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Abstract. We study the problem of creating a copy of some fixed graph H in the
Achlioptas process on n vertices with parameter r, where r = r(n) is a growing function
of n. We prove general upper and lower bounds on the threshold of this problem, and
derive exact threshold functions for the case where H is a tree, a cycle, or the complete
graph on four vertices.

1. Introduction

Consider the following random graph process: starting with the empty vertex set V = [n], in each
round we are offered r distinct vertex pairs sampled uniformly at random from all non-edges in the
current graph. We are required to choose exactly one of the offered vertex pairs for inclusion in
the evolving graph, immediately and irrevocably. Thus after N rounds, we have seen rN random
vertex pairs (not necessarily all of them distinct), and selected exactly N distinct edges for inclusion
in the graph. Our goal when selecting edges is to either delay or accelerate the occurence of some
given monotone graph property by as much as possible, compared to the well-known Erdős-Rényi
random graph process in which edges appear one by one uniformly at random.

This process was first considered in [5], and is known in the literature as the Achlioptas process with
parameter r. It is the most prominent example of a random graph process that is not completely
random but involves some limited amount of choice (by some ‘player’ or ‘online algorithm’). Other
graph processes of that type are the Ramsey process [3, 4, 6, 11, 16, 17], in which random edges
appear one by one and have to be colored with one of r available colors, and the Balanced Ramsey
process [12, 14, 15, 20], in which at each step r random edges appear and have be colored using
each of the r available colors exactly once (this can be seen as a combination of the previous two
processes). The idea of introducing some limited amount of control into an otherwise random setting
has also proved very fruitful in various areas of computer science [18], most notably in the famous
load-balancing result of [2].

The Achlioptas process has been studied by many researchers, both for fixed values of r and under
the assumption that r = r(n) is a growing function of n. The property that received by far
the most attention in this context is the property of containing a linear-sized (so-called ‘giant’)
component [1, 5, 7, 8, 10, 21, 22]. Only recently, other properties have been studied: the problem
of accelerating Hamiltonicity in Achlioptas processes was investigated in [14], and the problem of
delaying the occurrence of a given fixed graph as a subgraph was studied in [13, 19]. In this work
we are concerned with the opposite problem of the latter; i.e., throughout this paper our goal is to
create a copy of some given fixed graph H as quickly as possible.
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A standard multi-round exposure argument (see e.g. [16, Lemma 7]) shows that for any graph H
and any given r = r(n), there exists a threshold function N0 = N0(n) in the following sense: For
any N ≫ N0,

1 there is an edge-selection strategy that succeeds a.a.s.2 in creating a copy of H
within N rounds of the Achlioptas process with parameter r, and for any N ≪ N0, any possible
strategy a.a.s. fails to create a copy of H within N rounds of the process. Thus informally speaking,
N0 = N0(n) is the typical number of rounds an optimal edge-selection strategy needs to create a
copy of H in the Achlioptas parameter with parameter r.

Note that the above defines N0(n) only up to constant factors. Nevertheless it is convenient to talk
about ‘the’ threshold N0(H, r, n) of specific instances of the problem under study. When we say
that this threshold satisfies N0(H, r, n) ≤ f(n), this is to be understood as ‘For any N ≫ f(n),
there is an edge-selection strategy that succeeds a.a.s. in creating a copy of H within N rounds of
the process with parameter r’, and similarly for the other direction.

Note that for r = 1 the Achlioptas process reduces to the already mentioned Erdős-Rényi process, in
which edges appear one by one uniformly at random (and no edge-selection strategies are involved).
The following classical result due to Bollobás states the threshold for the appearance of a copy of
some fixed graph H in the Erdős-Rényi process. Throughout this paper, we say that a graph is
nonempty if it has at least one edge. By e(G) and v(G) we denote the number of edges and vertices,
respectively, of a graph G.

Theorem 1 (Bollobás [9]). For any nonempty graph H, the threshold for the appearance of a copy
of H in the Erdős-Rényi process is

N0(H,n) = n2−1/m(H) ,

where

m(H) := max

{

e(J)

v(J)

∣

∣

∣

∣

J ⊆ H and v(J) ≥ 1

}

.

From Theorem 1 we immediately obtain two general bounds on the threshold for creating copies
of H in the Achliopas process with parameter r. On the one hand, by simply picking one of the r
offered vertex pairs uniformly at random in each round, we can emulate the Erdős-Rényi process,
and will therefore a.a.s. create a copy of H after any N ≫ n2−1/m(H) rounds. On the other hand,
if we imagine for a moment that in each round we are allowed to pick all r vertex pairs offered,
and that moreover these are sampled from all vertex pairs never offered before, we obtain an Erdős-
Rényi process with rN edges, which a.a.s. does not contain a copy of H if rN ≪ n2−1/m(H). Hence
the threshold for creating a copy of H in the Achlioptas process with parameter r satisfies

n2−1/m(H)

r
≤ N0(H, r, n) ≤ n2−1/m(H) . (1)

Note that if r is a fixed integer, the two bounds coincide in order of magnitude and yield a threshold
of N0(H, r, n) = n2−1/m(H). In the following we therefore assume r = r(n) to be a growing function
of n. For convenience, we assume moreover that r = r(n) is at most subpolynomial in n, i.e.,
r = o(nε) for any fixed ε > 0. All of our results hold in fact under the weaker assumption that
r = o(nα) for some appropriate α > 0, but the specific value of α differs from case to case, and trying
to make this value explicit or to optimize it would introduce a number of unpleasant technicalities.

Our first theorem states two bounds that improve on the trivial bounds stated in (1) for every
graph H with maximum degree at least two.

1We write f ≫ g for f = ω(g) and f ≪ g for f = o(g).
2asymptotically almost surely, i.e. with probability tending to 1 as n tends to infinity
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Theorem 2 (General bounds). For any nonempty graph H and any function r = r(n) that grows
at most subpolynomially, the threshold for creating a copy of H in the Achlioptas process with
parameter r satisfies

n2−1/m(H)

r1−1/k∗(H)
≤ N0(H, r, n) ≤

(

n√
r

)2−1/m(H)

,

where

k∗(H) := min

{

e(J)

∣

∣

∣

∣

J ⊆ H and v(J) ≥ 1 and m(H) =
e(J)

v(J)

}

(in words, k∗(H) is the number of edges of a smallest densest subgraph of H).

