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Abstract. A 0/1-polytope in Rn is the convex hull of a subset of {0, 1}n. The graph of a polytope P is the
graph whose vertices are the zero-dimensional faces of P and whose edges are the one-dimensional faces of P . A
conjecture of Mihail and Vazirani states that the edge expansion of the graph of every 0/1-polytope is at least
one. We study a random version of the problem, where the polytope is generated by selecting vertices of {0, 1}n
independently at random with probability p ∈ (0, 1). Improving earlier results, we show that, for any p ∈ (0, 1),
with high probability the edge expansion of the random 0/1-polytope is bounded from below by an absolute
constant.

1 Introduction A 0/1-polytope in Rn is the convex hull of a subset of {0, 1}n, i.e., a polytope whose vertices
have all coordinates either 0 or 1. These polytopes are the central object of study in polyhedral combinatorics,
due to their connections to linear programming and combinatorial optimization. Most of these connections arise
from the ability to encode combinatorial objects via characteristic vectors. To be more precise, given a set
system A with a ground set of size n, one can consider the associated 0/1-polytope, which is the convex hull of
the characteristic vectors of all the elements of A. For many combinatorial objects (e.g., matchings, matroids,
order ideals, independent sets), interesting structural properties can be expressed as geometric properties of the
associated polytopes.

For a polytope P , the graph GP of P is the graph whose vertices are the zero-dimensional faces of P and
whose edges are the one-dimensional faces of P . Several properties of the graph of 0/1-polytopes have been
studied in the past [8, 20, 22, 21, 2]. Here we focus on their expansion. For a graph G with vertex set V , we
de�ne the edge expansion of G (also known as the Cheeger constant of G) by

h(G) := min

{
e(S, V \ S)

|S|
: S ⊆ V and 1 ≤ |S| ≤ |V |

2

}
.

It is well known (see, e.g., [18, 13]) that if G is the graph of a 0/1-polytope whose vertices have degree bounded
by a polynomial in n, then a lower bound on the Cheeger constant of G translates to an upper bound on the mixing
time of a random walk on G. Performing random walks on the graphs of 0/1-polytopes can be used to uniformly
generate random elements in classes of combinatorial objects. In many cases, this allows us to design randomized
algorithms that approximately count the number of objects; the running time of such algorithms is inversely
proportional to the Cheeger constant of the graph of the underlying 0/1-polytope. For instance, this method was
used by Jerrum, Sinclair, and Vigoda [12, 14] to design a polynomial-time approximation algorithm for computing
the permanent of a matrix with nonnegative entries. Inspired by these connections, Mihail and Vazirani [18, 6]
made the following conjecture about the edge expansion of the graph of an arbitrary 0/1-polytope. A proof of
this conjecture would have many important applications to the analysis of randomized algorithms [6, 7, 15].

Conjecture 1.1. Every 0/1-polytope P satis�es h(GP ) ≥ 1.

In other words, Conjecture 1.1 states that the Cheeger constant of every 0/1-polytope is at least as large
as that of the hypercube, as it is well known [9, 3, 10, 17] that h(Qn) = 1 for all n, see Theorem 4.2 below.
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The conjecture has been veri�ed for a variety of polytopes associated with combinatorial objects, such as perfect
matching polytopes, order ideal polytopes, and matroid polytopes [15, 19]. In a recent breakthrough, Anari, Liu,
Gharam, and Vinzant [1] showed that the conjecture holds for matroid base polytopes, i.e., any 0/1-polytope
associated with a matroid. Despite this progress, Conjecture 1.1 remains wide open for general 0/1-polytopes.

Another special class of polytopes, and perhaps an interesting intermediate step in this context, is that of
random polytopes. Let Qn := {0, 1}n be the n-dimensional hypercube. We consider the following model of random
0/1-polytopes: Given p ∈ (0, 1), let U be a random subset of Qn, where each element is selected independently
with probability p. We de�ne the random polytope Pn,p to be the convex hull of U ⊆ {0, 1}n. The problem of
estimating the expansion of Pn,p was introduced by Gillmann [7]. In recent work, Leroux and Rademacher [16]
showed for every p ∈ (0, 1) that, with high probability1, the graph of the polytope Pn,p has expansion at least
1/(12n). Our main result is an improvement of this bound to a constant.

Theorem 1.2. There exist absolute constants β, η > 0 such that the following holds for su�ciently large n.
If p = p(n) ≥ 2−0.99n, then whp the graph G of Pn,p satis�es h(G) ≥ β; moreover, for every A ⊆ V (G) with
|A| ≤ η|V (G)|, we have e(A, V (G) \A) ≥ |A|.

Note that Theorem 1.2 does not apply when the density p is very small. To complement this, we use a result
of Bondarenko and Brodskii [4], which states that for p ≤ 2−5n/6, the polytope graph is, with high probability, a
clique. For the sake of completeness, we include a short proof of a weaker version of this result.

Proposition 1.3. For any ε > 0, if p = p(n) ≤ cn for c < 7−1/3, then whp the graph G of Pn,p is complete
and thus h(G) ≥ |Pn,p| − 1.

2 Preliminaries

2.1 Proof overview In this section, we describe our proof strategy for Theorem 1.2. For the sake of
clarity and comparison purposes, we will �rst brie�y describe the approach developed in [16]. Given d < n, let
π : Qn → Qd be the projection onto the �rst d coordinates. Note that the projection π naturally partitions Qn

into 2d disjoint preimages of size 2k, where k := n−d. This fact implies that, for su�ciently large k, we have whp
that the random polytope P := Pn,p ⊆ Qn projects in a balanced way onto the full hypercube, i.e., π(P ) = Qd,
and the size of each �ber P ∩ π−1({x}) concentrates around its mean p2k, simultaneously for all x ∈ Qd.

