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1 Brief summary of results

In this paper we address several extremal problems related to graph minors. In all of our results we
assume essentially that a given graph G is expanding, where expansion is either postulated directly,
or G can be shown to contain a large expanding subgraph, or G is locally expanding due to the
fact that G does not contain a copy of a fixed bipartite graph H. We need the following definitions
to state our results. A graph Γ = (U,F ) with vertex set U = {u1, . . . , uk} is a minor of a graph
G = (V,E) if the vertex set V of G contains a sequence of disjoint subsets A1, . . . , Ak such that the
induced subgraphs G[Ai] are connected, and there is an edge of G between Ai and Aj whenever the
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corresponding vertices ui, uj of Γ are connected by an edge. A graph G = (V,E) is (t, α)-expanding
if every subset X ⊂ V of size |X| ≤ α|V |/t has at least t|X| external neighbors in G. A graph
G = (V,E) is called (p, β)-jumbled if ∣∣∣∣e(X)− p |X|

2

2

∣∣∣∣ ≤ β|X|
for every subset X ⊆ V , where e(X) stands for the number of edges spanned by X in G. Informally,
this definition indicates that the edge distribution of G is similar to that of the random graph G|V |,p,
where the degree of similarity is controlled by parameter β.

Here are the main results of this paper.

Theorem 1 Let 0 < α < 1 be a constant. Let G be a (t, α)-expanding graph of order n, and let
t ≥ 10. Then G contains a minor with average degree at least

c

√
nt log t√
log n

,

where c = c(α) > 0 is a constant.

This is an extension of results of Alon, Seymour and Thomas [5], Plotkin, Rao and Smith [34],
and of Kleinberg and Rubinfeld [17], who cover basically the case of expansion by a constant factor
t = Θ(1).

Theorem 2 Let G be a (p, β)-jumbled graph of order n such that β = o(np). Then G contains a
minor with average degree cn

√
p, for an absolute constant c > 0.

This statement is an extension of results of A. Thomason [39, 40], who studied the case of constant
p. It can be also used to derive some of the results of Drier and Linial [12].

Theorem 3 Let 2 ≤ s ≤ s′ be integers. Let G be a Ks,s′-free graph with average degree r. Then G

contains a minor with average degree cr1+ 1
2(s−1) , where c = c(s, s′) > 0 is a constant.

This confirms a conjecture of Kühn and Osthus from [23].

Theorem 4 Let k ≥ 2 and let G be a C2k-free graph with average degree r. Then G contains a
minor with average degree cr

k+1
2 , where c = c(k) > 0 is a constant.

This theorem generalizes results of Thomassen [43], Diestel and Rempel [11], and Kühn and Osthus
[22], who proved similar statements under the (much more restrictive) assumption that G has girth
at least 2k + 1.

All of the above results are, up to a constant factor, asymptotically tight (Theorems 1, 2), or are
allegedly tight (Theorems 3, 4), where in the latter case the tightness hinges upon widely accepted
conjectures from Extremal Graph Theory about the asymptotic behavior of the Turán numbers of
Ks,s′ and of C2k.
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2 Background

This paper is devoted to two of the most fundamental, yet normally quite distant, concepts in modern
Graph Theory – minors and expanding graphs. Their prominent role in mathematics is reflected by
the fact that both have been featured in a popular column “What is...?” of the AMS Notices [29],
[37]. The purpose of this section is to provide a basic information for both of these concepts, and also
for several related notions in Graph Theory, relevant for this paper. Before going into technicalities,
we would like to state notational agreements to be used in this paper. All graphs considered here
are finite, without loops and without multiple edges, unless stated explicitly otherwise. Most of our
notation is rather standard and can be found in any textbook in Graph Theory. Here we define
several less common pieces of notation, used throughout the paper.

Let G = (V,E) be a graph. For a subset X ⊆ V we denote by eG(X) or simply by e(X) the
number of edges of G spanned by X, and by N(X) the external neighborhood of X:

N(X) := {u : u 6∈ X,u has a neighbor in X} .

In case X = {v} we simply write N({v}) = N(v); obviously, the cardinality of N(v) is the degree of
v in G. For two disjoint sets X,Y ⊂ V , we denote the number of edges of G connecting X and Y by
e(X,Y ).

As quite customary in Extremal Graph Theory, our approach to the problems researched will
be asymptotic in nature. We thus assume that an underlying parameter (normally the order n of
a graph) tends to infinity and is therefore assumed to be sufficiently large whenever necessary. We
also do not make any serious attempt to optimize absolute constants in our statements and proofs.
All logarithms are in the natural basis. We omit systematically rounding signs for the sake of clarity
of presentation.

The following (standard) asymptotic notation will be utilized extensively: for two functions f(n),
g(n) of a natural valued parameter n, we write f(n) = o(g(n)), whenever limn→∞ f(n)/g(n) = 0;
f(n) = O(g(n)) if there exists a constant C > 0 such that f(n) ≤ Cg(n) for all n. Also, f(n) =
Ω(g(n)) if g(n) = O(f(n)), and f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n)) are
satisfied.

2.1 Minors

Definition 1 A graph Γ is a minor of a graph G is for every vertex u ∈ Γ there is a connected
subgraph Gu of G such that all subgraphs Gu are vertex disjoint, and G contains an edge between Gu
and Gu′ whenever (u, u′) is an edge of Γ.

An equivalent definition is through edge deletions and contractions: we can obtain a minor Γ of a
graph G by first deleting all edges except those in subgraphs Gu, u ∈ Γ, and those connecting Gu,
Gu′ for (u, u′) ∈ E(Γ), and then contracting all edges inside each of the connected subgraphs Gu.
(Given an edge e = (v′, v′′) of a graph G, contracting e results in replacing v′, v′′ by a single new
vertex v, and connecting w ∈ V (G)− {v′, v′′} to the new vertex v if and only if w is connected to v′

or to v′′ or to both in G).
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Though the notion of graph minors appears at the first sight to be purely graph theoretic, it turns
out to be absolutely essential in bridging between Graph Theory on one side, and Topology and
Geometry on the other – one of the most non-trivial and fundamental connections in Mathematics.
Indeed, the famous theorem of Kuratowski [24] (in its reformulation due to Wagner [46]) postulates
that a graph G can be embedded in the plane (is planar) if and only if neither the complete graph
K5 on five vertices nor a complete bipartite graph K3,3 with three vertices at each side are minors of
G. This was the beginning of Topological Graph Theory, whose culmination is without a doubt the
celebrated Robertson-Seymour theory of graph minors. In a series of twenty papers, spanning over
two decades (with [36] being the concluding paper of the series), Robertson and Seymour proved
the so called Wagner conjecture: in every infinite collection of graphs, there are two such that one
is a minor of the other (in other words, the set of finite graphs with the “minor” relation as a
partial order is well-quasi-ordered; see, e.g. [21] for more information about the theory of well-quasi-
ordering). An equivalent formulation is that every family of graphs closed with respect to taking
minors can be characterized by a finite family of excluded minors. As a corollary Robertson and
Seymour were able to derive that for every closed compact surface there is a finite list of graphs
such that a graph G is embeddable in this surface if and only if it does not contain any of these
as a minor. This is of course an extremely far-reaching generalization of the Kuratowski theorem.
The Robertson-Seymour Structural Graph Theory is undoubtedly an admirable research effort and
one of the crown achievements of Combinatorics, whose impact is truly immense. As our research in
minors will proceed along rather different lines, we will not dwell on this wonderful theory anymore,
referring the reader instead to a very nice survey of Lovász on the subject [26].

2.2 Expanding graphs

The second fundamental concept of this paper is expanding graphs. Informally, a graph G is said
to be an expanding graph or an expander if every subset X of V (G) has relatively many neighbors
outside X. (This is what is usually called vertex expansion, sometimes an alternative notion of edge
expansion is used, there every set X is required to be incident to many edges crossing between X and
its complement in V (G); for constant degree graphs these two notions are essentially equivalent).
Of course, a formal definition is required here, firstly, to measure the expansion quantitatively, and
secondly to distinguish between the expansion of small and large sets – obviously a set X containing
half the vertices of V cannot have more than |X| outside neighbors, while a much smaller set X can
expand by a much larger factor. There are several definitions of expanders in common use, capturing
sometimes rather different expansion properties. In this paper we find it much more important to
look at the expansion of small sets, and for this reason we adopt the following formal definition of
an expander.

Definition 2 Let t > 0, 0 < α < 1. A graph G = (V,E) is (t, α)-expanding if every subset X ⊂ V

of size |X| ≤ α|V |/t has at least t|X| external neighbors in G.

Normally we will think of α as being an absolute constant. In this case, the above definition says
that every set X of size |X| = O(n/t) expands by a factor of at least t.

As the research in the last quarter century has convincingly shown, the notion of expanders
is of utmost value in an amazing variety of fields, both in and outside of Discrete Mathematics.
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Applications include design of efficient communication networks, error-correcting codes with efficient
encoding and decoding, derandomization of randomized algorithms, study of metric embeddings, to
mention just a few. Expanders are usually constructed much easier using probabilistic, existential
arguments (see, e.g. [33]); explicit constructions of expander graphs are much harder to come by and
range from classical papers of Margulis [28] and of Lubotzky, Phillips and Sarnak [27], to a relatively
recent zig-zag product construction of Reingold, Vadhan and Wigderson [35].

Our viewpoint here will be somewhat different from the above mentioned papers. Instead of
discussing ways to construct good expanders, we will concentrate on properties of expanders, and
more specifically on the appearance of large minors in expanding graphs.

General information about expanders, their properties and applications can be found in a recent
excellent survey of Hoory, Linial and Wigderson [15].

