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Abstract

We study biased orientation games, in which the board is the complete graph Kn, and
OMaker (oriented maker) and OBreaker (oriented breaker) take turns in directing previously
undirected edges of Kn. At the end of the game, the obtained graph is a tournament. OMaker
wins if the tournament has some property P and OBreaker wins otherwise.

We provide bounds on the bias that is required for OMaker’s win and for OBreaker’s win in
three different games. In the first game OMaker wins if the obtained tournament has a cycle.
The second game is Hamiltonicity, where OMaker wins if the obtained tournament contains a
Hamilton cycle. Finally, we consider the H-creation game, where OMaker wins if the obtained
tournament has a copy of some fixed digraph H.

1 Introduction

In this work we study orientation games. The board consists of the edges of the complete graph
Kn. In the (p : q) game the two players, called OMaker and OBreaker, take turns in orienting
(or directing) previously undirected edges. OMaker starts the game, and at each round OMaker
directs at most p edges and then OBreaker directs at most q edges (usually, we consider the case
where p = 1 and q is large). Both players have to direct at least one edge at each round. The
game ends when all the edges are oriented, and then we obtain a tournament. OMaker then wins
if the tournament has some fixed property P, and OBreaker wins otherwise. Here we focus on
the 1 : b game, which is referred to as the b-biased game. Since at each round each player has
to orient at least one edge, the number of rounds is clearly bounded. It is easy to verify that
the game is bias monotone, meaning that increasing b can only help OBreaker. Hence, every
property P admits some threshold t(n,P) so that OMaker wins the b-biased game if b < t(n,P)
and OBreaker wins the b-biased game if b ≥ t(n,P). We stress that in all these games OMaker
wins if the obtained tournament has the desired property, no matter who directs each edge of a
winning directed subgraph.

This game is an alteration of the well studied classical Maker-Breaker game, which is defined
by a hypergraph (X,F) and bias (p : q). In that game, at each round Maker claims p elements of
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X, and Breaker claims q elements of X. Maker wins if by the end of the game he claimed all the
elements of some hyperedge A ∈ F , and Breaker wins otherwise. Usually, a typical problem goes
as follows. Given a game hypergraph H = (X,F), determine or estimate the threshold function tH
such that if b > tH then Breaker wins in a (1 : b) game, and if b ≤ tH then Maker wins in a (1 : b)
game. There has been a long line of research that studies the bias threshold of various games (see,
e.g., [4, 5, 9, 11, 12, 13] and their references).

Here we study orientation games for the following three properties.

Creating a cycle. OMaker wins if the obtained tournament contains a cycle, and OBreaker wins
otherwise. It is well known that a tournament contains a cycle if and only if it contains a cyclic
triangle (cycle of length 3). This is a problem which has already been studied by Alon (unpublished
result) and by Bollobás and Szabó [7], and here we improve their results.

Creating a Hamilton cycle. Here OMaker wins if the final tournament contains a Hamilton
cycle, and OBreaker wins otherwise. Recently, the second author [12] solved a long standing
question and provided tight bounds on the bias threshold for Maker’s win in the classical Maker-
Breaker Hamiltonicity game. We use a variant of his approach, together with a new application of
the Gebauer-Szabó method [11] and give tight bounds in our case as well.

Creating a copy of H. Here we are given a fixed digraph H. OMaker wins if the obtained
tournament contains a copy of H, and OBreaker wins otherwise. We provide both upper and
lower bounds, and give some nearly tight bounds for specific cases. We conjecture that the correct
threshold is closely related to the size of the minimum feedback arc set of H, and provide some
results that support this conjecture.

Our first theorem considers the cycle creation game. It is easy to observe that if b ≥ n− 2 then
OBreaker has a winning strategy (for completeness, we give a detailed proof in Section 3). Bollobás
and Szabó [7] proved that if b = (2−

√
3)n, then OMaker wins the game, and conjectured that the

correct threshold is b = n− 2.
In this work we provide a simple argument that improves their result.

Theorem 1 (The cycle game). For every b ≤ n/2− 2, OMaker has a strategy guaranteeing a cycle
in the b-biased orientation game.

The second game we consider is the Hamiltonicity game, where OMaker wins if and only if the
obtained tournament contains a Hamilton cycle. Here we apply techniques from [9, 11, 12] to get
tight bounds on the bias threshold for a win of OBreaker.

Theorem 2 (The Hamiltonicity game).

(i). If b ≥ n(1+o(1))
lnn , OBreaker has a strategy to guarantee that in the b-biased orientation game the

obtained tournament has a vertex of in-degree 0, and in particular to win the Hamiltonicity
game.

(ii). If b ≤ n(1+o(1))
lnn , OMaker has a strategy guaranteeing a Hamilton cycle in the b-biased orien-

tation game.
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In the H-creation game we have some partial results. We conjecture that the bias that guar-
antees OMaker’s win depends on the minimum feedback arc set of H, and support this result for
graphs with a small feedback arc set. We will present and discuss corresponding notions and results
in Section 5.

2 Preliminaries

Let Kn be the complete graph on n vertices, a tournament is an orientation of Kn. A directed
graph is called oriented if it contains neither loops nor cycles of length 2. Every oriented graph is a
subgraph of a tournament. A directed graph is strongly connected if for every two vertices u, v there
is a directed path from u to v and a directed path from v to u. All directed graphs we consider
here are oriented, i.e., do not have parallel or opposite edges.

All log signs are in base 2, except ln signs which are in the natural base.
The well known results of Erdős and Selfridge [10] and Beck [3] give a sufficient condition for

Breaker’s win in biased Maker-Breaker games.

Theorem 3. Suppose that Maker and Breaker play a (p : q)-game on a hypergraph H = (V,F),
with Maker starting. If

∑

A∈F

(q + 1)
−

|A|
p <

1

q + 1
,

then Breaker has a winning strategy.

