
Random graph’s Hamiltonicity is strongly tied to its

minimum degree

Yahav Alon
School of Mathematical Sciences

Tel Aviv University
Tel Aviv, Israel

yahavalo@mail.tau.ac.il

Michael Krivelevich∗

School of Mathematical Sciences
Tel Aviv University
Tel Aviv, Israel

krivelev@post.tau.ac.il

Submitted: Nov 26, 2018; Accepted: Nov 27, 2018; Published: TBD

c©The authors.

Abstract

We show that the probability that a random graph G ∼ G(n, p) contains no
Hamilton cycle is (1 + o(1))Pr(δ(G) < 2) for all values of p = p(n). We also prove
an analogous result for perfect matchings.

Mathematics Subject Classifications: 05C80

1 Introduction and main results

Hamilton cycles are a central topic in modern graph theory, a fact that extends to the field
of random graphs as well, with numerous and diverse results regarding the appearance of
Hamilton cycles in random graphs obtained over recent years.
A classical result by Komlós and Szemerédi [9], and independently by Bollobás [2], states
that a random graph G ∼ G(n, p), with np − lnn − ln lnn → ∞, is asymptotically al-
most surely Hamiltonian. It should also be noted that if np− lnn− ln lnn → −∞ then
asymptotically almost surely δ(G) 6 1, and thus G is not Hamiltonian.
The same exact statement is true if one replaces the graph property G is Hamiltonian with
the property δ(G) > 2 . This indicates a possible connection between the two properties,
an indication made explicit when considering a stronger result proved by Bollobás in [2]
and by Ajtai, Komlós and Szemerédi in [1], regarding the hitting time of Hamiltonicity.
Consider a random graph process, defined as a sequence of (random) graphs on n vertices

G̃(σ) = {Gi(σ)}(
n
2)
i=0, where σ is an ordering of the edges of Kn chosen randomly and uni-

formly from among all
(
n
2

)
! such orderings. Set G0(σ) to be a graph with no edges, and

for all 1 6 i 6
(
n
2

)
, Gi(σ) is obtained by adding the i–th edge according to the order σ

∗Partially supported by USA-Israel BSF grant 2014361, and by ISF grant 1261/17.

the electronic journal of combinatorics 25 (2018), #P00 1



to Gi−1(σ). The hitting time of a monotone and non–empty graph property P , which we
will denote as τP(G̃(σ)), is a random variable equal to the index i for which Gi(σ) ∈ P
but Gi−1(σ) /∈ P .
Denote by H the property of Hamiltonicity, and by D2 the property of having minimum
degree at least two. The result states that asymptotically almost surely τD2(G̃(σ)) =
τH(G̃(σ)).
Indeed, the result about Hamiltonicity in G(n, p) can be derived directly from the hitting
time result, thus making the hitting time result stronger. In addition, the hitting time
result indicates an explicit connection between the minimum degree of a random graph
and the existence of a Hamilton cycle. The random graph process asymptotically almost
surely becomes Hamiltonian at the exact same moment it has minimum degree at least
two. This shows that minimum degree less than two is typically the chief obstacle for
Hamiltonicity.
In light of this, it seems natural to ask whether the connection between the two properties
can be expressed more explicitly. Furthermore, since the latter result revolves around the
hitting time, one can ask whether this connection can also be observed in random graphs
that are much more dense than the threshold density of 1

2
(lnn+ ln lnn+ ω(n)).

A partial answer to these questions has been given by McDiarmid and Yolov in 2016 [11].
Based on a result by Hefetz, Krivelevich and Szabó [7], the authors proved the following:
If p 6 1

2
is such that p·n ln ln ln lnn

lnn·ln ln lnn
→ ∞, then the probability of G ∼ G(n, p) failing to

contain a Hamilton cycle is at most (1− p)n · exp
(
O
(

lnn ln ln lnn
ln ln ln lnn

))
.

One can observe that the probability of G ∼ G(n, p) having δ(G) < 2 is of order
Θ (np(1− p)n), and so this result gives an explicit bound on the ratio between the prob-
abilities of the negations of these two properties:

1 6
Pr(G is not Hamiltonian)

Pr(δ(G) < 2)
6 exp

(
O

(
lnn ln ln lnn

ln ln ln lnn

))
This however only partially answers our question due to two gaps: first, it does not cover
all of our target range of p(n); second, it is far from being tight.
Here we close both these gaps, by proving the following main result:

Theorem 1. Let 0 6 p = p(n) 6 1, and let G ∼ G(n, p). Then

Pr(G is not Hamiltonian) = (1 + o(1))Pr(δ(G) < 2).