Our next two results show that the lower bound in Theorem 2 is tight if H is a tree or the complete
graph on four vertices.

Theorem 3 (Trees). For any nonempty tree T and any function r = r(n) that grows at most
subpolynomially, the threshold for creating a copy of T in the Achlioptas process with parameter r
is

N0(T, r, n) =
(n

r

)1−1/e(T )
.

Theorem 4 (K4). For any function r = r(n) that grows at most subpolynomially, the threshold for
creating a copy of the complete graph K4 in the Achlioptas process with parameter r is

N0(K4, r, n) =
n4/3

r5/6
.

Unfortunately, the proof of of Theorem 4 does not generalize to larger complete graphs; see Remark 9
below for an explanation of the underlying issue. Nevertheless we obtain an improved upper bound
for the case where H = K5 is the complete graph on five vertices. Note that Theorem 2 only yields
an upper bound of

N0(K5, r, n) ≤
n3/2

r3/4
.

Theorem 5 (K5). For any function r = r(n) that grows at most subpolynomially, the threshold for
creating a copy of the complete graph K5 in the Achlioptas process with parameter r satisfies

n3/2

r9/10
≤ N0(K5, r, n) ≤

n3/2

r7/8

(where the lower bound follows from Theorem 2).

The results we have presented so far do not rule out the possibility that the lower bound stated in
Theorem 2 in fact determines the general threshold of the problem. Our last result shows that this
is not the case, and that in general neither of the two bounds stated in Theorem 2 is tight.

Note that for the case where H = Cℓ is a cycle of length ℓ, Theorem 2 yields the bounds
n

r1−1/ℓ
≤ N0(Cℓ, r, n) ≤

n

r1/2
.

Theorem 6 (Cycles). For any integer ℓ ≥ 3 and any function r = r(n) that grows at most subpoly-
nomially, the threshold for creating a cycle Cℓ of length ℓ in the Achlioptas process with parameter
r is

N0(Cℓ, r, n) =
n

r⌈ℓ/2⌉/(⌈ℓ/2⌉+1)
.

Note that the last result also shows that in general the threshold of the problem depends on more
structural properties of H than just its maximum density m(H). It would be very interesting to
determine exact threshold functions for other fixed graphs H, in particular for cliques of arbitrary
size.
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Organization of this paper. We prove the general bounds stated in Theorem 2 in Section 2.
We then prove our results for the case where H is a tree, a clique, and a cycle (in that order) in
Sections 3–5. We give some concluding remarks in Section 6.

Preliminaries. We omit ceiling and floor signs whenever they are not essential.

Whenever we prove upper bounds on the threshold (i.e., analyze the performance of ‘good’ edge-
selection strategies), we may and will assume w.l.o.g. that all rN vertex pairs are sampled (u.a.r.
and independently) from all

(

n
2

)

vertex pairs with replacement. Thus the player might be offered
less than r distinct vertex pairs in a given round, and he might be offered vertex pairs that are
already present as an edge in the current graph.

In our upper bound proofs we will often divide the process into a constant number of phases, with
a specific goal to be achieved in each phase. The following lemma conveniently allows us to analyze
what happens in a given phase without looking at the individual rounds making up that phase. On
an intuitive level, it states that if the ‘good’ edges occur not too frequently, we can take almost all
of the good edges we ever see. In other words, we lose very little by only being allowed to take an
1/r-fraction of the vertex pairs we see.

Lemma 7. Consider the Achlioptas process with parameter r = r(n) → ∞, and let G ∈
(

[n]
2

)

denote

a set of ‘good’ vertex pairs. If |G| = O(n2/r) and N = O(n2/r) are such that |G| · Nr/n2 ≫ 1,
then there is an edge-selection strategy that ensures that after N rounds of the process, the resulting
graph a.a.s. contains a uniformly random subset of G of size Θ(|G| ·Nr/n2).

Proof. Let p := |G|/
(

n
2

)

, and note that our assumption on G implies that p = O(1/r). Our strategy
is the following: Whenever exactly one of the r presented vertex pairs is in G, we take it; otherwise,
we take an arbitrary edge (and ignore it if happens to be in G). The probability that we take a
random edge from G in a given round is rp(1 − p)r−1 = Θ(rp), where we used that pr = O(1).
Consequently, the probability p′ that a fixed vertex pair in |G| is picked in a fixed round of the
process is p′ = Θ(rp/|G|) = Θ(r/n2). For simplicity, we only count the vertex pairs in G that
are picked exactly once. The probability that a given vertex pair in G is picked exactly once is
N · p′(1− p′)N−1 = Θ(Np′) = Θ(Nr/n2), where we used that p′N = Θ(Nr/n2) = O(1). Hence by
standard Chernoff bounds, a.a.s. the number of distinct vertex pairs from G picked is Θ(|G|·Nr/n2),
where we used that |G| ·Nr/n2 ≫ 1. By symmetry, the subset of G picked in this way is distributed
uniformly. �

2. General bounds

In this section we prove Theorem 2.

Proof of Theorem 2 (upper bound). Let N ≫ (n/
√
r)

2−1/m(H)
be given, and assume w.l.o.g. that

moreover N ≪ n2/r. We fix a set S ⊆ V of size s := n/
√
r, and select an edge inside S whenever

possible (if we have a choice between several edges inside S, we take one of them uniformly at
random). The probability that we can do so in a given round is

1−
(

1−
(

s
2

)

(

n
2

)

)r

≥ 1− e−s2r/n2 ≥ 1/2 ,

so by Chernoff bounds a.a.s. we can pick an edge inside S in at least N/3 rounds. Moreover, by
a similar calculation as in the proof of Lemma 7 the number of edges in S picked several times is
negligible. Hence we obtain an Erdős-Rényi process with Θ(N) edges on S, which by Theorem 1
a.a.s. forms a copy of H for N as given. �
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For the proof of the lower bound in Theorem 2, we first prove the following auxiliary lemma.

