
On the random satisfiable process

Michael Krivelevich1?, Benny Sudakov2?? and Dan Vilenchik3

1 School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel.
krivelev@post.tau.ac.il

2 Department of Mathematics, UCLA, Los Angeles.
bsudakov@math.ucla.edu

3 School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
vilenchi@post.tau.ac.il

Abstract. In this work we suggest a new model for generating random satisfiable k-CNF formulas.
To generate such formulas – randomly permute all 2k

`
n
k

´
possible clauses over the variables x1, . . . , xn,

and starting from the empty formula, go over the clauses one by one, including each new clause as you
go along if after its addition the formula remains satisfiable. We study the evolution of this process,
namely the distribution over formulas obtained after scanning through the first m clauses (in the
random permutation’s order).
Random processes with conditioning on a certain property being respected are widely studied in the
context of graph properties. This study was pioneered by Ruciński and Wormald in 1992 for graphs with
a fixed degree sequence, and also by Erdős, Suen, and Winkler in 1995 for triangle-free and bipartite
graphs. Since then many other graph properties were studied such as planarity and H-freeness. Thus
our model is a natural extension of this approach to the satisfiability setting.
Our main contribution is as follows. For m ≥ cn, c = c(k) a sufficiently large constant, we are able
to characterize the structure of the solution space of a typical formula in this distribution. Specifi-
cally, we show that typically all satisfying assignments are essentially clustered in one cluster, and all
but e−Ω(m/n)n of the variables take the same value in all satisfying assignments. We also describe a
polynomial time algorithm that finds whp a satisfying assignment for such formulas.

? Research supported in part by a USA-Israel BSF Grant, and by a grant from the Israel Science Foundation, and
by Pazy Memorial Award.

?? Research supported in part by NSF CAREER award DMS-0812005 and a USA-Israeli BSF grant.

On the random satisfiable process 1

1 Introduction

Constraint satisfaction problems play an important role in many areas of computer science, e.g.
computational complexity theory [10], coding theory [16], and artificial intelligence [24], to mention
just a few. The main challenge is to devise efficient algorithms for finding satisfying assignments
(when such exist), or conversely to provide a certificate of unsatisfiability. One of the best known
examples of a constraint satisfaction problem is k-SAT, which is the first to be proven as NP-
complete. Although satisfactory approximation algorithms are known for several NP-hard problems,
the problem of finding a satisfying assignment (if such exists) is not amongst them. In fact, H̊astad
[17] proved that it is NP-hard to approximate MAX-3SAT (the problem of finding an assignment
that satisfies as many clauses as possible) within a ratio better than 7/8.

In trying to understand the inherent hardness of the problem, many researchers analyzed struc-
tural properties of formulas drawn from different distributions. One such distribution is the uni-
form distribution where instances are generated by picking m clauses uniformly at random out
of all 2k

(
n
k

)
possible clauses. Although many problems still remain unsolved, in general this distri-

bution seems to be quite well understood (at least for some values of m and k). This is also true
for the planted k-SAT model, where one first fixes some assignment ψ to the variables and then
picks m clauses uniformly at random out of all (2k − 1)

(
n
k

)
clauses satisfied by ψ. Comparatively,

much less is known for variants of these distributions where extra conditions are imposed. These
conditions distort the randomness in such a way that the “standard” methods and tools employed
to analyze the original distributions are a-priori of little use in the new setting. Our work concerns
the latter.

1.1 Our Contribution

In this work we suggest a new model for generating random satisfiable k-CNF formulas. To generate
such formulas – randomly permute all 2k

(
n
k

)
possible clauses over the variables x1, . . . , xn, and

starting from the empty formula, go over the clauses one by one, including each new clause as you
go along if after its addition to the formula, the formula remains satisfiable. We study the evolution
of this process, namely the distribution over formulas obtained after scanning through the first m
clauses (in the random permutation’s order); we use Psat

n,m to denote this distribution. Clearly, for
every m, all formulas in Psat

n,m are satisfiable (as every clause is included only if the so-far obtained
formula remains satisfiable).

Random processes with conditioning on a certain property being respected are widely studied in
the context of graph properties. This study was pioneered by Ruciński and Wormald in 1992 [25] for
graphs with a fixed degree sequence, and also by Erdős, Suen, and Winkler in 1995 for triangle-free
and bipartite graphs [11]. Since then many other graph properties were studied such as planarity
[21], H-freeness [23] and also the property of being intersecting in the context of hypergraphs [6].
Thus our model is a natural extension of this approach to the satisfiability setting. The main
difficulty when dealing with these restricted processes is that the edges of the random graph (and
the clauses of the random k-CNF formula) are no longer independent due to conditioning. Thus
the rich methods that have been developed to understand the “classical” random graph models,
Gn,p for example, do not carry over, at least not immediately, to the restricted setting.

Quite frequently in restricted random processes, the typical size of a final graph or formula
(after all edges/clauses have been scanned) is a fascinating subject of study. This is however not
the case here, as it is quite easy to see that deterministically the final random formula will have

2 Michael Krivelevich, Benny Sudakov and Dan Vilenchik

(2k−1)
(
n
k

)
clauses and a unique satisfying assignment. Therefore, in the setting under consideration

here the process itself (i.e. a typical development of a restricted random formula and of its set of
satisfying assignments as the number of scanned clauses m grows) is much more interesting than
the final result, and indeed in this paper we will study the development of a random satisfiable
formula.

As it turns out, if m is chosen so that almost all k-CNF formulas with m clauses over n variables
are satisfiable, then Psat

n,m is statistically close to the uniform distribution over such formulas since
whp none of the m clauses will be rejected (writing whp we mean with probability tending to 1
as n goes to infinity). Therefore if this is the case, then the clauses are practically independent
of each other, and the “usual” techniques apply. Remarkable phenomena occurring in the uniform
distribution are phase transitions. With respect to the property of being satisfiable, such a phase
transition takes place too: there exists a threshold d = d(n, k) such that for every fixed ε > 0 if
m/n ≤ d−ε, a random formula with m clauses over n variables is whp satisfiable, and if m/n ≥ d+ε
a random formula is whp unsatisfiable [15]. Thus, while Psat

n,m is statistically close to the uniform
distribution for m/n below the threshold, it is not clear how does a typical Psat

n,m instance look like
when crossing this threshold (which is conjectured to be roughly 4.26 for 3SAT), and whether there
exists a polynomial time algorithm for finding a satisfying assignment for such instances.

In this work we analyze Psat
n,m when m/n is some sufficiently large constant above the satisfiability

threshold. The first part of our result is characterizing the structure of the solution space of a typical
formula in Psat

n,m. By the “solution space” of a formula we mean the set of all satisfying assignments
(which is a subset of all 2n possible assignments). Formally,

Definition 1. A variable is said to be frozen in a k-CNF F if in every satisfying assignment of
F it takes the same value.

We state our results for k = 3 and remark that they can be extended to a general fixed k ≥ 3,
along arguments similar to those presented in this paper. See Section 7 for more details.

Theorem 1. Let F be random 3CNF from Psat
n,m, m/n ≥ c, c a sufficiently large constant. Then

whp F enjoys the following properties:

1. All but e−Ω(m/n)n variables are frozen.
2. The formula induced by the non-frozen variables decomposes into connected components of at

most logarithmic size.
3. Letting β(F) be the number of satisfying assignments of F , we have 1

n log β(F) = e−Ω(m/n).

Notice that the third item in Theorem 1 follows directly from the first. One immediate corollary of
this theorem is:

Corollary 1. Let F be random 3CNF from Psat
n,m, m/n ≥ c log n, c a sufficiently large constant.

Then whp F has only one satisfying assignment.

The corollary follows from the third item in Theorem 1 since e−Ω(m/n) = o(n−1) for m/n ≥ c log n,
and therefore log β(F) = o(1), or in turn, β(F) = 1 + o(1).

The characterization given by Theorem 1 is in sharp contrast with the structure of the solution
space of Psat

n,m formulas with m/n just below the threshold. Specifically, the conjectured picture,
some supporting evidence of which was proved rigorously for k ≥ 8 [2, 22, 1], is that typically random
k-CNF formulas in the near-threshold regime have an exponential number of clusters of satisfying

On the random satisfiable process 3

assignments. While any two assignments in distinct clusters disagree on at least εn variables, any
two assignments within one cluster coincide on (1−ε)n variables (for some positive constant ε < 1).
Furthermore, each cluster has a linear number of locally-frozen variables (that is frozen w.r.t. all
satisfying assignments within that cluster). This structure seems to make life hard for most known
SAT heuristics. One explanation seems to be that the algorithms do not “steer” into one cluster
but rather try to find a “compromise” between the satisfying assignments in distinct clusters, which
actually is impossible.

Complementing this picture rigorously, we show that a typical formula in Psat
n,m (in the above-

threshold regime) can be solved efficiently. Formally,

Theorem 2. There exists a deterministic polynomial time algorithm that whp finds a satisfying
assignment for 3CNF formulas from Psat

n,m, m/n ≥ c, c a sufficiently large constant.

Our proof of Theorem 2 is constructive in the sense that we explicitly describe the algorithm.

Remark 1. Another natural problem to study is k-colorability. Similar to random k-CNF formulas,
the random graph Gn,p also goes through a phase transition w.r.t. the property of being k-colorable,
as np grows. Analogously to the random k-CNF process that we defined, one can consider a re-
stricted random graph process. Specifically, randomly order all

(
n
2

)
edges of the graph, go over them

in that order and include each new edge as long as the resulting graph remains k-colorable. Some of
the results that we have for k-SAT extend to the k-colorability process. A more thorough discussion
is given in Section 6.