An orientation game is defined by a series of moves by OMaker and OBreaker. In round t,
OMaker orients 1 ≤ mt ≤ p = p(n) edges (usually in our settings p = 1) and OBreaker orients
1 ≤ bt ≤ q = q(n) edges. The game ends when all the edges are oriented, so the obtained graph
is a tournament. OMaker wins if the tournament has some predetermined property P, otherwise
OBreaker wins.

We denote by Ht the graph containing the edges oriented after t rounds. Clearly, this graph
has at most (p + q) · t edges.

Given a directed graph G = (V,E), we write (u, v) ∈ E if there is an edge from u to v. Given
a set A ⊆ V , we let

N+(A) = {u ∈ V \A : ∃v ∈ A, (v, u) ∈ E},
and

N−(A) = {u ∈ V \A : ∃v ∈ A, (u, v) ∈ E}.
A tournament T on n vertices is transitive if there is a bijection σ : V (T ) → [n] such that

for every edge (u, v) ∈ E(T ), σ(u) < σ(v). A tournament T = (V,E) is k-colorable if there is a
partition of V into k sets V1, . . . , Vk such that the induced tournament on each Vi is transitive.
Thus, a transitive tournament is 1-colorable.

3 The cycle game

In this section we prove Theorem 1. Namely, we show that in the (n/2 − 2)-biased game OMaker
can create a cycle. For the sake of completeness we also prove that in the (n − 2)-biased game
OBreaker can force an acyclic tournament.
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OBreaker’s strategy. Suppose that b ≥ n−2, we show that OBreaker can block all cycles in the
graph as follows. Whenever OMaker orients an edge from u to v, OBreaker responds by orienting
all edges from u to every vertex w ∈ V (Kn) such that the edge uw has not been oriented yet.
Clearly, OBreaker in his turn has to orient at most n− 2 edges.

We proceed by proving that no cycle is created when OBreaker applies this strategy. Indeed,
suppose that a cycle C is created and let (u, v) be the first edge in C that was oriented (by either
OMaker or OBreaker), and suppose also that (w, u) ∈ C. If OMaker oriented the edge from u to v,
by the strategy above OBreaker responded by orienting the edge from u to w, and thus (w, u) /∈ C.
If OBreaker orients the edge from u to v, he did it because OMaker oriented some other edge from
u to some vertex z. In this case, again OBreaker will also orient the edge from u to w, and therefore
again (w, u) /∈ C. We conclude that no cycle is created.

OMaker’s strategy. Our main lemma states that OMaker has a strategy so Ht contains a
directed path of length t throughout the first n− 1 rounds of the game.

Lemma 3.1. In the b-biased game, OMaker has a strategy such that for every t ≤ n− 1, the graph
Ht obtained after t rounds contains a directed path of length t.

Proof. We prove by induction that at each round OMaker can extend a longest path by one, no
matter how OBreaker plays, unless the board already contains a Hamilton path. Clearly OMaker
can create a path of length 1 at the first round. Suppose that a longest path in E(Ht) is Pt =
u1, u2, . . . , ur, where r < t. Let v be a vertex not in the path. Let k be the maximal index such
that there is no edge from v to uk. This is well defined as if there is an edge from v to u1 then
v, u1, . . . , ur is a longer path, contradicting the maximality of Pt.

Observe first that if there is an edge in the opposite direction from uk to v then u1, . . . , ur is
not a maximal path. Indeed, if k = r then u1, . . . , ur, v is a longer path; otherwise by the definition
of k there is an edge from v to uk+1 and therefore by using the vertices u1, . . . , uk, v, uk+1, . . . , r we
can find a longer path, and in both cases this contradicts the maximality of Pt.

Therefore OMaker in his turn orients the edge from uk to v and creates a path of length at least
r + 1, and the result follows. ⊓⊔

Proof of Theorem 1. The strategy of OMaker is as follows. At each round, if he can close a
cycle he does so and wins. Otherwise, he increases the length of a longest directed path. We next
show that after a large enough number of rounds, OBreaker cannot block all possible cycles.

As long as OMaker cannot orient an edge such that a cycle is created, OMaker can extend a
longest directed path by 1 by Lemma 3.1. After t rounds, there is a path Pt of length at least t.
Let Vt = V (Pt). There are

(

t
2

)

− t potential edges in G[Vt] opposite to the direction of the path Pt,
and orienting any of them creates a cycle.

Consider the graph Ht−1 just before OMaker starts round t. There are
(

t−1
2

)

−(t−1) edges that
may close a cycle, of which at most (b + 1)(t− 1) − (t− 1) have been oriented in previous rounds.
If (b + 1)(t− 1) − (t− 1) <

(

t−1
2

)

− (t− 1) at the beginning of round t then OMaker wins. Unless

OMaker wins before that, the game lasts at least
(n2)
b+1 rounds, and therefore by taking t = ⌊ (n2)

b+1⌋ we
get that if b ≤ n/2 − 2 then OMaker surely wins. ⊓⊔
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4 The Hamiltonicity game

In this game OMaker wins if the obtained tournament contains a Hamilton cycle, and OBreaker
wins otherwise. We start with recalling a well known and theorem due to Camion (see, e.g. Theorem
19.7 of [8]).

Lemma 4.1. Let T be a strongly connected tournament on at least three vertices. Then T contains
a Hamilton cycle.

We conclude that if OMaker constructs a strongly connected graph from the edges he orients
then he wins the game.

OBreaker’s strategy. Assuming that the bias is sufficiently large, OBreaker has a strategy to
guarantee that the obtained tournament T contains a vertex with in-degree 0. In this case clearly
T does not contain a Hamilton cycle. To this end, we reduce this problem to a box game, similarly
to the treatment in [9].

Let Kn be the complete graph on n vertices, and consider the b-biased game, where b ≥ (1+o(1))n
lnn .

