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Abstract

An old problem of Erdős, Fajtlowicz and Staton asks for the order of a largest induced regular
subgraph that can be found in every graph on n vertices. Motivated by this problem, we consider
the order of such a subgraph in a typical graph on n vertices, i.e., in a binomial random graph
G(n, 1/2). We prove that with high probability a largest induced regular subgraph of G(n, 1/2) has
about n2/3 vertices.

1 Introduction

A rather old and apparently quite difficult problem of Erdős, Fajtlowicz and Staton (see [4] or [3],
page 85) asks for the order of a largest induced regular subgraph that can be found in every graph
on n vertices. By the known estimates for graph Ramsey numbers (c.f., e.g., [5]), every graph on
n vertices contains a clique or an independent set of size c lnn, for some positive constant c > 0,
providing a trivial lower bound of c lnn for the problem. Erdős, Fajtlowicz and Staton conjectured
that the quantity in question is ω(log n). So far this conjecture has not been settled. Some progress
has been achieved in upper bounding this function of n: Bollobás in an unpublished argument showed
(as stated in [3]) the existence of a graph on n vertices without an induced regular subgraph on at
least n1/2+ε vertices, for any fixed ε > 0 and sufficiently large n. A slight improvement has recently
been obtained by Alon and the first two authors [1], who took the upper bound down to cn1/2 log3/4 n.

Given the simplicity of the problem’s statement, its appealing character and apparent notorious
difficulty, it is quite natural to try and analyze the behavior of this graph theoretic parameter for a
typical graph on n vertices, i.e. a graph drawn from the probability space G(n, 1/2) of graphs. (Recall
that the ground set of the probability space G(n, p) is composed of all graphs on n labeled vertices,
where each unordered pair {i, j} appears as an edge in G, drawn from G(n, p), independently and with
probability p. In the case p = 1/2 all labeled graphs G on n vertices are equiprobable: Pr[G] = 2−(n

2).)
This is the subject of the present paper.
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We say that a graph property P holds with high probability, or whp for brevity, if the probability
of a random graph to have P tends to 1 as n tends to infinity. It was shown by Cheng and Fang [2]
that the random graph G(n, 1/2) whp contains no induced regular subgraph on cn/ log n vertices. We
improve the upper bound, and give a nearly matching lower bound, as follows.

Theorem 1.1 Let G be a random graph G(n, 1/2). Then with high probability every induced regular
subgraph of G has at most 2n2/3 vertices. On the other hand, for k = o(n2/3), with high probability G
contains a set of k vertices that span a (k − 1)/2-regular graph.

It is instructive to compare this result with the above mentioned result of [1]. Alon et al. also
used a certain probability space of graphs to derive their upper bound of O(n1/2 log3/4 n). Yet, their
model of random graphs is much more heterogeneous in nature (the expected degrees of vertices vary
significantly there, see [1] for full details). As expected, the rather homogeneous model G(n, 1/2)
produces a sizably weaker upper bound for the Erdős-Fajtlowicz-Staton problem.

The difficult part of our proof is the lower bound, for which we use the second moment method.
The main difficulty lies in getting an accurate bound on the variance of the number of d-regular
graphs on k vertices, where d = (k− 1)/2. Our main tool for achieving this goal is an estimate on the
number N(k,H) of d-regular graphs on k vertices which contain a given subgraph H, when H is not
too large. Provided H has o(

√
k) vertices, and its degree sequence satisfies some conditions which are

quite typical for random graphs, we obtain an asymptotic formula for N(k,H) which is of independent
interest; see Theorem 5.1.

In Section 2 we introduce some notation and technical tools utilized in our arguments, and then
prove a rather straightforward upper bound of Theorem 1.1. A much more delicate lower bound is then
proven in Section 3. The technical lemma used in this proof relies on the above-mentioned estimate of
N(k,H). The proof of this estimate is relegated to Section 4. The final section of the paper contains
some concluding remarks.

2 Notation, tools and the upper bound

In this short section we describe some notation and basic tools to be used later in our proofs. Then
we establish the upper bound part of Theorem 1.1.

We will utilize the following (standard) asymptotic notation. For two functions f(n), g(n) of a
natural number n, we write f(n) = o(g(n)), whenever limn→∞ f(n)/g(n) = 0; f(n) = ω(g(n)) if
g(n) = o(f(n)). Also, f(n) = O(g(n)) if there exists a constant C > 0 such that f(n) ≤ Cg(n) for all
n; f(n) = Ω(g(n)) if g(n) = O(f(n)), and f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n)).
We write f ∼ g if the ratio f/g tends to 1 when the underlying parameter tends to infinity. For a real
x and positive integer a, define [x]a = x(x − 1) · · · (x − a + 1). All logarithms in this paper have the
natural base. We will use the bound

(
n
k

)
≤ (en/k)k, valid for all positive n and k.

For a positive integer k, let m(k) be the largest even integer not exceeding (k − 1)/2.
Let G(d) denote the number of labeled simple graphs on k vertices with degree sequence d =
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(d1, d2, . . . , dk), where the degree of vertex i is di. Also, we denote

pk = P[a random graph G(k, 0.5) is m(k)-regular] .

Clearly, pk = G(d)2−(k
2), with all di being set equal to m(k).