Given a set A ⊆ P , one can classify the �bers of all vertices of Qd into three types: the subset U ⊆ Qd of
those fully occupied by elements of A, the subset M ⊆ Qd of those partially occupied by elements of A, and the
�bers that are disjoint from A. The heart of [16] is a projection lemma that ensures that either there are many
edges in EGP

(A,Ac) coming from the �bers in M , or there are many edges from U to U c. The latter relies on the
fact that the set U has good expansion in Qd and that π(P ) = Qd. Unfortunately, the resulting bound on the
expansion of GP is inversely proportional to p2k, which is chosen to be Ω(d) in order to ensure that π(P ) = Qd.

In the proof of Theorem 1.2, to achieve constant edge expansion, we select k := n − d such that p2k is an
absolute constant. This choice introduces several challenges whose overcoming requires new ideas. First, since
the projection R := π(P ) is no longer the full hypercube, the projection lemma from [16] can no longer be
used. To overcome this, we develop a more general projection lemma (see Lemma 2.7) that allows us to obtain a
lower bound on eGP

(A,Ac) in terms of the edge expansion of the projected polytope R. Second, since p2k is a
constant, one cannot ensure that the projection is balanced, requiring a much more careful analysis of the typical
projection of P (see Subsection 5.1). Finally, since we cannot rely on the hypercube's strong expansion properties,
we establish a new edge-isoperimetric inequality tailored for very dense random 0/1-polytopes (see Theorem 4.1).
This last result is perhaps the main technical contribution of our work.

The paper is organized as follows. In the remainder of Section 2, we introduce the probabilistic and geometric
tools used throughout the paper. In particular, Subsection 2.4 contains the proof of our version of the projection
lemma. The short Section 3 is dedicated to the proof of Proposition 1.3. In Section 4, we establish an edge-
isoperimetric inequality for very dense polytopes, while Section 5 presents the proof of Theorem 1.2.

2.2 Concentration We shall use the following well-known estimate for tail probabilities of binomial
random variables (see, e.g., [11, Theorem 2.1]).

1An event A, or rather a sequence (An) of events indexed by the dimension n, happens with high probability (whp for short) if the
probability of An tends to one as n tends to in�nity.
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Theorem 2.1. For every positive integer n and all p ∈ [0, 1] and all α ≥ 0,

P
(
Bin(n, p) ≥ (1 + α)np

)
≤ exp

(
−np · ((1 + α) log(1 + α)− α)

)
≤ exp

(
− α2np

2(1 + α)

)
.

In particular, for every ` ≥ enp,

P
(
Bin(n, p) ≥ `

)
≤ exp

(
−` · log

(
`

enp

))
.

In addition, we shall use the following tail estimate for the distance of the cumulative distribution function
of a random variable Y from its empirical counterpart determined by a sequence of independent copies of Y due
to Dvoretzky, Kiefer, and Wolfowitz [5].

Theorem 2.2 (DKW Inequality). Suppose that Y1, . . . , Yn is a sequence of i.i.d. real-valued random variables
and let Dn : R→ [0, 1] be the associated empirical distribution function, i.e.,

Dn(y) :=
1

n

n∑
i=1

1Yi≤y.

Then, for every ε > 0,

P
(

sup
y∈R

∣∣Dn(y)− P(Y1 ≤ y)
∣∣ > ε

)
≤ 2 exp(−2ε2n).

Finally, we will need the following technical estimate that quanti�es the fact that the binomial distribution
is tightly concentrated around its mean.

Lemma 2.3. There exists an absolute constant t0 such that the following holds. Suppose that a positive integer
n and p ∈ [0, 1] satisfy t := np ≥ t0 and let T ∼ Bin(n, p). Then, for every integer m such that P(T ≤ m+1) ≥ 3/5,
we have E[T · 1T≤m] ≥ 5t/9.

Proof. Let m be an integer satisfying P(T ≤ m+ 1) ≥ 3/5 and observe that

t− E[T · 1T≤m] = E[T · 1T>m] ≤ t ·
(
P(T > m) +

∫ ∞
0

P
(
T ≥ (1 + x)t

)
dx

)
.

Since, for some absolute constant C,

P(T > m) = P(T > m+ 1) + P(T = m+ 1) ≤ 2/5 + C/
√
t

and, by Theorem 2.1, ∫ ∞
0

P
(
T ≥ (1 + x)t

)
dx ≤

∫ ∞
0

exp

(
− x2t

2(1 + x)

)
dx ≤ C√

t
,

we may conclude that E[T · 1T≤m] ≥ 5t/9 whenever t ≥ t0 for su�ciently large constant t0.

2.3 Geometry of polytopes We now introduce our notation for polytopes and present several geometric
results that will be useful throughout the paper. We refer the reader to [23, 24] for a comprehensive introduction
to convex polytopes and 0/1-polytopes.

A subset P ⊆ Rn is a polytope if it is the convex hull of a �nite subset of points in Rn. We say that P is a
k-dimensional polytope, and write dimP = k, if the a�ne subspace spanned by P has dimension k. A subset
F ⊆ P is a face of P if there exists a vector c ∈ Rn and a real number γ ∈ R such that c>x ≤ γ for every x ∈ P
and

F = {x ∈ P : c>x = γ},(2.1)

i.e., there exists an a�ne subspace separating F from P . It is not di�cult to check that a face of P is also a
polytope. A face of dimension ` is called an `-face. The 0-faces of a polytope P are called the vertices of P , while
its 1-faces are the edges of P . Throughout the paper, we will often identify a polytope with its set of vertices,
since the latter determines the entire polytope.