1.2 Related Work and Techniques

Almost all polynomial-time heuristics suggested so far for random instances (either SAT or graph
optimization problems) were analyzed when the input is sampled according to a planted-solution
distribution, or various semi-random variants thereof. Alon and Kahale [3] suggest a polynomial
time algorithm based on spectral techniques that whp properly k-colors a random graph from the
planted k-coloring distribution (the distribution of graphs generated by partitioning the n vertices
into k equally-sized color classes, and including every edge connecting two different color classes
with probability p = p(n)), for graphs with average degree greater than some constant. In the SAT
context, Flaxman’s algorithm, drawing on ideas from [3], solves whp planted 3SAT instances where
the clause-variable ratio is greater than some constant. Also [13, 12, 18] address the planted 3SAT
distribution.

On the other hand, very little work was done on non-planted distributions, such as Psat
n,m. In this

context one can mention a work of Chen [7] who provides an exponential time algorithm for the
uniform distribution over satisfiable k-CNF formulas with exactly m clauses where m/n is greater
than some constant. Ben-Sasson et al. [5] also study this distribution but with m/n = Ω(log n),
a regime where the uniform distribution and the planted distribution essentially coincide (since
typically there is only one satisfying assignment), and leave as an open question whether one can
characterize the regime m/n = o(log n). This question was resolved in [9] (and in [8] for the uniform
distribution over k-colorable graphs).

While some of the ideas suggested in these works have proven to be instrumental for our setting,
most of their analytical methods break when considering Psat

n,m. In Psat
n,m not only do clauses depend

on each other (unlike the planted distribution where clauses are chosen independently), but the order
in which they are introduced also plays a role (which is not the case in the uniform distribution

4 Michael Krivelevich, Benny Sudakov and Dan Vilenchik

studied in [9], although the clauses are not chosen independently). Therefore we had to come up
with new analytical tools that might be of interest in other settings as well.

1.3 Paper’s Structure

The rest of the paper is structured as follows. In Section 2 we discuss relevant structural properties
that a typical formula in Psat

n,m possesses, the proofs of some properties are postponed to Sections 4
and 5. One consequence of this discussion will be a proof of Theorem 1. We then prove Theorem 2
in Section 3 by presenting an algorithm and showing that it meets the requirements of Theorem 2.
In Section 6 we discuss the k-colorability setting (mentioned in Remark 1) more elaborately, and
concluding remarks are given in Section 7.

2 Properties of a Random Psat
n,m Instance

This section contains the technical part of the paper. In it we analyze the structure of a typical
formula in Psat

n,m. Here and throughout we think of m as cn, c at least some sufficiently large
constant.

2.1 Preliminaries and Techniques

When analyzing some structural properties of a random instance in Psat
n,m it will be more convenient

to analyze the same property under a somewhat different distribution, and then to go back to Psat
n,m

(maybe pay some factor in the estimate).
The variation we consider is Psat

n,p and is defined as follows: permute at random all possible
M = 8

(
n
3

)
clauses, go over the clauses in the permutation’s order and include each clause with

probability p = m/M if also its addition leaves the instance satisfiable. Let Pn,p be defined similarly,
just without the conditioning (i.e., all clauses chosen at random are included in the formula, thus
making it not necessarily satisfiable).

Throughout we usually stick to the following notation. We shall use F to denote an instance
sampled according to Pn,p and F ∗ to be the ordered subset of clauses of F distributed according
to Psat

n,p.

Lemma 1. Psat
n,m = Psat

n,p|{exactly m clauses were considered for addition}.

Proof. To generate a formula according to Psat
n,m one first picks a random permutation of the

clauses and then scans one by one the first m clauses, skipping clauses whose addition will make
the instance unsatisfiable. The key point is to notice that any ordered m-tuple of clauses is equally
likely to be chosen as the first m clauses. This is exactly the case in Psat

n,p when conditioning on the
fact that exactly m clauses were considered for addition – any set of m clauses is equally likely, and
also any permutation of them. �

Lemma 2. Set M = 8
(
n
3

)
. For any property A, if p = m/M then PrP

sat
n,m [A] ≤ O(

√
m) ·PrPsat

n,p [A].

Proof. LetX be a random variable counting the number of clauses that were considered for addition
under Psat

n,p. X is distributed Binom(8
(
n
3

)
, p), and therefore E[X] = m. Standard calculations show

that Pr[X = m] = Ω(
√
m).

On the random satisfiable process 5

PrP
sat
n,m [A] = PrP

sat
n,p [A|X = m] =

PrP
sat
n,p [A ∧X = m]

PrP
sat
n,p [X = m]

≤ O(
√
m) · PrPsat

n,p [A].

�

Remark 2. In the remainder of the section we analyze Psat
n,p instead of Psat

n,m. When we use the
expression “with very high probability” (abbreviated wvhp) we will always mean with probability
1−o(m−1/2). Lemma 2 will then imply that we can switch back to Psat

n,m and still the property holds
with probability 1 − o(1) (the usual interpretation of “with high probability”). We will actually
prove that all the properties hold with probability 1− o(n−3) which is always at least 1− o(m−1/2)
since m = O(n3).

2.2 The Discrepancy Property

A well known result in the theory of random graphs is that a random graph wvhp will not contain a
small yet unexpectedly dense subgraph. This is also the case for Pn,p (when considering the graph
induced by the formula). In general, discrepancy properties play a fundamental role in the proof
of many important structural properties such as expansion, the spectra of the adjacency matrix,
etc., and indeed in our case the discrepancy property plays a major role both in the algorithmic
perspective and in the analysis of the clustering phenomenon. The following discussion rigorously
establishes the above stated fact.

Definition 2. We say that a 3CNF formula F on n variables is ρ-proportional if there exists no
set U of variables such that:

– |U | ≤ n/106,
– There are at least ρ · |U | clauses in F each containing at least two variables from U .

(We say that a clause C contains a variable x if x appears in C either as x or as x̄, in this context
we do not differentiate between the two cases).

Proposition 1. Let F be distributed according to Pn,p with n2p ≥ d, d a sufficiently large constant,
and set ρ = n2p/5500. Then wvhp F is ρ-proportional.

Remark 3. To see how Proposition 1 corresponds to the random graph context, consider the graph
induced by the formula F (the vertices are the variables, and two variables are connected by an
edge if there exists some clause containing them both) and observe that every clause that contains
at least two variables from U contributes an edge to the subgraph induced by U . Thus if we have
many such clauses, this subgraph will be prohibitively dense. Since F is random so is its induced
graph, and as we shall see the latter typically does not occur (we do not claim that the graph is
random like the Erdős-Rényi random graph for example, just that its edges are chosen according
to some random rule).

Proof. The probability that a random formula F in Pn,p contains a set U of variables of size u
that violates proportionality is at most (using the union bound):

n/106∑
u=1

(
n

u

)
·
(

8n
(
u
2

)
un2p/5500

)
· pun2p/5500 = o(n−3).

6 Michael Krivelevich, Benny Sudakov and Dan Vilenchik

The first term accounts for the possible ways of choosing the variables of U , the second is to choose
the un2p/5500 clauses that contain at least two variables from U (out of at most 8n

(
u
2

)
possible

ones), and the last term is just the probability of the chosen clauses to actually appear in F . To
bound this sum we use the fact that u ≤ n/106, the fact that n2p can be arbitrarily large (constant),
and the following standard estimate for the binomial coefficient:(

n

x

)
≤
(en
x

)x
.

�

Corollary 2. Let F ∗ be distributed according to Psat
n,p with n2p ≥ d, d a sufficiently large constant.

Then wvhp F ∗ is n2p/5500-proportional.

The corollary follows easily by observing that the proportionality property is monotonically de-
creasing.

2.3 Crude Characterization of the Solution Space’s Structure

In this section we make the first step towards proving Theorem 1 (clustering). We give a rather
crude characterization of the structure of the solution space of a typical instance in Psat

n,p. This
characterization will be refined in the sequel.

Definition 3. A 3CNF F is called r-concentrated if every two satisfying assignments ψ1, ψ2 of
F are at Hamming distance at most r from each other.

Proposition 2. Let F ∗ be distributed according to Psat
n,p with n2p ≥ d, d a sufficiently large constant,

let ρ = 30/(n2p) then wvhp F ∗ is ρn-concentrated.

An immediate corollary of this proposition is that typically all satisfying assignments of a Psat
n,p

instance can be enclosed in a ball of radius 30/(np) in {0, 1}n. This gives a “first-order” character-
ization of the structure of the solution space.

Proof. Fix two assignments ϕ and ψ at distance αn, and let us bound Pr[ϕ and ψ satisfy F ∗].
Assume w.l.o.g. that, say, ϕ is the all-TRUE assignment. We shall now upper bound the probability
of a set of clauses in Pn,p that may result in an instance F ∗ that is satisfied by both assignments.
In particular a clause of the form C1 = (x∨ ȳ∨ z̄), where x is a variable on which ϕ and ψ disagree,
and y, z are variables on which both agree, cannot be chosen to Pn,p. Let us call such a clause
a type 1 clause. If a type 1 clause appears then either it is included in F ∗, and then ψ cannot
be a satisfying assignment, or it is rejected and then ϕ is already at this point not a satisfying
assignment. The same applies for clauses of the form C2 = (s∨w ∨ t), where on all three variables,
s, w, t, both assignments disagree – call them type 2. It remains to upper bound the probability
of a Pn,p instance that does not contain type 1 and type 2 clauses. There are αn

(
(1−α)n

2

)
type 1

clauses and
(
αn
3

)
type 2 clauses. The probability of none being chosen is

(1− p)αn(
(1−α)n

2)+(αn3) ≤ exp{−p ·
(
αn

(
(1− α)n

2

)
+
(
αn

3

))
}. (1)

If 30/n2p ≤ α ≤ 1/2 then

p · αn
(

(1− α)n
2

)
≥ pαn · n2/8 ≥ 3n.

