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Abstract

An edge (vertex) coloured graph is rainbow-connected if there is a rainbow path between any two
vertices, i.e. a path all of whose edges (internal vertices) carry distinct colours. Rainbow edge (vertex)
connectivity of a graph G is the smallest number of colours needed for a rainbow edge (vertex) colouring
of G. In this paper we propose a very simple approach to studying rainbow connectivity in graphs. Using
this idea, we give a unified proof of several known results, as well as some new ones.

1 Introduction

An edge colouring of a graph G is rainbow if there is a rainbow path between any two vertices, that is a path
on which all edges have distinct colours. Any connected graph G of order n can be made rainbow-connected
using n − 1 colours by choosing a spanning tree and giving each edge of the spanning tree a different colour.
Hence we can define the rainbow connectivity, rc(G), as the minimal number of colours needed for a rainbow
colouring of G.

Rainbow connectivity is introduced in 2008 by Chartrand et al. [9] as a way of strengthening the notion
of connectivity, see for example [6], [8], [10], [13], [17], and the survey [18]. The concept has attracted a
considerable amount of attention in recent years. It is also of interest in applied settings, such as securing
sensitive information transfer and networking. For instance, [7] describe the following setting in networking:
we want to route messages in a cellular network such that each link on the route between two vertices is
assigned with a distinct channel. Then, the minimum number of channels to use is equal to the rainbow
connectivity of the underlying network.

We are interested in upper bounds for rainbow connectivity, first studied by Caro et al. [6]. The trivial
lower bound is rc(G) ≥ diam(G), and it turns out that for many classes of graphs, this is a reasonable guess
for the value of rainbow connectivity. Caro et al. [6] showed that a connected graph of order n and minimum
degree δ ≥ 3 has rainbow connectivity at most 5n

6 . Since the diameter of such a graph is at most 3n
δ+1 (see, e.g.,

[11]), it is natural to ask whether the rainbow connectivity of G is of the same order. Krivelevich and Yuster
[17] showed that indeed rc(G) ≤ 20n

δ . Then Chandran et al. [8] settled this question by proving rc(G) ≤ 3n
δ+1 +3,

which is asymptotically tight.
A random r-regular graph of order n is a graph sampled from Gn, r, which denotes the uniform probability

space of all r-regular graphs on n labelled vertices. These graphs were extensively studied in the last 30 years,
see, e.g., [20]. In this paper we consider Gn, r for r constant and n→ ∞. We say that an event holds with high
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probability (whp) if its probability tends to 1 as n tends to infinity, but only over the values of n for which nr
is even (so that Gn, r is non-empty).

A random r-regular graph has quite strong connectivity properties, for example, the diameter of Gn, r is
whp asymptotic to log n

log(r−1) , see [5]. The natural question of rainbow connectivity of random regular graphs

was first studied by Frieze and Tsourakakis [13], who showed that whp rc
(
Gn, r

)
= O

(
logφr n

)
, for a constant

φr > 2. Dudek et al. [10] improved this bound to rc
(
Gn, r

)
= O(log n) whp, which is the correct dependence

on n. We will return to this result later.
The aim of this note is to present a simple approach which immediately implies results on rainbow colour-

ing of several classes of graphs. It provides a unified approach to various settings, yields new theorems,
strengthens some of the earlier results and simplifies the proofs. It is based on edge- and vertex-splitting.

The main idea of the edge-splitting lemma is simple: we decompose G into two edge-disjoint spanning
trees T1 and T2 with a common root vertex and small diameters. We use different palettes for edges of T1

and T2, ensuring that each tree contains a rainbow path from any vertex to the root. Hence if we can get the
diameters of T1 and T2 ‘close’ to the diameter of G (say within a constant factor), then we have obtained a
strong result.

We exhibit a few applications of the lemma. First we use it to give a straightforward proof of the result of
Krivelevich and Yuster [17], that is

Theorem 1.1. For a connected n-vertex graph G of minimum degree δ ≥ 4, rc(G) ≤
16n
δ

.