2.3 Pseudo-random graphs

A notion closely related to expanding graphs is that of pseudo-random graphs. As the name clearly
suggests, pseudo-random graphs can be informally described as graphs resembling truly random
graphs, most commonly the so called binomial random graphs Gn,p. We first remind the reader the
definition of this probability space. Given two parameters n and 0 ≤ p ≤ 1, the random graph Gn,p
is a probability space of all graphs on n vertices labeled 1, ..., n, where for each pair 1 ≤ i 6= j ≤ n,
the probability that (i, j) is an edge is p, independently of all other pairs. Equivalently, Gn,p is
the probability spaces of all labeled graphs with vertex set {1, . . . , n}, endowed with the probability
measure Pr[G] = p|E(G)|(1 − p)(

n
2)−|E(G)|. In quite a few cases the edge probability p is in fact a

function p = p(n) of the number of vertices n, vanishing as n tends to infinity. We say that random
graph possesses a property P with high probability , if the probability that Gn,p satisfies P tends
to 1 as n tends to infinity. This probability space is undoubtedly the most studied and the most
convenient to work with probability distribution on graphs. When defining pseudo-random graphs,
one usually tries to capture quantitatively their similarity to truly random graphs, in this aspect or
another. Arguably the most important feature of random graphs is their edge distribution, and so it is
quite natural to expect that a definition of a pseudo-random graph will address this property. For the
probability space Gn,p, edge distribution is quite easy to handle – for a given subset X ⊆ V (G), the
number of edges spanned by X in Gn,p is a binomially distributed random variable with parameters(|X|

2

)
and p; applying standard bounds on the tails of the binomial distribution one can easily show

that with high probability all sets X of cardinality k span indeed close to
(
k
2

)
p edges in Gn,p, if

k is not too small. This fact motivates the following definition of a pseudo-random graphs due to
Thomason [39], [40]:

Definition 3 A graph G = (V,E) is (p, β)-jumbled if for every subset X ⊆ V (G),∣∣∣∣eG(X)− p|X|2

2

∣∣∣∣ ≤ β|X| .
Thus, if G is a (p, β)-jumbled graph, its edge density is around p, and its edge distribution is

similar to that of the random graph Gn,p, where the degree of similarity (or rather of proximity to
the expected number of edges) is controlled by the parameter β. Random graphs Gn,p are easily
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shown to be (p,O(
√
np))-jumbled for all not too small values of the edge probability p. Moreover,

one can show (see [13]) that if a graph G on n vertices is (p, β)-jumbled, then β = Ω(
√
np); for this

reason (p, β)-jumbled graphs G with β = Θ(
√
np) are considered very good pseudo-random graphs.

Pseudo-random graphs is a central concept in modern Combinatorics, whose importance is derived
in part from that of random graphs. Quite a few known constructions of pseudo-random graphs are
deterministic, allowing thus to substitute somewhat elusive truly random graphs, defined through
probabilistic, existential means, with quite accessible deterministic descriptions – a feature crucial
in a variety of applications. Moreover, in certain applications one can utilize features of (carefully
crafted) pseudo-random graphs, non-existent typically in random graphs of the same edge density.

As we have indicated, several alternative definitions of pseudo-random graphs are available; here
we describe just one of them, based on graph spectrum. Given a graph G = (V,E) with vertex set
V = {v1, . . . , vn}, the adjacency matrix of G is an n-by-n matrix A of zeroes and ones, defined by:
aij = 1 if and only if (vi, vj) ∈ E(G), and aij = 0 otherwise. Observe that A is a symmetric real
matrix, and therefore A has a full set of n real eigenvalues, denoted by λ1, . . . , λn, customarily sorted
in the non-increasing order λ1 ≥ λ2 ≥ . . . ≥ λn and usually called the eigenvalues of the graph G

itself. If G is a d-regular graph, then the first eigenvalue λ1 is easily seen to be λ1 = d (with the
corresponding eigenvector being the all-one vector), while all others satisfy |λi| ≤ d, i = 2, . . . , n.
Now, equipped with this terminology, we can give an alternative definition of a pseudo-random
graph introduced by Alon. A graph G = (V,E) is called an (n, d, λ)-graph if G has n vertices, is
d-regular, and in addition all of its eigenvalues but the first one satisfy: |λi| ≤ λ, i = 2, . . . , n. A
very frequently used result from Spectral Graph Theory (see, e.g., Chapter 9 in [6]) postulates that
if G is an (n, d, λ)-graph, then ∣∣∣∣eG(X)− d|X|2

2n

∣∣∣∣ ≤ λ|X| ,
for all subsets X ⊆ V (G), implying that an (n, d, λ)-graph is (d/n, λ)-jumbled. Several constructions
of (n, d, λ)-graphs with λ = O(

√
d) are available, they are based on a variety of algebraic and

geometric properties. We would like to mention in passing that graph eigenvalues are frequently
used to ensure graph expansion too.

The reader is advised to consult a survey [20] on pseudo-random graphs by the authors for an
extensive coverage of pseudo-random graphs, their definitions and properties.

3 Extremal problems for minors

The subject of this paper can be classified as “Extremal problems for minors”. Given the prominence
of these two branches of Graph Theory (theory of minors and extremal graph theory), it is quite
natural to expect the appearance of results combining these two subjects. And indeed, our paper
is certainly not the first to address extremal problems for minors; in fact, this is already a well
established part of Graph Theory, with a variety of results achieved. A recent survey of Thomason
[42] on the subject describes several of its achievements.

Generally speaking, the motto of the extremal minor theory can be stated as finding sufficient
conditions for the existence of a minor from given family, or a concrete minor (say, a clique minor of
certain order) in a given graph. Here is an illustrative example of a result of this sort: every graph
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G on n vertices with more than 3n− 6 edges contains a complete graph K5 or a complete bipartite
graph K3,3 as a minor. This is of course nothing else but rephrasing of the Kuratowski-Wagner
theorem combined with the classical fact that a planar graph on n vertices has at most 3n− 6 edges
(which in turn follows easily from the celebrated Euler formula connecting the numbers of vertices,
edges and faces in any planar embedding). As yet another illustration we can mention the famous
Hadwiger Conjecture, suggesting that a graph that cannot be properly colored with k colors has a
clique Kk+1 as a minor; this notorious conjecture has been proven so far for very few initial values
of k, see [44] for a survey of its status.

Here we will be mostly looking for results of the following sort: if a graph G is sufficiently
dense, or has sufficiently large average degree (plus possibly additional conditions imposed), then G
contains a large clique minor. Perhaps the best known result of this sort was proved independently
by Kostochka [18] and by Thomason [38], who showed that there exists an absolute constant c > 0
such that every graph G with average degree d = 2|E(G)|/|V (G)| contains a clique on cd/

√
log d

vertices as a minor. Later the asymptotic value of c has been determined by Thomason [41].

Under certain additional conditions one can guarantee a clique minor of order (much) larger than
d/
√

log d in a graph of average degree d. Several of our results are indeed of this type. When looking
for large minors one should remember however that there is a limit of the size of a minor one can
find in a graph. This limit is given by the following very simple yet very useful observation.

Proposition 1 Let H be a minor of G. Then the number of edges of H does not exceed the number
of edges of G.

The above proposition immediately implies that a graph G on n vertices with average degree d
cannot contain a graph Γ with average degree k >

√
nd as minor. Indeed, the number of edges of G

is nd/2, and thus if Γ is a minor of G then k2

2 ≤
nd
2 . We will repeatedly use this simple bound as a

benchmark to measure the quality of our results.

In the rest of this section we survey a variety of known results in Extremal Minor Theory, having
in mind our theorems and their comparison to the previously obtained results.

There are several results connecting between (the absence of) separators and minors in graphs.
A separator S of a graph G is a set of vertices whose removal separates the graph into connected
components, each of size at most 2

3 |V (G)|. Alon, Seymour and Thomas [5] proved that a graph of
order n without a Kh minor has a separator of size O(h3/2n1/2). This was extended to large h by
Plotkin, Rao and Smith [34] who proved that a graph without a Kh minor has a separator of size
O(h
√
n log n). The last result implies in particular that an expander graph of constant degree has

a clique minor of size Ω(
√
n/ log n). On the other hand, since every graph has trivially a separator

of size n/3, one can only show the existence of a clique minor of order at most O(
√
n/ log n) using

these results.

Kleinberg and Rubinfeld addressed in [17] a connection between expansion and the existence
of large minors. They used the following, rather weak, definition of expansion: a graph G is an
α-expander if every set X of at most half of the vertices of G has at least α|X| outside neighbors in
G. It is proven in [17] that for every fixed α > 0 there is a constant c > 0 such that an α-expander
graph of order n contains every graph H with at most n/ logc n vertices and edges as a minor. While
this result is quite useful in finding large minors in sparse graphs (in particular those of constant
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maximum degree), it appears to be of rather limited value for the denser case and can not be used
to show the existence of a clique minor of order larger than Ω(

√
n/ log n).

Sunil Chandran and Subramanian [9] discussed a connection between spectral properties of a
graph and its minors. They proved in particular that if G is a d-regular graph on n vertices whose
second eigenvalue is at most λ, then G contains a clique minor on Ω

(( n(d−λ)2

(3d−2λ)2

)1/3) vertices. Observe

that this result can be used only to show the existence of clique minors of order up to cn1/3, which
is a relatively weak bound.

Another avenue of research in extremal problems in minors (also pursued in this paper) aims to
prove the existence of large minors in graphs with excluded subgraphs. Kühn and Osthus proved
in [23] that for all integers 2 ≤ s ≤ s′ there exist constants r0 = r0(s, s′) and c = c(s, s′) such that
every Ks,s′-free graph G of average degree r ≥ r0 contains a minor of average degree d satisfying

d ≥ c r
1+ 1

2(s−1)

(log r)2+ 1
s+1

.

They conjectured however that the logarithmic term is not needed in this bound and were able to
verify this conjecture for the case when the graph G is assumed to be regular. Observe that after
having obtained a minor of average degree d one can use the above mentioned results of Kostochka
and Thomason [18], [38], [41] to derive the existence of a clique minor on cd/

√
log d vertices.

Another nice result of Kühn and Osthus guarantees the existence of large minors in graphs with
large girth (i.e. without short cycles). They proved in [22] that for every odd integer g ≥ 5 there
exists a constant c = c(g) > 0 such that every graph G of average degree r and without cycles
shorter than g (such a graph is said to have girth at least g) contains a minor with average degree
at least cr(g+1)/4. This result improves significantly a much earlier result of Thomassen [43] and a
recently obtained result by Diestel and Rempel [11]. Observe that the assumption for the case g = 5
essentially amounts to forbidding a 4-cycle, or K2,2; thus this result of Kühn and Osthus establishes
their above mentioned conjecture for the case s = s′ = 2.

Bollobás, Catlin and Erdős [8] analyzed the appearance of large minors in random graphs. They
proved that for a constant edge probability p, 0 < p < 1, the largest clique minor in a random graph
Gn,p is of order n/

√
log n (in fact, their result is more accurate – they were able to establish not only

the asymptotic order of magnitude of the largest clique minor in Gn,p, but actually its asymptotic
value). As a result, and taking into account a well known fact that the chromatic number of Gn,p in
this range is with high probability O(n/ log n), Bollobás et al. were able to derive that almost every
graph satisfies the Hadwiger conjecture. (It is worth mentioning here that the above stated results
of Kühn and Osthus and some of the results of the current paper imply readily the validity of the
Hadwiger conjecture for Ks,s′-free graphs and graphs with high girth, or with forbidden long enough
cycle.) The argument of [8] can be used to show that with high probability the largest clique minor
in Gn,p has order of magnitude Θ

(
n
√
p/
√

log n
)
, for subconstant values of the edge probability p(n)

as well.