Lemma 8. Let J be a nonempty graph, and let r = r(n) be a function that grows at most subpoly-

nomially. For any N ≪ n2−v(J)/e(J)

r1−1/e(J) , any possible strategy a.a.s. fails to create a copy of J within N
rounds of the Achlioptas process with parameter r.

Let us give some intuition for the upcoming proof of Lemma 8. By a standard calculation, the
expected number of copies of J in the graph formed by all rN edges seen (not necessarily picked)
is of order

nv(J)

(

N

n2

)e(J)

re(J) .

We will show by an inductive argument that no strategy can expect to create more than an r−1-
fraction of this number of copies. To this end, we think of the copies of J as being created in e(J)
steps, one for each edge that arrives. The key observation is that any strategy will ‘lose‘ a factor of
r in the very first step, as it sees rN random edges but can take only N of them. (This corresponds
to the base case e(J) = 1 of our induction.) As our argument shows, this missing factor of r cannot
be recovered in later steps, even if everything goes as well as one can hope for.

Proof. Consider an arbitrary fixed strategy. We prove by induction on e(J) that the expected
number of copies of J created in N rounds is at most of order

nv(J)

(

N

n2

)e(J)

re(J)−1 .

Note that this implies Lemma 8 by Markov’s inequality.

Clearly, the inductive statement is true if e(J) = 1. For the induction step, let J− denote the
family of graphs obtained by removing exactly one edge (and no vertices) from J . Let X denote
the random variable that counts the total number of copies of graphs from J− created by our fixed
strategy in N rounds of the process. Clearly, the number of copies of J created is bounded by the
number of edges seen (not necessarily picked!) that complete a copy of a graph J− ∈ J− to a copy
of J . It follows that conditional on X the expected number of copies of J created is at most

rN · cX/

(

n

2

)

= X · 3c · rN
n2

for some appropriate constant c = c(J). As by induction we have

E[X] = O
(

nv(J)

(

N

n2

)e(J)−1

re(J)−2

)

,

the claimed bound on the expected number of copies of J follows.

This proves the inductive statement, and as mentioned the lemma follows by Markov’s inequality.
�

Proof of Theorem 2 (lower bound). Applying Lemma 8 for a graph

J ∈ argmin

{

e(J)

∣

∣

∣

∣

J ⊆ H and v(J) ≥ 1 and m(H) =
e(J)

v(J)

}

shows that for N ≪ n2−1/m(H)/r1−1/k∗(H), any possible strategy a.a.s. fails to create a copy of J ,
and hence also fails to create a copy of H. �
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3. Trees

Observing that the lower bound in Theorem 3 follows from Theorem 2, it remains to prove the
upper bound part.

Proof of Theorem 3 (upper bound). Let N ≫
(

n
r

)1−1/e(T )
be given, and assume w.l.o.g. that more-

over N ≪ n/r.

We prove by induction on e(T ) that in N rounds of the process we can a.a.s. create a family T of
pairwise vertex-disjoint copies of T , of size

|T | = Θ

(

N e(T )
( r

n

)e(T )−1
)

.

As this is a growing function of n for N as given, the claimed upper bound follows.

Using that N ≪ n, it is not hard to see that the inductive claim is true if T is a single edge (it
suffices to select edges randomly and consider all isolated edges). For the induction step, we divide
the process in two phases of length N/2 each. Let T− denote an arbitrary tree obtained by removing
exactly one leaf from T . Applying the induction hypothesis, in the first phase a.a.s. we can create a

family T− of pairwise vertex-disjoint copies of T−, of size |T−| = Θ
(

N e(T )−1
(

r
n

)e(T )−2
)

. Note that

due to our assumption that N = O(n/r) we have |T−| ≪ n/r.

Let V ′ ⊆ V be the set of vertices that are not part of one of these copies, and note that |V ′| =
n − Θ(|T−|) = Θ(n). In the second phase, we consider a vertex pair good if it connects a copy
of T− in T− and a vertex in V ′ to a copy of T . Note that the number of such good edges is
Θ(|T−| · n) = O(n2/r). Hence by Lemma 7, a.a.s. we can take a random subset of size t =

Θ(|T−| · n · Nr/n2) = Θ
(

N e(T )
(

r
n

)e(T )−1
)

of these good edges. Moreover, the endpoints of these

edges are distributed independently and u.a.r. in V ′ on one side, and independently and u.a.r. among
the appropriate vertices of the copies of T− on the other side. We can view this as throwing t balls
into |V ′| = Θ(n) bins on one side, and independently into Θ(|T−|) bins on the other side. Using
that t ≪ n and t ≪ |T−|, standard arguments yield that a.a.s. on both sides there are at least 2t/3
‘balls’ that end up in pairwise different ‘bins’. Hence we obtain at least t/3 pairwise vertex-disjoint
copies of T a.a.s., which proves the inductive claim. �

4. Cliques

Observing that the lower bound in Theorem 4 follows from Theorem 2, it remains to prove the
upper bound part.

Proof of Theorem 4 (upper bound). Let r = r(n) growing subpolynomially and N ≫ n4/3

r5/6
be given,

and assume w.l.o.g. that moreover N = O(n3/2/r).

Our strategy proceeds in two phases as follows. In the first phase we fix a set S ⊆ V of size s := n/r,
and consider a vertex pair good if exactly one of its vertices is in S. The number of such good vertex
pairs is s(n− s) = Θ(n2/r). Hence by Lemma 7 we can take Θ(n2/r ·Nr/n2) = Θ(N) distinct such
good edges a.a.s., yielding an average degree of Θ(N/s) = Θ(Nr/n) for the vertices of S into V \S.
By standard Chernoff bound arguments, it follows that a.a.s. each vertex in S has degree at least
cNr/n into V \ S for some appropriate constant c > 0. We will condition on this degree property
throughout the remainder of this proof.