Next we turn to random regular graphs. The rainbow colouring of Gn, r of Dudek et al. [10] typically
uses Ω(r log n) colours, which for large r is significantly bigger than the diameter of Gn, r. Using our splitting
lemma we can improve it to an asymptotically tight bound.

Theorem 1.2. There is an absolute constant c such that for r ≥ 5 , rc(Gn, r) ≤
c log n
log r

whp.

For r ≥ 6, the theorem is an immediate consequence of the contiguity of different models of random
regular graphs. With little extra work, our approach also works for 5-regular graphs. We would like to point
out that the proof of Dudek et al. works starting from r = 4.

The question of which characteristics of Gn, r ensure small rainbow connectivity arises naturally. Recalling
that expander graphs also have diameter logarithmic in n, it makes sense to look at expansion properties. The
following theorem can be viewed as a generalisation of the previous result on Gn, r.

Theorem 1.3. Let ε > 0. Let G be a graph of order n and degree r whose edge expansion is at least εr.
Furthermore, assume that r ≥ max

{
64ε−1 log

(
64ε−1

)
, 324

}
. Then rc(G) = O

(
ε−1 log n

)
.

In particular, this theorem applies to (n, r, λ)-graphs with λ ≤ r(1 − 2ε), i.e. n-vertex r-regular graphs whose
all eigenvalues except the largest one are at most λ in absolute value.

Krivelevich and Yuster [17] have introduced the corresponding concept of rainbow vertex connectivity
rvc(G), the minimal number of colours needed for a rainbow colouring of vertices of G. The only point to
clarify is that a path is said to be rainbow if its internal vertices carry distinct colours. The easy bounds
diam(G) − 1 ≤ rvc(G) ≤ n also hold in this setting. Krivelevich and Yuster have demonstrated that it is
impossible to bound the rainbow connectivity of G in terms of its vertex rainbow connectivity, or the other
way around. They also bound rvc(G) in terms of the minimal degree.

Our approach essentially works for vertex colouring as well. In Section 3 we present the vertex-splitting
lemma. It is then used to prove the vertex-colouring analogue of Theorem 1.2 on random regular graphs.
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Theorem 1.4. There is an absolute constant c such that whp rvc(Gn, r) ≤
c log n
log r

for all r ≥ 28.

2 Edge rainbow connectivity

2.1 The edge-splitting lemma

We state and prove the main lemma. The rest of the section uses the same notation for spanning subgraphs
G1 and G2.

Lemma 2.1. Let G = (V, E) be a graph. Suppose G has two connected spanning subgraphs G1 = (V, E1) and
G2 = (V, E2) such that |E1 ∩ E2| ≤ c. Then rc(G) ≤ diam(G1) + diam(G2) + c.

Proof. Let B = E1 ∩ E2. Colour the edges of B in distinct colours. These colours will remain unchanged, and
the remaining edges get coloured according to graph distances in G1 and G2, denoted by d1 and d2. Choose
an arbitrary v ∈ V and define distance sets U j = {u ∈ V : d1(v, u) = j} and W j = {u ∈ V : d2(v, u) = j}. For
1 ≤ j ≤ diam(G1), colour the edges between U j−1 and U j with colour a j. Similarly, using a new palette (b j),
colour the edges between W j−1 and W j with colour b j for each 1 ≤ j ≤ diam(G2). The colouring indeed uses
at most diam(G1) + diam(G2) + c colours.

To see that it is a rainbow colouring, look at two vertices x1 and x2 in V . Let Pi be a shortest path in Gi

from xi to v. By our definition of colouring on distance sets, both paths P1 and P2 are rainbow. If they are
edge-disjoint, the concatenation is a rainbow path between x1 and x2. Otherwise, P1 and P2 can only intersect
in edges of B. If this occurs, we walk from x1 along P1 to the earliest common edge. We use this edge to
switch to P2 and walk to x2. �

2.2 Rainbow connectivity and minimum degree

In this setting, the best possible result has been shown by Chandran et al [8]. Namely, a connected graph G of
order n and minimum degree δ satisfies rc(G) ≤ 3n

δ+1 + 3. We show how the splitting lemma can be used with
basic graph theory to obtain a good upper bound, rc(G) ≤ 16n

δ .