We will repeatedly cite the following corollary of a result of McKay and the third author (see
Theorems 2 and 3 of [6]).

Theorem 2.1 Let dj = dj(k), 1 ≤ j ≤ k be integers such that
∑k

j=1 dj = λk(k−1) is an even integer
where 1/3 < λ < 2/3, and |λk − dj | = O(k1/2+ε) uniformly over j, for some sufficiently small fixed
ε > 0. Then

G(d) = f(d)
(
λλ(1− λ)1−λ

)(k
2)

k∏
j=1

(
k − 1
dj

)
(1)

where

• f(d) = O(1), and

• if max{|λk − dj |} = o(
√
k), then f(d) ∼

√
2e1/4, uniformly over the choice of such a degree

sequence d.

It is a routine matter to check that
(
λλ(1−λ)1−λ

)(k
2)∏k

j=1

(
k−1
dj

)
= O

(
2−(k

2)
(
k−1
m(k)

)k)
. (One way to see

this is as follows. We can show that the expression increases if the smallest di is increased, unless they
are all at least (k−1)/2+O(1). By a symmetrical argument, we may assume they have an upper bound
of the same form. Then, for such a sequence, adding bounded numbers to all di changes the expression
by a bounded factor.) Hence G(d)2−(k

2) is O(pk) for every degree sequence d covered by Theorem 2.1.
Also, using Stirling’s formula it is straightforward to verify that pk =

(
(1 + o(1))

√
πk/2

)−k and that
pk−1/pk = Θ(

√
k).

In order to prove the upper bound in Theorem 1.1, we show that, for a given k and r, the probability
that a random graph on k vertices is r-regular is O(pk). (For future use we prove here a somewhat
more general statement.) We then use the above-mentioned estimate for pk and apply the union bound
over all possible values of r.

Lemma 2.2 For every degree sequence d = (d1, . . . , dk),

P[G(k, 0.5) has degree sequence d] = O(pk) .

Proof. Following the remark after Theorem 2.1, assume that G(d)2−(k
2) ≤ Cpk for every degree

sequence d covered by the theorem, where C > 0 is an absolute constant. Let d be a degree sequence of
length k for which G(d) is maximal (which is obviously equivalent to choosing d to be a most probable
degree sequence in G(k, 1/2)). Write P[G(k, 0.5) has degree sequence d] = akpk. If all degrees in d
satisfy |di − k/2| ≤ k1/2+ε, then we can apply Theorem 2.1. Otherwise, there is di, say, dk, deviating
from k/2 by at least k1/2+ε, for some fixed ε > 0. To bound the probability that G(k, 1/2) has degree
sequence d, we first expose the edges from vertex k to the rest of the graph. By standard estimates on
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the tails of the binomial distribution, the probability that k has the required degree is exp{−Ω(k2ε)}.
The edges exposed induce a new degree sequence on vertices 1, . . . , k − 1. The probability that the
random graph G(k − 1, 0.5) has this degree sequence is at most ak−1pk−1 in our notation. We thus
obtain: akpk ≤ max(Cpk, ak−1pk−1 ·O(exp{−k2ε})). Recalling that pk−1/pk = Θ(

√
k), we obtain that

ak ≤ max(C, ak−1 ·O(exp{−kε})) for large enough k. The result follows by induction starting from k0

for which the above factor O(exp{−kε}) is less than 1; the final bound is ak ≤ max(C, ak0).

In order to complete the proof of the upper bound of Theorem 1.1, note that by Lemma 2.2 the
probability that a fixed set V0 of k vertices spans a regular subgraph in G(n, 1/2) is O(kpk). Summing
over all k ≥ k0 = 2n2/3 and all vertex subsets of size k, we conclude that the probability that G(n, 1/2)
contains an induced regular subgraph on at least k0 vertices is

∑
k≥k0

(
n

k

)
·O(kpk) ≤

∑
k≥k0

(en
k

)k
k
(
(1 + o(1))

√
πk/2

)−k ≤ n2 ·

(
(1 + o(1))

√
2en

√
πk

3/2
0

)k0
= o(1) .

3 A lower bound

In this section we give a proof of the lower bound in our main result, Theorem 1.1. (To be more
accurate, we give here most of the proof, deferring the proof of a key technical lemma to the next
section.) The proof uses the so-called second moment method and proceeds by estimating carefully
the first two moments of the random variable X = X(k), counting the number of (k − 1)/2-regular
induced subgraphs on k vertices in G(n, 1/2). For convenience we assume throughout the proof that
k ≡ 1 (mod 4). (Since this estimate is used for proving the lower bound of Theorem 1.1, we can
allow ourselves to choose k in such a way without losing essentially anything in the lower bound.) It
is somewhat surprising to be able to apply successfully the second moment method to sets of such a
large size, however two earlier instances of similar application can be found in [7] and [9].

So let X be the random variable counting the number of (k − 1)/2-regular induced subgraphs on
k vertices in G(n, 0.5). We write X =

∑
|A|=kXA, where XA is the indicator random variable for the

event that a vertex subset A spans a (k − 1)/2-regular subgraph. Then

E[X] =
∑
|A|=k

E[XA] =
(
n

k

)
pk .