Much less is known in the case of pseudo-random (or jumbled) graphs. Thomason proved in [39]
(see also [40]) that (p, β)-jumbled graphs with p constant and β = O(n1−ε) contain a clique minor
of size at least (1 + o(1))n/

√
logb n, where b = 1/(1 − p). For small p, this has the same order of

magnitude n
√
p√

logn
as the result for Gn,p.
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Finally, we mention a recent result of Drier and Linial [12] who discussed minors in lifts of graphs.
An `-lift of a labeled graph G = (V,E) is a graph with vertex set V × [`], whose edge set is the union
of perfect matchings between {u} × [`] and {v} × [`] for each edge (u, v) ∈ E. In a random lift these
matchings are selected uniformly at random. Drier and Linial proved that for ` ≤ O(log n) almost
every lift of the complete graph Kn contains a clique minor of size Θ(n), and for ` > log n it contains
a clique minor of size at least Ω

(
n
√
`√

log(n`)

)
. The last result was shown to be tight in [12] as long as

log n < ` < n1/3−ε.

4 Our results

In this section we present in full details the results of this paper. We also compare them with
previously obtained results, surveyed in brief in Section 3, and discuss their tightness.

The first of our results is about minors in expanding graphs. We prove:

Theorem 4.1 Let G be a (t, α)-expanding graph of order n and let t ≥ 10. Then G contains a minor
with average degree at least

cα3

√
nt log t√
log n

,

where c > 0 is some absolute constant independent of α.

This theorem together with the results of Kostochka [18] and Thomason [38] mentioned in Section
3 gives the following corollary.

Corollary 4.2 Let G be a (t, α)-expanding graph of order n, and let t ≥ 10. Then G contains a
clique minor of size

cα3

√
nt log t
log n

,

where c is some absolute constant independent of α.

For t ≥ nε this gives a clique minor of size Ω
( √

nt√
logn

)
. The random graph Gn,p with p = 10t/n

can be easily shown with high probability to be (t, 0.5)-expanding in this range of t, and as we
mentioned before its largest clique minor is typically of order O

( √
nt√

logn

)
. This shows that our result

is tight up to a constant factor. For small values of t ≤ log n the result of this corollary can be
slightly improved as follows:

Proposition 4.3 If G is a (t, α)-expanding graph of order n and t ≥ 10, then G contains a clique
minor of size

Ω

(
α2

√
n log t
log n

)
.
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Observe that the above results constitute a substantial extension of the results of Alon, Seymour
and Thomas [5], Plotkin, Rao and Smith [34], and of Kleinberg and Rubinfeld [17], that cover
basically the case of expansion by a constant factor t = Θ(1). Our results, though applicable also
for the case t = Θ(1), enable to show the existence of larger minors whenever the expansion factor t
becomes super-constant.

The next our result is about minors in pseudo-random (or jumbled) graphs. We prove:

Theorem 4.4 Let G be a (p, β)-jumbled graph of order n such that β = o(np). Then G contains a
minor with average degree Ω(n

√
p).

This statement is an extension of the results of Thomason [39, 40], who studied the case of
constant p. As a (p, β)-jumbled graph G on n vertices with β = o(np) has average degree close to
np and thus Θ(n2p) edges, Proposition 1 shows that Theorem 4.4 is asymptotically tight, up to a
constant factor. The above theorem also implies that an (n, d, λ)-graph G with λ = o(d) has a minor
of average degree Ω(

√
nd). This can be used in particular to derive some of the results of Drier and

Linial [12] on minors in random lifts. For example, when `� n we have that with high probability
every pair of vertices in a random `-lift of the complete graph Kn has at most (1 + o(1))n/` common
neighbors. Using this one can easily show that this graph is an (n`, n − 1, λ)-graph with λ = o(n).
Therefore a random `-lift of Kn contains a minor with average degree Ω(n

√
`) and thus a clique

minor of order Ω
(

n
√
`√

log(n`)

)
, by applying again Kostochka-Thomason. For larger values of ` one can

obtain similar lower bound on the size of the clique minor in a random `-lift of the complete graph
Kn by first proving that all subsets of order at most O(`) in such graph expand by a factor of Ω(n)
and then using Theorem 4.1.

The next group of results guarantees the existence of large minors in graphs with excluded
subgraphs. First, we prove:

Theorem 4.5 Let 2 ≤ s ≤ s′ be integers. Let G be a Ks,s′-free graph with average degree r. Then

G contains a minor with average degree Ω
(
r
1+ 1

2(s−1)

)
.

This confirms a conjecture of Kühn and Osthus from [23]. The result is asymptotically tight
modulo a well known and widely accepted conjecture about the Turán numbers of complete bipartite
graphs Ks,s′ , saying that for constant 2 ≤ s ≤ s′, there exists a Ks,s′-free graph G on n vertices
with at least Ω

(
n2−1/s

)
edges. Denoting the average degree of such a graph by r, we have then

r = Ω(n1−1/s), and therefore by Proposition 1 a minor H of G has O
(
r2+1/(s−1)

)
edges, and hence

the average degree of H is at most O
(
r
1+ 1

2(s−1)

)
. The latter conjecture has been settled for s = 2, 3

and all s′ ≥ s (see, e.g., Chapter VI of [7]), furthermore, Alon, Rónyai and Szabó proved it [4] for
s′ > (s− 1)!. The asymptotic tightness of Theorem 4.5 thus follows in all these cases.

Theorem 4.5 can be generalized somewhat to the case where an excluded graph H is a bipartite
graph with bounded degrees at one side. The corresponding result is:

Theorem 4.6 Let H be a bipartite graph of order h with parts A and B such that the degrees of
all vertices in B do not exceed s. If G is an H-free graph with average degree r, then G contains a
minor with average degree Ω

(
r
1+ 1

2(s−1)

)
.
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Finally, we prove a minor-related result for C2k-free graphs.

Theorem 4.7 Let k ≥ 2 and let G be a C2k-free graph with average degree r. Then G contains a
minor with average degree Ω

(
r

k+1
2

)
.

This generalizes a result of Kühn and Osthus [22], who proved such a theorem under the (much
more restrictive) assumption that G has girth at least 2k+ 1. Here too the asymptotic optimality of
Theorem 4.7 relies on a well known conjecture from Extremal Graph Theory (see, e.g., [7], p. 164),
postulating that for any fixed k ≥ 2, there exists a graph G on n vertices without cycles of length
up to 2k and with Ω(n1+1/k) edges. This conjecture has been proven so far for k = 2, 3, 5.

Of course the Kostochka-Thomason result can be utilized to convert minors with large average
degree into clique minors, just as we have done several times already. Arguments similar to those
used by Kühn and Osthus in [23] (see Proposition 15 there) can be used to show that the obtained
lower bond on the size of a largest clique minor are asymptotically tight, up to a constant factor,
assuming the validity of the above mentioned conjectures about the Turán numbers of Ks,s′ and of
C2k.

The alert reader has probably noticed that in all three results above the excluded fixed graph is
bipartite. This is for a good reason – the complete bipartite graph Kr,r is H-free for any non-bipartite
graph H, and yet every minor H of Kr,r has obviously average degree O(r). This indicates that if
one’s aim is to force an untypically large minor by excluding a fixed graph H, H should better be
bipartite.

The rest of the paper is organized as follows. In Section 5 we discuss minors in expanding graphs
and prove Theorem 4.1 and Proposition 4.3. Section 6 is devoted to minors in pseudo-random graphs,
there we prove Theorem 4.4. In Section 7 we derive Theorems 4.5 and 4.6 about minors in Ks,s′-free
graphs and in H-free graphs. In Section 8 we prove Theorem 4.7 about large minors in C2k-free
graphs. Section 9 is devoted to concluding remarks.

5 Minors in expanding graphs

In this section we prove Theorem 4.1 and Proposition 4.3.

Observe first that if G is a (t, α)-expanding graph of order n, then every subset X of G of size
αn/t ≤ |X| ≤ αn/2 has |N(X)| ≥ αn/2. Indeed, such X contains a subset Y of size exactly αn/t,
hence |N(X)| ≥ |N(Y )| − |X| ≥ t|Y | − |X| ≥ αn/2.

Lemma 5.1 Let G be a connected (s, β)-expanding graph of order n. Then the diameter of G is at
most 3β−1 log n/ log s.

Proof. From the expansion of G we have that for every vertex v and integer q there are at least
min{sq, βn} vertices which are within distance at most q from v. Taking q = log n/ log s we obtain
that there are at least βn vertices within distance at most log n/ log s from every vertex in G.

Now, suppose G contains a pair of vertices u,w such that the distance between them is at least
3β−1 log n/ log s. Then on a shortest path from u to w we can find vertices v1 = u, . . . , vk = w such

11



that k > 1/β and the distance between every pair vi, vj is at least 2 log n/ log s. Denote by Ui the
set of vertices which are at distance at most log n/ log s from vi. These sets are disjoint, each has
size at least βn and therefore the size of their union is larger than n. This contradiction completes
the proof. �

Proof of Theorem 4.1. Let

p =
α2

100

√
nt log t√
log n

and q = 6α−1

√
n log n√
t log t

,

and consider the following iterative procedure which we will repeat p times. In the beginning of
iteration k + 1 we will have k disjoint sets B1, . . . , Bk each of size |Bi| = q, such that all induced
subgraphs G[Bi] are connected. We will construct a new subset Bk+1, also of size q, such that
induced subgraph G[Bk+1] is connected and there are at least αk/8 indices 1 ≤ i ≤ k such that there
is an edge from Bi to Bk+1. In the end of this algorithm if we contract all subsets Bi we will get a
graph with average degree

Ω(αp) = Ω
(
α3

√
nt log t√
log n

)
.

Let B = ∪ki=1Bi and note that |B| = b ≤ pq = 0.06αn. Denote by C = V (G) − B and by
G′ the subgraph of G induced by C. Let X be a subset of C such that 2b/t ≤ |X| ≤ αn/t and
|NG′(X)| < t|X|/2. Then we have

|NG(X)| ≤ |NG′(X)|+ |B| ≤ t|X|/2 + b ≤ t|X|,

which contradicts the assumption that G is (t, α)-expanding. Therefore there exists X ⊂ C of size
at most 2b/t such that the remaining set D = C−X spans a subgraph of G in which every subset of
size at most αn/t expands by a factor of at least t/2. Denote by G′′ the subgraph of G induced by D.
This graph might be disconnected, but as we will see next it must have few very large components
that cover almost all its vertices.