Recall that Ht is the oriented graph obtained after t rounds. Fix a partition V (Kn) = A∪B, where
A and B are disjoint sets, |A| = b, |B| = n− b. Throughout the game, OBreaker orients the edges
from A to B until after some round t there are two vertices u, u′ ∈ A such that for every vertex
w ∈ B, both (u,w), (u′, w) ∈ Ht, and the in-degree of both u, u′ is 0. Then in the last turn he
orients edges within A so that either u or u′ will have in-degree 0.

Chvátal and Erdős [9] studied the box game, which is a special case of a Maker-Breaker game
where all the winning sets are disjoint. Their main result can be summarized as follows.

Theorem 4. Suppose that there are r disjoint sets (or boxes) B1, . . . , Br, each box Bi containing
k elements. At each round, Box-Maker claims b elements and then Box-Breaker claims a single
element. If

k ≤ b
r

∑

i=1

1

i
,

then Box-Maker has a strategy to occupy all the elements of a single box.

Note that in each round, Box-Breaker destroys a single box (i.e., puts his element in this box
thus preventing Box-Maker from winning using that specific box), and so throughout the game
Box-Maker tries to claim all elements of a single box before it is destroyed by Box-Breaker.

Here we need a variant of this theorem, for the case that Box-Maker actually has to complete
two boxes.

Claim 4.2. Suppose that there are r disjoint sets, B1, . . . Br, each Bi containing k elements. At
each round, Box-Breaker destroys one set and then Box-Maker claims b elements. If

k + b ≤ b

r
∑

i=1

1

i
,

then Box-Maker has a strategy to occupy all the elements of two boxes.

5



Proof. For every box Bi we add a set B′
i of b virtual items. Consider a standard box game where

the i’th box is Bi ∪ B′
i, and suppose that Box-Maker always claims the elements of Bi before he

claims the elements of B′
i, for every 1 ≤ i ≤ r. If

k + b ≤ b
r

∑

i=1

1

i
,

then by Theorem 4 Box-Maker has a strategy to win the game. Consider the last round before
Box-Maker wins, when the next move should be taken by Box-Breaker. Since Box-Breaker cannot
avoid Box-Maker’s win there are at least two indices i 6= j such that all but at most b elements of
boxes i and j are already claimed by Box-Maker. Therefore we conclude that there are at least two
indices i 6= j such that Bi and Bj have been fully claimed. We conclude that Box-Maker claimed all
the elements of two of the original boxes, no matter what Box-Breaker did. The claim follows. ⊓⊔

In our setting, OMaker and OBreaker switch their roles. That is, OBreaker assumes Box-
Maker’s role, and we define the boxes so that if OBreaker claims a full box the obtained tournament
has a vertex of in-degree 0. For every vertex v ∈ A we define a box Xv as {vw : w ∈ B}. Note
that |Xv| = |B| = n− b. In every turn, OMaker (that is, Box-Breaker) can destroy one box Xv by
directing an edge towards v, either from a vertex from A or from B. On the other hand, OBreaker
(Box-Maker) can orient b edges from A to B, which is equivalent to taking b elements from the
various boxes. By Claim 4.2, if

n = |Xv| + b ≤ b

|A|
∑

i=1

1

i
, (4.1)

then OBreaker has a strategy to have two vertices u, u′ from A for which all their incident edges
that connect them to B are directed towards B, and none of the edges from A enters u or u′.
Therefore, no matter what OMaker does, OBreaker can direct all the edges from either u or u′,
thus creating a vertex with in-degree 0 and destroying any chance for creating a Hamilton cycle in
the final tournament. Taking b ≥ n(1+o(1))

lnn satisfies (4.1) and thus OBreaker wins the game, and
Item (i) in Theorem 2 follows.

OMaker’s strategy. OMaker’s strategy consists of two stages. His goal in the first stage is to
create a graph with some expansion properties, so that all sufficiently small sets have at least one
in-going edge and at least one out-going edge. (This is quite similar to the approach of [12] and is
somewhat reminiscent of some of the arguments from [2].) To this end, he employs a randomized
strategy that creates a graph with min in-degree and out-degree at least 3, playing against any
fixed strategy by OBreaker. Moreover, we will show that with positive probability (and actually,
with high probability) after this stage the graph has the desired expansion properties. Since the
game considered is a perfect information game with no chance moves, we conclude that OMaker
has a deterministic strategy that guarantees these properties after the first stage. Moreover, the
first stage lasts at most 8n rounds in any case.

At the second stage, OMaker will ensure that for every large enough disjoint sets of vertices
A,B there is at least one edge from A to B and at least one edge from B to A. We will show that
if he succeeds at the first stage then after the second stage we will have a strongly connected graph
and hence by the end of the game OMaker will win.

We say that a directed graph G is k-expanding if the following properties hold for k > 0.
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• For every set A of size at most k, |N+(A)|, |N−(A)| > 0.

• For every two disjoint sets A,B of size at least k, there is an edge from A to B and there is
an edge from B to A.

We have the following.

Lemma 4.3. Let G be a directed graph, and suppose that G is k-expanding for some k. Then G is
strongly connected.

Proof. Let A1, A2, . . . , At be the strongly connected components of G, and suppose that t > 1. Let
T be a graph where each Ai is represented by a vertex, and there is an edge from Ai to Aj if and
only if there is a vertex vi ∈ Ai and a vertex vj ∈ Aj such that (vi, vj) ∈ E(G). It is well known that
T is a directed forest, and therefore contains a leaf, i.e., a set Ai with no outgoing edges. If |Ai| < k
then since |N+(Ai)| > 0 we get a contradiction. If |Ai| > n − k, then since |N−(V \ Ai)| > 0 we
get a contradiction. Finally, if k ≤ |Ai| ≤ n− k, then by the second property there is an edge from
Ai to V \Ai. Therefore, we conclude that t = 1 and hence G is strongly connected. ⊓⊔

We will show that after the first stage the obtained graph will have the first property in the
definition of a k-expanding digraph with high probability, and after the second stage it will have
the second property. More specifically, we will show that for k = n

(lnn)2/5
, at the first stage OMaker

ensures that for every set A of size at least k, |N+(A)|, |N−(A)| > 0, and at the second stage
OMaker ensures that for every two sets A,B of size at least k, there is an edge from A to B. By
Lemma 4.3 and Lemma 4.1, after the second stage OMaker wins.