Plugging in the estimate for pk cited after the statement of Theorem 2.1, it is straightforward to
verify that E[X] tends to infinity for k = o(n2/3); in fact, E[X] = (ω(1))k in this regime. A corollary
of Chebyshev’s inequality is that P[X > 0] ≥ 1 − (Var[X]/E2[X]), and therefore in order to prove
that whp G(n, 1/2) contains an induced regular subgraph on k vertices, it is enough to establish that
Var[X] = o(E2[X]).

In order to estimate the variance of X we need to estimate the correlation between the following
events: “A spans a (k − 1)/2-regular subgraph” and “B spans a (k − 1)/2-regular subgraph”, where
A,B are k-element vertex subsets whose intersection is of size i ≥ 2. To this end, define

pk,i = max
|V (H)|=i

P[G(k, 0.5) is (k − 1)/2-regular | G[i] = H],
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where the maximum in the expression above is taken over all graphs H on i vertices, and G[i] stands
for the subgraph of G(k, 1/2) spanned by the first i vertices. Since X =

∑
|A|=kXA, we have:

Var[X] = E[X2]− E2[X] =
∑
|A|=k

Var[XA] +
k−1∑
i=2

∑
|A|=|B|=k
|A∩B|=i

(
E[XAXB]− E[XA]E[XB]

)

≤
∑
|A|=k

E[XA] +
k−1∑
i=2

∑
|A|=|B|=k
|A∩B|=i

(
P[XA = 1]P[XB = 1|XA = 1]− P[XA = 1]P[XB = 1]

)

≤ E[X] +
(
n

k

)
pk ·

k−1∑
i=2

(
k

i

)(
n− k
k − i

)
(pk,i − pk) . (2)

As a warm-up, we first show that a rather crude estimate for (2) suffices to prove that Var[X] =
o(E2[X]) for k = o(

√
n). We start with the following bound for pk,i.

Lemma 3.1 For 2 ≤ i ≤ k − 1,

pk,i = O

((
k − i⌊
k−i
2

⌋)i2−(k−i)ipk−i

)
.

Also, pk,i

pk
≤ Cek log k

k−i , for a sufficiently large constant C > 0.

Proof. First, given H, expose the edges from H to the remaining k− i vertices (denote the latter set
by X). For every v ∈ H, we require d(v,X) = (k − 1)/2− dH(v). This happens with probability(

k − i
(k − 1)/2− dH(v)

)
2−k+i ≤

(
k − i⌊
k−i
2

⌋)2−k+i

(the middle binomial coefficient is the largest one). Hence the probability that all i vertices from V (H)
have the required degree of (k−1)/2 in G is at most the i-th power of the right hand side of the above
expression.

Now, conditioned on the edges from H to X, we ask what is the probability that the subgraph
spanned by X has the required degree sequence (each v ∈ X should have exactly (k − 1)/2− d(v,H)
neighbors in X). Observe that by Lemma 2.2 the probability that G[X] has the required degree
sequence is at most C0pk−i for some absolute constant C0 > 0, providing the first claimed estimate
for pk,i.

From Theorem 2.1, pt = Θ
(

2−2(t
2)
(

t−1
b(t−1)/2c

)t)
. Therefore, the ratio pk,i/pk can be estimated as

follows:
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pk,i
pk

≤ C0

(
k − i⌊
k−i
2

⌋)i2−(k−i)i pk−i
pk
≤ C1

(
k − i⌊
k−i
2

⌋)i2−(k−i)i
2−2(k−i

2 )( k−i−1

b k−i−1
2 c

)k−i
2−2(k

2)
(k−1

k−1
2

)k
≤ C1

( k−i
b k−i

2 c
)
2−(k−i)(k−1

k−1
2

)
2−(k−1)

k

≤ C

[
(k−1

2 )2(k−1
2 − 1)2 · · · (k−i2 + 1)2

(k − 1)(k − 2) · · · (k − i+ 1)
2i−1

]k

= C

[
k − 1
k − 2

k − 3
k − 4

· · · k − i+ 2
k − i+ 1

]k
≤ C exp

{( 1
k − 2

+
1

k − 4
+ · · ·+ 1

k − i+ 1

)
k

}
.

In the third inequality above we used that
( k−i−1

b k−i−1
2 c

)
≤ 1

2(1+ 1
k−i)

( k−i
b k−i

2 c
)
. Observe that

∑k−2
j=k−i+1

1
j <∫ k

k−i
dx
x = log k

k−i . This completes the proof of the second part of the lemma.

Now we complete a proof of a weaker version of the lower bound of Theorem 1.1, by showing that
whp G(n, 1/2) contains an induced (k − 1)/2-regular subgraph on k = o(

√
n) vertices. Omitting the

term −pk in the sum in (2) and using E[X] =
(
n
k

)
pk, we obtain:

Var[X]
E2[X]

≤
∑k−1

i=2

(
k
i

)(
n−k
k−i
)
pk,i(

n
k

)
pk

+
1

E[X]
=

k−1∑
i=2

(
k
i

)(
n−k
k−i
)(

n
k

) pk,i
pk

+ o(1). (3)

Denote

g(i) =

(
k
i

)(
n−k
k−i
)(

n
k

) pk,i
pk

.

Let us first estimate the ratio of the binomial coefficients involved in the definition of g(i).(
k
i

)(
n−k
k−i
)(

n
k

) ≤
(
ek
i

)i ( n
k−i
)(

n
k

) =
(
ek

i

)i k(k − 1) · · · (k − i+ 1)
(n− k + i)(n− k + i− 1) · · · (n− k + 1)

≤
(
ek

i

)i ( k

n− k + i

)i
≤
(

3k2

in

)i
.