For each vertex v ∈ S, we let Dv ⊆ V \ S denote the endpoints of the first cNr/n edges incident to
v that are picked. Thus we have exactly s sets Dv, v ∈ S, of size exactly d := cNr/n each, sampled
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independently and uniformly at random from V \ S. In particular, a given vertex in V \ S has a
probability of

p1 :=
d

|V \ S| = Θ(Nr/n2)

to be contained in Dv for some specific vertex v ∈ S.

In the second phase, we consider a vertex pair good if both its vertices are in the same set Dv,
v ∈ S; i.e., we define

G :=
⋃

v∈S

(

Dv

2

)

.

Observing that |G| ≤ |S| ·
(

d
2

)

= Θ(N2r/n) = O(n2/r) by our assumption that N = O(n3/2/r), we

obtain with Lemma 7 that a.a.s. we can take m := c′ · |G| ·Nr/n2 distinct vertex pairs from G, for
some appropriate constant c′ > 0. In particular, a fixed good vertex pair is picked with probability

p2 :=
m

|G| = Θ(Nr/n2) .

Note that whenever three vertex pairs forming a triangle in some set Dv are picked, they form a
copy of K4 with the corresponding vertex v ∈ S. Let the random variable X denote the number of
K4’s that are completed in this way during the second phase. We will show by the second moment
method that (conditional on a ‘good’ outcome of the first phase) a.a.s. we have X ≥ 1. Defining

T :=
⋃

v∈S

(

{v} ×
(

Dv

3

))

,

we have

E[X] = |T | ·
(

|G|−3
m−3

)

(

|G|
m

)
= Θ

(

s · d3 · (p2)3
)

= Θ

(

N6r5

n8

)

→ ∞ (2)

(where the randomness is that of the second phase, and we conditioned on the first phase satisfying
the mentioned degree property).

To calculate the variance of X, we distinguish five different types of pairs of elements from T :

(0) pairs of form
(

(v1, T1), (v2, T2)
)

, where v1 6= v2 ∈ S and T1 ∈
(Dv1

3

)

, T2 ∈
(Dv2

3

)

with |T1∩T2| ≤
1.

Note that for such pairs the two corresponding indicator random variables are negatively correlated,
and that therefore the contribution of these pairs to the variance is negative.

(1) trivial pairs
(

(v, T ), (v, T )
)

, where v ∈ S and T ∈
(

Dv

3

)

,

(2) pairs of form
(

(v, T1), (v, T2)
)

, where v ∈ S and T1, T2 ∈
(

Dv

3

)

with |T1 ∩ T2| = 2,

(3) pairs of form
(

(v1, T ), (v2, T )
)

, where v1 6= v2 ∈ S and T ∈
(Dv1

3

)

∩
(Dv2

3

)

,

(4) pairs of form
(

(v1, T1), (v2, T2)
)

, where v1 6= v2 ∈ S and T1 ∈
(Dv1

3

)

, T2 ∈
(Dv2

3

)

with |T1∩T2| =
2.

Letting Ai denote the number of pairs of type i, i = 1, . . . , 4, by similar calculations as in (2) the
variance of X satisfies

Var[X] = O
(

(A1 +A3) · (p2)3 + (A2 +A4) · (p2)5
)

. (3)
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Clearly, we have

A1 = s ·
(

d

3

)

= Θ(sd3) = Θ(sn3(p1)
3) ,

A2 = s ·
(

d

4

)

·Θ(1) = Θ(sd4) = Θ(sn4(p1)
4) .

(Recall that we condition on the first phase satisfying the degree property.)

The numbers A3 and A4 of pairs of type 3 and 4 are random variables that depend on the outcome
of the first phase. Their expected values are

E[A3] =

(|S|
2

)

·
(|V \ S|

3

)

·Θ(1) ·
(
(|V \S|−3

d−3

)

(|V \S|
d

)

)2

= Θ
(

s2n3(p1)
6
)

,

E[A4] =

(|S|
2

)

·
(|V \ S|

4

)

·Θ(1) ·
(
(|V \S|−3

d−3

)

(|V \S|
d

)

)2

= Θ
(

s2n4(p1)
6
)

.

Letting ωn denote a very slowly growing function of n (say ωn = log r for concreteness), we have by
Markov’s inequality that a.a.s.

A3 ≤ ωns
2n3(p1)

6 , (4a)

A4 ≤ ωns
2n4(p1)

6 (4b)

(where the randomness is that of the first phase).

For the remaining calculations, note that both p1 and p2 are of order p := rN/n2. Plugging our
bounds for Ai, i = 1, . . . , 4, into (3), we obtain that a.a.s. the variance of X in the second phase
satisfies

Var[X] = O
(

sn3p6 + [ωns
2n3p9] + sn4p9 + ωns

2n4p11
)

,

where the term in brackets is dominated due to ωns/n = o(1). Observing that according to (2) we
have

E[X] = Θ(sd3p3) = Θ(sn3p6) → ∞
we finally obtain

Var[X]

(E[X])2
= O

(

1

sn3p6
+

1

sn2p3
+

ωn

n2p

)

= o(1) .

It follows by Chebyshev’s inequality that a.a.s. X ≥ 1, where the randomness is that of the second
phase and we conditioned on the first phase satisfying the degree property and (4). �

Remark 9. In the above proof we started with a large set S of vertices of degree Θ(Nr/n), and then
constructed copies of K4 by considering the triangles formed in the neighborhoods of the vertices
of S. Note that |S| must be O(n/r), as we only have N edges in total.

For our argument to work it was crucial that there were at most O(n2/r) good vertex pairs in the

second phase so we could apply Lemma 7. This was ensured by our assumption that N = O(n3/2/r).
Unfortunately, we cannot make this assumption when trying to create copies of larger complete
graphs, as in these cases the interesting range for N is higher than n3/2/r. However, for complete
graphs of size five we can still obtain a non-trivial upper bound due to the fact that the range of
N we need to consider only exceeds n3/2/r by a factor polynomial in r. Specifically, we ensure that
there are only O(n2/r) good edges in the second phase by choosing S slightly smaller than Θ(n/r).