The first stage. At the first stage we adapt the techniques of Gebauer and Szabó [11] in a way

similar to [12] and show that if b = (1−o(1))n
lnn then Maker has a strategy to achieve his goal at this

stage. We start by reducing our game to an undirected game on the edges of a bipartite graph.
Suppose that OMaker and OBreaker play a biased orientation game on the edges of the complete

graph G = (V,E) on n vertices, and let V = {v1, v2, . . . , vn}. Let H = (V1, V2, E
′) be the complete

bipartite graph on 2n vertices, where V1 = {v1,1, v1,2, . . . , v1,n} and V2 = {v2,1, v2,2, . . . , v2,n}.
Throughout the game we maintain two subgraphs, HM consisting of edges that are associated with
OMaker, and HB consisting of edges that are associated with OBreaker. Initially both graphs are
empty. OMaker will use the imaginary game played on H to help him to decide which edge of
the real orientation game played on G to orient and how. In order to fulfill this goal, OMaker will
translate OBreaker’s moves in the real orientation game into OBreaker’s moves in the game played
on H.

If OBreaker orients a previously undirected edge from vi to vj in G, we add the edge between
v2,i and v1,j to HB.

OMaker would like to create a graph with a constant minimum degree in HM . We will specify
a strategy for OMaker in the game played on H later, now our goal is to describe now OMaker’s
move in the H-game is translated into his real move in the G-game. Assume that according to his
strategy on H OMaker claims an edge (v1,i, v2,j) in his current move. We now specify how to choose
the corresponding move of OMaker on G. If the edge (v2,i, v1,j) has not been taken yet, OMaker
orients vi to vj in G (note that in this case the edge between vi and vj is undirected before this step).
In this case we also add the edge (v2,i, v1,j) to HB. If on the other hand (v2,i, v1,j) ∈ E(HB), then
OMaker plays another turn by taking a free edge according to his strategy, and adding the opposite
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edge to OBreaker’s graph. Finally, if i = j, i.e., if OMaker has taken the edge (v1,i, v2,i) then he
plays another turn. Since the classical Maker-Breaker game is bias-monotone, if OMaker takes
more than one edge it can only help him. Also, note that edges between v1,i and v2,i are useless for
OMaker in the real game. Therefore OMaker will have to construct a graph with minimum degree
c + 1 so that every vertex has at least c neighbors other than itself.

Observe also that (v2,i, v1,j) /∈ E(HM ), as otherwise (v1,i, v2,j) would have been added to HB

in some previous step. The following proposition summarizes this reduction.

Proposition 4.4. If at some step HM has minimum degree c + 1 then at the same time every
vertex in G has min in-degree and out-degree at least c.

Gebauer-Szabó proof. In [11], Gebauer and Szabó provided a strategy for Maker (in the clas-
sical Maker-Breaker setting) to construct a spanning tree, a graph with positive minimum degree,
and a connected graph with high minimum degree while playing a (1 : b) game on E(Kn) when

b = (1+o(1))n
lnn . Here we summarize their method and highlight the slight differences between their

strategy for the min-degree game and what we need in our case. We refer the reader to [11] for
a complete proof. Their strategy is defined as follows. The goal of Maker is to construct a graph
with min-degree c. Throughout the game, a vertex v is dangerous if dM (v) ≤ c − 1. Define the
danger value of v as dang(v) = dB(v)− 2b · dM (v). Initially, the danger of all vertices is 0. At every
round, Maker takes a vertex v with maximum danger value (ties are broken arbitrarily), and then
takes an arbitrary unclaimed edge incident to v. The proof goes by assuming Breaker’s win, and
analyzing the change of danger value of the vertices for which Maker took incident edges in the
game, and showing that the average danger value must be greater than 0. This in turn would lead
to a contradiction.

In our case, our board consists of the edges of the complete bipartite graph Kn,n instead of the
edges of the complete graph Kn. Moreover, when OMaker claims an edge, OBreaker may get the
opposite edge as well; we add this edge to the next move of OBreaker. Therefore, OMaker plays
against OBreaker that claims at most (b + 1) edges in his turn. The danger of a vertex is defined
only with respect to edges (and degrees) that belong to the bipartite graph Kn,n, and hence at the
beginning of the game the danger of every vertex is 0. The rest of the analysis is essentially the
same as [11].

It was observed in [12] that, for any constant c > 0, Maker can achieve degree at least c at
every vertex before Breaker claimed (1− δ)n of its incident edges, for δ = 15

(lnn)1/4
. Also, if OMaker

is ordered by his strategy to claim an edge incident to a vertex v, he chooses one of the edges
randomly and uniformly among the free incident edges. Note that in this case Breaker also gets
only one new edge.

We will show that after the first stage, the obtained graph has typically some expanding proper-
ties. In our case after at most 8n rounds, HM has min-degree at least 4, which results in an oriented
graph with the property that every vertex has in-degree and out-degree at least 3. Observe that
this stage lasts at most 8n moves as in every round OMaker increases the degree of one of the
vertices in Kn,n by at least one.

We conclude the description of this approach with the following proposition.

Proposition 4.5. Suppose that b = (1−o(1))n
lnn . Then OMaker has a strategy to construct after

at most 8n turns a directed graph with min in-degree and min out-degree at least 3. Moreover,

8



throughout the game, OMaker chooses at each turn a vertex v according to that strategy, and picks
a random incident edge out of a set of at least δn choices, where δ = 15

(lnn)1/4
.