Given a polytope P , we de�ne its graph GP as the graph whose vertices are the 0-faces (vertices) of P , and
whose edges are the 1-faces (edges) of P . The following result is standard and can be found in [23].
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Proposition 2.4 ([23]). The following holds for every polytope P :

(i) The graph GP is connected.

(ii) If F ⊆ P is a face of P , then GF = GP [F ], i.e., the vertices/edges of F are exactly the vertices/edges of P
contained in F .

We will also use the following geometric observation, whose proof can be found in [16].

Proposition 2.5 ([16, Proposition 6]). If P ⊆ Rn is a d-dimensional polytope, then for any vertex v ∈ P ,
the set of edges incident to v is not contained in any (d− 1)-dimensional a�ne subspace.

Recall that Qn is the n-dimensional hypercube with vertex set {0, 1}n. In this paper, we will often be
interested in analyzing the edges of a polytope P ⊆ Qn. It is not hard to check that GQn [P ] ⊆ GP , i.e., an edge of
the hypercube Qn whose both endpoints are vertices of P is also an edge of P . However, unlike in Proposition 2.4
(ii), there may be new edges in GP that were not previously in GQn . We conclude this section by giving a su�cient
condition for the existence of such new edges.

Proposition 2.6. Given integers 1 ≤ k ≤ n, let P ⊆ Qn be a polytope, let F ⊆ Qn be a k-face of Qn, and let
x, y ∈ P ∩ F be two vertices at Euclidean distance

√
k. If there is a (k − 1)-face F ′ ⊆ F such that P ∩ F ′ = {x},

then {x, y} ∈ GP .

Proof. Suppose without loss of generality that x is the zero vector and y = (y1, . . . , yn), where yi = 1 for
1 ≤ i ≤ k and yi = 0 for k + 1 ≤ i ≤ n, and that the (k − 1)-face F ′ is described by

F ′ =
{

(z1, . . . , zn) : zi = 0 for k ≤ i ≤ n
}
.

Let c = (c1, . . . , cn) be the vector given by ci := 1 if 1 ≤ i ≤ k− 1, ck := −(k− 1), and ci := −n for k+ 1 ≤ i ≤ n.
One can easily check that cTx = cT y = 0 and that cT z < 0 for all z ∈ Qn \ (F ′ ∪ {y}) ⊇ P \ {x, y}. In other
words, {z : cT z = 0} is a hyperplane separating {x, y} from the rest of the polytope and thus {x, y} is an edge of
P .

x

y
y

x

Figure 2.1: An example of Proposition 2.6 for 2-faces and 3-faces. The vertices in red are the vertices in P . The
face F ′ is the face containing x and all black vertices.

2.4 Projection lemma We devote this subsection to proving our projection lemma. Before stating the
lemma, we introduce some notation. Let d < n be integers. Consider the map π : Qn → Qd projecting the
points of Qn onto the �rst d coordinates. For a 0/1-polytope P ⊆ Qn, let R := π(P ) be the projection of P on
Qd. Furthermore, for every x ∈ Qd, let Px := π−1({x}) ∩ P be the �ber of x in P . Given a set A ⊆ P , write
Ac := P \A and de�ne

B := π(A) = {x ∈ Qd : Px ∩A 6= ∅},
U = Uπ(A) := {x ∈ Qd : Px ⊆ A},
M = Mπ(A) := {x ∈ Qd : Px ∩A 6= ∅ and Px ∩Ac 6= ∅}.

(2.2)

In other words, the set B is the projection of A in R, the set U is the subset of vertices of R where all the
elements projected from P are in A, and M is the subset of vertices of R that contain elements projected from
both A and Ac. Note that M = B \ U . We are now able to state the lemma.
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Lemma 2.7. Let A ⊆ P , and let R, B, and M be the sets de�ned above. We have

eGP
(A,Ac) ≥ max

{
|M |, eGR

(B,Bc)
}
.

We remark that Lemma 2.7 is similar to the projection lemma in [16]. However, because R is not necessarily
the hypercube Qd, our statement is slightly more technical. We start with the following geometric observation
about projections.

Claim 2.8. If F ⊆ R is a face of R, then the set π−1(F ) ∩ P is a face of P .

Proof. Since F is a face of R, by de�nition, there exists a vector c ∈ Rd and γ ∈ R such that cTx ≤ γ for
every x ∈ R, with equality holding if and only if x ∈ F . Let c̃ := (c,~0) ∈ Rn, where ~0 is the zero vector in Rn−d
and let z ∈ P be arbitrary. We have c̃T z = cTπ(z) ≤ γ and equality holds if and only if π(z) ∈ F , that is, if and
only if z ∈ π−1(F ). This implies that π−1(F ) ∩ P is a face of P .