Proof of Theorem 5 (upper bound). Let r = r(n) growing subpolynomially and N ≫ n3/2

r7/8
be given,

and assume w.l.o.g. that moreover N = O(n2/r).
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Our strategy proceeds in two phases similarly to before. In the first phase we fix a set S ⊆ V of
size

s :=
n4

N2r3

[

≪ n

r5/4

]

,

and consider a vertex pair good if exactly one of its vertices is in S. By the same arguments as in
the previous proof, we obtain sets Dv, v ∈ S, with the same properties as before. As before, we use
the notations d = |Dv| = Θ(Nr/n) and p1 = d/|V \ S| = Θ(Nr/n2).

In the second phase, we consider a vertex pair good if both its vertices are in the same set Dv,
v ∈ S; i.e., we define

G :=
⋃

v∈S

(

Dv

2

)

.

Observing that |G| ≤ |S| ·
(

d
2

)

= Θ(n2/r) by our choice of s (!), we obtain with Lemma 7 that a.a.s.

we can take m := c′ · |G| ·Nr/n2 distinct vertex pairs from G, for some appropriate constant c′. In
particular, a fixed good vertex pair is picked with probability p2 = m/|G| = Θ(Nr/n2) as in the
previous proof.

Note that whenever six vertex pairs forming a K4 in some set Dv are picked, they form a copy of K5

with the corresponding vertex v ∈ S. Let the random variable X denote the number of K5’s that
are completed in this way during the second phase. We will show by the second moment method
that (conditional on a ‘good’ outcome of the first phase) a.a.s. we have X ≥ 1. Defining

T :=
⋃

v∈S

(

{v} ×
(

Dv

4

))

,

we obtain similarly to the previous proof

E[X] = |T | ·
(

|G|−4
m−4

)

(

|G|
m

)
= Θ

(

s · d4 · (p2)6
)

= Θ

(

N8r7

n12

)

→ ∞ . (5)

To calculate the variance of X, we distinguish seven different types of pairs of elements from T :

(0) pairs of form
(

(v1, T1), (v2, T2)
)

, where v1 6= v2 ∈ S and T1 ∈
(Dv1

4

)

, T2 ∈
(Dv2

4

)

with |T1∩T2| ≤
1.

As before, the contribution of these pairs to the variance is negative.

(1) trivial pairs
(

(v, T ), (v, T )
)

, where v ∈ S and T ∈
(

Dv

4

)

,

(2) pairs of form
(

(v, T1), (v, T2)
)

, where v ∈ S and T1, T2 ∈
(

Dv

4

)

with |T1 ∩ T2| = 3,

(3) pairs of form
(

(v, T1), (v, T2)
)

, where v ∈ S and T1, T2 ∈
(

Dv

4

)

with |T1 ∩ T2| = 2,

(4) pairs of form
(

(v1, T ), (v2, T )
)

, where v1 6= v2 ∈ S and T ∈
(Dv1

4

)

∩
(Dv2

4

)

,

(5) pairs of form
(

(v1, T1), (v2, T2)
)

, where v1 6= v2 ∈ S and T1 ∈
(Dv1

4

)

, T2 ∈
(Dv2

4

)

with |T1∩T2| =
3,

(6) pairs of form
(

(v1, T1), (v2, T2)
)

, where v1 6= v2 ∈ S and T1 ∈
(Dv1

4

)

, T2 ∈
(Dv2

4

)

with |T1∩T2| =
2.

Letting Ai denote the number of pairs of type i, i = 1, . . . , 6, the variance of X satisfies

Var[X] = O
(

(A1 +A4) · (p2)6 + (A2 +A5) · (p2)9 + (A3 +A6) · (p2)11
)

, (6)
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where similarly to the previous proof

A1 = Θ(sd4) = Θ(sn4(p1)
4) ,

A2 = Θ(sd5) = Θ(sn5(p1)
5) ,

A3 = Θ(sd6) = Θ(sn6(p1)
6) ,

and a.a.s.

A4 ≤ ωns
2n4(p1)

12 , (7a)

A5 ≤ ωns
2n5(p1)

12 , (7b)

A6 ≤ ωns
2n6(p1)

12 . (7c)

For the remaining calculations, note that both p1 and p2 are of order p := rN/n2. Plugging our
bounds for Ai, i = 1, . . . , 6, into (6), we obtain that a.a.s. the variance of X in the second phase
satisfies

Var[X] = O
(

sn4p10 + [ωns
2n4p18] + sn5p14 + [ωns

2n5p21] + sn6p17 + ωns
2n6p23

)

,

where the two terms in brackets are dominated due to ωns/n = o(1) and p ≤ 1. Observing that
according to (5) we have

E[X] = Θ(sd4p6) = Θ(sn4p10) → ∞ ,

we obtain
Var[X]

(E[X])2
= O

(

1

sn4p10
+

1

sn3p6
+

1

sn2p3
+

ωnp
3

n2

)

= o(1) .

It follows by Chebyshev’s inequality that a.a.s. X ≥ 1, where the randomness is that of the second
phase and we conditioned on the first phase satisfying the degree property and (7). �

5. Cycles

We first prove the upper bound in Theorem 6, proceeding along similar lines as in the previous
proofs. Recall that in our upper bound proofs we assume w.l.o.g. that all rN vertex pairs are
sampled (u.a.r. and independently) from all

(

n
2

)

vertex pairs with replacement.

Proof of Theorem 6 (upper bound). Set k := ⌈ℓ/2⌉, let N ≫ n
rk/(k+1) be given, and assume w.l.o.g.

that moreover N ≪ n. Define xi := N ·
(

n
Nr

)k−1−i
, i = 0, . . . , k − 1, and note that

1 ≪ n

rk−1
≪ x0 ≪ x1 ≪ . . . ≪ xk−2 =

n

r
. (8)

We distinguish two cases depending on whether ℓ is odd or even.