On the random satisfiable process 7

If α ≥ 1/2 then

p ·
(
αn

3

)
≥ n · n2p/48 ≥ 3n.

In the last inequality we use the fact that n2p can be arbitrarily large (specifically, greater than
144). In any case, the expression in (1) is at most 5−n. Since we have no more than 4n ways of
choosing the pair ϕ,ψ, we deduce using the union bound that wvhp no such “bad” pair exists. �

2.4 The Core Variables

We describe a subset of the variables, referred to as the core variables, which plays a crucial role
in the understanding of Psat

n,p. Recall that a variable is said to be frozen in F if in every satisfying
assignment it takes the same value. The notion of a core captures this phenomenon. In addition, a
core typically contains all but a small (though constant) fraction of the variables. This implies that
a large fraction of the variables is frozen, a fact which must leave imprints on various structural
properties of the formula. These imprints allow efficient heuristics to recover a satisfying assignment
of the core. A second implication of this is an upper bound on the number of possible satisfying
assignments, and on the distance between every such two. Thus the notion of a core plays a key
role in obtaining a characterization of the cluster structure of the solution space.

Let us now proceed with a rigorous definition of a core. Before doing so, we take a long detour
on expanding sets.

Definition 4. (support) Given a 3CNF formula F and some assignment ψ to the variables, we
say that a variable x supports a clause C (in which it appears) w.r.t. ψ if x is the only variable
whose literal evaluates to true in C under ψ.

In some cases ψ might be a partial assignment (that is, some of the variables are not assigned). In
such cases a variable x is said to support a clause C under ψ if all three variables of C are assigned
a value under ψ and x is the only one of them whose literal evaluates to true.

In what follows F [Z] stands for the subformula of F containing the clauses where all three
variables belong to Z.

Definition 5. (expanding set) Given a 3CNF formula F and an assignment ψ to the variables (not
necessarily satisfying), a set of variables Z is called t-expanding in F w.r.t. ψ if every variable
x ∈ Z supports at least t clauses in F [Z] w.r.t. ψ.

The following proposition illustrates the usefulness of Definition 5.

Proposition 3. Let F be a 3CNF formula on n variables and let Z be a t-expanding set w.r.t.
some assignment ψ. If in addition:

– ψ satisfies F ,
– F is n/106-concentrated (Definition 3),
– F is t-proportional (Definition 2),

then the variables in Z are frozen in F .

8 Michael Krivelevich, Benny Sudakov and Dan Vilenchik

Proof. Let ψ be the satisfying assignment w.r.t. which Z is defined. By contradiction assume that
there exists a satisfying assignment ψ′ differing from ψ on Z. Then let ∅ 6= U ⊆ Z be the set of
variables x of Z for which ψ(x) 6= ψ′(x). Take x ∈ U and consider all the clauses that x supports
w.r.t. ψ in F [Z]. It must be that every such clause contains at least another variable y on which
ψ and ψ′ disagree (since every such clause is satisfied by ψ′ but the literal corresponding to x is
false under ψ′). Therefore y belongs to U by definition. We conclude that there exists a set U of
variables and t · |U | clauses each containing at least two variables from U (no clause was counted
twice since the supporter of a clause is unique by definition). Further, we assumed that F is n/106-
concentrated and therefore |U | ≤ n/106. Combining the latter two facts we derive a contradiction
to the t-proportionality of F . �

Proposition 4. Let F be distributed according to Pn,p with n2p ≥ d, d a sufficiently large constant.
There exists a positive integer t = t(n, p) such that wvhp there is a set Z of variables, and an
assignment ψ such that:

– Z is t-expanding w.r.t. ψ,
– |Z| = (1− e−Ω(n2p))n.
– F is t/10-proportional,
– ψ satisfies F ∗,
– F ∗ is n/106-concentrated,

The complete proof of this proposition is deferred to Section 4. Here and throughout the notation
f = Ω(n2p) (or f = O(n2p)) stands for f ≥ cn2p (or f ≤ cn2p) for some constant c that does not
depend on n, p.

Corollary 3. The set Z promised in Proposition 4 is frozen in F ∗, and furthermore Z is t-
expanding w.r.t. every satisfying assignment of F ∗.

Proof. To see why Z is frozen, let S be the set of clauses in F that are supported w.r.t. ψ. First
observe that F ∗ is t-proportional as it is a subformula of F (and F is t/10-proportional and therefore
also t-proportional). Furthermore S is contained in F ∗. This is because ψ is a satisfying assignment
of F ∗ throughout the entire generating process, thus every clause in S that arrives is not rejected.
Therefore Z is also t-expanding in F ∗ w.r.t. ψ. Finally apply Proposition 3 to F ∗. The second part
of the corollary is immediate from the fact that Z is frozen. �

Definition 6. (self-contained sets) Given a 3CNF formula F we say that a set of variables Z is
r-self-contained in F if every variable x ∈ Z appears in at most r clauses in F \ F [Z].

Finally, we are ready to define a core.

Definition 7. (core) A set of variables H is called a t-core of F w.r.t. an assignment ψ if H is
t-expanding in F w.r.t ψ and also (t/3)-self-contained in F .

The property of being self-contained is necessary for the algorithmic part (the proof of Theorem 2,
at least as our analysis proceeds).

Proposition 5. Let F ∗ be distributed according to Psat
n,p with n2p ≥ d, d a sufficiently large constant.

There exists a positive integer t = t(n, p), a satisfying assignment ψ of F ∗, and a t-core H w.r.t. ψ
such that wvhp:

On the random satisfiable process 9

– |H| = (1− e−Ω(n2p))n,
– H is frozen in F ∗,
– F ∗ is t/10-proportional.

The proof of this proposition is best understood in the context of the proof of Proposition 4.
Therefore the proof appears in Section 4.1.

Remark 4. Observe that if there exist two t-cores H1 and H2 that satisfy the conditions of Propo-
sition 5, then also their union H1 ∪ H2 is a t-core (since the core variables are frozen). Therefore
we may speak of a unique maximal t-core. From now on, when we refer to a t-core, we mean the
maximal one. Note that this maximal core is also frozen by Proposition 3. Therefore it can serve as
a t-core for any satisfying assignment of F and thus is effectively uniquely defined by the formula.

2.5 Satellite Variables

In this section we isolate another set of variables which we call satellite variables. As it turns out,
to prove Theorems 1 and 2, it is enough to distinguish between core and satellite variables and all
other variables in V . Let us start with a formal definition of a satellite variable. In what follows,
`z stands for a literal corresponding to a variable z (i.e. ` = z or ` = z̄).

Definition 8. Given a formula F , an assignment ϕ and a core set H of F w.r.t. to ϕ, a variable
x is called a 0-satellite of H if x ∈ H. A variable x is called an i-satellite if F contains at least
one clause of the form (`x ∨ `z1 ∨ `z2) where for j = 1, 2, zj is a b-satellite for some b < i,
ϕ(`zj) = FALSE, and at least one of the zj’s is an (i − 1)-satellite. We say that x is a satellite
variable if it is a b-satellite for some number b ≥ 1.

Observe that if H is frozen in F then H∪S is frozen as well (this follows from a simple inductive
argument). In particular, if H is frozen every satellite variable is either a positive one or negative
(but not both).

Before we formally state the property involving the satellite variables we introduce some addi-
tional notation. The connected components of a formula F are the sub-formulas F [C1], . . . , F [Ck],
where C1, C2, . . . , Ck are the connected components in the graph GF induced by F (the vertices
of GF are the variables, and two variables are connected by an edge if there exists some clause
containing them both). Given a set of variables A and an assignment ϕ we denote by Fout(A,ϕ) the
subformula of F which is the outcome of the following procedure: set the variables in A according
to ϕ and simplify F (by simplify we mean remove every clause that contains a TRUE literal, and
remove FALSE literals from the other clauses).

Proposition 6. Let F ∗ be distributed according to Psat
n,p with n2p ≥ d, d a sufficiently large constant.

There exists a positive integer t = t(n, p), a satisfying assignment ψ of F ∗, and a t-core H w.r.t. ψ
such that wvhp:

– |H| ≥ (1− e−Ω(n2p))n.
– F ∗ is t/10-proportional.
– Let S be its satellite variables, H ∪ S are frozen in F ∗,
– The largest connected component in F ∗out(H ∪ S, ψ) is of size at most log n.

10 Michael Krivelevich, Benny Sudakov and Dan Vilenchik

The new addition compared with Proposition 5 is the fact that we characterize the structure of
the formula induced by the variables not in H ∪ S.

Our proof strategy is the following. Expose the first part of the random formula F and consider
a t-core H promised wvhp by Proposition 5. We look at a “large” connected component outside the
core (if none exists then we are done) and consider the following “shattering” procedure. Expose the
second part of the random formula, and suppose for the time being that the core does not change
(even if new clauses are included in F ∗). Let x be a non-core variable after the first part, which lies
in a spanning tree of a large connected component. The key observation is that when resuming the
random clause process, x becomes a satellite variable with high (constant) probability, in which
case the spanning tree splits into parts. Since the tree is large, it contains many variables x, and
therefore with very high probability at least one of them will become a satellite variable and shatter
the tree. Finally, it remains to upper bound the number of possible large trees vs. the probability
that such a tree does not survive. The complete proof is given is Section 5.