Proof of Theorem 1.1. Let G = (V, E) be as in the statement. We split G into two spanning subgraphs of
minimum degree at least δ−1

2 . First assume that all vertices of G have even degree. Then, using connectedness
of G, order its edges along an Eulerian cycle e1, e2 . . . em, and define

F1 = {e j : j ∈ [m] even} and F2 = {e j : j ∈ [m] odd}.

Edges around each vertex are coupled into adjacent pairs e je j+1, so this is indeed a balanced split. Let
Hi = (V, Fi) be the associated graphs.

To apply this splitting to general G, note that the number of vertices of odd degree is even, so we can add
a matching M between those vertices. Even if G′ = (V, E ∪ M) contains double edges, it still has an Eulerian
cycle. We apply the above procedure to G′, and then remove the auxiliary edges M. The end result is that a
vertex of odd degree d in G has degree d±1

2 in Hi, so indeed subgraphs Hi have minimum degree at least δ−1
2 .

The graph H1 may not be connected. But since the minimum degree of this graph is δ−1
2 , each connected

component has order at least δ
2 . Hence the number of components of H1 is at most 2n

δ , so we can add a
set B1 ⊂ E such that G1 = (V, F1 ∪ B1) is connected, and |B1| ≤

2n
δ . We define the set B2 analogously. An

elementary graph-theoretic result (mentioned in the introduction, see also [11]) shows that subgraphs G1
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and G2 of G have diameters at most 3n
δ−1

2 +1
≤ 6n

δ . Applying the edge-splitting lemma to G1 and G2 gives

rc(G) ≤ 6n
δ + 6n

δ + 4n
δ ≤

16n
δ . �

2.3 Expanders

We adopt a weak definition of an expander. As before, G = (V, E), the degree r is fixed and the order n tends
to infinity. For S ⊂ V , we define out(S ) to be the set of edges with exactly one endpoint in S . A graph G has
edge expansion Φ if every set S ⊂ V with |S | ≤ n

2 satisfies |out(S )| ≥ Φ|S | .
Frieze and Molloy [12] have shown using the Lovász Local Lemma that the natural random k-splitting of

E gives k expander graphs with positive probability. We state their theorem for k = 2.

Theorem 2.2. Let r be a natural number, λ > 0 a real number, and G = (V, E) an r-regular graph with edge
expansion Φ. Suppose

Φ

log r
≥ 8λ−2 and

r
log r

≥ 14λ−2.

Then there is a partition E = E1 ∪ E2 such that both subgraphs Gi = (V, Ei) have edge expansion at least
(1 − λ)Φ

2 .

Under stronger conditions on expansion, they also give a randomised polynomial-time algorithm for the
splitting, which immediately gives a rainbow colouring.

Proof of Theorem 1.3. Let G be an r-regular graph with edge expansion εr. We will apply Theorem 2.2 with
λ = 1

2 . The hypothesis r ≥ 64ε−1 log
(
64ε−1

)
ensures that εr

log r ≥ 32, and the second inequality follows from
r ≥ 324. We get a partition E = E1 ∪ E2 such that each graph Gi = (V, Ei) has edge expansion at least εr

4 .
The maximum degree of Gi is at most r, so every set S of order |S | ≤ n

2 has a neighbourhood Γ(S ) of order
|Γ(S )| ≥

(
1 + ε

4

)
|S |. Thus the number of vertices within distance at most l from any vertex in Gi is at least

min
{
(1 + ε/4)l, n/2

}
and therefore diam(Gi) = O

(
ε−1 log n

)
.

Applying Lemma 2.1 gives rc(G) ≤ diam(G1) + diam(G2) = O
(
ε−1 log n

)
. �

2.4 Random regular graphs

Two sequences of probability spaces Fn and Gn on the same underlying measurable spaces are called contigu-
ous, written Fn ≈ Gn, if a sequence of events (An) occurs whp in Fn if and only if it occurs whp in Gn. Let G
and G′ be two models of random graphs on the same vertex set. We get a new random graph G by taking the
union of independently chosen graphs G1 ∈ G and G2 ∈ G

′, conditional on the event E(G1)∩ E(G2) = ∅. The
probability space of such disjoint unions is denoted by G ⊕ G′.