By proving Theorem 1 we cover all possible values of p, as well as achieve the asymptoti-
cally tight ratio of 1 + o(1).
Going forward, we utilize some of the approaches we use to prove Theorem 1 in order to
sketch a proof of an analogous result regarding perfect matchings in a random graph.
Assume for simplicity that n is even. Similar to the result by Komlós and Szemerédi
and of Bollobás about the threshold probability of Hamiltonicity, a very early work by
Erdős and Rényi [5] shows that whenever np− lnn→∞, the random graph G ∼ G(n, p)
asymptotically almost surely contains a perfect matching. Similar to the connection be-
tween Hamiltonicity and minimum degree 2, this statement is also true when replacing
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the property of containing a perfect matching with that of containing no isolated vertices.
In fact, it was later proved by Bollobás and Thomason [3] that the hitting times of the
two properties are asymptotically almost surely exactly equal to each other.
Utilizing some similar approaches to those used in the proof of Theorem 1 we sketch a
proof the following:

Theorem 2. Let 0 6 p = p(n) 6 1, and let G ∼ G(n, p). Then

Pr(G contains no perfect matching) = (1 + o(1))Pr(δ(G) = 0).

Once more this theorem covers the full range and provides a very tight ratio.
This paper is structured as follows: in Section 2 we list the notations and definitions

to be used throughout the paper, as well as some auxiliary results needed for our proofs.
In Section 3 we provide a proof of Theorem 1. In Section 4 we sketch a proof of Theorem
2.
Portions of the proofs in Section 3 and Section 4 and several of the techniques we employ
on our proofs are inspired by [10].

2 Notation, definitions and auxiliary results

In this section we provide several definitions and results to be used in the following
sections.
Throughout the paper, it is assumed that all logarithmic functions are in the natural base,
unless explicitly stated otherwise.
We suppress the rounding notation occasionally to simplify the presentation.
The following standard graph theoretic notations will be used:

• NG(U) : the external neighbourhood of a vertex subset U in the graph G, i.e.

NG(U) = {v ∈ V (G) \ U : v has a neighbour in U}.

• eG(U): the number of edges spanned in a graph G by a vertex subset U . This will
sometimes be abbreviated as e(U), when the identity of G is clear from the context.

• eG(U,W ): the number of edges of G between the two disjoint vertex sets U,W . This
will sometimes be abbreviated as e(U,W ) when G is clear from the context.

• EG(v): the set of edges in a graph G incident to the vertex v.

2.1 Graph theory

Definition 3. Let G = (V,E) be a graph, and let α > 0 and k a positive integer. The
graph G is a (k, α)-expander if |NG(W )| > α|W | for every vertex subset W ⊂ V , |W | 6 k.

Definition 4. Let G = (V,E) be a graph. A non-edge (u, v) ∈ E(G) is called a booster if
the graph G′ with edge set E(G′) = E(G) ∪ {(u, v)} is either Hamiltonian or has a path
longer than a longest path of G.
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Lemma 5. (Pósa 1976 [12]) Let G be a connected non–Hamiltonian graph, and assume

that G is a (k, 2)–expander. Then G has at least (k+1)2

2
boosters.

Definition 6. A graph G is Hamilton–connected if for every two vertices u, v ∈ V (G), G
contains a Hamilton path with u, v as its two endpoints.

Theorem 7. (Chvátal–Erdős Theorem [4]) Let G = (V,E) be a graph such that α(G) <
κ(G). Then G is Hamilton–connected.

2.2 Binomial coefficients and binomial distribution

Lemma 8. Let 1 6 l 6 k 6 n be integers. Then the following inequalities hold:

1.
(
n
k

)
6
(
en
k

)k
;

2.
(n−l

k )
(n
k)

6 e−
l·k
n .

Lemma 9. Let 1 6 k 6 n be integers, 0 < p < 1, and let X ∼ Bin(n, p). Then the
following inequalities hold:

1. Pr(X > k) 6
(
enp
k

)k
;

2. Pr(X = k) 6
(

enp
k(1−p)

)k
· e−np .

Lemma 10. (Chernoff bound for binomial tails, see e.g. [8]) Let X ∼ Bin(n, p). Then
the following inequalities hold:

1. Pr(X < (1− δ)np) 6 exp
(
− δ2np

2

)
for every δ > 0 ;

2. Pr(X > (1 + δ)np) 6 exp
(
− δ2np

3

)
for every 0 < δ < 1 ;

3. Pr(X > (1 + δ)np) 6 exp
(
− δnp

3

)
for every δ > 0 .

2.3 General auxiliary results

Lemma 11. (Particular case of Bonferroni inequality) Let {Ak}nk=1 be a family of events
in a probability space. Then:

Pr

(
n⋃
k=1

Ak

)
>

n∑
k=1

Pr(Ak) −
∑

16k<l6n

Pr(Ak ∩ Al).
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3 Proof of main theorem

In this section we provide a proof for Theorem 1. The theorem’s statement covers all
possible values of the edge probability p(n), with the corresponding random graphs G(n, p)
having somewhat different characteristics in different parts of this range.
Since this is the case, we divide our proof into four parts, each corresponding to a different
range of p. The general approach in each of the proofs, bar the first part, will be as thus:
we will present a finite set of graph properties, say, {Pi}i>0, with P0 being the property
of having minimum degree at least 2, and show that:

(i) For a random graph G ∼ G(n, p) and for all i > 0, the probability of G /∈ Pi is
o (Pr(G /∈ P0));

(ii) Any graph G such that G ∈
⋂
i>0Pi is Hamiltonian.