One problem with the approach we just described is that we assumed that the core H estab-
lished after the first round does not change when resuming the random clause process. This is not
necessarily the case as for example some core variables may violate the self-containment property
and be removed, and this may cause a chain reaction of other variables leaving the core (maybe
their support is too small, or they violate the self-containment requirement). However, wvhp all the
variables the are removed from the core when resuming the random clause process remain satellite
variables, and furthermore there are very few such variables.

Remark 5. In several papers which studied planted-solution distributions, for example [3, 14], a
similar notion of a core appears (without the notion of satellite variables), and an analysis of the
structure of the instance (k-colorable graph or k-CNF formula) induced on the non-core variables
is also given. The main difference from our setting is the fact that the planted distribution is
a product space, and therefore it was possible to prove that the core variables are distributed
similarly to a uniformly random set of variables. In our case establishing such a property is a more
challenging task. As it turns out, the approach that we take – defining the satellite variables –
simplifies considerably the proof of this property.

2.6 The Majority Vote

Given a 3CNF formula F and a variable x we let N+(x) be the set of clauses in F in which x
appears positively (namely, as the literal x), and N−(x) be the set of clauses in which x appears
negatively (that is, as x̄). The Majority Vote assignment over F , which we denote by MAJ, assigns
every x according to the sign of |N+(x)| − |N−(x)| (TRUE if the difference is positive and FALSE
otherwise).

Proposition 7. Let F ∗ be distributed according to Psat
n,p with n2p ≥ d, d a sufficiently large constant.

Then wvhp every satisfying assignments of F ∗ differs from MAJ on at most e−Ω(n2p)n variables.

Proof. Consider the following two-step procedure to generate F : in the first step go over the
M = 8

(
n
3

)
clauses and toss a coin with success probability p1. We take the clauses that were chosen

and put them first, ordered at random. Call F1 this first part (and respectively define F ∗1 in our
standard way, i.e., by scanning sequentially the clauses of F1 and including those whose addition
leaves the formula satisfiable.). Observe that F1 is distributed according to Pn,p1 . Then in the
second round, every clause that was not chosen in the first round is included with probability p2,

On the random satisfiable process 11

and the chosen clauses are ordered at random and then concatenated after F1. Call F2 this last
part. A straightforward calculation shows that F = F1 ∪ F2 is distributed according to Pn,p when
p = p1 +(1−p1)p2. Therefore we may think of F as generated in two steps (with the suitable choice
of p1, p2). We will use this technique to prove several other properties as well.

Let d0 be the constant promised in Proposition 5, and choose d ≥ 2000d0. Set p1 = p/2000. By
the choice of d0 and Proposition 5 wvhp all but e−Ω(n2p)n variables are frozen in F ∗1 , and w.l.o.g
assume that they all take the value TRUE.

We argue now that wvhp at this point all but e−Ω(n2p)n variables appear in no more than
say n2p/30 clauses in F1 (and therefore also in F ∗1). The number of clauses of F1 containing a
given variable x is distributed binomially with parameters 8

(
n−1

2

)
and p1 and has thus expectation

8
(
n−1

2

)
p1 ≤ n2p/500. Therefore, if n2p ≥ C1 log n for some sufficiently large constant C1 > 0, then

wvhp every variable appears in no more than n2p/30 clauses, by the Chernoff inequality.
Assume therefore that n2p ≤ C1 log n. Choose c2 = c2(C1) > 0 sufficiently small so that

e−c2n
2pn ≥

√
n. If F1 has a set X of t variables, each contained in at least n2p/30 clauses, then the

total number of clauses of F1 containing at least one variable from X is at least t(n2p/30)(1/3) =
n2pt/90 (each clause is counted at most thrice). The probability of the latter event to happen in
Pn,p1 for some set of t variables is at most

(
n

t

)(8t
(
n−1

2

)
n2pt
90

)
p
n2pt
90

1 ≤
(en
t

)t (360e
2000

)n2pt
90

<

[
en

t
2−

n2p
90

]t
.

Choosing t = e−c2n
2pn (and recalling that c2 is chosen small enough so that, in particular, t ≥

√
n),

we conclude that the above estimate is less than n−3.
Let Z be then the set of frozen variables that appear in at most n2p/30 clauses of F1. Recall

that we have assumed w.l.o.g. that they all froze to TRUE. By the above discussion together with
Proposition 5 wvhp

|Z| ≥ (1− e−Ω(n2p))n− e−Ω(n2p)n ≥ 0.999n.

Now let us consider the second iteration of coin flips. Fix x ∈ Z, observe that every clause containing
x positively, if chosen in the second round will be included in F ∗. There are at least 4

(|Z|−1
2

)
−n2p/30

such clauses with the other two variables from Z – call them “good” clauses. As for clauses where
x appears negatively, and the other two variables are in Z, there are only at most 3

(|Z|−1
2

)
clauses

such that if chosen will be included (since one way of negating the variables in Z results in a FALSE
clause on frozen variables) – call them “bad” clauses. In addition there are at most 8(n − |Z|)n
clauses, containing x and at least one variable outside Z, that we don’t say anything about, but
let us adversely assume that x appears in all of them negatively, and if chosen are included in F ∗

(they are also part of the bad clauses).

In expectation, at least p2 ·
(

4
(|Z|−1

2

)
− n2p/30

)
≥ 1.8n2p good clauses containing x will be

chosen in the second round, and at most p2 ·
(

3
(|Z|−1

2

)
+ 8(n− |Z|)n

)
≤ 1.6n2p bad clauses. (Recall

that 199p/200 ≤ p2 ≤ p.)
Suppose that in the n2p/30 clauses from the first round also x appears negatively. To conclude,

for the majority vote of x to be wrong it must have been the case that the number of good clauses
containing x or the number of bad clauses containing x deviates by at least (1.8− 1.6− 1/30)n2p/2
from its expectation. But since both are binomially distributed with expectation Θ(n2p), this
happens with probability e−Ω(n2p). Using the linearity of expectation all but e−Ω(n2p)n of the
variables in Z are expected to have a “proper” gap. To obtain concentration around this value we

12 Michael Krivelevich, Benny Sudakov and Dan Vilenchik

use again the method of bounded differences, similarly to what has been used earlier in the proof.
Finally observe that |Z| ≥ (1 − e−Ω(n2p))n, and therefore |Z| − e−Ω(n2p)n = (1 − e−Ω(n2p))n as
required. �

2.7 Proof of Theorem 1

Theorem 1 follows from Proposition 6 which implies that all but e−Ω(n2p)n of the variables are
frozen. Therefore, there are at most 2e

−Ω(n2p)n possible ways to set the assignment of the remaining
variables. Furthermore, Proposition 6 describes the formula induced by the non-frozen variables.

3 Proof of Theorem 2

SAT(F, t)
Step 1: Majority Vote
1. π1 ← Majority Vote over F .
Step 2: Reassignment
2. for i = 1 to logn
3. for all variables x
4. if x supports less than 2t/3 clauses w.r.t. πi then πi+1 ← πi with x flipped.
5. end for.
6. end for.
Step 3: Unassignment
7. set ψ1 = πlogn, i = 1.
8. while ∃x s.t. x supports less than t clauses w.r.t. ψi
9. set ψi+1 ← ψi with x unassigned.
10. i← i+ 1.
11. end while.
Step 4. Unit Clause Propagation
12. Let ξ be the final partial assignment obtained at Step 3.
13. Remove all clauses which are satisfied by ξ, and all FALSE-literals from the remaining clauses.
14. Run the unit-clause-propagation algorithm on the resulting instance.
Step 5: Exhaustive Search
15. Let F ′ be the formula remaining after the unit-clause-propagation of Step 4 terminates.
16. If some connected component of F ′ has more than logn variables, fail.
17. Exhaustively search and satisfy F ′, component by component.

Fig. 1. The algorithm SAT

In this section we prove that the algorithm SAT, which is described in Figure 1, meets the
requirements of Theorem 2. The main principles underlying SAT were designed with the planted
distribution in mind (see [14] for example). An additional ingredient that we add is a unit-clause-
propagation step. Given a 1-2-3-CNF formula (namely a formula which contains clauses of size 1,2
and 3), the unit-clause-propagation is the following simple heuristic:

while there exists a clause of size 1, set the variable appearing in this clause in a satisfying
manner, remove this clause and all other clauses satisfied by this assignment, and remove
the FALSE literals of the variable from other clauses.

On the random satisfiable process 13

We say that F ∗ is typical in Psat
n,p if it satisfies the properties stated in Propositions 6 and

7. The discussion in Section 2 guarantees that indeed this happens wvhp (that is, F ∗ is typical).
Therefore, to prove Theorem 2 it suffices to consider a typical F ∗ and prove that SAT (always)
finds a satisfying assignment for F ∗ in polynomial time. As the parameter t for SAT we use the t
promised in Proposition 6.

We letH be the t-core promised in Proposition 6, S its satellite variables, and ϕ be the satisfying
assignment w.r.t. which H is defined. In all the following propositions we assume F ∗ is typical (we
don’t explicitly state it every time for the sake of brevity).

Proposition 8. Let ψ1 be the assignment defined in line 7 of SAT. Then ψ1 agrees with ϕ on the
assignment of all variables in H.