Let Y be a subset of G′′ such that 3b/t ≤ |Y | < αn/2. Then, by the remark in the beginning
of this section, we have that |NG(Y )| ≥ min{3b, αn/2} > |B| + |X|. Hence Y has neighbors inside
D−Y and cannot be an isolated component of G′′. Thus G′′ contains a subset Y of size at most 3b/t
such that all the vertices of G′′ − Y are contained in connected components of size at least αn/2.
Denote these connected components by G1, . . . , G`. Then clearly ` ≤ 2/α, and we also have that
every subset of Gi of size at most αn/t expands by factor at least t/2. By Lemma 5.1 (with β = α/2
and s = t/2) this implies that the diameter of each Gi is at most 7α−1 log n/ log t.

Next we claim that there is an index i such that there are at least r = k
2` sets Bj , each having at

least t|Bj |
2` neighbors in Gi. If this is not the case then we have k − ` k

2` = k/2 sets Bj , each having
at most ` t|Bj |

2` = tq/2 neighbors inside ∪iGi. First suppose that kq/2 ≤ αn/t. Then taking a union
of k/2 such sets Bj we obtain a set of size b/2 with at most (k/2) · (tq/2) = tb/4 neighbors in ∪iGi.
On the other hand, by expansion the number of neighbors of this set in G is at least tb/2. Therefore
the remaining tb/4 neighbors should be inside X ∪ Y ∪ B. Since t ≥ 10, this set has size at most
b + 5b/t < tb/4, a contradiction. If kq/2 ≥ αn/t then we can take a union of αn/(tq) such sets Bj
and obtain a set of size αn/t with at most (tq/2)(αn/(tq)) = αn/2 neighbors in ∪iGi. Again, by
expansion, this set has at least αn neighbors in G, so at least αn/2 of them are in X ∪ Y ∪B. But
the size of this set is not big enough, a contradiction (here we use the assumption t ≥ 10).
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Therefore, without loss of generality, we can assume that each of the first r = k
2` sets B1, . . . , Br

has at least t|Bj |/(2`) = tq/(2`) neighbors in G1. Denote these sets of neighbors by U1, . . . , Ur

respectively. Pick uniformly at random with repetition |G1|
tq/(2`) vertices of G1 and denote this set by W .

For every index 1 ≤ i ≤ r, the probability thatW does not intersect Ui is at most
(

1− |Ui|
|G1|

)|W |
≤ 1/e.

Therefore the expected number of sets Ui which have non-empty intersection with W is at least
(1− 1/e)r > r/2. Hence there is a choice of W that intersects at least r/2 ≥ k/(4`) ≥ αk/8 sets Ui
(the last inequality is due to ` ≤ 2/α). Fix an arbitrary vertex w0 ∈ W and consider a collection of
shortest paths in G1 from w0 to the remaining vertices in W . Since the diameter of G1 is at most
7α−1 log n/ log t and

7α−1|W | log n/ log t ≤ 7α−1 n

tq/(2`)
log n
log t

≤ 14
3
α−1

√
n log n√
t log t

< q,

by taking a union of these paths and adding extra vertices if necessary we can construct a connected
subset of size q containing W . Denote this set by Bk+1 and note that it is connected by an edge to
at least αk/8 sets Ui, 1 ≤ i ≤ k. This completes the proof of the theorem. �

Proof of Proposition 4.3. First we claim that if A is an arbitrary subset of G of size at most
αn/8, then G−A contains a connected component of size at least αn/4. Indeed, if all components of
G−A have size at most αn/4, then by taking several of them together we can find a subset A′ such
that αn/4 ≤ |A′| ≤ αn/2 and A′ has no neighbors in G−A, i.e., N(A′) ⊆ A. On the other hand, by
the remark in the beginning of the section, we have that |N(A′)| ≥ αn/2. This contradiction proves
our claim. Let

p =
α

100

√
n log t
log n

and q =

√
n log n
log t

,

and note that pq = αn/100. Hence , using the above claim, we can greedily find p disjoint sets
B1, . . . , Bp, each of size |Bi| = q, such that all induced subgraphs G[Bi] are connected.

Let B′ = ∪iBi, let B′′ be an arbitrary subset of G of size at most |B|′/10 and let B = B′ ∪ B′′.
Then using the same argument as in the proof of Theorem 4.1 one can show that there exist a subset
X of G−B of size at most 5|B|/t ≤ |B|/2 (recall that t ≥ 10) such that the following holds.

• The graph G′ = G − X − B is a (t/2, α)-expanding graph with at most ` = 2/α connected
components G1, . . . , G`, each of which has diameter at most 7α−1 log n/ log t.

• There exists an index 1 ≤ i ≤ ` such that at least p/(2`) ≥ αp/4 sets Bj have neighbors in Gi.

In particular this implies that there is a collection of αp/4 sets Bj , such that any pair of them can
be connected by a path P of length at most 7α−1 log n/ log t. Moreover all vertices of P except
endpoints are contained in G−B′ ∪B′′.

Now consider the following iterative procedure. In the beginning of each iteration we will have
sets B′ = ∪iBi and B′′, |B′′| ≤ |B|′/10, where B′′ is the set of vertices of disjoint paths that have
been used at previous iterations to connect sets Bj . We stop when we will have at least αp/4 sets Bj
which are pairwise connected. Then the contraction of all these sets will give us a clique minor of size
at least Ω

(
α2
√

n log t
logn

)
. By the above discussion, at each iteration we indeed can construct a path of
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length at most 7α−1 log n/ log t that does not use vertices from B′ ∪B′′ and connects two previously
not connected sets Bj . Since the number of iterations is clearly at most

(
p
2

)
we have that the size

of the set B′′ remains bounded by
(
p
2

)
7α−1 log n/ log t ≤ |B′|/10 (this is because |B′| = pq = αn

100)
during all iterations. �

6 Minors in pseudo-random graphs

Here we prove Theorem 4.4. Throughout this section we assume that np is at least a sufficiently
large constant and p is smaller than a sufficiently small constant.

Lemma 6.1 Let G = (V,E) be a (p, β)-jumbled graph of order n such that β = o(np). Then G

contains an induced subgraph G′ of order n′ = (1− o(1))n such that the degree of every vertex in G′

is (1 + o(1))n′p and every subset X of G′ satisfies

e(X,V (G′)−X) ≥ (1− o(1))p|X|(n′ − |X|).

Proof Set ε = (4β/(np))1/3 and consider two disjoint subsets S and T both of size at least εn. Then
e(S, T ) = e(S ∪ T )− e(S)− e(T ) and therefore

e(S, T ) ≥ p

(
|S|+ |T |

2

)
− β(|S|+ |T |)− p

(
|S|
2

)
− β|S| − p

(
|T |
2

)
− β|T |

= p|S||T | − 2β(|S|+ |T |) ≥ p|S||T | − 2βn

= p|S||T | − ε3n2p/2 ≥ (1− ε/2)p|S||T |. (1)

Similarly one can show that e(S, T ) ≤ (1 + ε/2)p|S||T | for every two subsets S, T as above.

Let U be the set of vertices of G with degree at least (1 + ε)np. If U has size at least εn then we
have that

e(U, V − U) =
∑
v∈U

d(v)− 2e(U) ≥ (1 + ε)np|U | − 2p
(
|U |
2

)
− 2β|U |

≥ (1 + ε)np|U | − p|U |2 − ε3np|U |
> (1 + ε/2)p|U |(n− |U |).

This contradiction implies that there are less than εn vertices in G with degree at least (1 + ε)np.
Let V0 = V − U , n0 = |V0| > (1− ε)n, and let G0 be the subgraph induced by V0.

Consider the following process. If at step i the graph Gi−1 contains a subset Xi such that
|Xi| = xi ≤ εn and e(Xi, V (Gi−1)−Xi) < (1− 4ε)pxi(ni−1 − xi) delete Xi from the graph, update
Gi = Gi−1 − Xi, ni = |V (Gi)|, and continue. Consider the first time when we deleted at least εn
vertices and let Y = ∪iXi. Then εn ≤ |Y | ≤ 2εn < 3εn0 and

e(Y, V (G0)− Y ) ≤
∑
i

e(Xi, V (Gi−1)−Xi) < (1− 4ε)p
∑
i

xi(ni−1 − xi)

≤ (1− 4ε)pn0

∑
i

xi = (1− 4ε)pn0|Y |

≤ 1− 4ε
1− 3ε

p|Y |(n0 − |Y |) ≤ (1− ε/2)p|Y |(n0 − |Y |).
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This contradicts (1). Therefore there is a subset Y of G0 of size at most 2εn such that every subset
X of the graph G′ = G0[V0−Y ] of size at most εn satisfies e(X,V (G′)−X) ≥ (1−4ε)p|X|(n′−|X|),
where n′ = |V (G′)|. In particular, taking X to be a single vertex we have that the minimum degree
in G′ is at least (1 − 4ε)p(n′ − 1). By (1) we also have that every subset X with εn ≤ |X| ≤ n′/2
satisfies that e(X,V (G′) − X) ≥ (1 − 4ε)p|X|(n′ − |X|). This inequality is satisfied by sets of size
larger than n′/2 by symmetry. Since n′ ≥ (1 − 3ε)n, by the above discussion, the maximum degree
of G′ is at most (1 + ε)np ≤ (1 + 5ε)n′p. Finally, note that ε tends to zero as np tends to infinity.
Therefore G′ satisfies the assertion of the lemma. �

A lazy random walk on a graph G with vertex set V (G) = {1, . . . , n} is a Markov chain whose
matrix of transition probabilities P = (pi,j) is defined by

pi,j =


1

2d(i) if (i, j) ∈ E(G)
1/2 if i = j

0 otherwise,

i.e., if at some step we are at vertex i then with probability 1/2 we stay at i and with probability 1
2d(i)

we move to a random neighbor of i. This Markov chain has the stationary distribution π defined
by π(i) = d(i)

2e(G) . Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of P . Then the largest eigenvalue
λ1 = 1 and since P is positive semidefinite, all other eigenvalues λi, i ≥ 2, are non-negative. For
more information about random walks on graphs we refer the interested reader to an excellent survey
of Lovász [25].

Lemma 6.2 Let G = (V,E) be a graph of order n such that every vertex in G has degree (1−o(1))np
and every subset X satisfies e(X,V −X) ≥ (1− o(1))p|X|(n− |X|). Then for every subset U of size
u the probability that a lazy random walk on G which starts from the stationary distribution π and
makes ` steps does not visit U is at most e−0.03u`/n.

Proof. By the degree assumption we have that 2|E| =
∑

i d(i) = (1 + o(1))n2p and therefore the
stationary distribution π satisfies π(i) = d(i)/(2|E|) = (1 + o(1))/n. Thus for every subset S the
measure of S with respect to π equals π(S) =

∑
i∈S π(i) = (1 + o(1))|S|/n. Let

Φ = min
π(S)≤1/2

∑
i∈S,j∈V−S π(i)pi,j
π(S)π(V − S)

,

be the conductance of G. By the properties of G we have that

Φ = min
|S|≤n/2+o(n)

(1 + o(1))
1
n

1
2np

e(S, V − S)
(|S|/n)(1− |S|/n)

≥ min
|S|≤n/2+o(n)

(1 + o(1))
1

2n2p

p|S|(n− |S|)
(|S|/n)(1− |S|/n)

≥ 1/2 + o(1).