Since a Hamiltonian graph G must have a minimum degree at least 2, meaning Pr(δ(G) <
2) 6 Pr(G is not Hamiltonian), combining the two claims yields the theorem.
The four parts of the proof will be the following:

• The very sparse case: let p = p(n) be such that np − log n − log log n does not
tend to infinity. In this case there is nothing to prove, since the theorem’s statement
is already known to be true. This is due to the result by Komlós and Szemerédi,
stating that for G ∼ G(n, p):

lim
n→∞

Pr(G is Hamiltonian) =


0 np− log n− log log n→ −∞,
e−e

−c
np− log n− log log n→ c,

1 np− log n− log log n→∞.

It follows that limn→∞ Pr(G is not Hamiltonian) = limn→∞ Pr(δ(G) < 2) = C > 0,
and the statement therefore holds.

• The sparse case: in Section 3.1 we provide the proof of the theorem, assuming
np − log n − log log n → ∞ and p 6 100 logn

n
. In the proof of this case, we aim to

show that with the appropriate probability for G ∼ G(n, p), G contains an
(
n
4
, 2
)
–

expander as a subgraph that is sparse, relative to the average degree of G. Then
invoking Lemma 5 we conclude that this subgraph can be made Hamiltonian with
high probability by adding boosters that are also edges of G.
In this range of p, our main concern is the existence of many vertices of degree
sublinear in np. This concern is addressed by showing that with high probability
these vertices are relatively few and far apart.
This proof, up to the use of the G(n, p) model and the tightness of the bounds
sought, is essentially due to [10].

• The dense case: in Section 3.2 we cover the case 100 logn
n

6 p 6 0.01. The proof
of this case is fairly similar to the proof of the sparse case, and in fact somewhat
simpler due to the fact that it is now highly unlikely for G to contain more than
one vertex of degree sublinear in np.
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• The very dense case: in Section 3.3 we provide the proof of the theorem, assuming
p > 0.01. In this range the graph is indeed typically very dense, and so removing a
minimum degree vertex will typically result in a graph whose independence number
is smaller than its vertex connectivity. This fact allows for the use of the Chvátal-
Erdős Theorem to prove Hamiltonicity of the original graph.

3.1 The sparse case

Recall that we assume here that np− log n− log log n→∞ and p 6 100 logn
n

. Define

d0 = 0.001 log n,

and for a graph G = (V,E), denote

SMALL(G) = {v ∈ V (G) : d(v) 6 d0}.

Now, define the following graph properties:

(P0) δ(G) > 2;

(P1) ∆(G) 6 800 log n;

(P2) |SMALL(G)| 6 n0.3;

(P3) SMALL(G) does not contain two vertices u, v such that dist(u, v) 6 4;

(P4) ∀U ⊂ V (G) s.t. |U | 6 n√
logn

: e(U) < |U |log
3
4n;

(P5) ∀U,W ⊂ V (G) disjoint s.t. |U | 6 n√
logn

, |W | 6 |U |log
1
4n : e(U,W ) < d0|U |

2
;

(P6) ∀U,W ⊂ V (G) disjoint s.t. |U | = |W | = n√
logn

: e(U,W ) > 1
2
n;

(P7) Every
(
n
4
, 2
)
-expanding subgraph Γ of G with at most (d0 + 1)n edges is either

Hamiltonian, or has a booster in E(G) \ E(Γ).

Lemma 12. Let p = p(n) = logn+log logn+ω(n)
n

, where ω(n) is such that limn→∞ ω(n) =∞
and p 6 100 logn

n
, and let G ∼ G(n, p) be a random graph. Then the probability that all

properties (P0)–(P7) hold is 1− (1 + o(1))Pr(G /∈ (P0)).

Proof. Clearly, the probability that exists a property among (P0)–(P7) that does not
hold is at least Pr(G /∈ (P0)), and at most

∑7
i=0 Pr(G /∈ (Pi)). We will prove that for all

1 6 i 6 7 one has Pr(G /∈ (Pi)) = o(Pr(G /∈ (P0))), and thus will establish the lemma.
First, we bound Pr(G /∈ (P0)) from below:

For a vertex v ∈ V (G), denote by Av the event “d(v) < 2”. So Pr(G /∈ (P0)) =

Pr
(⋃

v∈V (G) Av

)
. By Bonferroni’s inequality (Lemma 11):

Pr(G /∈ (P0)) >
∑

v∈V (G)

Pr(Av) −
∑

u,v∈V (G)

Pr(Au ∩ Av).
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Let u, v ∈ V (G). We first observe that

Pr(Av) > Pr(d(v) = 1)
= (n− 1)p(1− p)n−2

> e−
p

1−p
(n−2) · (n− 1)p

> e−np+O(np2)np.

Since log n < np 6 100 log n, we get:

Pr(Av) = e−np+O(np2)np >
1

n
· e−ω(n)+o(1).

Now, the probability of Au∩Av is at most the probability that eG({u, v}, V \{u, v}) 6
2:

Pr(Au ∩ Av) 6 Pr(eG({u, v}, V \ {u, v}) 6 2)
= (1− p)2n−6

(
(1− p)2 + (2n− 4)p(1− p) +

(
2n−4

2

)
p2
)

6 e−2np+o(1) ·O(n2p2)
= O

(
1
n2 · e−2ω(n)

)
.