Proof of Lemma 2.7. We prove the lemma by showing the two estimates separately. To see the �rst inequality,
note that Claim 2.8 implies that Px is a face of P for every x ∈ R. Further, Proposition 2.4 asserts that
GPx = GP [Px], and thus GPx ⊆ GP . As for every x ∈ M , the face Px contains vertices from both A and Ac,
the connectedness of GPx , asserted by Proposition 2.4, implies that GPx , and thus also GP , must contain an
edge between A and Ac. Finally, since the graphs GPx

, with x ∈ R, are pairwise disjoint, we conclude that
eGP

(A,Ac) ≥ |M |.
For the second inequality, we will show that, for every edge {x, y} ∈ GR with x ∈ B and y ∈ Bc, there is a

corresponding edge {x′, y′} ∈ GP with x′ ∈ Px∩A and y′ ∈ Py∩Ac. By Claim 2.8, the set Pxy := π−1({x, y})∩P
is a face of P and GPxy ⊆ GP , by Proposition 2.4. Moreover, Pxy = Px ∪ Py and dimPx,dimPy < dimPxy.
Hence, by Proposition 2.5, each vertex of Py has at least one neighbor in Px in the graph GPxy

. Since Px ∩A 6= ∅
and Py ⊆ Ac, we may let x′ ∈ Px∩A be arbitrary and y′ be one of its neighbors in Py. Finally, since the bipartite
graphs GP [Px, Py], with x, y ∈ R, are pairwise disjoint, we may conclude that eGP

(A,Ac) ≥ eGR
(B,Bc).

3 The sparse case We now turn our attention to the proof of Proposition 1.3. First, we remind the
reader of the following natural representation of set systems as polytopes: To each set A ⊆ [n], we associate the
characteristic vertex 1A ∈ Qn given by

1A(i) =

{
1, if i ∈ A
0, if i /∈ A.

More generally, given a set system Ω ⊆ 2[n], we de�ne the characteristic polytope of Ω by PΩ := {1A : A ∈ Ω}.
The main ingredient of the proof of Proposition 1.3 is the following observation.

Lemma 3.1. If Ω ⊆ 2[n] is a set system with the property that C 6⊆ A ∪ B for all distinct A,B,C ∈ Ω, then
the graph GPΩ of the polytope PΩ is complete.

Proof. Suppose that Ω is a set system satisfying the hypothesis of the lemma. Since the statement trivially
holds if |Ω| ≤ 1, we may assume that Ω has at least two elements. Let A,B ∈ Ω be any two distinct elements and
let c := −1(A∪B)c . The de�nition of c yields c>1A = c>1B = 0 while cT1C < 0 for every C ∈ Ω \ {A,B}, as our
hypothesis implies that C ∩ (A∪B)c 6= ∅. In other words, the hyperplane {x : cTx = 0} separates {1A,1B} from
the remainder of PΩ. This means that 1A and 1B form an edge of PΩ. Since A and B were chosen arbitrarily,
GPΩ is complete.

The proof of Proposition 1.3 now follows from a �rst-moment argument.

Proof of Proposition 1.3. Let Ω ⊆ 2[n] be a random set system obtained by selecting every set A ∈ 2[n]

independently with probability p; clearly, PΩ ∼ Pn,p. In view of Lemma 3.1, we just need to prove that, with
high probability, the random set system Ω has the property that C 6⊆ A ∪B for all distinct A,B,C ∈ Ω.

To this end, de�ne
T := {(A,B,C) ∈ (2[n])3 : C ⊆ A ∪B}

and note that |T | = 7n as (A,B,C) ∈ T if and only if
(
1A(i),1B(i),1C(i)

)
6= (0, 0, 1) for all i ∈ [n]. Hence, the

expected number of triples in T ∩ Ω3 satis�es

E
(
|T ∩ Ω3|

)
= p3|T | = p37n = o(1),
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by our assumption on p. By Markov's inequality, the set system Ω has no triple (A,B,C) ∈ T , that is, Ω satis�es
the hypothesis of Lemma 3.1, with high probability.

4 The very dense case The main goal of this section is to prove that very dense random 0/1-polytopes
typically have graphs with constant edge expansion. More precisely, we will show the following statement.

Theorem 4.1. Suppose that t ≥ 4 and R ∼ Pd,q for some q ≥ 1− e−t. Then, with high probability, for every
B ⊆ R with |B| ≤ 3/4 · 2d, we have

eGR
(B,Bc) ≥ |B|

8
log2

(
2d

|B|

)
.

The proof will use the fact that the dense random polytope R is still very close to Qd, and therefore
partially inherits its edge expansion properties. The edge-isoperimetric inequality for the hypercube was proved
by Harper [9] and later reproved by several authors [3, 10, 17].

Theorem 4.2 ([9]). For all d ≥ 1 and all C ⊆ Qd, we have

eQd(C,Cc) ≥ |C| log2

(
2d

|C|

)
.

Note that Theorem 4.1 can be seen as an edge-isoperimetric inequality for very dense random subpolytopes
of Qd, where we relax the condition of being a hypercube at the cost of obtaining a worse constant.

4.1 Pseudorandom properties of R We start by de�ning pseudorandom properties of the polytope R
that are su�cient to guarantee good edge expansion. Throughout the rest of the section, we will write N := 2d.
Moreover, for a vertex x ∈ Qd and a subset C ⊆ Qd, we will denote by degQd(x,C) := |NQd(x) ∩ C| the number
of neighbors x has in C.

Definition 4.3. Given a 0/1-polytope R ⊆ Qd and a real number ε > 0, we say that R is ε-good if R satis�es
the following properties:

(R1) For every vertex x ∈ R, we have degQd(x,R) > (1− ε)d.

(R2) For every set C ⊆ Qd of size |C| ≥ N/20, we have |C ∩R| ≥ N/40.

Our �rst observation is that basic properties of the binomial distribution give that whp a very dense random
polytope R is ε-good.

Proposition 4.4. Let t ≥ 4, and let R ⊆ Qd be a random polytope whose vertices are chosen independently
with probability q ≥ 1− e−t. Then, with high probability, the polytope R is (2/t)-good.