For completeness we provide the proof details in the appendix.

Applying the Gebauer-Szabó approach. Let A be a set of vertices of size O( n
(lnn)2/5

). We

next prove that almost surely after the first stage A has at least one ingoing edge and at least one
outgoing edge. We start by claiming that almost surely every such set has at least one ingoing edge.
Observe first that the property trivially holds for every set with a single vertex, as every vertex has
in-degree at least one. Consider a fixed set A of size i, and assume that A has no ingoing edges,
then all edges that enter A have their other endpoint also in A, and there are at least 3i such edges.
By Proposition 4.5, whenever OMaker chooses a dangerous vertex v from A, there are at least δn
unclaimed edges incident to v. Therefore, the probability that OMaker chooses an edge between v
and another vertex of A is at most |A|−1

δn−1 . After the first stage there are 3i ingoing edges to vertices
of A, hence the probability that A does not have even a single ingoing edge from a vertex outside
A is at most ( |A|−1

δn−1 )3i. Therefore, by the union bound, the probability that there is set A of size i
with no ingoing edge is at most

(

n

i

)

·
( |A| − 1

δn− 1

)3i

≤
(en

i

)i
·
(

2i

δn

)3i

≤
(

8ei2

δ3n2

)i

.

By considering the two cases when i ≤ n1/3 and i ≥ n1/3 it is easy to check that for every
2 ≤ i ≤ n

(lnn)2/5
and δ = 15

(lnn)1/4
, the last expression is bounded by o(1/n). Therefore by the union

bound every set of size at most n
(lnn)2/5

has at least one ingoing edge, assuming that n is sufficiently

large. Essentially the same argument shows that almost surely every such set of that size contains
at least one outgoing edge, as claimed.

Clearly, the first stage takes at most 8n rounds, so the total number of taken edges is at most
8n(b + 1).

The second stage. Recall that at the second stage OMaker needs to connect in both directions
every two disjoint sets A,B of size (1−o(1))n

(lnn)2/5
.

Consider a random tournament obtained from Kn by directing each edge uniformly and inde-
pendently of the other edges. For every two disjoint sets of vertices A,B, the number of edges from
A to B is binomially distributed. Denote by e(A,B) the number of edges from A to B and by
e(B,A) the number of edges from B to A. By the Chernoff bound (see, e.g., [1]), we have

Pr

[
∣

∣

∣

∣

e(A,B) − |A||B|
2

∣

∣

∣

∣

≥ ε|A||B|
]

≤ e−ε2|A||B|/2,

and similar inequality holds also for e(B,A).

Therefore, if |A| = |B| = (1−o(1))n

(lnn)2/5
the probability that e(A,B) or e(B,A) is greater than

1
2 · |A||B|(1 + n−1/2+o(1)) is 2−2n, and hence by the union bound for every two such sets, there

are at least 1
2 · |A||B|(1 + n−1/2+o(1)) ≥ 0.99n2

2(lnn)4/5
in each direction. Fix a tournament T ∗ with this

property.
At the second stage, OMaker always directs edges according to T ∗. That is, he can only direct

an edge from u to v if (u, v) ∈ E(T ∗). For every two such sets, at most 8n(b + 1) ≤ 12n2

lnn edges
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have been directed at the first stage of the game, and hence at the beginning of the second stage
at least 0.99n2

2(lnn)4/5
edges that are directed from A to B in T ∗ are unclaimed.

Now OMaker and OBreaker switch roles. OMaker clearly wins if he prevents OBreaker from
claiming all the edges from a set A to a set B, where |A| = |B| = k = n

(lnn)2/5
. To this end, we

apply the Beck-Erdős-Selfridge criterion (Theorem 3), with p = b = n(1+o(1))
lnn , q = 1, the size of

each hyperedge is at least 0.99n2

2(lnn)4/5
and the total number of sets is at most

(

n
k

)2
. We have:

∑

A∈F

(q + 1)
−

|A|
p <

(

n

k

)2

· (q + 1)
−

|A|
p

<
(en

k

)2k
· 2

− n lnn

3(lnn)4/5

≤ 2
4n·log logn

(lnn)2/5 · 2−
n(logn)1/5

6 ≪ 1.

Therefore in our case OMaker wins and hence every two sets of size k are connected in both
ways.

We conclude that at the end of the second stage OMaker has a strongly connected graph, and
hence by the end of the game the obtained tournament is strongly connected, and OMaker wins.
This proves Item (ii) of Theorem 2. ⊓⊔

5 The H-creation game

In this game, a fixed oriented graph H is given. OMaker wins if the obtained tournament contains
a copy of H, and OBreaker wins otherwise. Note that if H does not contain a directed cycle
then OMaker surely wins for large enough n, as every tournament of size n contains a transitive
tournament of size logn, which contains H as a subgraph.

Our starting point is an upper bound on the bias threshold for a general fixed graph H. Given
a directed graph H, and a bijection σ : V (H) → |V (H)|, we define the feedback arc set of H with
respect to σ as

FAS(H,σ) = |{(u, v) ∈ E(H) : σ(u) > σ(v)}|.
In words, this parameter measures the number of edges that are going in the wrong direction with
respect to σ. Let

FAS(H) = min
σ

{FAS(H,σ)}.

This is the minimal number of edges of H that has to be deleted in order to make H an acyclic
graph. If, for example, H is a random tournament on t vertices, then it is easy to show that with
high probability FAS(H) is close to t(t− 1)/4.

We have the following upper bound.