It is known that Gn, r is contiguous with any other model which builds an r-regular graph as an edge-
disjoint union of random regular graphs and Hamiltonian cycles. This goes back to the work of Janson [14],
Robinson and Wormald [19], and is also laid out in the survey [20]. The specific results we use in proving
Theorem 1.2 are Gn, r+r′ ≈ Gn, r ⊕Gn, r′ and Gn, r+2 ≈ Gn, r ⊕ Hn, where Hn is a random Hamiltonian cycle on
[n]. Recall that Theorem 1.2 says that for r ≥ 5, rc(Gn, r) ≤

c log n
log r whp.

Proof of Theorem 1.2 for r ≥ 6. As usually, we assume that rn is even, and define ri so that Gn, ri are non-
empty for i = 1, 2. If r is odd, then n is even and we can set ri = r±1

2 . Otherwise, we set r1 = r2 = r
2 or

ri = r
2 ± 1 as appropriate. The observation at the end of the proof resolves the case r = 6.
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Let Gi be a random ri-regular graph, ri ≥ 3. Then with high probability diam(Gi) ≤
(1+o(1)) log n

log(ri−1) ≤
c log n
2 log r ,

where c is a suitable constant. Let G be the union of two such edge-disjoint graphs G1 and G2. The splitting
lemma gives rc(G) ≤ c log n

log r .

Since G was a random element of Gn, r1 ⊕Gn, r2 , the random r-regular graph has the same property whp.
For r = 6 and odd n, we take G to be sampled from Hn ⊕ Hn ⊕ Hn. The first two Hamiltonian cycles

belong to G1, resp. G2. We split the edges of the third Hamiltonian cycle Hn alternately, so that n−1
2 edges are

assigned to G1 and n+1
2 to G2. Then we can quote Proposition 2.4, a result of Bollobás and Chung which says

that the union of a Hamiltonian cycle and a random perfect matching has whp logarithmic diameter [4]. �

The remainder of the section deals with the case r = 5. Since Gn, 5 ≈ Gn, 1 ⊕ Hn ⊕ Hn, we can model
our 5-regular graph as a union of two random graphs G1 and G2, where each Gi is an edge-disjoint union of
a Hamiltonian cycle and a matching of size

⌊
n
4

⌋
. The following theorem says that whp each Gi has diameter

O(log n), so rc(G) = O(log n) whp follows from the splitting lemma.

Theorem 2.3. Let G be a random graph on [n], the union of the cycle (1, 2, . . . , n, 1) and a random matching
on [n] consisting of

⌊
n
4

⌋
edges. Then G has diameter O(log n) whp.

The theorem can be proved by adapting the argument of Krivelevich et al. [16], who showed that starting
from a connected n-vertex graph C and in addition, turning each pair of vertices into an edge with probability
ε
n , the resulting graph typically has logarithmic diameter. This is very similar to what we need when C is
a Hamiltonian cycle. However, since we are adding a random matching rather than independent edges, our
model is slightly different. Instead of reproving the result of [16] in our setting, we decided to give a different
(very short) proof relying on the following result (see [20]), which by contiguity simply says that Gn, 3 has
logarithmic diameter whp. Without assuming that the cycle and matching are edge disjoint this was proved
earlier by Bollobás and Chung [4].

Proposition 2.4. Let H be a graph formed by taking a disjoint union of a random matching of size
⌊

n
2

⌋
and

an n-cycle. Then the diameter of H is whp (1 + o(1)) log2 n.

Denote m =
⌊

n
4

⌋
. Note that G in Theorem 2.3 can be built in two steps as follows. First we select a

random subset B = {b1, b2, . . . , b2m} ⊂ [n] of order 2m, and then independently a random perfect matching
on {b1, b2, . . . , b2m}. Throughout the proof we identify the vertices of G with natural numbers up to n and
assume b1 < b2 < · · · < b2m.