Proof. Let Bi be the set of core variables whose assignment in πi disagrees with ϕ at the beginning
of the ith iteration of the main for-loop – line 2 in SAT. It suffices to prove that |Bi+1| ≤ |Bi|/2
(if this is true, then after log n iterations Blogn = ∅). Observe that by Proposition 7, |B0| ≤ n/107

(as the Majority Vote error-rate e−Ω(n2p) can be made arbitrarily small). By contradiction, assume
that not in every iteration |Bi+1| ≤ |Bi|/2, and let j be the first iteration violating this inequality.
Consider a variable x ∈ Bj+1. If also x ∈ Bj , this means that x’s assignment was not flipped in the
jth iteration, and therefore, x supports at least 2t/3 clauses w.r.t. πj . Since H is t/3-self-contained,
at least 2t/3 − t/3 = t/3 of these clauses contain only core variables. Since the literal of x is true
in all these clauses, but in fact should be false under ϕ, each such clause must contain another
variable on which ϕ and πj disagree, that is another variable from Bj . If x /∈ Bj , this means that
x’s assignment was flipped in the jth iteration. This is because x supports less than 2t/3 clauses
w.r.t. πj . Since x supports at least t clauses w.r.t. ϕ (t-expanding property of the core), it must
be that in at least t − 2t/3 = t/3 of them, the literal of some other core variable evaluates to
TRUE (not FALSE as it should be in ϕ). Let B′j+1 be the first (lexicographically) n/107 variables
of Bj+1 (or B′j+1 = Bj+1 in case Bj+1 contains less than n/107 variables). Observe that in case we
trim Bj+1 it still holds that |B′j+1| ≥ |Bj |/2 since |Bj | ≤ n/107 (B0 is already so small, and by
our assumption the sets B1, B2, . . . Bj only decrease in size). Define U = Bj ∪ B′j+1. There are at
least t/3 · |B′j+1| clauses containing at least two variables from U (every clause is counted exactly
once as the supporter of a clause is unique). Using our assumption, |B′j+1| ≥ |Bj |/2, we obtain
|U | = |Bj ∪ B′j+1| ≤ |Bj | + |B′j+1| ≤ 3|B′j+1|, therefore t/3 · |B′j+1| ≥ (|U |/3) · t/3 = (t/9)|U |.
Finally,

– |B′j+1| ≤ n/107.
– |U | ≤ 3|B′j+1| ≤ 3n/107 ≤ n/106,
– there are t|U |/9 clauses containing two variables from U .

The last two items contradict the t/10-proportionality of F ∗.
�

Proposition 9. Let ξ be the partial assignment defined in line 12 of SAT. Then all assigned vari-
ables in ξ are assigned according to ϕ, and all the variables in H are assigned.

Proof. By Proposition 8, ψ1 coincides with ϕ (the satisfying assignment w.r.t. which H is defined)
on H. Furthermore, by the definition of t-core, every core variable supports at least t clauses
w.r.t. ϕ, and also w.r.t. ψ1 (the assignment at hand before the unassignment step begins). Hence
all core variables survive the first round of unassignment. By induction it follows that the core

14 Michael Krivelevich, Benny Sudakov and Dan Vilenchik

variables survive all rounds. Now suppose by contradiction that not all assigned variables are
assigned according to ϕ when the unassignment step ends. Let U be the set of variables that
remain assigned when the unassignment step ends, and whose assignment disagrees with ϕ. Every
x ∈ U supports at least t clauses w.r.t. to ξ (the partial assignment defined in line 12 of SAT), but
each such clause must contain another variable on which ξ and ϕ disagree (since ϕ satisfies this
clause). Thus, we have t · |U | clauses each containing at least two variables from U (again no clause
is counted twice as the support of a clause is unique). Since U ∩ H = ∅ (by the first part of this
argument) and |H| ≥ (1 − e−Ω(n2p))n it follows that |U | ≤ e−Ω(n2p)n < n/106, contradicting the
t/10-proportionality of F ∗. �

Proposition 10. By the end of the unit-clause propagation step all the variables which get assigned
are assigned according to ϕ, furthermore the set of satellite variables S is assigned.

Proof. The proof is by induction on the iterations of the unit clause propagation. The base case
are clauses of the form (x ∨ `z ∨ `y) where `z, `y are FALSE literals under ξ and x is unassigned.
By the previous proposition, ξ can be extended to a satisfying assignment of F , but every such
extension must set x = TRUE. This is exactly what the unit clause propagation does. The step of
the induction is proven similarly to the base case.

Now to the satellite variables. The previous proposition gives that H remains assigned according
to ϕ. By the definition of satellite variables, S will be set in the unit clause propagation (the i-
satellite variables will be set in iteration i of the unit-clause propagation). �

Proposition 11. The exhaustive search, Step 5 of SAT, completes in polynomial time with a sat-
isfying assignment of F ∗.

Proof. By Proposition 10, the partial assignment at the beginning of the exhaustive search step
is partial to the satisfying assignment ϕ of the entire formula. Therefore the exhaustive search will
succeed. Further observe that the unassigned variables are outside of H ∪ S. F ∗ is assumed to be
typical (specifically, it satisfies the properties stated in Proposition 6) and this guarantees that
the algorithm will not fail in line 16. This also guarantees that the running time of the exhaustive
search will be at most polynomial. �

Theorem 2 follows.

4 Proof of Proposition 4

Let F be the random Pn,p instance, F ∗ be its satisfiable part. We divide the process of generating
F into two steps like in the proof of Proposition 7: in the first round go over the M = 8

(
n
3

)
clauses

and toss a coin with success probability p1 = p/2. Take the clauses that were chosen and put them
first ordered at random. In the second round, every clause that was not chosen, is included with
probability p2, p2 satisfies p1 + (1−p1)p2 = p; then the included clauses are ordered at random and
concatenated after the first part. Observe that this distribution is identical to Psat

n,p as explained
before.

Let t be such that F (and hence also F1) is wvhp t-proportional (we can choose t = n2p/5500 as
asserted in Proposition 1). Also take n2p sufficiently large so that F ∗ is wvhp n/106-concentrated
(as required by Proposition 4, and as promised to be the case wvhp by Proposition 2).

On the random satisfiable process 15

Fix ψ to be some assignment (not necessarily a satisfying assignment of F ∗), and let Bψ be a
random variable counting the number of variables whose support in F1 w.r.t. ψ is smaller than 502t.
Fix some variable x, and w.l.o.g. assume x is TRUE in ψ. There are

(
n−1

2

)
clauses that x supports

w.r.t. ψ, each included w.p. p1. Therefore in expectation x supports at least n2p1/3 = n2p/6 clauses.
Since the support of x is distributed binomially, the probability that x supports less than t clauses
in F1 w.r.t. ψ is at most e−n

2p/50 (say, use the Chernoff bound). Finally observe that the set of
clauses that x supports is disjoint from the set of clauses that y 6= x supports. Therefore, the
probability that there are at least n/107 such variables is at most

(
n

n/107

)
e−(n2p/50)·(n/107) < 3−n

for sufficiently large n2p. Hence wvhp no such ψ exists (taking the union bound over all possible
assignments).

In particular, wvhp every ψ that satisfies F ∗1 has the desired property. Let now ψ be a satisfying
assignment of F ∗1 such that Bψ ≤ n/107, and consider the following procedure which, as we shall
prove, produces a large 500t-expanding set Z in F ∗1 (and therefore also in F ∗ which contains F ∗1).
When using the notation F [A] for a formula F and a set of variables A we mean all clauses in F
in which all three variables belong to A.

1. set Z0 = V \ {x ∈ V : x supports less than 502t clauses in F ∗1 w.r.t. ψ}; i = 0.
2. while there exists a variable ai ∈ Zi that supports less than 500t clauses in F1[Zi] do Zi+1 = Zi \{ai}; i← i+ 1.
3. let ar be the last variable removed in step 2. Define Z = Zr+1.

Fig. 2. Building a t-expanding set

Clearly, Z is 500t-expanding in F1 (by the construction). It remains to show that Z is large. By
our assumption on Bψ step 1 removes at most n/107 variables, let A be those variables. It remains
to prove that in the iterative step not too many variables were removed. Suppose by contradiction
that in the iterative step more than n/107 variables were removed, and consider iteration j = n/107

and the set W = {a1, . . . , aj} (ai ∈ W is defined in line 2 of Figure 2). Every ai ∈ W appears
in more than 502t − 500t = 2t clauses in which at least another variable belongs to U = W ∪ A
(by the choice of Z0 and the condition in line 2 that caused ai to be removed). Therefore, by
iteration n/107, the set U contains at most n/107 + n/107 ≤ n/106 variables, and there are more
than 2t · |W | ≥ 2t · |U |/2 = t|U | clauses containing at least two variables from U (no clause is
counted twice as the support of a clause is unique; |W | ≥ |U |/2 by our assumption on the size
of A and by the choice of j = n/107). This contradicts the t-proportionality of F1. To conclude,
|Z| ≥

(
1− 10−6

)
n ≥ 0.99n.

It follows that wvhp for every satisfying assignment ψ of F ∗1 there exists a 500t-expanding set
Z of variables of cardinality |Z| ≥ 0.99n. W.l.o.g. we can assume Z is of maximal size.

Observe that Z and F ∗1 satisfy the conditions of Proposition 3 (that is, ψ is a satisfying assign-
ment, F ∗1 is t-proportional and n/106-concentrated) and therefore Z is frozen in F ∗1 ; w.l.o.g. assume
that all variables in Z froze to TRUE. Since all variables of Z are frozen in F ∗1 , we can take the
same Z for every satisfying assignment ψ of F ∗1 .