Proof. Since the degree of every vertex x ∈ Qd in the random set R follows the binomial distribution Bin(d, q),
we have

P
(
degQd(x,R) ≤ (1− 2/t)d

)
≤
(

d

2d/t

)
(1− q)2d/t ≤

(
et

2

)2d/t

e−2d ≤ e−d,

where we used our assumptions that 1− q ≤ e−t and t ≥ 4. By the union bound, R violates (R1) with probability
at most Ne−d = o(1). Further, since whp

|Rc| ≤ (1− q + o(1)) ·N ≤ (e−t + o(1)) ·N ≤ N/40,

for every C ⊆ Qd with |C| ≥ N/20, we have |C ∩R| ≥ |C| − |Rc| ≥ N/20, proving (R2).

4.2 Deterministic Lemma In this subsection, we present the main technical result of the paper. Given
an ε-good polytope R ⊆ Qd and a set B ⊆ R, our goal is to �nd a good lower bound on eGR

(B,Bc). Before
stating the lemma precisely, we de�ne the following subsets of vertices in Qd:

S := S(B, ε) = {x ∈ Qd \B : degQd(x,B) ≤ (1− 2ε)d},
L := L(B, ε) = {x ∈ Qd \B : degQd(x,B) > (1− 2ε)d},(4.1)

X := X(B, ε) = {x ∈ Qd \ (B ∪ L) : degQd(x, L) > 0}.
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That is, S is the set of vertices with small degree into B, L is the set of vertices with large degree into B, and X is
the set of vertices not in B that have a neighbor in L (note that S and X are not necessarily disjoint). Moreover,
note that the values of S, L, and X depend only on the set B and the hypercube Qd, but not on the polytope R.
Our main deterministic lemma is stated as follows.

Lemma 4.5. Let ε ∈ (0, 1/4), and suppose that R ⊆ Qd is ε-good. Then, for any B ⊆ R,

eGR
(B,Bc) ≥ max

{
eQd(B,S)

2
,
eQd(L,X)

4

}
,

provided that d is su�ciently large (as a function of ε only).

Proof. We start by noticing that every vertex x /∈ B ∪ L has many Qd-neighbors in R \B.
Claim 4.6. If x /∈ B ∪ L, then degQd(x,R \B) ≥ εd.

Proof. Since R is ε-good and x /∈ B ∪ L, we have

degQd(x,R \B) ≥ degQd(x,R)− degQd(x,B) ≥ (1− ε)d− (1− 2ε)d = εd,

as desired.

We now prove each inequality in the statement separately.

Claim 4.7. eGR
(B,Bc) ≥ eQd(B,S)/2.

Proof. In order to prove the asserted inequality, it su�ces to construct a map Ψ1 : EQd(B,S)→ EGR
(B,Bc)

satisfying |Ψ−1
1 (e)| ≤ 2 for all e. First, for each s ∈ S, let φ(s) ∈ R ∩ Bc be an arbitrary vertex such that

{s, φ(s)} ∈ E(Qd); the existence of such a vertex is guaranteed by Claim 4.6. Now, �x some b ∈ B and s ∈ S
that are adjacent in Qd (Figure 4.1). Since φ(s) /∈ B, we have φ(s) 6= b and, consequently, distQd(b, φ(s)) = 2.
Let F2 be the unique 2-face of Qd containing the vertices {b, s, φ(s)}. There are two possibilities:

b ∈ R ∩B

s ∈ Bc φ(s) ∈ R ∩Bc

Figure 4.1: The 2-face F2 containing {b, s, φ(s)}.

(i) s ∈ R: The edge {b, s} is an edge of GR from B to Bc. We set Ψ1({b, s}) := {b, s}.

(ii) s /∈ R: Proposition 2.6 with k = 2, F = F2, and F ′ = {b, s} yields that {b, φ(s)} ∈ E(GR). We set
Ψ1({b, s}) := {b, φ(s)}.

Let {u, v} be an edge in the image of Ψ1. To show that |Ψ−1
1 ({u, v})| ≤ 2, we consider two cases. If

distQd(u, v) = 1, then Ψ−1
1 ({u, v}) = {{u, v}}. Otherwise, if distQd(u, v) = 2, we have {u, v} = {b, φ(s)} for some

s ∈ S that is a common neighbor of both u and v; thus |Ψ−1
1 (u, v)| ≤ 2. This concludes the proof.

The proof of the second inequality is similar but slightly more technical.

Claim 4.8. eGR
(B,Bc) ≥ eQd(L,X)/4.

Proof. Let C be the family of ordered 2-faces (y1, y2, y3, y4) of Qd that satisfy:

(a) {y1, y2}, {y2, y3}, {y3, y4}, and {y1, y4} are edges of Qd and

(b) y1 ∈ B, y2 ∈ L, and y3 ∈ X
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and observe that

(4.2) |C| =
∑

y2y3∈E(Qd)
y2∈L,y3∈X

degQd(y2, B) ≥ eQd(L,X) · (1− 2ε)d ≥ d

2
· eQd(L,X),

where we used that degQd(y2, B) ≥ (1 − 2ε)d for y2 ∈ L, see (4.1). In order to prove the asserted inequality, it

thus su�ces to construct a map Ψ2 : C → EGR
(B,Bc) with |Ψ−1

2 (e)| ≤ 2d for all e.
To this end, for each face C = (y1, y2, y3, y4) ∈ C, let φ(C) ∈ Bc∩R be a vertex such that {y3, φ(C)} ∈ E(Qd)

and φ(C) /∈ {y2, y4} (Figure 4.2; the existence of such a vertex is guaranteed by Claim 4.6, as X ⊆ (B ∪ L)c,
provided that d is su�ciently large as a function of ε. Note that distQd(y1, φ(C)) = 3, and let C̃ be the unique
3-face of Qd that contains both C and φ(C).