Let λ2 be the second largest eigenvalue of the transition probabilities matrix P . Since all eigenvalues
of P are non-negative we have that the spectral gap of this Markov chain is δ = maxi≥2 1−|λi| = 1−λ2.
Then by the result of Jerrum and Sinclair [16] (see also [25]), which provides a connection between
the spectral gap and the conductance of the graph, we have that δ = 1−λ2 ≥ Φ2/8 > 0.03. To finish
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the proof we can now use well known estimates on the probability that a Markov chain stays inside
certain sets (see, e.g., [1], [2], [6], [30]). In particular, the assertion of Theorem 5.4 in [30] implies
that the probability that a lazy random walk on G which starts from the stationary distribution π

and makes ` steps does not visit a subset U, |U | = u, is bounded from above by

≤
(
1− π(U)

)(
1− δπ(U)

)` ≤ (1− (1 + o(1))
δ|U |
n

)`
≤ e−0.03u`/n. �

Lemma 6.3 Let c > 0 be an arbitrary constant. Let G = (V,E) be a (p, β)-jumbled graph of order n
such that β = o(np). Then G contains a connected subset B of size cp−1/2 having at least 3cn

√
p/5

neighbors in G.

Proof By Lemma 6.1, we can assume that the minimum degree of G is at least (1 + o(1))np. We
construct B using the following greedy procedure. Suppose we have already constructed a connected
set B of size k < cp−1/2 which has at least 3knp/5 neighbors in G. Let X be a subset of 3knp/5 of
these neighbors. Then the number of edges insideX∪B is at most p|X∪B|2/2+β|X∪B| < (np)|X|/6.
Therefore X contains a vertex v with at most np/3 neighbors inside X ∪ B. By the minimum
degree assumption v has more than 3np/5 neighbors outside X ∪ B. Since by the definition of X,
v has also a neighbor in B, the set B ∪ {v} is connected. This set has size k + 1 and at least
|X| + 3np/5 = 3(k + 1)np/5 neighbors in G. Repeating this process cp−1/2 times we obtain a
connected set B that satisfies the assertion of the lemma. �

Proof of Theorem 4.4. Note that by definition any induced subgraph of G on at least n/2
vertices is still (p, β)-jumbled. Therefore by starting from G and repeatedly applying Lemma 6.3
with c = 50 to the remaining subgraph G−∪i<jBi we can construct s = 10−3n

√
p disjoint connected

sets B1, . . . , Bs such that each Bi has size 50p−1/2 and has at least 25n
√
p neighbors in G. Let

D1, . . . , Ds be sets of size 25n
√
p such that every vertex in Di has a neighbor in Bi. Consider the

following iterative procedure that we repeat s times. In the beginning of iteration k + 1 we have
connected sets C1, . . . , Ck each of size 50p−1/2, such that all Ci and Bj are disjoint. We construct a
new connected set Ck+1 of size 50p−1/2 such that Ck+1 is disjoint from all previous sets and there
are at least s/6 indices 1 ≤ j ≤ s such that there is an edge from Ck+1 to Bj . In the end of the
procedure if we contract all the sets Ci, Bj we will get a graph with average degree Ω(s) = Ω(n

√
p).

Let U = (∪si=1Bi) ∪ (∪j≤kCj) and note that |U | ≤ n/10. Then the induced subgraph G[V \ U ]
is (p, β)-jumbled and therefore by Lemma 6.1 there is an induced subgraph G′ of G − U on n′ ≥
(1−o(1))(n−|U |) ≥ 8n/9 vertices such that the degree of every vertex in G′ is (1+o(1))n′p and every
subset X of G′ satisfies e(X,V (G′)−X) ≥ (1− o(1))p|X|(n′ − |X|). Let V ′ be the vertex set of G′,
U ′ = V −V ′, and note that |U ′| ≤ n/9. Next, we claim that

∑
i |Di−U ′| ≥ 10n

√
p ·s. Note that from

every vertex of Di ∩U ′ there is an edge to one of the vertices in Bi. Since Bi are disjoint, each edge
inside U ′ is counted at most twice in the summation

∑
i |Di − U ′|, therefore

∑
i |Di ∩ U ′| ≤ 2e(U ′).

This implies that ∑
i

|Di − U ′| =
∑
i

(
|Di| − |Di ∩ U ′|

)
≥ 25n

√
ps− 2e(U ′)

≥ 25n
√
ps− p|U ′|2 − 2β|U ′|

≥ 25n
√
ps− n2p/81− o(n2p)

≥ 10n
√
ps.

16



Since |Di−U ′| ≤ 25n
√
p, we have that there are at least s/5 sets Di such that D′i = Di−U ′ = Di∩V ′

has size at least 6n
√
p. Let I be the set of indices i such that |D′i| ≥ 6n

√
p.

Consider a lazy random walk on G′ which starts from the stationary distribution and makes
` = 50p−1/2 steps. By Lemma 6.2 the probability that this walk does not intersects a given D′i, i ∈ I,
is at most e−0.03|D′i|`/n′ ≤ 0.01. Therefore by Markov’s inequality with positive probability this walk
intersects at least 0.9|I| ≥ s/6 sets D′i. Choose one such walk and denote its vertex set by Ck+1. This
gives a connected subset of size (at most) 50p−1/2, which by definition is disjoint from all previous
sets Bi, Cj and has neighbors in at least s/6 sets Bi. �

7 Minors in H-free graphs

In this section we prove Theorems 4.5 and 4.6.

We start with proving Theorem 4.5. We assume that s, s′ are fixed integers satisfying 2 ≤ s ≤ s′.

Lemma 7.1 Let G be a graph of order n with average degree d ≤ r. Let X,Y, Z be a partition of
the vertex set of G into three disjoint sets such that |Y | ≤ |X|2a and e(X,Z) ≤ r

4a |X| for some a > 0.
Then G \X still has the average degree at least d, or the average degree of the subgraph induced by
the set X ∪ Y is at least d− r

a .

Proof. Let |X| = αn and suppose that the average degree of G \X is at most d, i.e., e(G \X) ≤
(1 − α)dn/2. Let G′ be the subgraph of G induced by the set X ∪ Y . Then |V (G′)| = |X ∪ Y | ≤
(1 + 1/(2a))αn and

e(G′) ≥ e(G)− e(G \X)− e(X,Z)

≥ dn/2− (1− α)dn/2− r

4a
αn

=
(
d− r

2a

)αn
2
.

Since d ≤ r, the average degree of G′ is:

2e(G′)
|V (G′)|

≥ (d− r/(2a))αn
(1 + 1/(2a))αn

=
2a

2a+ 1
d− r

2a+ 1
≥ d− r

a
. �

Lemma 7.2 Let G be Ks,s′-free graph, s′ ≥ s, and let X ⊆ V (G) such that e(X,V −X) ≥ d|X| for
some d > 0. Then

|N(X)| ≥


d|X|
s′ if |X| ≤ d1/(s−1)

ds/(s−1)

s′ otherwise

Proof. First note that we need only to consider the case when |X| ≤ d1/(s−1). Indeed if |X| ≥
d1/(s−1) then by the averaging argument there exists X ′ ⊆ X of size |X ′| = d1/(s−1) such that
e(X ′, V −X) ≥ d|X ′|.

Let |X| ≤ d1/(s−1). Assume by the way of contradiction that |N(X)| < d|X|/s′. Let Y be a
subset of d|X|/s′ vertices of V \X containing N(X). Then there are at least d|X| edges between X
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and Y in G. Let us count the number of pairs (y, S), where y ∈ Y , S ⊆ X ∩N(y), |S| = s. Denote
this quantity by A. Then

A =
∑
y∈Y

(
d(y,X)

s

)
≥ |Y |

(P
y∈Y d(y,X)

|Y |
s

)
≥ |Y |

(d|X|
|Y |
s

)
=
d|X|
s′

(
s′

s

)
.

On the other hand, each S appears in at most s′ − 1 pairs (y, S) as otherwise we get a copy of Ks,s′

with s vertices in S and s′ vertices in Y . Therefore,

A ≤ (s′ − 1)
(
|X|
s

)
.

Comparing the above two estimates for A we get:

d|X|
s′

(
s′

s

)
≤ A ≤ (s′ − 1)

(
|X|
s

)
< (s′ − 1)

|X|s

s!
,

implying:
s!

s′(s′ − 1)

(
s′

s

)
<
|X|s−1

d
.

As s′ ≥ s ≥ 2, the LHS of the inequality above is easily seen to be at least 1, while by the assumption
|X| ≤ d1/(s−1), the RHS is at most 1 – a contradiction. �

Lemma 7.3 Let c > 0 be a constant and let G be a Ks,s′-free graph on cr
s

s−1 vertices with average

degree r. Then G contains a minor with average degree at least Ω
(
r
1+ 1

2(s−1)
)
.

Proof. Since the average degree of G is at least r, it contains a subgraph G′ with minimum degree at
least r/2. Let X be a subset of G′ of size at most r

1
s−1 /4. Since the minimum degree is at least r/2,

every vertex of X has at least r/4 neighbors outside X, i.e., eG′(X,V (G′) −X) ≥ r
4 |X|. Therefore

by Lemma 7.2 we have that |NG′(X)| ≥ r
4s′ |X|. This implies that G′ is a (t, α)-expanding graph of

order n = c1r
s

s−1 , where t = r/(4s′) and α = 1
16s′c1

. (Observe that by the well known bounds on the

so called Zarankiewicz problem, a Ks,s′-free graph of average degree r has Ω
(
r

s
s−1

)
vertices). Thus,

by Theorem 4.1, it contains a minor with average degree at least

Ω
(
α3

√
nt log t√
log n

)
= Ω

(
r
1+ 1

2(s−1)

)
. �

Lemma 7.4 Let 2 ≤ s ≤ s′ ≤ a and let G be a Ks,s′-free graph of order n ≤ e2ar
s

s−1 such that for
every two disjoint subsets X, |X| ≤ n/2, and Y, |Y | ≤ 1

3a2 |X|, we have that e
(
X,V (G)− (X ∪ Y )

)
≥

r
4a2 |X|. Then the diameter of G is at most 33a3.