If ℓ = 2k − 1 is odd, we divide the process in k phases of equal length N/k.

In the first phase, we fix a set X0 ⊆ V of size |X0| = x0, and consider a vertex pair good if it
has exactly one endpoint in X0. The number of such vertex pairs is Θ(x0n), which is O(n2/r)
by (8). Lemma 7 thus guarantees that a.a.s. we can take Θ(x0n · Nr/n2) = Θ(x1) distinct good

edges uniformly at random, yielding an average degree of Θ(Nr/n) [≫ r1/(k+1)] for the vertices
of X0 into V \ X0. By standard Chernoff bound arguments, a.a.s. at least half of the vertices
in X0 have degree at least d := cNr/n into V \ X0 for some appropriate constant c > 0, and
the corresponding endpoints in V \ X0 are distributed uniformly at random. We fix a set X ′

0 of
such vertices, |X ′

0| = |X0|/2, and consider for each vertex in X ′
0 only the first d (distinct) incident

edges. Let X1 denote the set of vertices in V \ X0 that are incident to exactly one of those
|X ′

0| · d edges. Letting p := d/|V \ X0|, the probability that a fixed vertex in V \ X0 is in X1 is
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|X ′
0|p(1− p)|X

′
0|−1 = Θ(|X ′

0| · p), where we used that |X ′
0| · p = O(1). Hence by Chernoff bounds we

have |X1| = Θ(|X ′
0|pn) = Θ(x1) a.a.s.

In the second phase we consider a vertex pair good if it has one endpoint in X1, and the other one
in V \ (X0 ∪X1). By the same arguments as before, we a.a.s. get a set X ′

1 ⊆ X1, |X ′
1| = |X1|/2, of

vertices which have degree Θ(Nr/n) into V \ (X0 ∪X1), and a set X2 ⊆ V \ (X0 ∪X1) of vertices
which are incident to exactly one vertex of X ′

1, of size |X2| = Θ(|X1| ·Nr/n) = Θ(x2).

Continuing like this for k−1 phases in total, we eventually obtain a set Xk−1 ⊆ V \(X0∪· · ·∪Xk−2)
of size |Xk−1| = Θ(xk−1) = Θ(N). By construction, from each vertex in this set there is a unique
path of length k − 1 to a vertex in X ′

0, and from there there are Θ((Nr/n)k−1) paths to other
vertices in Xk−1. In total, we have thus created Θ(N · (Nr/n)k−1) paths of length 2k − 2 = ℓ− 1,
and no two such paths have the same vertex pair as their endpoints.

In the last phase of the process we consider a vertex pair good if it completes such a path to a cycle
of length ℓ. Note that we are done as soon as we are presented one such good vertex pair. The
probability p′ that a random vertex pair is good is p′ = Θ(N · (Nr/n)k−1)/

(

n
2

)

, and consequently
the expected number of good vertex pairs seen is

N/k · r · p′ = Θ

(

Nk+1rk

nk+1

)

.

Due to N ≫ n
rk/(k+1) this expectation tends to infinity, and by Chernoff bounds we can complete a

cycle of length ℓ a.a.s. in this last phase.

If ℓ = 2k is even, we divide the process into k+1 phases of equal length. In the first k−1 phases, we
proceed exactly as in the proof for the case where ℓ is odd. In the k-th phase however, we continue
our path-building strategy for one more phase and consider an edge good if it has one endpoint in
Xk−1 and the other one in V \ (X0 ∪ · · · ∪Xk−1). As |Xk−1| = Θ(N) ≫ n/r we can no longer apply
Lemma 7. Instead we argue as follows: The probability that we cannot take a good edge in a given

round is (1− Θ(nN)
n2 )r ≤ e−Θ(Nr/n) = o(1). Hence by Chernoff bounds a.a.s. we can take a good edge

in Θ(N) rounds, yielding constant average degree for the vertices of Xk−1 into V \(X0∪· · ·∪Xk−1).
Let Xk denote the set of all vertices in V \ (X0 ∪ · · · ∪Xk−1) that are incident to exactly one vertex
of Xk−1. A similar argument as before shows that |Xk| = Θ(N) a.a.s. Thus we now have created
Θ(N · (Nr/n)k−1) paths of length 2k− 1 = ℓ− 1, and no two such paths have the same vertex pair
as their endpoints. Hence in the last phase the proof can be completed exactly as before. �

For the proof of a matching lower bound, we first bound the number of paths of length ℓ − 1 that
any strategy can create, and then apply Markov’s inequality to infer that a.a.s. none of the rN
random vertex pairs seen creates a cycle of length ℓ.

For the first part of the argument, we relax the setting as follows: the player is shown exactly
m := rN distinct edges at once, and is allowed to select an arbitrary set of exactly N edges from
those. Thus we work in an offline setting, and ignore the restriction that the vertex pairs come in
sets of size r and the player has to select exactly one edge from each such set. As usual, we denote
by Gn,m a graph drawn uniformly at random from all graphs on n vertices with m edges.

The next two lemmas establish two properties that hold a.a.s. for Gn,m with m = rN and N slightly
above the threshold we wish to prove. The desired bound on the number of paths of length ℓ − 1
will follow deterministically from these properties.

Lemma 10. Consider Gn,m with m ≫ n, and let Xk denote the number of vertices of degree k.
Then a.a.s. we have

Xk ≤ n(2/3)k

for all k ≥ 12m/n simultaneously.
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Proof. A fixed vertex has expected degree 2m/n. By a Chernoff-type bound, a fixed vertex has
degree k ≥ 12m/n with probability at most 2−k. It follows with Markov’s inequality that

Pr[Xk ≥ n(2/3)k] ≤ E[Xk]

n(2/3)k
≤ (3/4)k .

Taking a union bound over all k ≥ 12m/n and using that m ≫ n concludes the proof. �

We say that a graph G has maximum density at most d if e(H)/v(H) ≤ d for all subgraphs H ⊆ G
(i.e., if m(G) as defined in Theorem 1 is at most d).