φ(C)

y3

y1 y4

y2

Figure 4.2: The 3-face C̃ containing C = {y1, y2, y3, y4} and φ(C).

There are several possibilities:

(i) y2 ∈ R: The edge {y1, y2} belongs to EGR
(B,Bc). We set Ψ2(C) := {y1, y2}.

(ii) y2 /∈ R, y3 ∈ R: Proposition 2.6 with k = 2, F = C, and F ′ = {y1, y2} yields that {y1, y3} ∈ E(GR). We
set Ψ2(C) := {y1, y3}.

(iii) y2, y3 /∈ R, y4 ∈ R ∩Bc: The edge {y1, y4} belongs to EGR
(B,Bc). We set Ψ2(C) := {y1, y4}.

(iv) y2, y3 /∈ R, y4 ∈ R ∩B: Let F be the unique 2-face containing both y4 and φ(C). Proposition 2.6 with
k = 2, F de�ned above, and F ′ = {y3, y4} yields that {y4, φ(C)} ∈ E(GR). We set Ψ2(C) := {y4, φ(C)}.

(v) y2, y3, y4 /∈ R: Proposition 2.6 with k = 3, F = C̃, and F ′ = C yields that {y1, φ(C)} ∈ E(GR). We set
Ψ2(C) := {y1, φ(C)}.

Let {u, v} be an edge in the image of Ψ2. To show that |Ψ−1
2 ({u, v})| ≤ 2d, as in the previous proof, we

consider several cases, depending on the distance between u and v.
If distQd(u, v) = 1, then either {u, v} = {y1, y2} or {u, v} = {y1, y4}. In each of the two subcases, there are

at most d− 1 choices for y3 (which then determines the remaining of C). Thus, |Ψ−1
2 ({u, v})| ≤ 2(d− 1).

If distQd(u, v) = 2, then either {u, v} = {y1, y3} or {u, v} = {y4, φ(C)}. In the �rst subcase, there are at most
two ways to choose the ordered face C (since there is only one 2-face containing {y1, y3}). In the latter subcase,
there are two choices for the vertex y3 (the common neighbors of y4 and φ(C)) and, for each of those, at most
d− 2 choices for y2, which then uniquely determines C. Thus, |Ψ−1

2 ({u, v})| ≤ 2 + 2(d− 2) ≤ 2d.
Finally, if distQd(u, v) = 3, we have {u, v} = {y1, φ(C)}. There is a unique 3-face C̃ that contains both u and

v and two choices to decide which of those two vertices is y1. Finally, there are 6 further choices for an ordered
face C that contains y1. This implies that |Ψ−1

2 ({u, v})| ≤ 12 ≤ 2d.

The proof of the lemma now follows by combining the last two claims.

4.3 Proof of Theorem 4.1 We are now able to prove the main theorem of this section. Note that the
next theorem, combined with Proposition 4.4, implies Theorem 4.1.
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Theorem 4.9. Let ε ∈ (0, 1/4), let d ≥ 10, and suppose that R ⊆ Qd is ε-good. Then, for every B ⊆ R with
|B| ≤ 3N/4,

eGR
(B,Bc) ≥ |B|

8
log2

(
N

|B|

)
.

Proof. Fix some B ⊆ R with |B| ≤ 3N/4 and let S, L, and X be the sets de�ned as in (4.1). We consider
two cases, depending on the size of L.

Case 1: |L| ≥ N/20.

Since R is ε-good, by property (R2), we have that |L ∩R| ≥ N/40. Since GQd [C ∩R] ⊆ GR[C ∩R] for every
C ⊆ Qd, we obtain that

eGR
(B,Bc) ≥ eQd(B,L ∩R) ≥ |L ∩R| · (1− 2ε)d ≥ dN

80
≥ N

8
≥ |B|

8
log2

(
N

|B|

)
,

where we used that degQd(y,B) ≥ (1− 2ε)d for every y ∈ L as well as the assumption on d.

Case 2: |L| < N/20.

B

S

L

X

D
Dc

Figure 4.3: The sets B, D, L, S and X and the edges from eGd
Q

(D,Dc) in red.

Let D := B ∪ L, and note that eQd(D,Dc) = eQd(B,S) + eQd(L,X) (Figure 4.3). Lemma 4.5 and the
edge-isoperimetric inequality for Qd (Theorem 4.2) imply that

(4.3) eGR
(B,Bc) ≥ max

{
eQd(B,S)

2
,
eQd(L,X)

4

}
≥
eQd(D,Dc)

6
≥ |D|

6
log2

(
N

|D|

)
.

Finally, de�ne the function f : [0, N ] → [0,∞) by f(x) := x log2(N/x) and note that f is concave and positive.
Therefore, the function f(x + a)/f(x) is decreasing for a > 0. Since |B| ≤ 3N/4 and |B| ≤ |D| ≤ |B| + |L| ≤
|B|+N/20, we have

f(|D|) =
f(|D|)
f(|B|)

· f(|B|) ≥ f(3N/4 + |D| − |B|)
f(3N/4)

· f(|B|) ≥ 4f(|B|)
5

.

Using (4.3), we may �nally conclude that

eGR
(B,Bc) ≥ f(|D|)

6
≥ f(|B|)

8
=
|B|
8

log2

(
N

|B|

)
,

as desired.
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5 The general case In this section, we prove Theorem 1.2. As previously discussed in the proof overview,
our approach is to project the random polytope P onto its �rst d coordinates, where d is chosen such that p2n−d

is a su�ciently large constant. The projected polytope R will have good edge expansion by Theorem 4.1. This,
together with the projection lemma (Lemma 2.7), will yield our desired bounds. We now proceed to the details.