So let Z be as above, |Z| ≥ 0.99n. Now we consider the second round of coin tosses, call the
chosen clauses F2. We prove that after adding them, with probability 1 − o(2−n) Z extends to a
t-expanding set Z ′, Z ⊆ Z ′, of the required size (|Z ′| ≥ (1− e−Ω(n2p))n). Fix some variable x /∈ Z
and observe that x supports

(|Z|
2

)
clauses, where x appears without negation and the other two

variables are in Z and appear as negated. Since x /∈ Z, we know by the maximality of Z that

16 Michael Krivelevich, Benny Sudakov and Dan Vilenchik

in the first iteration at most 500t such clauses were included. In expectation, F2 contains at least
p2

((|Z|
2

)
− 500t

)
≥ n2p/5 ≥ 1000t such clauses (this is due to p2 ≥ p/2). If indeed at least 500t

clauses are included then Z ∪ {x} is a 500t-expanding set. The probability that less than 500t of
them were included is e−Ω(n2p) (again, Chernoff bound). We can argue similarly about the number
of clauses in F2, containing x and two variables from Z, where all three variables appear as negated.

Call a variable x good if it participates in at least 500t clauses in F2 where the other two variables
are from Z and are negated and x is not negated, and also is in at least 500t clauses in F2 where
the other two variables are from Z and all three variables are negated; otherwise x is called bad.
Observe that for every good x, for every satisfying assignment ψ of F ∗1 ∪ F ∗2 , we can add x to Z,
regardless of whether ψ sets x to TRUE or FALSE. The above argument shows that the expected
number of bad variables is e−Ω(n2p)n. Applying standard concentration techniques, we can derive
that wvhp the number of bad variables is wvhp e−Ω(n2p)n as well (the events “xi is bad” and “xj is
bad” are independent since they involve disjoint sets of clauses).

And so we have proven that wvhp there exists a 500t-extending set Z ′ (which contains Z) and
|Z ′| = |Z|+ (1− e−Ω(n2p))|V \ Z| ≥ (1− e−Ω(n2p))|V |.

For conclusion, we have shown that there exists a 500t-expanding set Z ′ in F ∗ of cardinality
|Z ′| = (1 − e−Ω(n2p))n w.r.t. ψ, where ψ is some satisfying assignment of F ∗ (in fact this is true
w.r.t. all satisfying assignments of F ∗ by the frozenness property). Scaling everything down (setting
t′ = 500t), Z ′ is t′-expanding and (at least) t′/500-proportional. This completes the proof of the
proposition.

Remark 6. Note that here we proved t′/500-proportionality, which is stronger than what we are
required to prove (t′/10-proportionality). In general, we prefer clear and shorter presentation over
optimizing the constants in the proofs. Later we will use this slackness in other proofs that rely on
this one.

4.1 Proof of Proposition 5

Let Z be the t-expanding set promised by Proposition 4. Consider the procedure in Figure 3, which
shall produce a t′-core (for t′ = 10t/11). Recall that using the notation F [A] for formula F and set
of variables A we mean all clauses in F in which all three variables belong to A.

1. set H0 = Z and i = 0.
2. while there exists a variable ai ∈ Hi that:

– ai appears in more than t/11 clauses in F \ F [Hi], or,
– ai supports less than 10t/11 clauses in F [Hi],

do Hi+1 = Hi \ {ai}.
3. let ar be the last variable removed in step 2. Define H = Hr+1.

Fig. 3. Building a t-core

First let us explain why indeed H is a t′-core. By its construction H is 10t/11-expanding (or
t′-expanding). Further, H is t/11-self-contained, or t′/10-self-contained (which also implies t′/3-self-
contained as 1/3 > 1/10).

On the random satisfiable process 17

Remark 7. By the definition of a core we are required to prove only t′/3-self-contained, but we shall
need this slackness in the proof of Proposition 6.

It remains to prove that |H| ≥ (1 − e−Ω(n2p))n. By Proposition 4, |H0| ≥ (1 − e−n2p/c1)n for
some constant c1 > 0 independent of n, p. Let A = V \H0, and note that |A| ≤ e−n2p/c1n. Suppose
that the iterative procedure (line 2) removed more than e−n

2p/c1n variables. Consider iteration
j = e−n

2p/c1n and the set W = {a1, . . . , aj} (ai ∈ W is defined in line 2 of Figure 3). Define
U = W ∪A. One possibility for the removal of ai is that it appears in at least t/11 clauses in which
at least another variable belongs to U . Another is that ai supports less than 10t/11 clauses w.r.t.
F [Hi]. In the latter case ai must support at least t − 10t/11 = t/11 clauses in F \ F [Hi] (by the
choice of ai ∈ Z). In any case ai appears in at least t/11 clauses with at least another variable
from U . Therefore, by iteration j, there exists a set U containing at most 2e−n

2p/c1n << n/106

variables, and there are at least (t/33) · |W | ≥ (t/33) · (|U |/2) = t|U |/66 clauses containing at least
two variables from it (we divide t/11 by 3 as a clause could have been counted three times). This
however contradicts the t/500-proportionality of F (recall that in Proposition 4, when proving the
existence of a t-expanding set Z, we actually proved that F is t/500-proportional – Remark 6).

Finally, the core variables are frozen as they are a subset of Z, and Z – the t-expanding set –
is frozen (by Proposition 3).

5 Proof of Proposition 6

Let F be the random Pn,p instance, F ∗ its satisfiable part. We divide the process of generating F
into two steps like in the proof of Proposition 7: in the first round go over the M = 8

(
n
3

)
clauses

and toss a coin with success probability p1 = p/2. Take the clauses that were chosen and put them
first. In the second round, every clause that was not chosen is included with probability p2, where
p2 satisfies p1 + (1 − p1)p2 = p. Let F ∗1 be the part of F ∗ that corresponds to the first iteration
(F ∗1 is distributed according to Psat

n,p1). Let F2 be the clauses that were chosen in the second round.
Also, we say that a formula F is bounded if no variable appears in more than n clauses.

By Proposition 5, if we take n2p to be sufficiently large, then F ∗1 has wvhp a t-core H w.r.t.
to a satisfying assignment ψ with the following properties (the last property did not appear in
Proposition 5, we define and justify it immediately after):

– F1 is t/500-proportional (Remark 6).
– H is t/10-self-contained and not only t/3-self-contained (Remark 7).
– |H| ≥ (1− e−Ω(n2p))n.
– H is frozen.
– F ∗1 is bounded.

In F1 every variable is expected to appear in O(n2p) clauses, and we may assume that n2p = O(n1/2)
(if not, then in particular wvhp H = V and the entire discussion in this section is unnecessary).
Standard calculations then show that wvhp no variable appears in more than n clauses of F1.

We now discuss what happens to H in the second round, that is when adding F2. We will be
interested in large connected components of F1 whose vertices are not in H (Proposition 14), and
also in vertices that may leave H due to F2 (Propositions 12 and 13). The key to understanding
the transformation that H and the connected components undergo lies in the notion of satellite
variables.

Proposition 12. There exists wvhp a satisfying assignment ψ of F ∗ and a set H′ ⊆ H of variables
which is a t/2-core of F ∗ w.r.t. ψ. Furthermore, |H′| ≥ (1− e−Ω(n2p))n.

18 Michael Krivelevich, Benny Sudakov and Dan Vilenchik

Proof. We call a variable x ∈ H dirty if in F2 there exists a clause C containing x and some
variable not in H. Let D be the set of dirty variables. For a specific x, there are e−Ω(n2p)n2 clauses
such that if chosen to F2 will make x dirty. The probability that any of them appears is at most
p2·e−Ω(n2p)n2 = e−Ω(n2p) (since e−Ω(n2p) is much smaller than n2p2 for sufficiently large p). Linearity
of expectation gives E[|D|] = e−Ω(n2p)n. Also observe that D satisfies the Lipschitz condition
with difference 3 (as every new clause can effect 3 new variables). Therefore also concentration is
obtained. Let us assume from now on that indeed |D| = e−Ω(n2p)n.

Consider H after scanning F2 (to complete F ∗) and set H0 = H \ D, i = 0. Very similarly to
the procedure in Figure 3, consider the following iterative procedure:

while there exists x ∈ Hi s.t. x supports less than t/2 clauses in F [Hi] w.r.t. ψ, or appears in
more than t/6 clauses where some variable belongs to V \Hi, define Hi+1 = Hi\{x}, i = i+1.

Set ` = e−cn
2pn, where c is some constant satisfying |D| ≤ e−cn

2pn. Suppose that the iterative
process reached iteration `, and let W` be the set of variables that were removed in iterations
1 . . . `, let U = W` ∪D, and observe that |W`| ≥ |U |/2 by our choice of c. Take x ∈ W`, if x was
removed in iteration i because it appeared in more than t/6 clauses where some variable belongs
to V \ Hi, then since x was part of H to begin with, and H was t/10-self-contained, then x must
appear in at least t/6 − t/10 = t/15 clauses in which at least another variable belongs to U . If
x was removed because it supports less than t/2 clauses in F [Hi], then again, x was part of H,
and therefore it supports at least t clauses in F [H], and hence it must support (and, in particular,
appear in) at least t − t/2 = t/2 clauses in which some variable belongs to U . At any rate, every
x ∈W` appears in at least t/15 clauses in which at least another variable belongs to U . Finally,

– there are t|W`|/15 · 1/3 ≥ t|U |/90 clauses containing at least two variables from U (we divide
by 3 as every clause might have been over–counted up to 3 times, and we use the fact that
|W`| ≥ |U |/2),

– |U | = |D|+ |W`| = e−Ω(n2p)n < n/106 (we used our estimate on |D|, and the fact that we look
at the iterative process until iteration `, therefore |W | ≤ ` = e−Ω(n2p)n).

Combining these two facts contradicts the t/250-proportionality of F ∗ which holds wvhp (F1 is wvhp
t/500-proportional, and so is F2, as they are almost identically distributed, and there is enough
slackness in the choice of constants to accommodate this difference. Hence F = F1 ∪ F2 is wvhp
t/250-proportional, and also F ∗ is). Therefore if we let W denote the set of variables that were
removed in the iterative step, in all iterations, then wvhp |W | ≤ `. Now set t′ = t/2, and let
H′ = H \ {D ∪W}. We have shown that the set H′ is a t′-core of the required size. Further, F ∗ is
(at least) t′/10-proportional as required by Proposition 6.