To analyze the asymptotic behavior of g(i), we consider three cases.
Case 1. i ≤ k/2. In this case, by Lemma 3.1 and the inequality log(1 +x) ≤ x for x ≥ 0 we have:

pk,i
pk
≤ Cek log k

k−i = Cek log(1+ i
k−i

) ≤ Cek
i

k−i ≤ Ce2i .

We thus get the following estimate for g(i):

g(i) =

(
k
i

)(
n−k
k−i
)(

n
k

) pk,i
pk
≤
(

3k2

in

)i
· Ce2i ≤ C

(
3e2k2

in

)i
. (4)

The above inequality is valid for all values of k. When k = o(
√
n) it gives that g(i) = (o(1))i.
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Case 2. k/2 ≤ i ≤ k − k
log k . Recalling Lemma 3.1 again, we have pk,i/pk ≤ Cek log k

k−i ≤
Cek log log k. Hence in this case

g(i) ≤
(

3k2

in

)i
Cek log log k ≤

(
6k
n

)k/2
Cek log log k

≤
(

1√
k

)k/2
Cek log log k = Ce−

k log k
4

+k log log k ≤ e−k .

For future reference, it is important to note here that in the calculation above we used 6k/n ≤ k−1/2.
This inequality stays valid as long as k ≤ (n/6)2/3.

Case 3. i ≥ k − k
log k . In this case it suffices to use the trivial estimate pk,i ≤ 1. We also need

that E[X] =
(
n
k

)
pk = (ω(1))k. Therefore,

g(i) =

(
k
i

)(
n−k
k−i
)
pk,i(

n
k

)
pk

≤
(
k
i

)(
n−k
k−i
)

(ω(1))k
≤ 2knk−i

(ω(1))k
≤ 2knk/ log k

(ω(1))k
=

eO(k)

(ω(1))k
≤ e−k .

In the above calculation we used the assumption log n = O(log k). In the complementary case k = no(1)

the expression
(
n
k

)
pk behaves like

(
cn/k3/2

)k ≥ nk/2, while the numerator in the expression for g(i)
is at most 2knk/ log k = no(k), and the estimate works as well. Note that, as in Case 2, the inequality
here remains valid even for k as large as n2/3.

It thus follows that
∑k−1

i=2 g(i) is negligible, implying in turn that Var[X] = o(E2[X]), and thus X
is with high probability positive by the Chebyshev inequality.

Now we proceed to the proof of the “real” lower bound of Theorem 1.1, i.e. assume that k satisfies
k = o(n2/3). In this case estimating the variance of the random variable X, defined as the number
of induced (k − 1)/2-regular subgraphs on k vertices, becomes much more delicate. We can no longer
ignore the term −pk in the sum in (2). Instead, we show that for small values of i in this sum pk,i is
asymptotically equal to pk. In words, this means that knowing the edges spanned by the first i vertices
of a random graph G = G(k, 1/2) does not affect by much the probability of G being (k−1)/2-regular.
We claim this formally for i = o(

√
k) in the following key lemma.

Lemma 3.2 For i = o(
√
k),

pk,i = (1 + o(1))pk.

The proof of this lemma is rather involved technically. We thus postpone it to the next section. We
now show how to complete the proof assuming its correctness. We first repeat estimate (2):

Var[X]
E2[X]

≤ 1
E[X]

+
k−1∑
i=2

(
k
i

)(
n−k
k−i
)
(pk,i − pk)(
n
k

)
pk

≤ o(1) +
t∑
i=2

(
k
i

)(
n−k
k−i
)
(pk,i − pk)(
n
k

)
pk

+
k−1∑
i=t

(
k
i

)(
n−k
k−i
)(

n
k

) pk,i
pk

, (5)
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where t = t(k, n) is chosen so that t = ω(k2/n) but t = o(
√
k). Since k = o(n2/3) such a function is

easily seen to exist. Due to our choice of t we can apply Lemma 3.2 to the first sum above. It thus
follows that

t∑
i=2

(
k
i

)(
n−k
k−i
)
(pk,i − pk)(
n
k

)
pk

=
t∑
i=2

(
k
i

)(
n−k
k−i
)
· o(pk)(

n
k

)
pk

≤ o(1) ·
∑k

i=0

(
k
i

)(
n−k
k−i
)(

n
k

) = o(1) .

As for the second sum in (5) we can utilize the same case analysis as done before for k = o(
√
n). The

only difference is in Case 1, that now covers all i from t till k/2. Therefore, for every i in this new
interval we can use inequality (4) to conclude(

k
i

)(
n−k
k−i
)(

n
k

) pk,i
pk
≤ C

(
3e2k2

in

)i
≤ C

(
3e2k2

tn

)i
= (o(1))i .

This completes the proof of Theorem 1.1.