Proof. By the above condition, G has minimum degree at least r
4a2 . If r

4a2 > n/2 we are done,
since the diameter of G is at most two. Let v be an arbitrary vertex of G and let X ⊂ N(v) be a
subset of r

4a2 neighbors of v. Our assumptions on G imply that eG(X,V −X) ≥ r
4a2 |X|. Since G is

Ks,s′-free, s ≥ 2 and s′ ≤ a, by Lemma 7.2 (with d = r
4a2 ), we have that

|N(X)| ≥ min
{

r

4a2s′
|X|, 1

s′

( r

4a2

) s
s−1

}
≥ r

s
s−1

16a5
.
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Therefore there are at least 1
16a5 r

s
s−1 vertices within distance at most two from any vertex of G. We

also have that every subset U of G of size at most n/2 satisfies |U ∪ N(U)| ≥
(
1 + 1

3a2

)
|U |. Since

8a5e2a <
(
1 + 1

3a2

)16a3

for a ≥ 2 , we conclude that there are more than

r
s

s−1

16a5

(
1 +

1
3a2

)16a3

>
1
2
e2ar

s
s−1 ≥ n/2

vertices within distance at most 2 + 16a3 from any given vertex of G. This implies that the diameter
of G is at most 2(2 + 16a3) ≤ 33a3. �

Lemma 7.5 Let 2 ≤ s ≤ s′ ≤ a ≤ 2 log r and let G be a Ks,s′-free graph of order n such that
a14r

s
s−1 ≤ n ≤ e2ar

s
s−1 and for every two disjoint subsets X, |X| ≤ 0.7n, and Y, |Y | ≤ 1

2a2 |X|, we
have that e

(
X,V (G) − (X ∪ Y )

)
≥ r

4a2 |X|. Then G contains a minor with average degree at least

cr
1+ 1

2(s−1) , where c > 0 is a constant independent of r and a.

Proof. Let
p =

1
103

a2r
1+ 1

2(s−1) and q = 33
n

a4r
1+ 1

2(s−1)

,

and consider the following iterative procedure which we will repeat p times. In the beginning of
iteration k + 1 we will have k disjoint sets B1, . . . , Bk each of size |Bi| = q such that all induced
subgraphs G[Bi] are connected. We will construct a new subset Bk+1, also of size q, such that the
induced subgraph G[Bk+1] is connected and there are at least k/(8a2) indices 1 ≤ i ≤ k such that
there is an edge from Bi to Bk+1. In the end of this algorithm, if we contract all subsets Bi we will
get a graph with average degree Ω( p

8a2 ) ≥ cr1+ 1
2(s−1) .

Let B = ∪ki=1Bi and note that |B| ≤ pq ≤ n
30a2 . Denote C = V (G)−B and let G′ be the subgraph

of G induced by C. Let X1 and Y1 be two disjoint subsets of C such that n/5 ≤ |X1| ≤ 0.7n,
|Y1| ≤ 1

3a2 |X1| and e
(
X1, C − (X1 ∪ Y1)

)
< r

4a2 |X1|. Set Y ′ = Y1 ∪B. Then we have

|Y ′| ≤ |Y1|+ |B| ≤
1

3a2
|X1|+

n

30a2
≤ 1

2a2
|X1|

and e
(
X1, V (G)− (X1∪Y ′)

)
< r

4a2 |X1| which contradicts our assumption about G. As long as there
are two disjoint setsX,Y of size 0 < |X| ≤ n/5 and |Y | ≤ |X|/(3a2) such that e

(
X,V (G)−(X∪Y )

)
≥

r
4a2 |X| delete X and continue. By the above discussion the union X1 of all deleted sets has at most
n/5 vertices. This implies that there exist two disjoint (or empty) subsets X1, Y1 ⊂ C such that
|X1| ≤ n/5, |Y1| ≤ 1

3a2 |X1|, e
(
X1, C − (X1 ∪ Y1)

)
≤ r

4a2 |X1| and the remaining set D = C − X1

spans a graph G′′ in which for every two disjoint subsets X, |X| ≤ n/2, and Y, |Y | ≤ 1
3a2 |X|, we have

that e
(
X,V (G′′) − (X ∪ Y )

)
≥ r

4a2 |X|. The restriction |X| ≤ n/2 = 0.7n − 0.2n comes from the
assumption of the lemma about sets of size up to 0.7n and the fact that the union of deleted X’s
has cardinality at most 0.2n. Note that by Lemma 7.4, G′′ has diameter at most 33a3.

Consider all sets Bj that satisfy e(Bj , D) ≥ r
4a2 |Bj |. Without loss of generality, we can assume

that the first m sets B1, . . . , Bm have this property. We claim that m is at least k
4a2 . If this is not

the case then denote Y2 = ∪mj=1Bj , and X2 = ∪kj=m+1Bj . By definition |Y2| ≤ m
k−m |X2| ≤ 1

3a2 |X2|
and

e(X2, D) =
k∑

j=m+1

e(Bj , D) <
k∑

j=m+1

r

4a2
|Bj | =

r

4a2
|X2|.
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Define X = X1 ∪X2 and Y = Y1 ∪ Y2. Then |X| ≤ n/5 + |B| ≤ n/4,

|Y | ≤ |Y1|+ |Y2| ≤
1

3a2
|X1|+

1
3a2
|X2| <

1
2a2
|X|,

and also

e
(
X,V (G)− (X ∪ Y )

)
≤ e(X1, D − Y1) + e(X2, D)

<
r

4a2

(
|X1|+ |X2|

)
=

r

4a2
|X|.

This contradicts the properties of G. Therefore we have that the first m = k
4a2 sets B1, . . . , Bm

satisfy that e(Bj , D) ≥ r
4a2 |Bj |.

Denote by Uj , 1 ≤ j ≤ m, the set of neighbors of Bj in D. Since n ≥ a14r
s

s−1 , s′ ≤ a, |Bj | = q

and a = ro(1), by Lemma 7.2 (with d = r
4a2 ), we have that

|Uj | ≥ min
{

r

4a2s′
|Bj |,

1
s′

( r

4a2

) s
s−1

}
≥ a7r

1+ 1
2(s−1) .

Pick uniformly at random with repetition n/(a7r
1+ 1

2(s−1) ) vertices ofG′′ and denote this set byW . For

every index 1 ≤ i ≤ m the probability that W does not intersect Ui is at most
(

1− |Ui|
|G′′|

)|W |
≤ 1/e.

Therefore the expected number of sets Ui which have non-empty intersection with W is at least
(1 − 1/e)m > m/2. Hence there is a choice of W that intersects at least m/2 ≥ k/(8a2) sets Ui.
Fix an arbitrary vertex w0 ∈ W and consider a collection of shortest paths in G1 from w0 to the
remaining vertices in W . Since the diameter of G′′ is at most 33a3 and 33a3|W | ≤ q, by taking union
of these paths and adding extra vertices if necessary we can construct a connected subset of size q
containing W . Denote this set by Bk+1 and note that it is connected by an edge to at least k/(8a2)
sets Ui, 1 ≤ i ≤ k. This completes the proof of the lemma. �

Lemma 7.6 Let G be a Ks,s′-free graph of average degree r and at most r4+ s
s−1 vertices. Then G

contains a minor with average degree at least

Ω
(
r
1+ 1

2(s−1)

)
.

Proof. Let {ai, i ≥ 0} be an increasing sequence defined by a0 = 20s′ and ai+1 = eai/7. Note that
a14
i+1 = e2ai and let ` be the first index such that e2a` > r4. Then there is some 0 ≤ i ≤ ` so that the

order n of our graph G satisfies
a14
i r

s
s−1 ≤ n < e2air

s
s−1 .

If G has the property that for every two disjoint subsets X, |X| ≤ 0.7n, and Y, |Y | ≤ 1
2a2

i
|X|, we have

that
e
(
X,V (G)− (X ∪ Y )

)
≥ r

4a2
i

|X|,

then by Lemma 7.5 it contains a minor with average degree Ω
(
r
1+ 1

2(s−1)

)
and we are done. Otherwise,

there are two sets X,Y as above for which e
(
X,V (G) − (X ∪ Y )

)
< r

4a2
i
|X|. Then, by Lemma 7.1,

we have that the average degree of the graph G − X is at least that of G, or the average degree
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of the subgraph induced by X ∪ Y drops by at most r
a2

i
. In the first case let G1 = G − X and

in the second let G1 = G[X ∪ Y ]. Note that the number of vertices n1 of new graph is strictly
smaller than that of G. Moreover if the average degree of G1 is smaller than that of G we know that
n1 = |X ∪Y | ≤ 3n/4. Continue this process until we either find a minor with average degree at least

Ω
(
r
1+ 1

2(s−1)

)
, or arrive at a graph G′ with n′ vertices such that n′ ≤ a14

0 r
s

s−1 .

In the first case we are obviously done. In the second case we claim that the average degree of
G′ is still at least r/2. Note that if at some stage the order of our graph Gj satisfied

a14
i r

s
s−1 < |V (Gj)| ≤ e2air

s
s−1 ,

then the average degree of the new graph Gj+1 could decrease only by at most r/a2
i . In this case

the order of Gj+1 drops as well so that |Gj+1| ≤ 3|Gj |/4. Since (3/4)4 < e−1, we have that this can
happen only at most 8ai times, before the order of the remaining graph will become smaller than
a14
i r

s
s−1 = e2ai−1r

s
s−1 . Since ai+1 = eai/7 ≥ 2ai, we have that during all iterations the average degree

of the resulting graph can decrease by at most∑
i

8ai ·
r

a2
i

= r
∑
i

8
ai
≤ 16
a0
r < r/2.

Hence the final graph G′ has average degree at least r/2 and at most O
(
r

s
s−1
)

vertices. Therefore,

by Lemma 7.3, it contains a minor with average degree Ω
(
r
1+ 1

2(s−1)

)
. �

Proof of Theorem 4.5. Let G be a Ks,s′-free graph with average degree r and let n be the number
of vertices of G. By Lemma 7.6, we can assume that n > r5. Suppose that G contains a subset
X, |X| ≤ 0.7n, such that |N(X)| ≤ |X|

2 log2 n
. If the average degree of G−X is at least as large as that

of G, set G1 = G−X and let n1 be the number of vertices in G1. Otherwise, let G1 be the subgraph
induced by the set X ∪ N(X). In the second case, by Lemma 7.1, the average degree of G1 is at
least r − r

log2 n
. Note that in both cases we obtain a smaller graph. Moreover if the average degree

of G1 is smaller than that of G we know that n1 = |X ∪N(X)| ≤ 3n/4. Continue this process until
we obtain a subgraph G′ of G on n′ vertices such that one of the following holds. Either n′ ≤ r5

or every subset X of G′ of size |X| ≤ 0.7n′ has |N(X)| ≥ |X|
2 log2 n′

. Note that in the second case the

graph G′ does not have a separator of size Θ
(

n′

log2 n′

)
. Since n′ > r5, by a result of Plotkin, Rao and

Smith [34] mentioned in Section 3, G′ has a clique minor of size

Ω
(
n′/ log2 n′√
n′ log n′

)
= Ω

( √
n′

log5/2 n′

)
≥ r5/2−o(1) � r

1+ 1
2(s−1) .