And so overall we get:

Pr(G /∈ (P0)) > e−ω(n)+o(1) −
(
n

2

)
·O
(

1

n2
· e−2ω(n)

)
= (1− o(1))e−ω(n).

For the rest of the properties we bound their probabilities from above:

(P1). Let v ∈ V (G). By the union bound:

Pr(G /∈ (P1)) 6 n · Pr(d(v) > 800 log n),

and by Lemma 9 this gives:

Pr(G /∈ (P1)) 6 n

(
enp

800 log n

)800 logn

6 n−799 = o(Pr(G /∈ (P0))).

(P2). The probability of |SMALL(G)| > n0.3 is less than the probability that exists a set
S of size n0.3 with e(S, V \ S) 6 d0 · n0.3, so by the union bound:

Pr(G /∈ (P2)) 6

(
n

n0.3

) d0n0.3∑
k=0

Pr (e(S, V \ S) = k)

6

(
n

n0.3

)(
d0n

0.3 + 1
)
Pr
(
e(S, V \ S) = d0n

0.3
)
.

By Lemma 9 we can estimate the latter expression from above by:

n(0.7+o(1))n0.3

(
en1.3p

d0n0.3(1− p)

)d0n0.3

e−(1−o(1))n1.3p 6

(
n−0.2

(
100e

0.001 · 0.9

) logn
1000

)n0.3

.
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Finally, since
(

100e
0.001·0.9

)0.001
6 e0.015, and since ω(n) = o(n0.3 log n), we obtain:

Pr(G /∈ (P2)) 6 n−0.1n0.3

= o(Pr(G /∈ (P0))).

(P3). The probability that exist u, v ∈ V (G) such that u, v ∈ SMALL(G), dist(u, v) = k
is at most the probability that there is a path P of length k between them. By the
union bound this is at most(

n

k + 1

)
pk · Pr(Both endpoints of P have degree at most d0 | P ∈ G).

The probability that two endpoints u, v of a path both have at most d0 neighbours
is at most the probability that they have at most 2(d0− 2) edges that are not (u, v)
or a part if the path. By Lemma 9 we have

Pr(u, v ∈ SMALL(G)) 6 (2d0 − 3)

(
enp

(d0 − 2)(1− p)

)2d0−4

e−2p(n−6) 6 n0.03e−2np.

Apply the union bound once more, and sum over 1 6 k 6 4:

Pr(G /∈ (P3)) 6
4∑

k=1

(
n

k + 1

)
pkn0.03e−2np

6
4∑

k=1

n0.03e−2np · n · (100 log n)k

6
4 · 108 log4 n

n0.9
e−2ω(n) = o(Pr(G /∈ (P0))).

(P4). By the union bound and Lemma 9, the probability that exists a vertex set U ⊆ V (G)

of size |U | = k 6 n√
logn

that contradicts (P4), namely e(U) > k log
3
4 n, is at most

(
n

k

)(
e
(
k
2

)
p

k log
3
4 n

)k log
3
4 n

6

en
k
·

(
50ek · log

1
4 n

n

)log
3
4 n

k

6

(
50e

log0.24 n

)k log
3
4 n

6 (log n)−0.2k log
3
4 n.

Clearly for U of size k to have e(U) > |U | log
3
4 n, it has to be that k > log

3
4 n. So

by the union bound:

Pr(G /∈ (P4)) 6

n√
logn∑

k=log
3
4 n

(log n)−0.2k log
3
4 n = (1 + o(1))(log n)−0.2 log

3
2 n,

which is sufficiently small.
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(P5). Let U,W be two distinct vertex subsets, with |U | = k 6 n√
logn

. Clearly, if U,W

contradict (P5) and |W | < k log
1
4 n then there also exists W ′ such that U,W ′

contradict (P5), and |W ′| = k log
1
4 n; so it can be assumed that |W | = k log

1
4 n. By

Lemma 9 the probability that exist such U,W with e(U,W ) > d0k
2

is at most

(
n

k

)(
n

k log
1
4 n

)(
2ek log

1
4 n · p

d0

) d0k
2

6

(
en

k log
1
8 n

)2k log
1
4 n

·

(
2000ekp

log
3
4 n

) k logn
2000

6

(
k

n

)0.0004k logn

· log0.00015k logn n = (log n)−Ω(k logn),

and by the union bound we obtain

Pr(G /∈ (P5)) 6

n√
logn∑
k=1

(log n)−Ω(k logn) = (1 + o(1))(log n)−Ω(logn)

= o(Pr(G /∈ (P0))).

(P6). By the union bound:

Pr(G /∈ (P6)) =

(
n
n√

logm

)2

Pr

(
Bin

(
n2

log n
, p

)
<

1

2
n

)
6 eo(n)Pr

(
Bin

(
n2

log n
,
log n

n

)
<

1

2
n

)
.

By applying Lemma 10 we bound the expression above by:

exp
(
o(n)− n

8

)
= o(Pr(G /∈ (P0))).