4 Proof of key lemma

The proof of Lemma 3.2 is overall along the lines of the proof of Lemma 3.1, though requiring a much
more detailed examination of the probabilities involved. Throughout this section, let k be odd and,
for simplicity, denote (k − 1)/2 by d. Let Di be the set of integer vectors d = (d1, . . . , di) such that
0 ≤ dj ≤ i − 1 for 1 ≤ j ≤ i, and kd −

∑
j dj is even. Given d ∈ Di, let N(d) denote the number of

graphs G on vertex set [k] for which G[i] has no edges, and dG(j) = d−dj for j ∈ [i], whilst dG(j) = d

for i < j ≤ k. Note that if d is the degree sequence of a graph H on vertex set [i], then N(d) is the
number of d-regular graphs G on vertex set [k] for which G[i] = H. Of course, in this case N(d) is
nonzero only if kd is even, and hence k is congruent to 1 mod 4.

Proposition 4.1 Assume i = o(
√
k). Given d ∈ Di and a nonnegative vector s = (s1, . . . , si) with∑

j sj even, put d′ = d − s. Then, uniformly over such d and s with the additional properties that
d′ ∈ Di and

∑i
j=1 sj ≤ k3/4,

N(d)
N(d′)

∼

i∏
j=1

(
d− dj + sj

sj

)
i∏

j=1

(
d+ 1− (i− dj)

sj

) .

Proof. We use a comparison type argument. Since it is quite complicated, we give the idea of the proof
first. For any vector c = (c1, . . . , cj), write c∗ for the vector (d−c1, . . . , d−cj). Let V1 = {1, . . . , i} and
V2 = {i+ 1, . . . , k}. For simplicity, suppose that s1 = s2 = 1, and sj = 0 for j ≥ 3. We can compute
N(d) as the number of possible outcomes of two steps. The first step is to choose a bipartite graph B
with bipartition (V1, V2) and degree sequence d∗ in V1. The second step is to add the remaining edges
between vertices in V2 such that those vertices will have degree d. By comparison, to count N(d′) we
choose in the first step B′ with degree sequence d′∗ in V1, and then do the second step for each such
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B′. The proof hinges around the fact that there is a correspondence between the set of possible B and
B′ such that the number of ways of performing the second step is roughly the same, at least for most
of the corresponding pairs (B,B′).

The correspondence is many-to-many. For a graph B we may add two edges, incident with vertices
1 and 2, to obtain a graph B′. The number of ways this can be done, without creating multiple edges,
is
∏2
j=1

(
k− i− (d−dj)

)
=
∏2
j=1

(
d+ 1− (i−dj)

)
. Conversely, each B′ comes from

∏2
j=1(d−dj + 1)

)
different B. The ratio of these quantities gives the asymptotic ratio between N(d) and N(d′) claimed
in the theorem, ignoring the number of ways of performing the second step. Our actual argument gets
more complicated because not only some bipartite graphs must be excluded, but also some sets of
edges to be added to them. So we will present equations relating to the above argument in a slightly
different form to make exclusion of various terms easier.

Let B denote the set of bipartite graphs with bipartition (V1, V2). For B ∈ B, write Dj(B) for
the degree sequence of B on the vertices in Vj in the natural order, so D1(B) =

(
dB(1), . . . , dB(i)

)
and D2(B) =

(
dB(i + 1), . . . , dB(k)

)
. For d = (d1, . . . , di) with kd −

∑
j dj even, let B(d∗) denote

{B ∈ B : D1(B) = d∗}. Let G
(
D2(B)∗

)
denote the number of graphs with degree sequence D2(B)∗.

Clearly,
N(d) =

∑
B∈B(d∗)

G
(
D2(B)∗

)
. (6)

Suppose that we wish to add to B a set S of edges joining V1 and V2, without creating any
multiple edges, such that the degree of j ∈ V1 (1 ≤ j ≤ i) in the graph induced by S is sj (as given
in the statement of the proposition). The family of all such sets S will be denoted by S(B, s). Note
that necessarily |S| ≤ k3/4 for S ∈ S(B, s). The cardinality of S(B, s) is

∏i
j=1

(
d+1−(i−dj)

sj

)
, because

dB(j) = d∗j = d− dj , so (as in the sketch above) j has d+ 1− (i− dj) spare vertices in V2 to which it
may be joined. Hence we can somewhat artificially rewrite (6) as

N(d) =
1

i∏
j=1

(
d+ 1− (i− dj)

sj

) ∑
B∈B(d∗)

∑
S∈S(B,s)

G
(
D2(B)∗

)
. (7)

Also for B′ ∈ B(d′∗) define S ′(B′, s) to be the family of sets S ⊆ E(B′) such that the degree of j ∈ V1

in the graph induced by S is sj (1 ≤ j ≤ i). Since dB′(j) = d−d′j and d′j = dj−sj , a similar argument
gives

N(d′) =
1

i∏
j=1

(
d− dj + sj

sj

) ∑
B′∈B(d′∗)

∑
S∈S′(B′,s)

G
(
D2(B′)∗

)
. (8)

The rest of the proof consists of showing that the significant terms in the last two equations can be
put into 1-1 correspondence such that corresponding terms are asymptotically equal.

We first need to show that for a typical B ∈ B(d∗), the variance of the elements of D2(B) (as
a sequence) is small. Given d, define d̄ = (k − i)−1

∑
j∈V1

(d − dj), and note that this is equal to
(k − i)−1

∑
j∈V2

dB(j) for every B ∈ B(d∗). Since d̄ is determined uniquely by d, the value of d̄ is the
same for all B ∈ B(d∗).