In the first case, when n′ ≤ r5 we claim that the average degree of G′ is still at least r/2. Indeed,
let n ≥ x0, x1, . . . , x` ≥ r5 be the sequence of orders of graphs that we had during the process when
the average degree decreased. Then we know that xi+1 ≤ 3xi/4 and the decrease in the average
degree at the corresponding step was at most r/ log2 xi. Let yi = log x`−i, then y0 ≥ 5 log r and
yi+1 ≥ yi + log(4/3) ≥ yi + 1/4. Therefore

∑
i

1
y2
i

≤
∑
i

1
(y0 + i/4)2

≤ 16
∞∑
i=0

1
(4y0 + i)2

≤ 4
y0 − 1

� 1/2,
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and we conclude that the average degree of G′ is at least r
(
1 −

∑
i 1/ log2 xi

)
≥ r/2. Therefore we

can find in G′ a minor with average degree Ω
(
r
1+ 1

2(s−1)

)
using Lemma 7.6. This completes the proof

of the theorem. �

The proof of Theorem 4.6 is very similar to that of Theorem 4.5. The only (relatively) substantial
difference in the proof of Theorem 4.6 compared to that of 4.5 lies in the proof of Lemma 7.2. Instead,
we have:

Lemma 7.7 Let H be a bipartite graph of order h with parts A and B such that the degrees of all
vertices in B do not exceed s. Let G be H-free graph and let X ⊆ V (G) such that e(X,V − X) ≥
(2dh)|X| for some d > 0. Then

|N(X)| ≥
{
d|X| if |X| ≤ d1/(s−1)

ds/(s−1) otherwise

Proof. Similarly to the proof of Lemma 7.2 we need to consider only the case when |X| ≤ d1/(s−1).
Then the result follows from a variant of the dependent random choice argument utilized in particular
in [3]. If |N(X)| ≤ d|X| then pick a random vertex v in N(X). Let the random variable Y count the
number of neighbors of v in X, and let the random variable Z be the number of s-tuples of vertices
in N(v) ∩X that have at most h − 1 common neighbors. Then the expected value of Y is at least
e(X,V−X)
|N(X)| ≥

2dh|X|
|N(X)| , while the expected value of Z is at most

(|X|
s

)
h−1
|N(X)| . It thus follows that

E[Y − Z] = E[Y ]− E[Z] ≥ 2dh|X|
|N(X)|

−
(
|X|
s

)
h− 1
|N(X)|

>
h

|N(X)|

(
2d|X| −

(
|X|
s

))
>

h|X|
|N(X)|

(
2d− |X|

s−1

s!

)
≥ dh|X|
|N(X)|

≥ h .

Therefore there exists a vertex v ∈ N(X) so that Y − Z ≥ h. Fix such a vertex, denote by A0

its neighborhood in X, and for each s-tuple S in A0 with less than h common neighbors, delete an
arbitrary vertex from S. Denote the obtained set by A1. Then |A1| ≥ h, and every s-tuple in A1

has at least h common neighbors. We then can embed a copy of H in G by first embedding the side
A of H one-to-one into A1, and then embedding the vertices of B, the other side of H, vertex by
vertex. As every s-tuple in A1 has at least h common neighbors and the degree of every vertex in B
is at most s, we will be always able to find a required vertex. �

Repeating the proof of Theorem 4.5 and using the above lemma instead of Lemma 7.2, we can
prove Theorem 4.6.
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8 Minors in C2k-free graphs

Here we prove Theorem 4.7. In the rest of this section we may and will assume that k ≥ 3 is fixed
(k = 2 follows from Theorem 4.5) and r is sufficiently large compared to k.

Lemma 8.1 Let G be C2k-free graph on n vertices with average degree d. Then n ≥
(
d

16k

)k.

Proof. It was proved in [45] that the number of edges in a C2k-free graph on n vertices is at most
8kn1+ 1

k . Therefore we have that nd/2 ≤ 8kn1+ 1
k , which implies that n ≥

(
d

16k

)k. �

Lemma 8.2 Let k ≥ 3 and let G be a C2k-free graph. If X ⊆ V (G) satisfies that e(X,V −X) ≥ d|X|
for some d ≥ 50k2, then

|N(X)| ≥



d|X|
4k2 if |X| ≤ d

k−1
2

d1/2|X|
4k2 if |X| ≤ d

k+1
2

3|X| if |X| ≤
(
d
6k

)k
.

Proof. These estimates can be easily deduced from a result of Naor and Verstraëte [32], who proved
that the number of edges in a C2k-free bipartite graph with parts X and Y is bounded by

e(X,Y ) ≤ (2k − 3)
(

(|X||Y |)
k+1
2k + |X|+ |Y |

)
.

Indeed, we will have a contradiction with this inequality if e(X,N(X)) ≥ d|X| and the size of N(X)
is less than in the assertion of the lemma. �

Lemma 8.3 Let k ≥ 3, α ≥ 1, ρ ≥ 3 and let G be a C2k-free graph of order n ≤ ρrk such that for
every two disjoint subsets X, |X| ≤ n/2, and Y, |Y | ≤ 1

3α |X|, we have that e
(
X,V (G)− (X ∪ Y )

)
≥

r
4α |X|. Then every subset W ⊂ G of size at least rk/2−1 log r is contained in a connected subgraph of
G on at most (40k2α3/2 log ρ)|W | vertices.

Proof. By the above condition and Lemma 8.2, G has minimum degree at least r
4α and every subset

of G of size at most
(

r
24kα

)k expands at least three times. Therefore for every vertex v there are at
least

(
r

24kα

)k vertices which are within distance at most k log r from v. We also have that every subset

U of G of size at most n/2 satisfies |U∪N(U)| ≥
(
1+ 1

3α

)
|U |. Since ρ

(
24kα

)k
<
(
1+ 1

3α

)4α log ρ+8k2α3/2

,
we conclude that there are more than

rk

(24kα)k

(
1 +

1
3α

)4α log ρ+8k2α3/2

>
1
2
ρrk ≥ n/2

vertices within distance at most k log r+ 4α log ρ+ 8k2α3/2 from any given vertex of G. This implies
that the diameter of G is at most 2k log r + 8α log ρ+ 16k2α3/2.
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Similarly, by repeatedly applying the first estimate of Lemma 8.2, there are at least
(

r
16k2α

) k+1
2

vertices within distance at most k+1
2 from every vertex of G, and therefore (this time from the second

estimate of Lemma 8.2) the number of vertices within distance at most k+1
2 + 1 ≤ k is at least

(r/(4α))1/2

4k2

( r

16k2α

) k+1
2 ≥ rk/2+1

(16k2α)k
.

Since ρ
(
16k2α

)k
<
(
1 + 1

3α

)4α log ρ+8k2α3/2

, we conclude that there are more than

rk/2+1

(16k2α)k

(
1 +

1
3α

)4α log ρ+8k2α3/2

> ρrk/2+1

vertices within distance at most k+ 4α log ρ+ 8k2α3/2 ≤ 4α log ρ+ 9k2α3/2 from any given vertex of
G.

Let W be a subset of V (G) of size at least r
k
2
−1 log r and consider the following iterative process

that constructs a connected subgraph G′ of G containing W . At the beginning the vertex set of G′

is W . At every step if there are two connected components of G′ such that the distance between
them in G is at most 8α log ρ + 18k2α3/2, connect them by a shortest path and add the vertices
of this path to G′. We perform this step at most |W | times until the distance between every two
remaining connected components of G′ is larger than 8α log ρ + 18k2α3/2. Then the balls of radius
4α log ρ + 9k2α3/2 around each component are disjoint. By the above discussion, each such ball
contains at least ρrk/2+1 vertices so the number of components is at most n

ρrk/2+1 ≤ rk/2−1. Now fix
one component of G′ and connect it to every other component by a path whose length is bounded
by the diameter of G. This gives a connected subgraph of G that contains W and has altogether at
most (

8α log ρ+ 18k2α3/2)|W |+ rk/2−1(2k log r + 8α log ρ+ 16k2α3/2) ≤
(
40k2α3/2 log ρ)|W |

vertices. This completes the proof of the lemma. �

Lemma 8.4 Let 1 ≤ α ≤ log2 r, 3 ≤ ρ ≤ r2, and let G be a C2k-free graph of order n ≤ ρrk such that
for every two disjoint subsets X, |X| ≤ 0.7n, and Y, |Y | ≤ 1

2α |X|, we have that e
(
X,V (G)−(X∪Y )

)
≥

r
4α |X|. Then G contains a minor with average degree at least

c
r · n

k−1
2k

α
15k+3

4k log
k+1
2k ρ

,

where c > 0 is a constant independent of r, ρ and α.

Proof. Let

q =
1000k3α

r

(
nα3/2 log ρ

) k+1
2k and p =

n

30αq
,

and consider the following iterative procedure which we will repeat p times. In the beginning of
iteration t+1 we have t disjoint sets B1, . . . , Bt, each of size |Bi| = q, such that all induced subgraphs
G[Bi] are connected. We will construct a new subset Bt+1, also of size q, such that the induced
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subgraph G[Bt+1] is connected, and there are at least t/(8α) indices 1 ≤ i ≤ t such that there is an
edge from Bi to Bt+1. In the end of this algorithm if we contract all subsets Bi we get a graph with
average degree

Ω
( p

8α

)
≥ Ω

(
r · n

k−1
2k

α
15k+3

4k log
k+1
2k ρ

)
.

Let B = ∪ti=1Bi and note that |B| ≤ pq = n
30α . Repeating the argument of the proof of Lemma

7.5 we obtain a subset D such that the subgraph G′′ induced by D has the following properties.

• For every two disjoint subsets X, |X| ≤ n/2, and Y, |Y | ≤ 1
3α |X|, of G′′ we have that

e
(
X,V (G′′)− (X ∪ Y )

)
≥ r

4α
|X|.

• At least m = t
4α sets Bj satisfy that e(Bj , D) ≥ r

4α |Bj |.

Without loss of generality, we can assume that B1, . . . , Bm satisfy: e(Bj , D) ≥ r
4α |Bj |. Let Uj

be the set of neighbors of Bj in D. Since our graph is C2k-free we have, by the result of Naor and
Verstraëte [32], that

e(Bj , Uj) ≤ (2k − 3)
(

(|Bj ||Uj |)
k+1
2k + |Bj |+ |Uj |

)
.