Given a subset B, define variables Yi = bi+1 − bi for i = 1, . . . 2m − 1. Moreover, we define Y0 = b1 and
Y2m = n − b2m to record the positions of the first and the last vertex in B. An important observation is that
a random set B of order 2m induces a random sequence (Y0, Y1, . . . ,Y2m) with Yi ≥ 1 for i < 2m, Y2m ≥ 0
and

∑2m
i=0 Yi = n and, vice versa, given such a random sequence, we can uniquely reproduce a corresponding

set B, which is uniformly distributed over all subsets of [n] of order 2m. To complete the proof, we need the
following simple lemma about (Yi).

Lemma 2.5. Let (Y0, Y1, . . . ,Y2m) be a random sequence as defined above. Fix a set of indices 0 ≤ i1 < i2 <
· · · < is < 2m. Then P

[
Y2m > log n

]
= o(1) and

P

 s∑
j=1

Yi j > 10s

 ≤ e−2s.
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Proof of Lemma 2.5. Since permuting the variables Yi, i < 2m, does not change the probability space, without
loss of generality we may assume (i1, . . . is) = (0, . . . , s − 1). Recall that Yi were defined by Yi = bi+1 − bi, so
that

∑s−1
i=0 Yi > 10s means exactly that there are at most s− 1 vertices of B among the first 10s vertices. On the

other hand, |B ∩ [10s]| is a hypergeometric random variable with mean 2m
n · 10s. Therefore, by the standard

tail bounds (see, e.g., Theorem 2.10 in [15]).

P

 s−1∑
i=0

Yi > 10s

 = P [|B ∩ [10s]| ≤ s − 1] ≤ e−
2( 20m

n −1)2
s2

10s ≤ e−2s.

Similarly, Y2m > log n means that no vertex of B is in the interval [n − log n, n]. The probability of this event
is

(
n−log n

2m

)
/
(

n
2m

)
= o(1). �

Proof of Theorem 2.3. As we explained, our G can be constructed as follows. Start with a cycle b1b2 . . . b2mb1.
Pick a random perfect matching M on B = {b1, b2, . . . b2m} whose edges do not coincide with any edges of the
cycle. Let H = H(M) be the graph on B formed as the union of the cycle b1b2 . . . b2mb1 and the matching M.
Choose a random sequence (Y0, Y1, . . . ,Y2m) as above. The graph G on [n] is obtained by subdividing each
edge bibi+1 into Yi edges. The exception is the edge b2mb1, which is subdivided into Y2m + Y0 edges. Note
that M and (Yi) are chosen independently. Since M is random, by Proposition 2.4 whp H(M) has diameter at
most (1 + o(1)) log2(2m) ≤ 1.5 log n − 1. Condition on this event, and fix an arbitrary M which satisfies the
condition.

We will show that for random (Yi), whp G will have small diameter. We further condition on the event
that Y2m ≤ log n, which by the previous lemma holds whp. Let s = 1.5 log n. Take the vertices u and v in
[n], and single out the segments to which they belong, bi ≤ u < bi+1 and b j ≤ v < b j+1 (i and j are possibly
0 or 2m − 1). H contains a path P between bi and b j of length at most s − 1, which we turn into a path in
G as follows. If an edge on P belongs to the matching M, then it is also an edge of G. Otherwise, if the
edge has form bkbk+1, we replace it by the segment bk, bk + 1, bk + 2, . . . , bk+1 in G, whose length is Yk. If
P contains the edge b2mb1, the corresponding segment has length Y2m + Y0. At the ends of the path, we walk
from u to bi and from b j to v. Denote by U the set of indices k < 2m such that P contains a vertex bk. Since
Yi ≥ 1 for i < 2m, the distance between u and v in G is at most Y2m + 1 +

∑
k∈U max{1,Yk} < s +

∑
k∈U Yk.

Note also that |U | = |P| + 1 ≤ s and that P, U do not depend on variables (Yk). Thus, by Lemma 2.5, the
probability that this distance exceeds 11s is at most e−2s = n−3. Taking the union bound over all pairs of
vertices, P [diam(G) > 11s | M] = O

(
n−1

)
. Since we conditioned on the event with probability 1 − o(1), the

probability that diam(G) > 11s is at most o(1), completing the proof. �

3 Vertex rainbow connectivity

We now state the vertex-colouring analogue of Lemma 2.1.