9



Lemma 4.2 Let d ∈ Di, and select B uniformly at random from B(d∗). Then

E

∑
j∈V2

(
d̄− dB(j)

)2 ≤ i(k − i).
Proof. First observe that in B, the neighbours of any vertex t ∈ V1 form a random subset of V2 of
size d∗t , and these subsets are independent for different t. So for fixed j ∈ V2, dB(j) is distributed as
a sum of i independent 0-1 variables with mean

∑
t∈V1

d∗t /(k − i) = d̄. It follows that the variance of
dB(j) is less than i. Hence E

(
d̄− dB(j)

)2
< i, and the lemma follows by linearity of expectation.

Returning to the proof of the proposition, we will apply Theorem 2.1 to estimate G
(
D2(B)∗

)
. This

graph has k−i vertices, degree sequence {d−dB(j), j ∈ V2}, and its degree sum is e∗ := (k−i)d−e(B),
where e(B) =

∑
j∈V2

dB(j) = (k − i)d̄ is the number of edges in the bipartite graph B. Consider λ
from Theorem 2.1. We see that

λ = λ(d) :=
e∗

(k − i)(k − i− 1)
=

d− d̄
k − i− 1

. (9)

The product of binomials in (1) is in this case∏
j∈V2

(
k − i− 1
d− dB(j)

)
. (10)

For every B ∈ B(d∗), all components of the vector D2(B) are at most |V1| = i. Thus

xj :=
k − i− 1

2
− (d− dB(j)) = dB(j)− i/2 = O(i) = o(

√
k).

We have (
a

a/2 + x

)
=
(

a

ba/2c

)
exp

(
− 2x2/a+O(x3/a2)

)
(11)

for x = o(
√
a), which may be established for instance by analyzing the ratio of the binomial coefficients.

Hence
k∏

j=i+1

(
k − i− 1
d− dB(j)

)
=
(
k − i− 1⌊
k−i−1

2

⌋ )k−i exp

(
−2
∑
x2
j

k − i
+ o(i)

)
. (12)

(Note that here and in the rest of the proof, the asymptotic relations hold uniformly over d ∈ Di.)
Since i = o(

√
k) we can choose a function ω of n such that ω → ∞ and ω2i = o(

√
k). Define B̂ω(d∗)

to be the subset of B(d∗) that contains those B for which∑
j∈V2

(
d̄− dB(j)

)2 ≤ ωi(k − i). (13)

Since
∑

j∈V2
dB(j) = e(B) is the same for all bipartite graphs B ∈ B(d∗), by definition of xj we have

that
∑

j x
2
j −
∑

j d
2
B(j) also does not depend on B. Similarly, the sum in (13) differs from

∑
j d

2
B(j) by

a constant independent of B. Therefore
∑

j x
2
j for all B ∈ B̂ω/2(d∗) is smaller than the corresponding

sum for B ∈ B(d∗) \ B̂ω(d∗) by an additive term of at least ωi(k− i)/2. This implies that the product
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of binomials in (12) is larger, for all B ∈ B̂ω/2(d∗), than for any B ∈ B(d∗) \ B̂ω(d∗). Also, from
Lemma 4.2 and Markov’s inequality, almost all members of B(d∗) are in B̂ω/2(d∗). Moreover, since
all degrees in degree sequence D2(B)∗ deviate from (k − i)/2 by at most O(i) = o(

√
k), the function

f(D2(B)∗) from Theorem 2.1 is ∼
√

2e1/4 for all B ∈ B(d∗). Combining these observations, we
conclude that the contribution to (6) from B /∈ B̂ω(d∗) is o

(
N(d)

)
. Thus, the same observation holds

for (7). That is,

N(d) ∼ 1
i∏

j=1

(
d+ 1− (i− dj)

sj

) ∑
B∈B̂ω(d∗)

∑
S∈S(B,s)

G
(
D2(B)∗

)
. (14)

We also note for later use, that by (13) and Cauchy’s inequality, for all B ∈ B̂ω(d∗)∑
j∈V2

∣∣d̄− dB(j)
∣∣ ≤ (k − i)

√
ωi. (15)

Fix B ∈ B̂ω(d∗). Consider S chosen uniformly at random from S(B, s), and let rm(S) denote the
number of edges of S incident with a vertex m ∈ V2. Fixing m and using that |S| ≤ k3/4, we can
bound the probability that rm(S) ≥ 5 by

∑
{j1,...,j5}⊆V1

5∏
t=1

sjt
k − i− (d− djt)

≤

∑
j∈V1

sj
d− i

5

=
(
|S|
d− i

)5

= O(k−5/4).

Hence by Markov’s inequality, with probability 1−O(k−1/4), S ∈ S(B, s) satisfies

(i) maxj∈V2 rj(S) ≤ 4.

We would next like to bound
∑

j∈V2

∣∣d̄−dB(j)
∣∣rj(S). To do this, note that we may choose the edges

in S incident with any given vertex sequentially, each time selecting a random neighbour from those
vertices of V2 still eligible to be joined to. For each such edge joining to such a random vertex j ∈ V2,
by (13) there are, as a crude bound, at least (k − i)/3 vertices of V2 to choose from (for k sufficiently
large). Amongst the eligible vertices, the average value of

∣∣d̄− dB(j)
∣∣ must be at most 3

√
ωi by (15).