5.1 Random Properties of the Projection Let P ∼ Pn,p and let d be the unique integer such that

(5.1) max{8, t0} ≤ t := p2n−d < 2 max{8, t0},

where t0 is the constant from the assertion of Lemma 2.3. Note that our assumption that p ≥ 2−0.99n implies
that

(5.2) n/200 ≤ d < n

for su�ciently large n. As usual, let π : Qn → Qd denote the projection onto the �rst d coordinates, let

N := 2d,

and let R := π(P ) be the projected polytope. For each nonnegative integer `, let X` denote the set of all x ∈ Qd
whose �ber has size ` and let ξ` be the probability that a given vertex of Qd belongs to X`, i.e.,

(5.3) X` := {x ∈ Qd : |Px| = `} and ξ` := P
(

Bin(2n−d, p) = `
)
.

Further, for every L ≥ 0, denote

X≤L :=
⋃
`≤L

X` and ξ≤L :=
∑
`≤L

ξ`.

We now describe the random properties necessary for the proof.

Proposition 5.1. With high probability, P has the following properties:

(P1) |P | = (1 + o(1)) · p2n = (1 + o(1)) · t2d;

(P2) For every L ≥ 0,
∣∣|X≤L| − ξ≤L ·N ∣∣ ≤ N2/3.

(P3) |X`| ≤ N · (2et/`)` for every ` ≥ 2et;

(P4) R = π(P ) is (2/t)-good;

Proof. To see (P1), note that, by our assumption on p, we have E[|P |] = p2n ≥ 20.01n and that
Var(|P |) = p(1− p)2n ≤ p2n. Therefore, by Chebyshev's inequality, for every δ > 0,

P
(∣∣|P | − p2n∣∣ > δp2n

)
≤ 1

δ2p2n
.

To see that the remaining three properties hold whp, observe �rst that the random variables {|Px|}x∈Qd are
independent and follow the binomial distribution Bin(2n−d, p). In view of this, property (P2) is an immediate
consequence of Theorem 2.2.

To see (P3), observe that ξ` ≤ (et/`)` for all ` ≥ 2et, by Theorem 2.1. If ` ≤ d
5 log d , say, it follows from (P2)

that with high probability

|X`| ≤ N · ξ` + 2N2/3 ≤ N ·

((
et

`

)`
+ 21−d/3

)
≤ N ·

(
2et

`

)`
.

Otherwise, if ` > d
5 log d , then we may simply use Markov's inequality to deduce that

P

(
|X`| ≥ N ·

(
2et

`

)`)
≤ E[|X`|]
N · (2et/`)`

=
N · ξ`

N · (2et/`)`
≤ 2−`.

and apply the union bound over all ` > d
5 log d to conclude that |X`| ≤ N · (2et/`)` with high probability.

Finally, to see (P4), note that x ∈ R if and only if |Px| > 0 and thus R is a (1 − ξ0)-random subset of Qd.

Since ξ0 = (1 − p)2n−d ≤ e−p2
n−d ≤ e−t, we may invoke Proposition 4.4 to conclude that R is (2/t)-good with

high probability.
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5.2 Proof of Theorem 1.2 In this subsection, we present the proof of Theorem 1.2. Let P , R, d, t, and
π be de�ned as in Subsection 5.1 and assume that P has properties (P1)�(P4) from Proposition 5.1. Fix some
set A ⊆ P and and let B, U , and M be de�ned as in (2.2), i.e.,

B := π(A) = {x ∈ Qd : Px ∩A 6= ∅},
U = Uπ(A) := {x ∈ Qd : Px ⊆ A},
M = Mπ(A) := {x ∈ Qd : Px ∩A 6= ∅ and Px ∩Ac 6= ∅}.

If t were a su�ciently large function of n, concentration inequalities would guarantee that whp all �bers
have sizes close to t. In particular, this would imply that |A| ≤ (1 + o(1))t|B| and that |U | ≤ (1 + o(1))|A|/t ≤
(1/2 + o(1))N . However, our t is a constant independent of n, so we cannot draw such conclusions easily.
Nevertheless, one can still obtain a slightly weaker upper bound on |U | and a relatively good lower bound on the
ratio |B|/|A|.

Claim 5.2. If |A| ≤ |P |/2, then |U | ≤ 3N/5.

Proof. Suppose that |U | > 3N/5 and observe that

|A| ≥
∑
x∈U
|Px| =

∑
`≥1

` · |X` ∩ U | ≥
m∑
`=1

` · |X`|,

where m is the largest integer such that |X≤m| ≤ 3N/5. Let T ∼ Bin(2n−d, p). Property (P2) and the maximality
of m imply that

P(T ≤ m) = ξ≤m ≤ 3/5 + o(1) and P(T ≤ m+ 1) = ξ≤m+1 ≥ 3/5− o(1),

so in particular m ≤ 3t, as P(T > 3t) ≤ 1/3. Finally, by Lemma 2.3 and (5.1),

m∑
`=1

` · |X`| ≥
m∑
`=1

` · ξ` ·N − o(mN) = E[T · 1T≤m] ·N − o(tN) ≥ 5Nt/9− o(tN),

which implies that |A| > |P |/2.

Claim 5.3. For every A ⊆ P and B = π(A) such that |B| ≤ 3N/4, we have

|A| ≤ |B| · Ct log(N/|B|)
log (Ct log (N/|B|))

,

where Ct is a constant depending only on t.