Lemma 3.1. Let G = (V, E) be a graph. Suppose that V1,V2 ⊂ V satisfy: 1) V1 ∪ V2 = V; 2) |V1 ∩ V2| ≤ c;
3) every vertex v ∈ V1 has a neighbour in V2 and vice versa; 4) G[Vi] is connected, for i = 1, 2. Then

rvc(G) ≤ diam (G[V1]) + diam (G[V2]) + c + 2.

Proof. Let B = V1 ∩ V2. Colour the vertices of B in distinct colours. These colours will remain unchanged,
and the remaining vertices get coloured according to graph distances di in Gi = G[Vi]. Choose root vertices

6



vi ∈ Vi such that v1v2 is an edge of G. Give each distance set {u ∈ V1 : d1(v1, u) = j} the colour a j, for
0 ≤ j ≤ diam(G1). Similarly, each set {u ∈ V2 : d2(v2, u) = j} gets colour b j.

To see that it is a rainbow vertex colouring, look at two vertices x1 ∈ V1 and x2 in V . Suppose first that x2

lies in V2, and let Pi be a shortest path in Gi from xi to vi. By our definition of colouring on distance sets, both
paths P1 and P2 are rainbow. If they are vertex-disjoint, the concatenation P1 − v1v2 − P2 is a rainbow path
between x1 and x2. Otherwise, P1 and P2 can only intersect in vertices of B. If this occurs, we walk from x1

along P1 to the earliest common vertex. We use this vertex to switch to P2 and walk to x2.
If x2 does not lie in V2, we replace it with its neighbour in V2, which exists by hypothesis, and then

proceed with the argument. The case where x1, x2 < V1 is treated similarly. �

3.1 Random regular graphs

Lemma 3.2. Let G be an r-regular graph, r ≥ 28. Then the vertices of G can be partitioned as V = U1 ∪ U2

so that each v ∈ V has at least 0.11r neighbours in both U1 and U2.

Proof. This is a standard application of the Lovász Local Lemma. Denote γ = 0.11 for the rest of the paper.
For each vertex v, put it into U1 randomly and independently with probability 1/2. Let Ev be the event that v
does not satisfy the statement of the lemma. By the standard Chernoff bounds the probability of this event is
at most 2e−2( 1

2−γ)
2
r. Two events Ev and Eu are adjacent in the dependency graph if u and v are at distance at

most 2 from each other,and otherwise they are independent. Hence, each event has degree at most ∆ = r2 in
the dependency graph. Then for γ = 0.11 and r ≥ 28, the condition

(∆ + 1) e P [Ev] ≤ (r2 + 1) · 2e1−2( 1
2−γ)

2
r < 1,

is satisfied. Therefore, by the Local Lemma, with positive probability no event Ev occurs. �

To use such a partition, we need an estimate on the number of edges spanned by subsets of vertices of
Gn, r. Similar results have appeared e.g. in [2], but for our purposes we need a more explicit dependence on
the degree r. To prove the estimate, we work in the pairing (configuration) model for r-regular graphs. For rn
even, we take a set of rn points partitioned into n cells v1, v2, . . . vn, each cell containing r points. A perfect
matching (or pairing) P induces a multigraph G(P) in which the cells are regarded as vertices and pairs in P
as edges. For fixed degree r and P chosen uniformly from the set of pairings Pn, r, G(P) is a simple graph
with probability bounded away from zero, and each simple graph occurs with equal probability. It is known
(see, e.g., [20]) that if an event holds whp in G(P), then holds it holds whp even on the condition that G(P) is
a simple graph, and therefore it holds whp in Gn, r.

Lemma 3.3. Let r ≥ 3 be a fixed integer. Let P be a pairing selected uniformly from Pn, r. If E0 ⊂ [n](2) is a
fixed set of m ≤ nr

4 pairs of vertices from n, then

P [E0 ⊂ E(G(P))] ≤ 2
(
2r
n

)m

.

Proof. The total number of pairings P is (nr)!