Finally observe that H is frozen and hence H′ ⊆ H is frozen too. Therefore although H′ is
defined w.r.t. ψ, it will be a core of F ∗ regardless of which satisfying assignments survive at the
end (as it will be a core w.r.t. all F ∗’s satisfying assignments, and at least one is guaranteed to
survive). �

Proposition 13. Let S ′ be the satellite variables of H′. If F ∗ is t/10-proportional then H\H′ ⊆ S ′.

Proof. Let A = H \ H′. Let S ′ be all the satellite variables of H′, and by contradiction assume
that the set B = A \ S ′ is non-empty. Every x in B belongs to H and therefore supports at least
t clauses where the other two variables appear in H. Observe that in none of these t clauses the
other two variables are in H′ ∪ S ′ (as otherwise x is in S ′). Therefore we have found a set B,

On the random satisfiable process 19

|B| = e−Ω(n2p)n ≤ n/106, for which there are at least t|B| clauses containing two variables from B.
This contradicts the t/10-proportionality of F ∗. �

In the proof of Proposition 6 we consider two “types” of satellite variables. The first type, which
we just met, are the variables in H \ H′. The second type, which we will make use of in the proof
of Proposition 14 ahead, are satellite variables of H whose “job” is to shatter the large connected
components in the formula induced by variables not in H (when exposing the second part of F).
In some sense these two types represent competing processes. The one is variables leaving H, but
still remaining satellite variables, the other is new variables attaching to H as satellite variables.

Recall our notation Fout(A,ϕ) (A a set of variables, ϕ an assignment) which stands for the
subformula of F which is the outcome of the following procedure: set the variables in A according
to ϕ and simplify F (by simplify we mean remove every clause that contains a TRUE literal, and
remove FALSE literals from the other clauses). The connected components of a formula F are the
sub-formulas F [C1], . . . , F [Ck], where C1, C2, . . . , Ck are the connected components in the graph
GF induced by F (the vertices of GF are the variables, and two variables are connected by an edge
if there exists some clause containing them both).

Proposition 14. Let H be a t-core of F ∗1 , let S be the set of all satellite variables of H in F ∗, and
let ψ be a satisfying assignment of F ∗. Then the largest connected component in F ∗out[H ∪ S, ψ] is
wvhp of size at most log n.

First let us show why Proportion 14 completes the proof of Proposition 6: Take H′ for the
core to be given by Proposition 6, and denote by S ′ its satellite variables. Observe that (under
the assumption of proportionality and by Proposition 13) H ⊆ H′ ∪ S ′. Hence by the definition of
satellite variables H∪S ⊆ H′ ∪S ′. Also recall that if H′ is frozen then by definition also H′ ∪S ′ is.

5.1 Proof of Proposition 14

Let us refine the process of generating F : first we generate F1 (and F ∗1), and fix H according to
F ∗1 . Then in the second round (F2) first toss the coins of clauses C s.t. at most one literal in C
belongs to H, call J ⊆ F2 the set of clauses that were chosen. Finally toss the coins of the other
clauses (the ones that were not picked in the first step and contain at least two variables from H),
call K ⊆ F2 the set of clauses that were chosen. In this new terminology F = F1 ∪ J ∪K, and set
F ′ = F1 ∪ J . To prove Proposition 14 it suffices to consider only trees of size log n in F ′. This is
because (a) every connected component of size at least log n contains a tree of size log n, and (b)
only the clauses of F ′ may contribute edges to the connected components of F ∗out[H ∪ S, ψ].

We will prove Proposition 14 as follows: fix an arbitrary tree T on r vertices, and let V (T) denote
its set of vertices. The following two conditions are necessary for T to belong to F ∗out[H ∪ S, ψ]:

– A = {there exists a subformula of F ′ that induces T},
– B = {the clauses in K do not prevent the following from holding: V (T) ∩ S = ∅}.

The probability that F ∗out[H ∪ S, ψ] contains a tree of size at least r is at most

∑
T :|V (T)|=r

Pr[A∧B] =
∑

T :|V (T)|=r

Pr[A]·Pr[B|A] ≤
(

max
T :|V (T)|=r

Pr[B|A]
)
·

 ∑
T :|V (T)|=r

Pr[A]

 ≡ q ·h.

20 Michael Krivelevich, Benny Sudakov and Dan Vilenchik

Our next goal is to bound q and h, and then to show that q · h = o(n−3) for r = log n. In fact
we shall prove that q · h = o(n−Ω(n2p)) for r = log n. The next two lemmas establish the desired
bounds (we use d = n2p).

Lemma 3. h =
∑

T :|V (T)|=r Pr[A] ≤ n(100d)r.

Lemma 4. q = maxT :|V (T)|=r Pr[B|A] ≤ e−dr/8.

To conclude, for r = log n,

q · h ≤ n(100d)logn · n−d/8 ≤ n1+log(100d)−d/8 = o(n−Ω(d)).

The last equality is true since d/8 >> 1 + log(100d) for sufficiently large d = n2p. We shall now
prove the two lemmas.

Proof of Lemma 3. The quantity h to be estimated is obviously the expected number of trees of
size r = log n induced by a formula F ′ ⊆ F and is therefore at most the expected number of such
trees induced by F itself. We thus estimate from above the latter quantity.

Let T be a fixed tree on r variables (a tree in the regular graph sense), and let FT be a fixed
collection of clauses such that each edge of T is induced by some clause of FT – we call such
FT an inducing set of clauses. We say that a clause set FT is minimal w.r.t. T if by deleting a
clause from FT , T is not induced by the new formula anymore. By the definition of minimality,
|FT | ≤ |E(T)| = |V (T)| − 1 (as T is a tree). In our argument we shall be interested only in (T, FT)
s.t. FT is a minimal set of clauses that induces T .

Given a tree T of size r, we estimate the number of ways to extend T to a minimal inducing set
FT . Every clause in FT can cover either one or two edges of T (it cannot cover three edges or we
have a cycle in T). Following the argument in [14], let NT,s be the number of ways to pair 2s edges
of T to form s clauses in FT that cover two edges. There are 8 ways to set the polarity of variables
in every clause of FT (and there are r − 1 − s such clauses), and at most nr−1−2s ways to choose
the third variable in the r − 1 − 2s clauses that cover exactly one edge. Using this terminology,
the expected number of r-trees induced by a random formula F , generated according to Pn,p with
n2p = d, is at most:

∑
r−trees

r/2∑
s=0

NT,s8r−1−snr−1−2s

(
d

n2

)r−1−s
≤

∑
r−trees

 r/2∑
s=0

NT,s

 (8d)rn1−r . (2)

Our next task is to obtain useful upper bounds on the sum
∑r/2

s=0NT,s. To this end let us fix a
degree sequence (d1, ..., dr) for T , and consider the following procedure for properly pairing edges.
By proper we mean that every pair of edges can be covered by a 3CNF clause; for example, we
cannot pair the edges (x1, x2) and (x3, x4) as they result in a 4CNF clause. For each vertex, we
specify a permutation of the edges incident to that vertex. Then we iterate through the vertices,
and for each vertex, we iterate through the edges and pair up each unpaired edge with the edge
given by the permutation associated with the current vertex (and leave the edge unpaired if the
permutation sends the edge to itself). Any pairing of edges which can be covered by clauses can be
generated this way by choosing the permutations to transpose each pair of edges to be covered by
a single clause and to leave fixed all the other edges. Since there are di! different permutations for
vertex i, we have

r/2∑
s=0

NT,s ≤
r∏
i=1

di!.

On the random satisfiable process 21

A classical result by Prüfer is that the number of r-trees with degree sequence (d1, ..., dr) equals(
r−2

d1−1,...,dr−1

)
(see, for example, [20], Section 4.1, p. 33). There are

(
n
r

)
ways to choose the r vertices

of the tree. So (2) is at most

∑
d1+...+dr=2(r−1)

(
n

r

)(
r − 2

d1 − 1, . . . , dr − 1

)(r∏
i=1

di!

)
(8d)rn1−r ≤

∑
d1+...+dr=2(r−1)

(
r∏
i=1

di

)
(8d)rn.

By convexity, for (d1, ..., dr) with d1 + ...+ dr = 2(r − 1), the product
∏r
i=1 di is maximized when

d1 = . . . = dr, and so
∏r
i=1 di ≤ 2r. The number of ways to choose positive integers (d1, ..., dr) so

that d1 + ...+ dr = 2(r− 1) is
(
2r−3
r−1

)
which is less than 22r. Hence, the expected number of r-trees

induced by a random formula F is at most n · 22r · 2r · (8d)r ≤ n(100d)r. �

Proof of Lemma 4. Fix a tree T in F ′ = F1 ∪ J on r vertices (recall that J is the set of clauses
that contain at most one variable from H), and consider the set of clauses that have at least two
variables in H, for which we now toss their coins (we use K to denote the set of clauses that were
chosen among the latter).

Assume w.l.o.g. that the assignment ψ, w.r.t. which H is defined, is the all-TRUE assignment.
Look at a variable x ∈ V (T). We call a clause (x ∨ z̄1 ∨ z̄2), (x̄ ∨ z̄3 ∨ z̄4), where the zi’s are some
variables in H, a type 1, respectively type 2, clause. If clauses of both types appear in K then x
surely belongs to S (and therefore V (T) ∩ S 6= ∅). We call x /∈ H elusive if at least one of the two
types of clauses didn’t appear in K.

