeds in finding a Kr-minor in

G, for some r “ Θp
a

nd{ log dq. We only do it for the sparse case. The other two cases depend

on the algorithmic aspects of the Kostochka-Thomason proof, which goes beyond the scope of

this paper. The numbers used in the algorithm are (almost) the same as in the proof. Start

with a partition D “ H, q “ 0 and U “ V pGq and in each iteration do the following until q “ r:

• If there exists i P rqs such that Ti has less than tp1{2` 2ζqd neighbours in U then move it

to D and decrease q;

• If there exists a vertex in U with less than ζd neighbours in U then move it to D;

• If λpGrU sq ď ζ2{2 then we can find a subset S Ď U such that volGrUspSq ď volGrUspUq{2

and epS,UzSq ď volpSq
a

2λpGrU sq. If |S| ď |U |{2 then epS,UzSq ď |S|ζd, and otherwise

epUzS, Sq ď |UzS|ζd. In any case, we can efficiently find a subset S1 Ď U such that

|S1| ď |U |{2 and epS1, UzS1q ă |S1|ζd. Move such S1 from U to D.

• Otherwise, if λpGrU sq ě ζ2{2 then by (8) we have h1pGrU sq ě ζ2{4. As the minimum

degree of GrU s is at least ζd we have volGrUspSq ě ζ|S|d for every S Ď U , thus hpGrU sq ě

ζh1pGrU sqd ě ζ3d{4. This is somewhat weaker than what we had in the proof, but it

nonetheless suffices.

We can now apply the algorithm described in Lemma 3.1. Run a lazy random walk of

length ` in GrU s and for each i P rqs take a shortest path from NpTiq X U to this walk.

Let T denote the resulting subset of vertices. The expected size of T is at most, say, ζt{2,

for t chosen to be twice of what we used in the proof, hence with probability at least 1{2

we have |T | ď ζt. By repeating this procedure C log n times, with probability at least

1´ 1{nC we find a desired connected subset T of size at most ζt.

Finally, apply the argument from the proof of Lemma 2.3 to either find a subset T 1 Ď U

of size t which has external neighbourhood of size tpp1{2 ` 2.5ζqd, or a subset S Ď U of

size |S| ď εn{2 such that epS,UzSq ă p1{2 ` 3ζqd. In the former case form a new set

Tq`1 “ T Y T 1 and increase q. In the latter move S to D.

The proof of Theorem 1.1 shows that indeed at some point we either terminate with a failure

or we get q “ r. In each iteration either U decreases or D increases, thus the whole procedure

finishes after at most 2n iterations. The probability of a failure is therefore at most 1{nC , for

any constant C of our choice.
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