(P7). By Lemma 5, a non-Hamiltonian
(
n
4
, 2
)
-expander has at least n2

32
boosters. By the

union bound, the probability of the existence of such a subgraph Γ ⊆ G, with none
of its boosters being an edge of G, is at most

Pr(G /∈ (P7)) 6
(d0+1)n∑
k=1

((n
2

)
k

)
pk(1− p)

n2

32

6 O(n log n) ·
(
enp

2d0

)(d0+1)n

e−
n2p
32

6 O(n log n) ·
(

100e

0.002

)0.002n logn

e−
n logn

32

6 exp((0.025− 0.03)n log n) = o(Pr(G /∈ (P0))).
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2

Lemma 13. Let G be a graph such that (P0), (P1) and (P6) hold. Then G contains a
subgraph Γ0 such that:

1. δ(Γ0) > 2,

2. Γ0 has at most d0n edges,

3. ∀v /∈ SMALL(G) : dΓ0(v) > d0,

4. ∀U,W ⊂ V (G) disjoint vertex sets s.t. |U | = |W | = n√
logn

: eΓ0(U,W ) > 1.

Proof. Consider the following construction of a random subgraph Γ0 of G with at most
d0n edges and minimum degree at least min{δ(G), d0}:
For each v ∈ V (G) define Ev = EG(v) if v ∈ SMALL(G), and let Ev be a random
subset of EG(v) of size exactly d0 chosen uniformly if v /∈ SMALL(G). Finally, set
E(Γ0) =

⋃
v∈V (G) Ev. Clearly, Γ0 has at most d0n edges and minimum degree at least

min{δ(G), d0}, and every vertex not in SMALL(G) has degree at least d0.
We will show that with positive probability (and in fact, with high probability) a random
subgraph Γ0 constructed in this manner is such that for every pair of disjoint sets U,W ⊆
V (G), with |U | = |W | = n√

logn
, the graph Γ0 has an edge between U and W , thus ensuring

the existence of the requested subgraph. By the union bound, the probability that exist
such U,W with no edge between them is at most(

n
n√

logn

)2 ∏
u∈U

Pr(eΓ0(u,W ) = 0) 6 eo(n) ·
∏
u∈U

(
dG(u)−eG(u,W )

d0

)(
dG(u)
d0

)
6 eo(n) ·

∏
u∈U

e
− d0·eG(u,W )

dG(u)

6 exp

(
− d0

maxu∈U dG(u)
· eG(U,W ) + o(n)

)
,

the second inequality holding by Lemma 8.
By (P1) we have that maxu∈U dG(u) 6 800 log n, and by (P6) we have eG(U,W ) > 1

2
n,

so the above expression is at most

exp

(
−0.001

1600
n+ o(n)

)
= o(1).

2

Lemma 14. Let G be a graph such that (P0)–(P6) hold. Then G contains a subgraph
Γ0 such that:

1. Γ0 has at most d0n edges,

2. Γ0 is an
(
n
4
, 2
)
-expander.
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Proof. We will show that the subgraph Γ0 constructed in Lemma 13 is an
(
n
4
, 2
)
-expander.

Since it has has at most d0n edges, this will finish the proof.
Let U ⊆ V (G), |U | = k 6 n

4
. We will show that indeed |NΓ0(U)| > 2k.

Denote U1 = U∩SMALL(G), U2 = U\U1 and let k1, k2 be the sizes of U1, U2, respectively.
Consider two cases:

1. n√
logn

6 k2 6 n
4
. We know that |NΓ0(U2)| > n − n√

logn
, since otherwise the sets

U2, V (G) \N(U2) contradict the conclusion of Lemma 13. By (P2) we know that
k1 6 |SMALL(G)| 6 n0.3, so overall:

|NΓ0(U)| > |NΓ0(U2) \ U1| > n− n√
log n

− n0.3 >
n

2
> 2k.

2. k2 6 n√
logn

. By Lemma 13 we know that δ(Γ0) > 2, and by (P3) we know that no
two vertices in U1 have distance less than 5. More specifically, every vertex of U1

has at least two neighbours, and no two vertices share any common neighbour, so
|NΓ0(U1)| > 2k1.
Next, we know that all vertices in U2 have degree at least d0 in Γ0, and by (P4) we

have eΓ0(U2) 6 eG(U2) 6 k2 · log
3
4 n, so:

e(U2, NΓ0(U2)) > k2 · d0 − k2 · log
3
4 n >

d0k2

2
.

This means that |NΓ0(U2)| > k2 · log
1
4 n, since otherwise U2, NΓ0(U2) contradict

(P5).
Finally, observe that, since the vertices of U1 are at distance at least 5 from each
other, we have:

∀u ∈ U2 : |(U1 ∪NΓ0(U1)) ∩ (u ∪NΓ0(u))| 6 1,

which means |(U1 ∪NΓ0(U1)) ∩ (U2 ∪NΓ0(U2))| 6 k2. So overall:

|NΓ0(U)| = |NΓ0(U2) \ U1|+ |NΓ0(U1) \ (U2 ∪NΓ0(U2)|
> k2 · log

3
4 n− k2 + 2k1 − k2 > 2k1 + 2k2 = 2k.