This inequality together with k ≥ 3 and |Bj | = q implies that |Uj | ≥ (40k2α3/2 log ρ)n/q. (Here
and later we use that the minimum degree is at least r/(4α) and therefore by Lemma 8.1 n ≥
(r/(64kα))k, we also assume that r is large enough.) Pick uniformly at random with repetition
q/(40k2α3/2 log ρ) > rk/2−1 log r vertices of G′′ and denote this set by W . For every index 1 ≤ i ≤ m

the probability that W does not intersect Ui is at most
(

1− |Ui|
|G′′|

)|W |
≤ 1/e. Therefore the expected

number of sets Ui that have a non-empty intersection with W is at least (1− 1/e)m > m/2. Hence
there is a choice of W that intersects at least m/2 ≥ t/(8α) sets Ui. By Lemma 8.3, G′′ contains
a connected subgraph on ≤ (40k2α3/2 log ρ)|W | ≤ q vertices that contains W . By adding extra
vertices if necessary we can construct a connected subset Bt+1 of size q that contains W and hence
is connected by an edge to at least t/(8α) sets Ui, i ≤ t. This completes the proof of the lemma. �

Substituting in the above lemma α = a2 and ρ = e2a we obtain the following corollary.

Corollary 8.5 Let 1 ≤ a ≤ log r, and let G be a C2k-free graph of order n such that a26rk ≤
n ≤ e2ark and for every two disjoint subsets X, |X| ≤ 0.7n, and Y, |Y | ≤ 1

2a2 |X|, we have that

e
(
X,V (G)− (X ∪Y )

)
≥ r

4a2 |X|. Then G contains a minor with average degree at least cr
k+1
2 , where

c > 0 is a constant independent of r and a.

Lemma 8.6 Let ρ ≥ 3 be a constant and let G be a C2k-free graph on n = ρrk vertices with average
degree r. Then G contains a minor with average degree at least Ω

(
r

k+1
2

)
.

Proof. Set α = 8(k log(32k) + log ρ) and note that it is a constant independent of r. Consider the
following process. If we already have a graph G with average degree Ω(r) which has the property
that for every two disjoint subsets X, |X| ≤ 0.7n and Y, |Y | ≤ 1

2α |X| we have that

e
(
X,V (G)− (X ∪ Y )

)
≥ r

4α
|X|,
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then by Lemma 8.4 it contains a minor with average degree Ω
(
rn

k−1
2k

)
. Since by Lemma 8.1 every

C2k-free graph with average degree Ω(r) has at least Ω(rk) vertices we are done. Otherwise, there are
two sets X,Y as above for which e

(
X,V (G)− (X ∪Y )

)
< r

4α |X|. Then, by Lemma 7.1, we have that
the average degree of the graph G−X is at least r, or the average degree of the subgraph induced by
X ∪ Y is at least r− r

α . In the first case let G1 = G−X and in the second let G1 = G[X ∪ Y ]. Note
that the number of vertices n1 of the new graph is strictly smaller than that of G. Moreover if the
average degree of G1 is smaller than that of G we know n1 = |X ∪ Y | ≤ 3n/4. Continue this process
until we either find a graph with average degree Ω(r) which satisfies the assumption of Lemma 8.4
and therefore contains a minor with average degree at least Ω

(
r

k+1
2

)
, or we have at least α/2 steps

at which the average degree of the new graph decreases. In the second case, let G′ be the resulting
graph and n′ be the number of its vertices.

Since the degree decreased exactly α/2 times we know that the average degree of G′ is at least
r − (α/2) rα ≥ r/2 and the number of its vertices satisfies

n′ ≤
(

3
4

)α/2
n < e−k log(32k)−log ρn =

n

ρ(32k)k
≤
( r

32k

)k
.

As G′ is C2k-free, it contradicts the assertion of Lemma 8.1. This shows that the second case is in
fact impossible and our process always outputs a minor of average degree at least Ω

(
r

k+1
2

)
. �

Lemma 8.7 Let G be a C2k-free graph of with average degree r and at most rk+2 vertices. Then G

contains a minor with average degree at least Ω
(
r

k+1
2

)
.

Proof. Let {ai, i ≥ 0} be an increasing sequence defined by a0 = 65 and ai+1 = eai/13. Note that
a26
i+1 = e2ai and let ` be the first index such that e2a` ≥ r2. Then there is some 0 ≤ i ≤ ` such that

the order n of our graph G satisfies a26
i r

k ≤ n < e2airk. If G has the property that for every two
disjoint subsets X, |X| ≤ 0.7n and Y, |Y | ≤ 1

2a2
i
|X| we have that

e
(
X,V (G)− (X ∪ Y )

)
≥ r

4a2
i

|X|,

then by Corollary 8.5 it contains a minor with average degree Ω
(
r

k+1
2

)
and we are done. Otherwise,

there are two sets X,Y as above for which e
(
X,V (G) − (X ∪ Y )

)
< r

4a2
i
|X|. Then, by Lemma 7.1,

we have that the average degree of graph G − X is at least as large as that of G, or the average
degree of the subgraph induced by X ∪ Y drops by at most r

a2
i
. In the first case let G1 = G − X

and in the second let G1 = G[X ∪ Y ]. Note that the number of vertices n1 of new graph is strictly
smaller than that of G. Moreover if the average degree of G1 is smaller than that of G we know
n1 = |X ∪ Y | ≤ 3n/4. Continue this process until we either find a minor of with average degree at
least Ω

(
r

k+1
2

)
or we arrive to a graph G′ with n′ vertices such that n′ ≤ a26

0 r
k.

In the first case we are clearly done. In the second case we claim that the average degree of G′ is
still at least r/2. Note that if at some stage the order of our graph Gj satisfied a26

i r
k ≤ |V (Gj)| <

e2airk, then the average degree of the new graph Gj+1 could decrease only by at most r/a2
i . In this

case the order of Gj+1 drops as well so that |Gj+1| ≤ 3|Gj |/4. Since (3/4)4 < e−1, we have that this
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can happen only at most 8ai times, before the order of the remaining graph will become smaller than
a26
i r

k = e2ai−1rk. Since ai+1 = eai/13 ≥ 2ai, we have that during all iterations the average degree of
the resulting graph can decrease by at most∑

i

8ai ·
r

a2
i

= r
∑
i

8
ai
≤ 16
a0
r < r/2.

Hence the final graph G′ has average degree at least r/2 and at most O(rk) vertices. Therefore, by
Lemma 8.6, it contains a minor with average degree Ω

(
r

k+1
2

)
. �

Proof of Theorem 4.7. Let G be a C2k-free graph with average degree r and let n be the number
of vertices of G. By Lemma 8.7, we can assume that n > rk+2. Suppose that G contains a subset
X, |X| ≤ 0.7n, such that |N(X)| ≤ |X|

2 log2 n
. If the average degree of G−X is at least r, set G1 = G−X

and let n1 be the number of vertices in G1. Otherwise, let G1 be the subgraph induced by the set
X ∪N(X). In the second case, by Lemma 7.1, the average degree of G1 is at least r − r

log2 n
. Note

that in both cases we obtain a smaller graph. Moreover if the average degree of G1 is smaller than
that of G we know that n1 = |X ∪N(X)| ≤ 3n/4. Continue this process until we obtain a subgraph
G′ of G on n′ vertices such that one of the following holds. Either n′ ≤ rk+2 or every subset X of G′

of size |X| ≤ 0.7n′ has |N(X)| ≥ |X|
2 log2 n′

. Note that in the second case the graph G′ does not have a

separator of size Θ
(

n′

log2 n′

)
. Since n′ > rk+2, by the result of Plotkin, Rao and Smith [34], G′ has a

clique minor of size

Ω
(
n′/ log2 n′√
n′ log n′

)
= Ω

( √
n′

log5/2 n′

)
≥ r

k+2
2
−o(1) � r

k+1
2 .

In the first case, when n′ ≤ rk+2 we claim that the average degree of G′ is still at least r/2. Indeed,
let n ≥ x0, x1, . . . , x` ≥ rk+2 be the sequence of orders of graphs that we had during the process
when the average degree decreased. Then we know that xi+1 ≤ 3xi/4 and the decrease in the average
degree at the corresponding step was at most r/ log2 xi. Let yi = log x`−i, then y0 ≥ (k + 2) log r
and yi+1 ≥ yi + log(4/3) ≥ yi + 1/4. Therefore

∑
i

1
y2
i

≤
∑
i

1
(y0 + i/4)2

≤ 16
∞∑
i=0

1
(4y0 + i)2

≤ 4
y0 − 1

� 1/2,

and we conclude that the average degree of G′ is at least r
(
1 −

∑
i 1/ log2 xi

)
≥ r/2. Therefore we

can find in G′ a minor with average degree Ω
(
r

k+1
2

)
using Lemma 8.7. This completes the proof of

the theorem. �

9 Concluding remarks

In this paper we proved that if G is an expander graph than it contains a large clique minor. Moreover
our results on H-free graphs suggest that already local expansion may be sufficient to derive results
of this sort. This leads to the following general question which we think deserves further study. Let
G be a graph of order n such that for every subset of vertices X of size at most s we have that
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|N(X)| ≥ t|X|. Denote by f(s, t) the size of the largest clique minor which such graph must always
contain. What is the asymptotic behavior of this function? Note that we already know the behavior
of f in the two extremal cases when s = 1 and s = Θ(n/t). Indeed, if s = 1 we just have that the
minimum degree of G is at least t and therefore it contains a clique minor of order Ω

(
t/
√

log t
)

by
Kostochka-Thomason. In the second case we have by Corollary 4.2 that our graph has clique minor
of order Ω

(
t
√
s log t/log(st)

)
.

One related and quite attractive question which remains unsettled is the asymptotic behavior
of the largest clique minor size in sparse random graphs Gn,p. While for the case of constant
edge probability p, Bollobás, Catlin and Erdős [8] showed this quantity to behave asymptotically
as Θ

(
n/
√

log n
)
, their method is apparently insufficient to resolve the question for (much) smaller

values of p(n), and in particular, for the the rather intriguing case p = c/n, c > 1 is a constant, where
a largest clique minor can be shown to be with high probability between c1

√
n/ log n and c2

√
n.

Another interesting direction of future study can be to find sufficient conditions for ensuring a
minor of a non-complete graph Γ (rather then just a clique Kk) in an expanding graph G. The first
step in this direction has been made by Myers and Thomason [31] who derived an analog of the
Kostochka-Thomason result for a general Γ.

Finally, it would be quite nice to obtain algorithmic analogs of our main results (see, e.g. [10] for a
recent contribution to algorithmic graph minor theory), providing efficient, deterministic algorithms
for finding large minors, matching our existential statements.

Note added in proof. Recently, the order of the largest clique minor in a sparse random graph
was determined by Fountoulakis, Kühn and Osthus [14].
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