Lemma 5.1. Let H be a graph on t vertices, and let r = FAS(H). Suppose that OMaker and
OBreaker play an orientation game on Kn. Then if b > c(H) · nt/r then OBreaker has a strategy
guaranteeing that the obtained tournament does not contain a copy of H, where c(H) > 0 depends
only on H.
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Proof. The proof follows by a simple application of the Beck-Erdős-Selfridge theorem (Theorem 3).
OBreaker chooses an arbitrary bijection σ of the vertices, and at every turn directs the edges
according to σ. That is, whenever he chooses to direct an edge uv, and σ(v) > σ(u) the edge
will be directed from u to v. Hence, if OMaker creates a copy of H, by definition he orients at
least FAS(H) edges in the opposite direction with respect to σ. We can thus reduce the game to
the classical Maker-Breaker game as follows. In every set of t vertices, OMaker can win only if
he claims at least r edges that are induced by this set, and OBreaker wins if he prevents OMaker

from doing so. The total number of winning sets for OMaker is at most
(

n
t

)

·
((t

2)
r

)

. Therefore, if

(q + 1)r = Ω(
(

n
t

)

·
((t

2)
r

)

) then by Theorem 3, OBreaker has a winning strategy. This is the case if

b > c(t, r) · nt/r, and hence the lemma holds. ⊓⊔

It is worth noting that following the methods of Bednarska and  Luczak [5], one can prove

that if b = O(n
|V (H)|−2
|E(H)|−1 ) then (assuming some balanceness conditions for H) Maker has a winning

strategy as follows. Maker chooses at each round a random undirected edge and orients it randomly,
independently of the other choices. Roughly speaking, one can show that by the end of the game
the obtained graph has some properties of a random graph, and hence if the bias is not too large
then with high probability the graph contains a copy of H.

However, following their approach does not give sharp bounds in our case. To see this, observe
that their results give a sharp bound of b = Θ(

√
n) for the triangle creation game in the classical

Maker-Breaker setting, while in orientation games the correct bias for creating a cyclic triangle is
b = Θ(n).

We next generalize the result of Section 3 and show that in the case that H is a fixed cycle,
OMaker wins even if b = Ω(n).

Proposition 5.2. For every constant k ≥ 3 there is a constant γ(k) > 0 such that if b < γ(k) · n
then OMaker wins the b-biased Ck-creation game.

Proof. We first observe that if a tournament T contains a cycle of length k + (k − 2)r for some
r ∈ N then it also contains a cycle of length k. The proof of this observation is by induction.
It is trivially true for r = 0. Suppose this is true for all values smaller than some fixed r, and
let v1, v2, . . . , vk+(k−2)r, v1 a cycle of length k + (k − 2)r. Consider the edge between vk and v1.
If the edge is directed from vk to v1 there is a cycle of length k and we are done. Otherwise,
vk, vk+1, . . . , vk+(k−2)r, v1, vk is a cycle of length k + (k − 2)(r − 1) and therefore by the induction
hypothesis T contains a cycle of length k, as required.

Therefore, in order to create a cycle Ck, OMaker needs to create some cycle of length k+(k−2)r.
By Lemma 3.1, at each round OMaker can extend a longest directed path by 1. OMaker’s strategy
is to close a cycle of length k + (k − 2)r whenever it is possible, and to extend a longest directed
path by 1 if it is not possible. After t rounds, there is a path of length t, and we denote it by
x1, . . . , xt, xt+1. For every i ≥ k, the number of edges from xi to xj , j < i, that may close a cycle
of length k + (k − 2)r is at least i

k−2 − 2. Hence the total number of edges that may close a cycle
of length k + (k − 2)r for some r is at least

t+1
∑

i=k

(

i

k − 2
− 2

)

>
(t + k)(t− k)

2(k − 2)
− 2t.
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Therefore, the number of such edges is at least
(t
2)
k for t = Ω(k2), that is at least (1/k)-fraction of

the edges for such t. Among these
(t
2)
k edges, at most (b+ 1)t have been oriented by either OMaker

or OBreaker in previous rounds. Note that as long as the bias b is smaller than n/2, the game lasts
at least t = n rounds, and results in a path of length n− 1, unless OMaker wins before. Therefore
if b < n−1−2k

2k then OMaker wins the game, as required. ⊓⊔

Recall that a tournament T is k-colorable if its edges can be partitioned into k transitive
tournaments. Berger et al. [6] studied the class of tournaments H with the property that there is
a constant c(H) such that every H-free tournament T is c(H)-colorable. They called every such
tournament H a hero, and characterized the set of such tournaments. We next show that for every
k > 0 OMaker has a strategy to create a non k-colorable tournament as long as the bias is a
sufficiently small linear function of n.

Lemma 5.3. Let k > 1, and suppose that b = cn
k log k for some sufficiently small constant c > 0.

Then OMaker has a strategy to create a non k-colorable tournament.

Proof. It is rather easy to see using a Chernoff bound (as it was done in Section 4) that a random
tournament obtained by directing each edge uniformly and independently of the other choices has
the following property almost surely: for every ordered pair of disjoint sets A,B of sets of size n/2k,

there are Θ(n
2

k2
) edges in each direction between A and B. Fix a tournament T ∗ with this property.

Define a hypergraph H whose vertices are the edges of T ∗ and whose edges are all the edges
from A to B in T ∗ for every ordered pair A,B of sets of size n/2k. OMaker will win the game by
orienting one edge from every hyperedge in H according to T ∗. To this end, OMaker will play to
prevent OBreaker from orienting all the edges in some hyperedge from H. By the end of the game,
there is an edge between every two sets of size n/2k and hence the obtained tournament does not
contain an acyclic set of size n/k, and therefore is not k-colorable.

There are
(

n
n/2k

)2 ≤ (2ek)n/k choices of ordered pairs (A,B), each corresponding to a hyperedge

of H. The size of each hyperedge is Θ(n
2

k2
). By applying the Beck-Erdős-Selfridge criterion (Theo-

rem 3, with OMaker assuming the role of Breaker, p = b and q = 1), if b = cn
k log k then OMaker has

a winning strategy, as required. ⊓⊔

A simple consequence of Lemma 5.3 is the following generalization of Lemma 3.1. Berger et
al. [6] provided a list of five minimal tournaments H1, H2, . . . H5, and proved (Theorem 5.1 in [6])
that every non-hero tournament must contain at least one of H1, . . . , H5 as a sub-tournament. For
every 1 ≤ i ≤ 5, one can check that FAS(Hi) ≥ 2.