2

Corollary 15. Let G be a graph such that (P0)–(P7) hold. Then G is Hamiltonian.

Proof. By Lemma 14, G contains a subgraph Γ0 which is an
(
n
4
, 2
)
-expander with at

most d0n edges. By (P7), if Γ0 is not Hamiltonian then it has a booster in E(G)\E(Γ0).
Add one such booster to Γ0 to obtain a new subgraph of G, Γ1. This new subgraph is also
an
(
n
4
, 2
)
-expander, this time with at most d0n+ 1 edges, and so is either Hamiltonian or

has a booster in E(G) \E(Γ1). This process can be repeated until we find a subgraph Γi
which is Hamiltonian. Since in each step the length of a longest path grows by at least
1, at most n steps are required, so e(Γi) = e(Γ0) + i 6 d0n+ n, which means the process
can always continue until Hamiltonicity is achieved. 2

Theorem 1 for p 6 100 logn
n

is obtained directly from Lemma 12 and Corollary 15.
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3.2 The dense case

Recall that we assume here that 100 logn
n

6 p 6 0.01. Define

t0 = 0.002 · np,

and for a graph G = (V,E), denote

SMALL(G) = {v ∈ V (G) : d(v) 6 t0}.

Now, define the following graph properties:

(Q0) δ(G) > 2;

(Q1) ∆(G) 6 7np;

(Q2) |SMALL(G)| 6 1;

(Q3) ∀U,W ⊂ V (G) disjoint s.t. |U | = |W | = 10−13n : e(U,W ) > 10−27n2p;

(Q4) ∀U,W ⊂ V (G) disjoint s.t. t0
3
−1 6 |U | 6 10−13n, |W | = 2|U |+3 : e(U,W )+e(U) <

t0|U |;

(Q5) Every
(
n
4
, 2
)
-expanding subgraph Γ of G with at most (t0 + 1)n edges is either

Hamiltonian, or has a booster in E(G) \ E(Γ).

Lemma 16. Let p = p(n) be such that 100 logn
n

6 p 6 0.01, and Let G ∼ G(n, p) be
a random graph. Then the probability that all properties (Q0)–(Q5) hold is 1 − (1 +
o(1))Pr(G /∈ (Q0)).

Proof. First, bound Pr(G /∈ (Q0)) from bellow. Recall from the proof of Lemma 12
that

Pr(G /∈ (Q0)) >
∑

v∈V (G)

Pr(Av) −
∑

u,v∈V (G)

Pr(Au ∩ Av).

Let u, v ∈ V (G), so:

Pr(Av) = Pr(d(v) = 1)

> e−
p

1−p
(n−2)np

> e−(1.1+o(1))np ;

Pr(Au ∩ Av) 6 Pr(eG({u, v}, V \ {u, v}) 6 2)

6 e−(2−o(1))np.

And overall we get:

Pr(G /∈ (Q0)) > n · e−(1.1+o(1))np −
(
n

2

)
e−(2−o(1))np > e−(1.1+o(1))np − e−1.5np > e−1.2np.

Next, bound from above the probabilities of (Q1)–(Q5):

the electronic journal of combinatorics 25 (2018), #P00 12



(Q1). By Chernoff’s inequality (Lemma 10) with δ = 6 and the union bound we get

Pr(G /∈ (Q1)) 6 n · Pr(Bin(n− 1, p) > 7np) 6 ne−2np = o(Pr(G /∈ (Q0)).

(Q2). The probability that SMALL(G) contains more than one vertex is at most the
probability that exist u, v ∈ V (G) such that e({u, v}, V (G) \ {u, v}) 6 2t0. So by
the union bound:

Pr(G /∈ (Q2)) 6

(
n

2

)(
1 +

2t0∑
k=1

(
2enp

k(1− p)

)k)
e−2(n−2)p

6 n2t0 ·
(

enp

0.99t0

)2t0

e−2(n−2)p

6 exp(3 log n+ 15t0 − 2np+ 2p) 6 e−1.9np,

which is sufficiently small.

(Q3). By Chernoff’s inequality and the union bound we get that Pr(G /∈ (Q3)) is at most(
n

10−13n

)2

· Pr
(
Bin

(
10−26n2, p

)
6 10−27n2p

)
6 4ne−

1
4
n2p = e−Ω(n2p),

and thus is small enough.

(Q4). By the union bound:

Pr(G /∈ (Q4)) 6
10−13n∑
k=

t0
3
−1

(
n

k

)(
n

2k + 3

)(
ep ·

(
k(2k + 3) +

(
k
2

))
t0k

)t0k

6
10−13n∑
k=

t0
3
−1

(
n4 · e−21t0

)k
6

10−13n∑
k=

t0
3
−1

e−t0k

6 (1 + o(1))e−Ω(t02) = o(Pr(G /∈ (Q0)).