Hence, if Xh denotes the value of
∣∣d̄ − dB(j)

∣∣ for the h-th edge added, we have EXh ≤ 3
√
ωi. Thus

E
∑

hXh ≤ 3
√
ωi|S| ≤ 3

√
ωik3/4. Noting that

∑
hXh =

∑
j∈V2

∣∣d̄ − dB(j)
∣∣rj(S) and using Markov’s

inequality, we deduce that almost all S ∈ S(B, s) (more precisely all except the fraction 3/
√
ω = o(1)

of them, at most) satisfy

(ii)
∑
j∈V2

∣∣d̄− dB(j)
∣∣rj(S) ≤ ω

√
ik3/4.

Define Ŝ(B, s) to be the set of S ∈ S(B, s) satisfying both the properties (i) and (ii). Then, since
each S ∈ S(B, s) contributes equally to (14),

N(d) ∼ 1
i∏

j=1

(
d+ 1− (i− dj)

sj

) ∑
B∈B̂ω(d∗)

∑
S∈Ŝ(B,s)

G
(
D2(B)∗

)
. (16)

11



Let B ∈ B̂ω(d∗) and S ∈ Ŝ(B, s). Then, using (13) together with (i) and (ii), we get∑
j∈V2

(
d̄− dB(j)− rj(S)

)2 ≤ ωi(k − i) + 2
∑
j∈V2

∣∣d̄− dB(j)
∣∣rj(S) +

∑
j∈V2

rj(S)2

≤ ωi(k − i) + 2ω
√
ik3/4 + 16(k − i) ∼ ωik.

Hence, for k sufficiently large, those S appearing in the range of the summation in (16) satisfy B +
S ∈ B̂2ω(d′∗), where B + S is the graph obtained by adding the edges in S to B (and noting that
d′∗ = d∗ + s). Since, as we saw, the contribution to (6) from B /∈ B̂ω(d∗) is o

(
N(d)

)
, we may also

relax the constraint on B in the summation in (16), to become B ∈ B̂2ω(d∗). Now redefining 2ω as ω,
we obtain

N(d) ∼ 1
i∏

j=1

(
d+ 1− (i− dj)

sj

) ∑
(B,S)∈W

G
(
D2(B)∗

)
, (17)

where W denotes the set of all (B,S) such that B ∈ B̂ω(d∗), S ∈ Ŝ(B, s) and B + S ∈ B̂ω(d′∗).
Define Ŝ ′(B′, s), analogous to Ŝ(B, s), to be the set of S ∈ S ′(B′, s) with maximum degree in V2

at most 5 and also obeying property (ii) above, where B = B′ − S. Since B has density close to 1/2,
B and its complement are more or less equivalent, and adding or deleting edges should have a similar
effect. Indeed, the above argument applied to (8), with suitable small modification, gives

N(d′) ∼ 1
i∏

j=1

(
d− dj + sj

sj

) ∑
(B′,S)∈W ′

G
(
D2(B′)∗

)
(18)

where W ′ denotes the set of all (B′, S) such that B′ ∈ B̂ω(d′∗), S ∈ Ŝ(B′, s) and B′ − S ∈ B̂ω(d∗).
Observe that (B,S) ∈ W if and only if (B + S, S) ∈ W ′. So the summation in (18) is equal to∑

(B,S)∈W

G
(
D2(B + S)∗

)
.

Hence, comparing with (17), the proposition follows if we show that

G
(
D2(B)∗

)
∼ G

(
D2(B + S)∗

)
(19)

uniformly for all (B,S) ∈ W.

We may apply (1) to both sides of (19). Write g(λ, n) =
(
λλ(1 − λ)1−λ

)(n
2). Notice that λ(d), as

defined in (9), satisfies:

λ(d) =

∑
j∈V2

(d− dB(j))
(k − i)(k − i− 1)

— which is exactly λ for the degree sequence D2(B)∗ as defined in Theorem 2.1. The same applies to
λ(d′) and the degree sequence D2(B + S)∗. Using

∑
j∈V2

(d− dB(j)) = (k − i)d−
∑
t∈V1

dB(t) = (k − i)d− id+
i∑
t=1

dt =
(k − 2i)(k − 1)

2
+ Θ(i2),

12



it is easy to derive from (9) that both λ(d) and λ(d′) are 1/2 + O(i2/k2) = 1/2 + o(k−1) for all
d,d′ ∈ Di. For such λ the derivative of log g(λ, k − i) is

(
k−i
2

)
log(λ/(1 − λ)) = O(k2i2/k2) = o(k).

Moreover, |λ(d) − λ(d′)| = O(k−5/4) because the values of d̄ for B and B + S differ by O(|S|/k).
Hence g(λ(d), k− i) ∼ g(λ(d′), k− i). It is now also easy to see that f(D2(B)∗), f(D2(B + S)∗) from
Theorem 2.1 satisfy: f(D2(B)∗) ∼ f(D2(B + S)∗) ∼

√
2e1/4, since all degrees in these two degree

sequences deviate from (k − i)/2 by O(i) = o(
√
k − i).

It only remains to consider the product of binomials in the two sides of (19) after the application
of Theorem 2.1. Recalling the expression (10), the ratio of these two products is∏

j∈V2

(
k − i− 1
d− dB(j)

)/( k − i− 1
d− dB(j)− rj(S)

)
.