( nr
2 )!2

nr
2

. In order to bound from above the number of pairings P

inducing E0, first for each edge e = (u, v) ∈ E0, choose a point in the cell of u and a point in the cell of v in
at most r2 ways, the total number of such choices is then at most r2m. The remaining rn − 2m points can be
paired in (nr−2m)!

( nr
2 −m)!2

nr
2 −m ways. Altogether, using Stirling’s formula, the probability of getting E0 is at most
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P [E0 ⊂ E(G(P))] ≤ r2m ·
(nr − 2m)!

(
nr
2

)
!

(nr)!
(

nr
2 − m

)
!2−m

=(1 + o(1))r2m ·

(
nr − 2m

nr

)nr (nr − 2m
e

)−2m ( nr
nr − 2m

) nr
2
(
nr − 2m

e

)m

=(1 + o(1))
(
1 −

2m
nr

) nr
2
(

er2

nr − 2m

)m

≤ 2

 r

n − 2m
r

m

≤ 2
(
2r
n

)m

.

Here we used that since 1 − x ≤ e−x, then (1 − 2m
nr )

nr
2 ≤ e−m and that 2m

r ≤
n
2 . �

Lemma 3.4. Let P be a random element of Pn, r, and G(P) be the corresponding r-regular multigraph on [n].
We obtain its maximal simple subgraph G̃(P) by deleting the loops and identifying the parallel edges of G(P).

(i) Assume that γ′r ≥ 3. Then there is an absolute constant α > 0 such that whp all vertex sets S ⊂ [n] of
order up to αn span fewer than |S |γ

′r
2 edges in G̃(P).

(ii) There is an absolute constant β > 0 such that whp all vertex sets S ⊂ [n] of order up to βn
r span fewer

than 3|S | edges in G̃(P).

Proof. Denote the event that G̃(P)[S ] contains at least |S |d2 edges by BS . Fix the order |S | = s. Since G̃(P) is
a subgraph of G(P), we can apply the previous lemma to each subset E0 ⊂ S (2) of sd

2 edges to get

P [BS ] ≤ 2
(
s2/2
sd/2

) (
2r
n

)sd/2

≤ 2
(
2ser
nd

)sd/2

.

Taking the union bound over all sets of vertices of order s gives

P

 ∨
S∈[n](s)

BS

 ≤
(
n
s

)
P [BS ] ≤ 2

ne
s

(
s
n
·

2er
d

) d
2


s

.

For (i) set d = γ′r ≥ 3 and choose α so that the term in square brackets is less than 1
2 for s = αn (note that

this term is increasing in s). We split the range of s into γ′r ≤ s ≤ n
1
4 and n

1
4 < s ≤ αn to get

P

∨
S

BS

 ≤ n
1
4 · O

(
n−

3
8

)
+

∑
s≥n

1
4

2−s+1 = o(1),

as required.
For (ii), set d = 6. Take β such that s

n =
β
r again makes the term in brackets at most 1

2 . The same
calculation gives the result.

�

From the discussion above, conditional on the event that G(P) is a simple graph (which is exactly G̃(P) =

G(P)), G(P) satisfies the statement of Lemma 3.4. Therefore the same holds for the random regular graph
Gn, r. We can now prove the main result of this section, rvc(Gn, r) = O

( log n
log r

)
whp for r ≥ 28.
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Proof of Theorem 1.4. Let G be a random r-regular graph, γ = 0.11. Use Lemma 3.2 to obtain a partition
V = U1 ∪ U2 such that each v ∈ V has at least γr neighbours in each part.

All statements about G from now on will hold with high probability. In particular, we assume that G
satisfies Lemma 3.4 with γ′ =

γ
1+ε , where ε = 0.02 is chosen so that γr

1+ε > 3. We only need the extra (1 + ε)−1

factor later, for Claim 3. Such edge distribution implies that each connected component of G[Ui] contains at
least αn vertices, where α is the constant from Lemma 3.4.