(Q5). Similarly to (P7) in the proof of Lemma 12, the probability of the existence of such
a subgraph Γ ⊆ G, with none of its boosters being an edge of G, is at most

Pr(G /∈ (P7)) 6
(t0+1)n∑
k=1

((n
2

)
k

)
pk(1− p)

n2

32

6 eo(n) ·
(
enp

2t0

)(t0+1)n

e−
n2p
32

6 eo(n) ·
( e

0.004

)0.003n2p

e−
n2p
32

6 exp((0.025− 0.03)n2p) = o(Pr(G /∈ (P0))).
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2

Lemma 17. Let G be a graph such that (Q0), (Q1) and (Q3) hold. Then G contains a
subgraph Γ0 such that:

1. δ(Γ0) > 2,

2. Γ0 has at most t0n edges,

3. ∀v /∈ SMALL(G) : dΓ0(v) > t0,

4. ∀U,W ⊂ V (G) disjoint vertex sets s.t. |U | = |W | = 10−13n : eΓ0(U,W ) > 1.

Proof. Recall the random subgraph construction described in the proof of Lemma 13.
Consider the same construction, with t0 replacing d0. The probability of the existence of
U,W ⊂ V (G) with |U | = |W | = 10−13n such that no edges cross between them is at most

exp

(
− t0

maxu∈U dG(u)
· eG(U,W ) + o(n)

)
,

and by assuming G ∈ (Q1), (Q3) we finally get

6 exp

(
−0.002

7
10−13n2p+ o(n)

)
= o(1).

2

Lemma 18. Let G be a graph such that (Q0)–(Q4) hold. Then G contains a subgraph
Γ0 such that:

1. Γ0 has at most t0n edges,

2. Γ0 is an
(
n
4
, 2
)
-expander.

Proof. We will show that the subgraph Γ0 constructed in Lemma 17 is an
(
n
4
, 2
)
-expander.

Let U ⊂ V (G) be a vertex subset of size k 6 n
4
. We will show that |NΓ0(U)| > 2k.

Consider the following cases:

1. k = 1. Since δ(Γ0) > 2 we get |N(U)| > 2 = 2k.

2. 2 6 k 6 t0
3

. Recall that by the construction of Γ0, the degree in Γ0 of any vertex v ∈
V (G) \ SMALL(G) is at least t0. By (Q2), |SMALL(G)| 6 1, so U \ SMALL(G)
is non-empty. Let v be a member of U \ SMALL(G). It holds that

|N(U)| > |N({v}) \ eΓ0(v, U)| > t0 − k > 2k.

3. t0
3
6 k 6 10−13n. Let U ′ := U \ SMALL(G) and W := N(U) ∪ (U ∩ SMALL(G)).

From (Q2) we have t0
3
− 1 6 |U ′| 6 10−13n. Since all vertices of U ′ have degree at

least t0, and all edges touching U ′ have their other end in either U ′ or W , we get
that e(U ′) + e(U ′,W ) > t0|U ′|. By (Q4) this means

|N(U)| > |W | − 1 > 2|U ′|+ 3− 1 > 2k.
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4. 10−13n 6 k 6 n
4
. Observe that by Lemma 17: |V (G) \ (U ∪N(U))| 6 10−13n. So

|N(U)| > n− k − 10−13 >
n

2
> 2k.

2

Corollary 19. Let G be a graph such that (Q0)–(Q5) hold. Then G is Hamiltonian.

Proof. The proof is essentially identical to the proof of Corollary 15. 2

Theorem 1 for 100 logn
n

6 p 6 0.01 is obtained from Lemma 16 and Corollary 19.

3.3 The very dense case

Recall that we assume here that p > 0.01. Define the following graph properties:

(R0) δ(G) > 2;

(R1) There is at most one vertex v ∈ G s.t. d(v) 6 np
10

;

(R2) ∀U,W ⊂ V (G) disjoint s.t. |U | = |W | = np
30

: e(U,W ) > 1;

(R3) α(G) 6 np
40

.

Lemma 20. Let p = p(n) be such that p > 0.01, and Let G ∼ G(n, p) be a random graph.
Then the probability that all properties (R0)–(R3) hold is 1− (1 + o(1))Pr(G /∈ (R0)).

Proof. First, bound Pr(G /∈ (R0)) from below by Bonferroni’s inequality.
Let u, v ∈ V (G), so:

Pr(Av) = Pr(d(v) = 0) + Pr(d(v) = 1)

= (1− p)n−1 + (n− 1)p(1− p)n−2

= (1− p)(1+o(1))n ;

Pr(Au ∩ Av) 6 Pr(eG({u, v}, V \ {u, v}) 6 2)

= (1− p)(2−o(1))n.

And overall we get:

Pr(G /∈ (R0)) > n · (1− p)(1+o(1))n −
(
n

2

)
(1− p)(2−o(1))n = (1− p)(1+o(1))n.

Next, bound from above the probabilities of (R1)–(R3):
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(R1). The probability that G contains more than one vertex of degree at most np
10

is at most
the probability of the existence of u, v ∈ V (G) such that e({u, v}, V (G) \ {u, v}) 6
np
5

. So by the union bound:

Pr(G /∈ (R1)) 6

(
n

2

)(
1 +

0.2np∑
k=1

(
2enp

k(1− p)

)k)
(1− p)2(n−2)

6 (10e)0.2np(1− p)(1.8−o(1))n

6 (1− p)(1.1−o(1))n · exp ((0.2 log(10e)− 0.7)np)

6 (1− p)(1.1−o(1))n = o(Pr(G /∈ (R0))).