Consider any oriented graph H with FAS(H) = 1. Let σ be an ordering of V (H) with a single
edge that does not agree with σ. Let H ′ be a tournament on V (H) that contains H as subgraph
and is defined as follows. For every two vertices u, v ∈ V (H), if (u, v) ∈ E(H) we let (u, v) ∈ E(H ′).
If (u, v), (v, u) /∈ E(H), we let (u, v) ∈ E(H ′) if σ(v) > σ(u) and (v, u) ∈ E(H ′) otherwise. We get
that FAS(H ′) = 1 as well.

Clearly, it is sufficient to construct a copy of H ′ for OMaker’s win. The result of Berger et al. [6]
can be applied only for tournaments, and hence we will use it to show that OMaker can construct
a copy of H ′.

Since FAS(H ′) = 1 the tournament H ′ is a hero, and therefore every tournament that does not
contain a copy of H ′ is c(H ′)-colorable, where c(H ′) is a constant that depends only on H ′. By

12



Lemma 5.3, if b = Θ(n) then OMaker has a strategy so the obtained tournament is not c(H ′)-
colorable. We therefore have the following.

Proposition 5.4. For every oriented graph H with FAS(H) = 1 there is a constant γ(H) > 0 such
that OMaker wins the γn-biased H creation game.

We conjecture that the bias threshold that guarantees OMaker’s win strongly depends on
FAS(H). It will be interesting to find further quantitative results in this direction.
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A Proof of Proposition 4.5

Here we provide the complete details of Gebauer-Szabó approach and show that Maker can win
the min-degree game if b = (1−o(1))n

lnn where the base graph is the complete bipartite graph Kn,n.
We give the proof for every min-degree c, though we need only the case c = 4.

13



We assume for simplicity that Breaker starts the game, this does not change the asymptotic
threshold of this game. We say that the game ends when either all vertices have degree at least c in
Maker’s graph (and Maker won) or one vertex has degree at least n− c+ 1 in Breaker’s graph (and
Breaker won). With degM (v) and degB(v) we denote the degree of a vertex v in Maker’s graph and
in Breaker’s graph, respectively. A vertex v is called dangerous if degM (v) ≤ c − 1. To establish
Maker’s strategy we define the danger value of a vertex v as dang(v) := degB(v) − 2b · degM (v).

Maker’s strategy SM Before his ith move Maker identifies a dangerous vertex vi with the largest
danger value, ties are broken arbitrarily. Then, as his ith move Maker claims an edge incident to
vi. We refer to this step as “easing vi”.

Observe that Maker can always make a move according to his strategy unless no vertex is
dangerous (thus he won) or Breaker occupied at least n − c + 1 edges incident to a vertex (and
Breaker won).

Also, a vertex vi was dangerous any time before Maker’s ith move.
Suppose, for a contradiction, that Breaker, playing with bias b, has a strategy SB to win the

min-degree-c game against Maker who plays with bias 1. Let Bi and Mi denote the ith move
of Breaker and Maker, respectively, in the game where they play against each other using their
respective strategies SB and SM . Let g be the length of this game, i.e., the maximum degree of
Breaker’s graph becomes larger than n− c in move Bg. We call this the end of the game.

For a set I ⊆ V of vertices we let dang(I) denote the average danger value
∑

v∈I dang(v)

|I| of the

vertices of I. When there is risk of confusion we add an index and write dangBi
(v) or dangMi

(v)
to emphasize that we mean the danger-value of v directly before Bi or Mi, respectively.

In his last move Breaker takes b edges to increase the maximum Breaker-degree of his graph to
at least n− c (in fact, at least n− c + 1). In order to be able to do that, directly before Breaker’s
last move Bg there must be a dangerous vertex vg whose Breaker-degree is at least n− c− b. Thus
dangBg

(vg) ≥ n− c− b− 2b(c− 1).
Recall that v1, . . . , vg−1 were defined during the game. For 0 ≤ i ≤ g − 1, we define the set Ii

as Ii = {vg−i, . . . vg}.
The following lemma estimates the change in the average danger during Maker’s move.

Lemma A.1. Let i, 1 ≤ i ≤ g − 1,
(i) if Ii 6= Ii−1, then dangMg−i

(Ii) − dangBg−i+1
(Ii−1) ≥ 0.

(ii) if Ii = Ii−1, then dangMg−i
(Ii) − dangBg−i+1

(Ii−1) ≥ 2b
|Ii|

.

Proof: For part (i), we have that vg−i /∈ Ii−1. Since danger values do not increase during
Maker’s move we have dangMg−i

(Ii−1) ≥ dangBg−i+1
(Ii−1). Before Mg−i Maker selected to ease

vertex vg−i because its danger was highest among dangerous vertices. Since all vertices of Ii−1 are
dangerous before Mg−i we have that dang(vg−i) ≥ max(dang(vg−i+1), . . . , dang(vg)), which implies
dangMg−i

(Ii) ≥ dangMg−i
(Ii−1). Combining the two inequalities establishes part (i).

For part (ii), we have that vg−i ∈ Ii−1. In Mg−i degM (vg−i) increases by 1 and degM (v) does
not decrease for any other v ∈ Ii. Besides, the degrees in Breaker’s graph do not change during
Maker’s move. So dang(vg−i) decreases by 2b, whereas dang(v) do not increase for any other vertex
v ∈ Ii. Hence dang(Ii) decreases by at least 2b

|Ii|
, which implies (ii). �

The next lemma bounds the change of the danger value during Breaker’s moves.