Claim 1. We can find Wi ⊂ V such that Wi = O(1) and G[Ui ∪Wi] is connected.
For a set of vertices A ⊂ V , denote Γ j(A) = {v ∈ V : dG(v, A) ≤ j}. It is well-known that a random regular

graph has good expansion properties (see [3]), i.e. there is a constant φ > 0 such that whp |Γ(A)| ≥ (1 + φ)|A|
whenever |A| ≤ n

2 . Now suppose that A has linear order, |A| ≥ αn, and take an integer l > logα−1−log 2
log(1+φ) . Iterating

the expansion property gives that |Γl(A)| > n
2 . To prove Claim 1, suppose A and B are vertex sets of two

connected components of G[Ui], each of order at least αn. We just showed that Γl(A) ∩ Γl(B) , ∅, so there
is a path of length at most 2l from A to B in G. Adding the vertices of this path to Wi reduces the number of
connected components by one, so repeating this step α−1 times ensures that Vi = Ui ∪Wi spans a connected
graph Gi = G[Vi]. Choose a large integer a such that |Wi| ≤ a for all n and r. The vertex sets V1 and V2 now
satisfy |V1 ∩ V2| ≤ 2a, so we turn to the diameters of G1 and G2.

Claim 2. For r ≥ 112 (so that γr ≥ 12), every T ⊂ Vi of order at most βn
γr2 satisfies |ΓGi(T )| ≥

(
1 +

γr
12

)
|T |.

Suppose T does not satisfy the claim, and let S = ΓGi(T ). Since all the edges in Gi with an endpoint in T
lie in Gi[S ], we get that S spans at least

γr|T |
2
≥

γr|S |

2
(
1 +

γr
12

) ≥ 3γr|S |
γr

= 3|S |

edges. Note that by the hypothesis |S | ≤
(
1 +

γr
12

)
·
βn
γr2 <

βn
r . Hence we can deduce from Lemma 3.4 (ii) that

S spans fewer than 3|S | edges, which is a contradiction.
Claim 3. Let α be the constant from Lemma 3.4 (i) and ε > 0 as above. Every subset T ⊂ Vi of order at

most αn
1+ε satisfies |ΓGi(T )| ≥ (1 + ε)|T |.

Assume that T does not expand, and use Lemma 3.4 for S = ΓGi(T ), γ′ =
γ

1+ε >
3
r . Since all the edges of

Gi with an endpoint in T lie in Gi[S ], we get that S spans at least

γr|T |
2
≥

γr|S |
2(1 + ε)

=
γ′r|S |

2
edges. This contradicts statement (i) of Lemma 3.4.

For r ≥ 112, Claim 2 implies that starting from any vertex v ∈ Vi, we can expand in Gi to a set of order
βn
γr2 in c1 log n

log r steps, where c1 is a constant independent of r and n. Further O(log r) steps give a set of order
αn
1+ε , by Claim 3. For r < 112, we use directly Claim 3 O(log n) times (thus avoiding Claim 2) to expand to a
set of order αn

1+ε . In this range, log r < log 112 and hence O(log n) = O
( log n

log r

)
.

Denote k =
c log n
log r , where c > c1 is sufficiently large for the described expansion to go through. Suppose

the diameter of Gi is larger than 4k
α , and take x0 and xR such that the shortest path x0x1 . . . xR is longer

than 4k
α (such a path exists since Gi is connected). Then we can use the procedure above to expand from

vertices x0, x3k, x6k . . . in k steps to get 4
3α disjoint (by the choice of the path) neighbourhoods, each of order

αn
1+ε , which is a contradiction. Thus applying Lemma 3.1 to subsets V1 and V2 gives rvc(G) ≤ 9c log n

α log r , as
required. �

Remark. The constants γ = 0.11 and ε = 0.02 are chosen so that Theorem 1.4 holds for r ≥ 28. If we are
only interested in large values of r, we can set γ arbitrarily close to 0.5 and, say, ε = 0.25
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Concluding remarks

In this paper we proposed a simple approach to studying rainbow connectivity and rainbow vertex connectivity
in graphs. Using it we gave a unified proof of several known results, as well as of some new ones. Two
obvious interesting questions which remain open are to show that rainbow edge connectivity and rainbow
vertex connectivity of random 3-regular graphs on n vertices are logarithmic in n.
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