Lemma 11. For any ε > 0 there exists d = d(ε) such that the following holds. For any r ≫ 1 and
N ≤ n

r1/2+ε the following is true: A.a.s. the random graph Gn,rN is such that every subgraph with
at most N edges has maximum density at most d.

Proof. Fix d such that (2d − 1)ε > 1/2. We will show that a.a.s. Gn,rN satisfies the following: for
v = 1, . . . , 2N , no set of v vertices induces more than dv edges in Gn,rN . Clearly, this implies the
claim for any subgraph with at most N edges.

The expected number of vertex sets violating the above statement is bounded by

2N
∑

v=1

(

n

v

)(
(

v
2

)

dv

)(

3rN

n2

)dv

≤
2N
∑

v=1

(en

v

)v
(

3evrN

2dn2

)dv

≤
2N
∑

v=1

(

K · v
d−1rdNd

n2d−1

)v

, (9)

where K is a constant depending on d only. The expression in parentheses is largest for v = 2N ;
then it evaluates to

K · 2d−1 · rd(N/n)2d−1 ≤ K · 2d−1 · r1/2−(2d−1)ε = o(1) .

Thus the entire sum (9) is o(1), and the claim follows with Markov’s inequality. �

The last missing ingredient for our lower bound proof is the following purely deterministic result,
which might be of independent interest.

Theorem 12 (Counting paths). For any d > 0 and ℓ ∈ N0 there exists C0 = C0(d, ℓ) such that the
following is true: If G is a graph with N edges, maximum degree ∆, and maximum density at most
d, then G contains at most C0N∆⌊ℓ/2⌋ paths of length ℓ.

We postpone the proof of Theorem 12 and proceed with the proof of the desired lower bound.

Proof of Theorem 6 (lower bound). Let N ≪ n
r⌈ℓ/2⌉/(⌈ℓ/2⌉+1) be given, and assume w.l.o.g. that more-

over N ≥ n/r1−δ for some small δ > 0. We show that a.a.s. the number of Pℓ−1’s created by any

strategy is of order at most N · (Nr/n)⌊(ℓ−1)/2⌋ = N · (Nr/n)⌈ℓ/2⌉−1. This immediately implies that
the expected number of edges closing a Cℓ seen (not necessarily picked) is of order at most

N · (Nr/n)⌈ℓ/2⌉−1 ·Nr/n2 =
N ⌈ℓ/2⌉+1r⌈ℓ/2⌉

n⌈ℓ/2⌉+1
≪ 1 ,

which implies the claim by Markov’s inequality.

Recall that we work in a relaxed offline setting, where the player may select an arbitrary set of N
edges from m = rN distinct random vertex pairs offered. By Lemma 11 (with ε := 1/10, say), a.a.s.
the maximum density of the random graph Gn,m formed by these vertex pairs is bounded by some
constant d, and regardless of the player’s strategy the same holds for the graph GN formed by the
selected edges. Set ∆ := 12m/n = 12Nr/n, and let G∆ denote the subgraph of GN obtained by
removing all edges incident to vertices of degree larger than ∆. Clearly also the maximum density
of G∆ is bounded by d, and we obtain with Theorem 12 that a.a.s. the graph G∆ contains at most
the claimed number of paths of length ℓ− 1.
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It remains to bound the number of paths of length ℓ − 1 in GN that involve one of the vertices of
degree larger than ∆. Denoting by Xk the number of vertices of degree k (in Gn,rN = Gn,m) as
before, the number of such paths is at most

∑

k>∆

Xk · ℓ · kℓ−1 ,

where each term accounts for the paths whose highest-degree vertex has degree k. By Lemma 10,
this is a.a.s. bounded by

O
(

n
∑

k>∆

(2/3)kkℓ−1

)

= n e−Ω(rδ) = o(n/r) ,

where we used that due to our assumption on N we have ∆ = Ω(rδ). This is in fact a stronger
bound than we needed to show, and thus concludes the proof. �

It remains to prove Theorem 12, which we will do by induction. For any u1, u2,∆ > 0, we define

fℓ(u1, u2,∆) = max
x,y∈N0:
x+y=ℓ

min{∆x · u1,∆y · u2} , ℓ ≥ 0 . (10)

We will prove the following.

Claim 13 (Counting paths inductively). For any d > 0 and ℓ ∈ N0 there exists C = C(d, ℓ)
such that the following is true: If G = (V,E) is a graph with maximum degree ∆ and maximum
density at most d, then any two (not necessarily disjoint) sets U1, U2 ⊆ V are connected by at most
C · fℓ(|U1|, |U2|,∆) paths of length ℓ.

Proof of Claim 13. Let G as in the claim be given. For ease of notation, we drop the third argument
of fℓ as defined in (10) and abbreviate fℓ(u1, u2,∆) by fℓ(u1, u2) throughout.

We prove the claim by induction on ℓ. For ℓ = 0, the quantity we need to bound is simply the
size of U1 ∩ U2, which clearly does not exceed f0(|U1|, |U2|) = min{|U1|, |U2|}. Thus we may set
C(d, 0) := 1 for any d > 0. For the rest of the proof we assume w.l.o.g. that d ≥ 1.

For ℓ ≥ 1, observe that the number of Pℓ’s connecting U1 and U2 is bounded by
∑

v1∈Γ(U1)

(number of Pℓ−1’s connecting v1 and U2) · degU1
(v1) , (11)

where Γ(U1) denotes the set of vertices with at least one neighbour in U1, and degU1
(v1) denotes

the number of neighbours of v1 in U1. In the following we split the set Γ(U1) into

W1 := {v ∈ Γ(U1)| degU1
(v) ≥ 2d} and W 1 := Γ(U1) \W1 ,

and bound the contributions of these sets to the sum (11) separately.

Observing that
|W 1| ≤ |Γ(U1)| ≤ ∆|U1| , (12)

the contribution of the low-degree vertices to the sum (11) can be bounded as
∑

v1∈W 1

(number of Pℓ−1’s connecting v1 and U2) · degU1
(v1)

≤ (number of Pℓ−1’s connecting W 1 and U2) · 2d
I.H.
≤ C(ℓ− 1, d) · fℓ−1(|W 1|, |U2|) · 2d
(10),(12)

≤ C(ℓ− 1, d) · 2d · fℓ(|U1|, |U2|) ,

(13)
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where in the second-to-last step we used the induction hypothesis.