Lemma A.2. Let i be an integer, 1 ≤ i ≤ g − 1.
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(i) dangMg−i
(Ii) − dangBg−i

(Ii) ≤ 2b
|Ii|

(ii) dangMg−i
(Ii) − dangBg−i

(Ii) ≤ b+|Ii|−1+a(i−1)−a(i)
|Ii|

, where a(i) denotes the number of edges
spanned by Ii which Breaker took in the first g − i− 1 rounds.

Proof: Let edouble denote the number of those edges with both endpoints in Ii which are occupied
by Breaker in Bg−i. Then the increase of

∑

v∈Ii
degB(v) during Bg−i is at most b + edouble. Since

the degrees in Maker’s graph do not change during Breaker’s move the increase of dang(Ii) (during
Bg−i) is at most b+edouble

|Ii|
.

Part (i) is then immediate after noting that edouble ≤ b.
For (ii), we bound edouble more carefully. By definition, Breaker occupied a(i) edges spanned

by Ii in his first g − i − 1 moves. So, all in all, Breaker occupied a(i) + edouble edges spanned by
Ii in his first g − i moves. On the other hand, we know that among these edges exactly a(i − 1)
are spanned by Ii−1 ⊇ Ii \ {vg−i} and there are at most |Ii| − 1 edges in Ii incident to vg−i. Hence
a(i) + edouble ≤ a(i− 1) + |Ii| − 1, giving us edouble ≤ |Ii| − 1 + a(i− 1) − a(i). �

The following estimates for the change of average danger during one full round are immediate
corollaries of the previous two lemmas.

Corollary A.3. Let i be an integer, 1 ≤ i ≤ g − 1.
(i) if Ii = Ii−1, then dangBg−i

(Ii) − dangBg−i+1
(Ii−1) ≥ 0.

(ii) if Ii 6= Ii−1, then dangBg−i
(Ii) − dangBg−i+1

(Ii−1) ≥ − 2b
|Ii|

(iii) if Ii 6= Ii−1, then dangBg−i
(Ii)−dangBg−i+1

(Ii−1) ≥ − b+|Ii|−1+a(i−1)−a(i)
|Ii|

, where a(i) denotes
the number of edges spanned by Ii which Breaker took in the first g − i− 1 rounds.

Using Corollary A.3 we derive that before B1, dang(Ig−1) > 0, which contradicts the fact that
at the beginning of the game every vertex has danger value 0.

Let k := ⌊ n
lnn⌋. For the analysis, we split the game into two parts: The main game, and the

end game which starts when |Ii| ≤ k.
Let |Ig| = r. Let i1 < . . . < ir−1 be those indices for which Iij 6= Iij−1. Note that |Iij | = j + 1.

Observe that by definition a(ij−1) ≥ a(ij − 1).
Recall that the danger value of vg directly before Bg is at least n− c− b(2c− 1).
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Assume first that k > r.

dangB1
(Ig−1) = dangBg

(I0) +

g−1
∑

i=1

(

dangBg−i
(Ii) − dangBg−i+1

(Ii−1)
)

≥ dangBg
(I0) +

r−1
∑

j=1

(

dangBg−ij
(Iij ) − dangBg−ij+1

(Iij−1)
)

[by Corollary A.3(i)]

≥ dangBg
(I0) −

r−1
∑

j=1

b + j + a(ij − 1) − a(ij)

j + 1
[by Corollary A.3(iii)]

≥ dangBg
(I0) − bHr − r − a(0)

2
+

r−1
∑

j=2

a(ij−1)

(j + 1)j
+

a(ir−1)

r
[since a(ij−1) ≥ a(ij − 1)]

≥ dangBg
(I0) − bHk − k [since a(0) = 0 and r ≤ k]

≥ n− c− b(2c + ln k) − k

≥ n− n

lnn
(2c + lnn− ln lnn) − n

lnn
− c [since b ≤ n

lnn ]

≥ n ln lnn

3 lnn
− n

lnn
− c

> 0. [for large n] (A.1)

Assume now that k ≤ r.

dangB1
(Ig−1) = dangBg

(I0) +

g−1
∑

i=1

(

dangBg−i
(Ii) − dangBg−i+1

(Ii−1)
)

≥ dangBg
(I0) +

r−1
∑

j=1

(

dangBg−ij
(Iij ) − dangBg−ij+1

(Iij−1)
)

[by Corollary A.3(i)]

= dangBg
(I0) +

k−1
∑

j=1

(

dangBg−ij
(Iij ) − dangBg−ij+1

(Iij−1)
)

+

r−1
∑

j=k

(

dangBg−ij
(Iij ) − dangBg−ij+1

(Iij−1)
)

≥ dangBg
(I0) −

k−1
∑

j=1

b + j + a(ij − 1) − a(ij)

j + 1
−

r−1
∑

j=k

2b

j + 1
[by Corollary A.3(iii) and (ii)]

≥ dangBg
(I0) − b(2Hr −Hk) − k − a(0)

2
+

k−1
∑

j=2

a(ij−1)

(j + 1)j
+

a(ik−1)

k

≥ n− c− b(2c− 1 + 2H2n −Hk) − k [since 2n ≥ r and a(0) = 0]

≥ n− c−
(

n

lnn
− n ln lnn

ln2 n
− (2c + 3)

n

ln2 n

)

(lnn + ln lnn + 2c + 2) − n

lnn

≥ n(ln lnn)2

ln2 n
[for n large enough]

> 0. (A.2)
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Observe that in our proof we need Maker to have min-degree c for every vertex v before Breaker
claims (1 − δ)n edges incident to v (for δ = O( 1

(lnn)1/4
)). The same analysis essentially holds, with

the following differences. Assume that Breaker wins, then before his last move the vertex v has
degree (1 − δ)n − c − 1 (instead of n − c − 1). All other calculations are essentially the same by
taking b = n

lnn(1 − 1
ln lnn).
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