Set ρ = 1 − e−Ω(n2p), since |H| ≥ ρn there are at least
(
ρn
2

)
≥ (ρn)2/3 clauses of type 1. We

assume that F1 is bounded and hence every variable appears in at most n clauses, therefore at most
n clauses of type 1 have been included in F1. An identical argument applies to clauses of type 2.
Note also that the clauses of J cannot belong to any of the types. Therefore the probability that
no clause of type 1 belongs to K is at most (1− p2)(ρn)2/3−n ≤ e−d/7 (here we use: d = n2p is large,
p2 = (p− p1)/(1− p1), p1 = p/2). The same is true by symmetry for clauses of type 2. Let Ex be
the event that x is elusive, and let Pi be the event that no clause of type i for x appeared, i = 1, 2
(namely, Ex = P1 ∨ P2).

Pr[Ex] = Pr[P1 ∨ P2] ≤ Pr[P1] + Pr[P2] ≤ 2e−d/7 ≤ e−d/8.

Further observe that for x 6= y the events Ex and Ey are independent as they involve disjoint sets
of clauses (each variable supports its own set of clauses). Recall the events A,B which were defined
above. In this terminology we just upper bounded the probability of B given A, and therefore the
following is true:

Pr[B|A] ≤
(
e−d/8

)r
= e−dr/8.

Since our upper bound on Pr[B|A] only depends on the fact that |V (T)| = r, then also

q = max
T :|V (T)|=r

Pr[B|A] ≤ e−dr/8.

�

22 Michael Krivelevich, Benny Sudakov and Dan Vilenchik

6 k-Colorability

In this section we will discuss, in a high level fashion, how one can obtain similar results to the ones
we have for k-SAT for the random graph process (of k-colorability). Before we start our discussion
let us recall the algorithm due to Alon and Kahale for coloring k-colorable graphs [3]. The first step
of the algorithm is a spectral step; specifically a k-coloring of the graph (not necessarily proper)
is obtained by looking at some eigenvectors of the graph (that hopefully reflect in some sense a
proper k-coloring). Then, this initial k-coloring is refined using a series of combinatorial steps (very
similar to our Steps 2–4 in Algorithm SAT), until possibly a proper k-coloring is reached (or the
algorithm fails). The algorithm was analyzed on graphs drawn from the planted distribution first
defined at [19] (the distribution is defined by the following procedure: partition the vertex set into
k color classes of size n/k each: V1, V2, . . . , Vk; next, include every Vi − Vj edge with probability
p). The algorithm was shown to find whp a proper k-coloring of the graph when np ≥ ck2, c some
sufficiently large constant.

Let us consider the following distribution: randomly permute all
(
n
2

)
possible edges. Go over

the edges in the permutation’s order and add each edge if after its addition the graph remains
k-colorable. It is possible to prove that the algorithm of Alon and Kahale works also for graphs
drawn from the distribution we just described for the same edge density (maybe the constant c is
different). The main challenge is to reprove the spectral properties of the graph. The basic idea
is to notice that whp every k-coloring has all of its color classes of linear size, and also to prove
discrepancy properties (similar, yet more elaborate, to Proposition 1). Another crucial ingredient
in the proof is establishing a similar notion of a core (Definition 7).

Unfortunately, at this point we are still unable to answer a seemingly much simpler question:
how many edges will such a graph typically contain by the end of the process? We expect the
answer to be about

(
k
2

) (
n
k

)2 – which would corresponds to the case where a unique final k-coloring
is nearly balanced.

7 Discussion

As we already mentioned, only a vanishing proportion of 3CNFs with m clauses over n variables
are satisfiable when m/n is above the threshold. In recent years, several papers studied different
distributions over satisfiable 3CNF formulas in the above threshold regime, more precisely some
sufficiently large constant factor above the threshold. In particular, [14] considered the planted
3SAT distribution, and [9] addressed the planted and uniform distributions, both papers developing
new analytical and algorithmic techniques. Our work joins this line of research by studying a new
distribution over satisfiable 3CNF formulas, and once again introducing new analytical ideas to face
the intricacies of Psat

n,m. Furthermore, one interesting conclusion emerges from combining [14],[9] and
our result. In all three distributions the instances show basically the same uni-cluster structure of
the solution space, and the same algorithm solves them all. This gives rise to the following question:
does forcing (in some “natural” way) the unlikely event of being satisfiable in the above threshold
regime generally result in the structure suggested by Theorem 1 (for clause-variable ratio greater
than some sufficiently large constant)? This question has been answered positively for the planted
and uniform distributions, and in this paper for the random satisfiable 3CNF process.

It is possible to generalize our result for k-CNF formulas for any fixed k ≥ 3. In that case we
shall require m/n ≥ c(k). Here is a formal statement:

On the random satisfiable process 23

Theorem 3. Let F be random k-CNF from Psat
n,m, m/n ≥ c, c = c(k) a sufficiently large constant.

Then whp F enjoys the following properties:

1. All but e−Ω(m/n)n variables are frozen.
2. The formula induced by the non-frozen variables decomposes into connected components of at

most logarithmic size.
3. Letting β(F) be the number of satisfying assignments of F , we have 1

n log β(F) = e−Ω(m/n).
4. There exists a polynomial time algorithm that finds a satisfying assignment for F in polynomial

time.

The constant c(k) scales exponentially with k. The exponential dependency on k is inevitable
as the satisfiability threshold itself scales exponentially with k (asymptotically 2k ln 2).

References

1. D. Achlioptas and A. Coja-Oghlan. Algorithmic barriers from phase transitions. In Proc. 49th Annual IEEE
Symp. on Foundations of Computer Science, pages 793–802, 2008.

2. D. Achlioptas and F. Ricci-Tersenghi. On the solution-space geometry of random constraint satisfaction problems.
In Proc. 38th ACM Symp. on Theory of Computing, pages 130–139, 2006.

3. N. Alon and N. Kahale. A spectral technique for coloring random 3-colorable graphs. SIAM J. on Comput.,
26(6):1733–1748, 1997.

4. N. Alon and J. Spencer. The probabilistic method. Wiley-Interscience Series in Discrete Mathematics and
Optimization. Wiley-Interscience, New York, second edition, 2000.

5. E. Ben-Sasson, Y. Bilu, and D. Gutfreund. Finding a randomly planted assignment in a random 3CNF .
manuscript, 2002.

6. T. Bohman, A. Frieze, R. Martin, M. Ruszinko, and C. Smyth. Randomly generated intersecting hypergraphs
II. Random Structures and Algorithms, 30(1-2):17–34, 2007.

7. H. Chen. An algorithm for sat above the threshold. In 6th International Conference on Theory and Applications
of Satisfiability Testing, pages 14–24, 2003.

8. A. Coja-Oghlan, M. Krivelevich, and D. Vilenchik. Why almost all k-colorable graphs are easy. In Proc. 24th
Symp. on Theoretical Aspects of Comp. Science, volume 4393 of Lecture Notes in Comput. Sci., pages 121–132,
2007.

9. A. Coja-Oghlan, M. Krivelevich, and D. Vilenchik. Why almost all satifiable k-CNF formulas are easy. In 13th
conference on Analysis of Algorithms, DMTCS proceedings, pages 89 –102, 2007.

10. S. Cook. The complexity of theorem-proving procedures. In Proc. 3rd ACM Symp. on Theory of Computing,
pages 151–158, 1971.

11. P. Erdős, S. Suen, and P. Winkler. On the size of a random maximal graph. Random Structures and Algorithms,
6(2-3):309–318, 1995.

12. U. Feige, E. Mossel and D. Vilenchik. Complete convergence of message passing algorithms for some satisfiability
problems. In RANDOM, pages 339–350, 2006.

13. U. Feige and D. Vilenchik. A local search algorithm for 3SAT. Technical report, The Weizmann Institute of
Science, 2004.

14. A. Flaxman. A spectral technique for random satisfiable 3CNF formulas. In Proc. 14th ACM-SIAM Symp. on
Discrete Algorithms, pages 357–363, 2003.

15. E. Friedgut. Sharp thresholds of graph properties, and the k-sat problem. J. Amer. Math. Soc., 12(4):1017–1054,
1999.

16. R. Gallager. Low-Density Parity-Check Codes. MIT Press, Cambridge, 1963.
17. J. H̊astad. Some optimal inapproximability results. J. of the ACM, 48(4):798–859, 2001.
18. M. Krivelevich and D. Vilenchik. Solving random satisfiable 3CNF formulas in expected polynomial time. In

Proc. 17th ACM-SIAM Symp. on Discrete Algorithms, pages 454–463, 2006.
19. L. Kučera. Expected behavior of graph coloring algorithms. In Proc. Fundamentals of Computation Theory,

volume 56 of Lecture Notes in Comput. Sci., pages 447–451. Springer, Berlin, 1977.
20. L. Lovász. Combinatorial problems and exercices. Elsevier, Amsterdam, second edition, 1993.
21. S. Gerke, D. Schlatter, A. Steger, A. Taraz. The random planar graph process. Random Structures and Algorithms,

32(2): 236–261, 2008.

24 Michael Krivelevich, Benny Sudakov and Dan Vilenchik

22. M. Mezard, T. Mora, and R. Zecchina. Clustering of solutions in the random satisfiability problem. Physical
Review Letters, 94:197–205, 2005.

23. D. Osthus and A. Taraz. Random maximal H-free graphs. Random Structures and Algorithms, 18(1):61–82,
2001.

24. J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1988.

25. A. Ruciński and N. Wormald. Random graph processes with degree restrictions. Combinatorics, Probability &
Computing, 1:169–180, 1992.