(R2). By the union bound:

Pr(G /∈ (R2)) 6

(
n
np
30

)2

(1− p)(
np
30 )

2

= (1− p)Ω(n2) = o(Pr(G /∈ (R0))).

(R3). Similarly, by the union bound:

Pr(G /∈ (R3)) 6

(
n
np
40

)
(1− p)(

np
40
2 ) = (1− p)Ω(n2) = o(Pr(G /∈ (R0))).

2

Lemma 21. Let G be a graph such that (R0)–(R3) hold. Then G is Hamiltonian.

Proof. Denote by v a vertex of G such that d(v) = δ(G), and by G′ the graph obtained
from G by removing v and all its edges.
We observe that the properties (R2), (R3) hold for G′, since removing vertices does not
affect these properties. Furthermore, by property (R1) we have δ(G′) > np

10
−1. We claim

that these are sufficient for showing that κ(G′) > np
30

.
Indeed, suppose towards contradiction that there exists a set U ⊆ V (G′) of size np

30
such

that removing the vertices of U disconnects G′, and denote by W1,W2 two components
in the resulting graph (WLOG we assume |W1| 6 |W2|). Consider the following cases:

1. |W1| 6 np
30

. Let w ∈ W1. Since W1 is a component of G′ − U , we know that
NG′(w) ⊆ W1 ∪ U . But

|NG′(w)| = dG′(w) >
np

10
− 1 > |W1|+ |U | ,

a contradiction.

2. |W1| > np
30

. Since |W2| > |W1| > np
30

and eG′(W1,W2) = 0, this is a contradiction to
(R2).

Now, from (R3) we get that α(G′) 6 np
40
< κ(G′). By Theorem 7 this means that G′ is

Hamilton–connected.
We now return to G. By (R0), v has at least two neighbours, say u1, u2. Since G′ is
Hamilton–connected, it contains a Hamilton path P with u1, u2 being its two endpoints.
Now (u1, v), (v, u2),P is a Hamilton cycle in G. 2
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4 Perfect matching

We provide a sketch of a proof for Theorem 2.
Observe that similarly to the case of Hamilton cycles, for the very sparse case, here defined
as p(n) such that np − log n does not tend to infinity, the result is already known. This
is due to the classical result by Erdős and Rényi, stating:

lim
n→∞

Pr(G contains a perfect matching) =


0 np− log n→ −∞,
e−e

−c
np− log n→ c,

1 np− log n→∞.

Which means that limn→∞ Pr(G contains no perfect matching) = limn→∞ Pr(δ(G) = 0) =
C > 0, which suffices.
We also observe that the very dense case of p > 0.01 was proven in Section 3.3 up to a
small adjustment. Recall that in the proof of Lemma 21 we showed that in a graph with
properties (R1)–(R3), removing a minimum degree vertex yields a Hamilton–connected
graph. Replace the property (R0) with a new property (R0’): δ(G) > 0. By taking the
minimum degree vertex and a Hamilton path starting at one of it’s neighbours, we get a
Hamilton path in G, which becomes a perfect matching by taking every other edge. Since
like (R0), Pr(G /∈ (R0’)) = (1− p)(1+o(1))n, we obtain the desired result.
Towards the goal of providing a proof idea for other ranges of p(n), we introduce the
notion of staples, which will be used here similarly to the way boosters were used in the
proof of Theorem 1:

Definition 22. Let G = (V,E) be a graph. A non-edge (u, v) ∈ E(G) is called a staple if
the graph G′ with edge set E(G′) = E(G)∪{(u, v)} has a perfect matching or a matching
larger than a maximum matching of G.

Similarly to Lemma 5, in [6] the following is proved (see Lemma 6.3):

Lemma 23. Let G = (V,E) be a graph with no perfect matching, and assume that G is
a (k, 1)-expander. Then G has at least

(
k+1

2

)
staples.

This enables us to take an approach similar to the proof in Section 3, following similar
steps:

(i) Show that for G ∼ G(n, p), the probability that G does not contain a relatively
sparse (k, 1)–expanding subgraph, for some k linear in n, is (1 + o(1))Pr(δ(G) = 0);

(ii) Show that the probability that G does not contain a staple for each of its sparse
(k, 1)–expanding subgraphs is o(Pr(δ(G) = 0)).

Recalling Corollary 15, this suffices for proving Theorem 2.
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[9] J. Komlós and E. Szemerédi, Limit distributions for the existence of Hamilton circuits
in a random graph, Discrete Mathematics 43 (1983), 55–63.

[10] M. Krivelevich, Long paths and Hamiltonicity in random graphs, Random Graphs,
Geometry and Asymptotic Structure, London Mathematical Society Student Texts
84, Cambridge University Press (2016), 4–27.

[11] C. McDiarmid and N. Yolov, Hamilton cycles, minimum degree and bipartite holes,
Journal of Graph Theory 86 (2017), 277–285.

[12] L. Pósa, Hamiltonian circuits in random graphs, Discrete Mathematics 14 (1976),
359–364.

the electronic journal of combinatorics 25 (2018), #P00 18