Proof. Let L := d4ete and let f : [L,∞) → R be the function de�ned by f(x) := (x/(4et))x. One can check
that f is strictly increasing and convex and therefore f−1 : [f(L),∞)→ [L,∞) is well-de�ned and concave. De�ne,
for each positive integer `,

b` := |{x ∈ B : |Px| = `}|,
and observe that, writing ` ∨ L for max{`, L},

|A| =
∑
x∈B
|π−1({x}) ∩A| ≤

∑
x∈B
|Px| =

∑
`≥1

b` · ` ≤
∑
`≥1

b` · (` ∨ L)

=
∑
`≥1

b` · f−1(f(` ∨ L)) ≤ |B| · f−1

∑
`≥1

b`
|B|
· f(` ∨ L)

 ,

where the last inequality follows from concavity of f−1 and the fact that b1 + b2 + · · · = |B|. Since
b` ≤ |X`| ≤ 2−` ·N/f(`) for all ` ≥ L, by item (P3) in Proposition 5.1, we have∑

`≥1

b` · f(` ∨ L) ≤ |B| · f(L) +N ·
∑
`>L

2−` = |B| · f(L) + 2−L ·N.
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We may thus conclude that

|A| ≤ |B| · f−1

(
f(L) + 2−L · N

|B|

)
.

It thus su�ces to argue that there is a constant C such that, for all x ≥ 4/3,

(5.4) f−1
(
f(L) + 2−L · x

)
≤ C log x

log(C log x)
.

Indeed, when C is large, we have 4et log(C log x) ≤ (C log x)1/2 for all x ≥ 4/3, and thus

f

(
C log x

log(C log x)

)
≥ (C log x)

1
2 ·

C log x
log(C log x) = xC/2 ≥ f(L) + 2−L · x,

which implies (5.4), as f is strictly increasing.

We are now able to complete the proof of Theorem 1.2. Let Ct be the constant from Claim 5.3. We consider
two cases:

Case 1: |M | ≥ N/20

By Lemma 2.7 and Proposition 5.1 (P1),

eGP
(A,Ac) ≥ |M | ≥ N

20
=

(1 + o(1))|P |
20t

≥ |A|
11t

.

Case 2: |M | < N/20

Since B is the union of U and M and |U | ≤ 3N/5, by Claim 5.2, we have |B| ≤ 3N/5 + N/20 ≤ 3N/4. We
may thus use Lemma 2.7 and Theorem 4.9 to conclude that

eGP
(A,Ac) ≥ eGR

(B,Bc) ≥ |B|
8

log2

(
N

|B|

)
≥ |A|

8Ct
log

(
Ct log

(
N

|B|

))
≥ |A|

8Ct
,(5.5)

where the second to last inequality follows from Claim 5.3. This concludes the �rst part of Theorem 1.2.
To check the second part of the theorem, choose η > 0 su�ciently small so that

η ≤ 1

3t
and log

(
Ct log

(
1

2ηt

))
≥ 8Ct,

and suppose that A ⊆ P satis�es |A| ≤ η|P |. By Proposition 5.1 (P1), it holds that

|B| ≤ |A| ≤ η · 2tN ≤ 3N/4.

We may thus use Lemma 2.7 and Theorem 4.9 to conclude, as in (5.5), that

eGP
(A,Ac) ≥ |A|

8Ct
log

(
Ct log

(
N

|B|

))
≥ |A|

8Ct
log

(
Ct log

(
1

2ηt

))
≥ |A|.(5.6)

6 Remarks In this paper, we studied the edge expansion of graphs arising from random 0/1-polytopes.
We showed that, with high probability, the edge expansion is bounded below by a positive constant. This result
aligns with a broader perspective related to the Mihail�Vazirani conjecture, which asserts that every 0/1-polytope
has edge expansion at least 1 � a bound that is tight, as witnessed by the n-dimensional Boolean hypercube.

Our �ndings suggest that the edge expansion of random 0/1-polytopes may be signi�cantly better. Indeed, our
analysis in the last part of the proof (see (5.6)) shows the following stronger statement holds with high probability
in the graph of P ∼ Pn,p, provided that p = p(n) ≥ 2−0.99n: For every K > 0, there exists η = η(K) > 0 such
that every A ⊆ P satisfying |A| ≤ η|P | has edge expansion at least K. We believe that, as long as the parameter
p is bounded away from 1, the edge expansion of the graph of Pn,p is not just bounded from below by 1, but
actually becomes larger, and possibly tends to in�nity as n → ∞. As a concrete �rst step in this direction, we
propose the following question:
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Question 6.1. Is it true that for p = o(1) and p2n →∞, with high probability, h(GPn,p
)→∞ as n→∞?

We remark that Proposition 1.3 answers this question a�rmatively if p ≤ c−n for some c < 7−1/3. For larger
values of p, a possible heuristic goes as follows. Suppose that p ≤ n−C for some su�ciently large constant C > 0
and choose d so that p ≤ cn−d for some c < 7−1/3. Then an application of Proposition 1.3 shows that, with high
probability, the graphs of most �bers Px are complete for x ∈ Qd. Moreover, one can check that Pxy is typically
complete for most pairs {x, y} ∈ GQd . These observations suggest that, in this regime, the graph of the polytope
becomes signi�cantly more well structured, and perhaps this could lead to an a�rmative answer to the question.
We also make the following conjecture:

Conjecture 6.2. There exists a constant c > 1 such that for all p ≤ 0.999 with p2n → ∞, with high
probability, h(GPn,p

) ≥ c.

Further exploration of this question may not only shed light on the probabilistic behavior of polytope graphs,
but could also o�er new insights into the general Mihail�Vazirani conjecture by contrasting worst-case and average-
case behaviors.
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