Note that by definition of W1 the set W1∪U1 spans at least 2d|W1|−|E(W1∩U1)| ≥ 2d|W1|−d|W1∩
U1| edges, where the inequality is due to the assumption that G has maximum density at most d.
If |W1| > |U1|, this is strictly larger than d(|W1|+ |U1| − |W1 ∩U1|) = d|W1 ∪U1|, contradicting the
assumption that G has maximum density at most d. Consequently we have |W1| ≤ |U1|, which in
turn implies that the set W1 ∪ U1 spans at most d(|W1| + |U1|) ≤ 2d|U1| edges. In particular, we
have

∑

v1∈W1

degU1
(v1) ≤ 4d|U1| . (14)

Consider now the sum

∑

v1∈W1

(number of Pℓ−1’s connecting v1 and U2) · degU1
(v1) .

To derive an upper bound for this quantity, we may replace the degU1
(v1) terms by a weight

function w1 : W1 → [0,∆] satisfying
∑

v1∈W1
w1(v1) ≤ 4d|U1| (recall (14)) that can be optimized

independently from the edges forming the Pℓ−1’s.

Clearly, if |U1| ≤ ∆/(4d), for any fixed choice of these other edges, the best choice for w1 is to
assign weight 4d|U1| to the vertex v ∈ W1 that contributes the most to the sum. Otherwise, i.e., if
|U1| > ∆/(4d), the best choice for w1 is to assign weight ∆ to the min{⌊4d|U1|/∆⌋, |W1|} vertices
v1 ∈ W1 that contribute the most to the sum, and possibly some remaining weight to one other
vertex. In either case, it follows that we may assume w.l.o.g. that there is a set W ∗

1 ⊆ W1 with
|W ∗

1 | ≤ ⌈4d|U1|/∆⌉ such that degU1
(v1) = 0 for all v1 ∈ W1 \W ∗

1 .

To compute the contribution of the vertices in W1 to the sum (11), we first consider the case where
|U1| > ∆/(4d). In that case we have

|W ∗
1 | ≤ ⌈4d|U1|/∆⌉ ≤ 8d|U1|/∆ (15)

and we obtain

∑

v1∈W1

(number of Pℓ−1’s connecting v1 and U2) · degU1
(v1)

≤ (number of Pℓ−1’s connecting W ∗
1 and U2) ·∆

I.H.
≤ C(ℓ− 1, d) · fℓ−1(|W ∗

1 |, |U2|) ·∆
(10),(15)

≤ C(ℓ− 1, d) · 8d · fℓ(|U1|, |U2|) ,

(16)

where in the second-to-last step we used the induction hypothesis.

If |U1| ≤ ∆/(4d), the set W ∗
1 consists of a single vertex v∗1. Thus we obtain

∑

v1∈W1

(number of Pℓ−1’s connecting v1 and U2) · degU1
(v1)

≤ (number of Pℓ−1’s connecting v∗1 and U2) · |U1|
I.H.
≤ C(ℓ− 1, d) · fℓ−1(1, |U2|) · |U1|
≤ C(ℓ− 1, d) · fℓ(|U1|, |U2|) ,

(17)
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where the last inequality follows from the fact that for u1 ≤ ∆ we obtain from the definition in (10)
that

fℓ−1(1, u2) · u1 = max
x,y∈N0:
x+y=ℓ−1

min{∆x · u1,∆y · u2 · u1}

≤ max
x,y∈N0:
x+y=ℓ−1

min{∆x · u1,∆y+1 · u2}

≤ fℓ(u1, u2) .

Combining (13), (16), and (17) we obtain the claim for C(ℓ, d) = 10d ·C(ℓ− 1, d), i.e., for C(ℓ, d) =
(10d)ℓ. �

Proof of Theorem 12. We bound the number of paths in G by applying Claim 13 with U1 = U2

being the set of non-isolated vertices. Clearly we have |U1| = |U2| ≤ 2N , which yields with (10)
that

fℓ(|U1|, |U2|,∆) ≤ max
x,y∈N0:
x+y=ℓ

min{∆x · 2N,∆y · 2N} = 2N ·∆⌊ℓ/2⌋ ,

where in the last step we used that ∆ ≥ 1. Theorem 12 follows for C0 := 2C. �

6. Concluding remarks

We conclude this paper by explicitly stating some open questions that we would like to see answered.

The findings presented in this paper lead us to conjecture the following.

Conjecture 14. For any graph H that has maximum degree at least two, there exists a rational
number q = q(H), 0 < q < 1, such that the following holds: For any function r = r(n) that
grows at most subpolynomially, the threshold for creating a copy of H in the Achlioptas process with
parameter r is

N0(H, r, n) =
n2−1/m(H)

rq
.

In view of our result for cycles (Theorem 6), we do not believe that there is an ‘easy’ general formula
for q = q(H). But, assuming Conjecture 14 is true, is there a finite procedure that computes q for
any given graph H?

Another line of research would be to determine explicit threshold functions for special classes of
graphs H, in particular for complete graphs of arbitrary size. The main difficulty that prevents us
from tackling these and other questions is the lack of generally applicable techniques for proving
lower bounds on the threshold. The approach used for the lower bound proof in Theorem 6 is
unlikely to generalize, as it relies crucially on the fact that rN ≫ n ≫ N in the regime of interest.

As a last open question we mention the problem of avoiding copies of some given graph H in
Achlioptas processes with growing parameter r = r(n). For fixed values of r, the general threshold
function of this problem was determined in [19], but for the case where r grows the question is wide
open.
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[19] T. Mütze, R. Spöhel, and H. Thomas. Small subgraphs in random graphs and the power of multiple choices.
Journal of Combinatorial Theory, Series B, 101(4):237–268, 2011.
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