Since B ∈ B̂ω(d∗), all rj(S) ≤ 4 and
∑

j rj(S) ≤ k3/4, so using d = (k − 1)/2 and dB(j) ≤ i, this
expression is, up to a multiplicative factor of 1 +O(k−1)

∑
j r

2
j (S) = 1 + o(1), equal to

∏
j∈V2

(
k − i− 1− d+ dB(j)

d− dB(j)

)rj(S)

=
∏
j∈V2

(
d− i/2−

(
i/2− dB(j)

)
d− i/2 +

(
i/2− dB(j)

))rj(S)

=
∏
j∈V2

(
1 +O

(
i/2− dB(j)

k

))rj(S)

.

By its definition, d̄ = (k − i)−1
∑

j∈V1
(d − dj) = i/2 + O(i2/k) = i/2 + o(1), and so using condition

(ii) (the right hand side of which is ω
√
ik3/4 = o(k)), and not forgetting

∑
rj(S) ≤ k3/4, we get∑

j∈V2

rj(S)
|i/2− dB(j)|

k
≤
∑
j∈V2

|d̄− dB(j)|rj(S)
k

+
∑
j∈V2

|d̄− i/2|rj(S)
k

= o(1).

Hence, the expression above is asymptotic to 1. This argument shows that (19) holds with the required
uniformity.

For a slightly simpler version of the formula in Proposition 4.1, put

d̂ = d− 1
2

(i− 1) =
1
2

(k − i)

(which is in some sense the average degree of vertices of side V1 in the bipartite graph B) and

δj = dj −
1
2

(i− 1).

Then the proposition gives
N(d)
N(d′)

∼
i∏

j=1

[d̂− δj + sj ]sj

[d̂+ δj ]sj

.

Recalling that δj and sj are at most i = o(
√
k) and using log(1 + x) = x− x2/2 +O(x3), we have

[d̂− δj + sj ]sj = d̂sj exp
(
− δjsj/d̂+ s2j/2d̂+ o(1/

√
k)
)
,

[d̂+ δj ]sj = d̂sj exp
(
δjsj/d̂− s2j/2d̂+ o(1/

√
k)
)
.

13



Thus, we may rewrite the assertion of Proposition 4.1 as

N(d)
N(d′)

∼ exp


i∑

j=1

(
− 2δjsj/d̂+ s2j/d̂

) ∼ exp
{∑i

j=1(δj − sj)2/d̂
}

exp
{∑i

j=1 δ
2
j /d̂
} . (20)

To proceed, we extend this formula so that s is permitted to have negative entries.

Corollary 4.3 Assume i = o(
√
k). Given d ∈ Di and an integer vector s = (s1, . . . , si) with

∑
j sj

even, put d′ = d − s. Then, uniformly over such d and s with the additional properties that d′ ∈ Di
and

∑i
j=1 |sj | ≤ k3/4,

N(d)
N(d′)

∼ exp

1

d̂

i∑
j=1

(
− 2δjsj + s2j

) .

Proof. Define the vector s′ by turning the negative entries of s into 0; that is, the jth entry of s′ is
sj if sj ≥ 0, and 0 otherwise. (If this causes the sum of entries to change parity, leave one of these
entries as −1. It is easy to modify the following proof accordingly.) Let s′′ = s′ − s. The jth entry of
s′′ is −sj if sj < 0, and 0 otherwise. We can now estimate the product

N(d)
N(d− s′)

· N(d− s′)
N(d′)

=
N(d)

N(d− s′)

/ N(d′)
N(d′ − s′′)

using two applications of (20), noting that all entries of s′′ = s′ − s are nonnegative and that the δ′j
defined for degree sequence d′ equals δj − sj .

Define d0 to be the constant sequence of length i, all of whose entries are b(i−1)/2c. If kd− ib(i−
1)/2c is odd, adjust the first entry to b(i− 1)/2c+ 1 to ensure that d0 ∈ Di. We can use the following
result to compare the number of graphs with an arbitrary degree sequence d on G[i] to the number
with d0. Recall, however, that N(d) is defined even if d is not the degree sequence of any graph on
[i].

Corollary 4.4 (i) If d ∈ Di then N(d) ≤ N(d0)
(
1 + o(1)

)
.

(ii) If, in addition,
∑i

j=1 δ
2
j = o(k), then N(d) ∼ N(d0).

Proof. We treat the case that the first entry of d0 was not adjusted for the parity reason above;
in the other case, only trivial modifications are required, for which we omit the details. Part (ii)
of the corollary follows immediately from Corollary 4.3 by putting sj = dδje for each j, since if∑i

j=1 δ
2
j = o(k) then by Cauchy’s inequality

∑
|δj | = o(

√
ik) = o(k3/4). (Note also that d̂ ∼ k/2.)

For the first part, let d maximise N(d). If
∑i

j=1 δ
2
j < k say, the above argument shows that

N(d) ≤ N(d0)
(
1 + o(1)

)
. So assume that

∑i
j=1 δ

2
j > k. Putting sj = dδje and applying Corollary 4.3

shows the result, provided
∑
|dδje| ≤ k3/4. If the latter condition fails, we can simply define sj = αjδj

for some 0 ≤ αj ≤ 1 such that
∑

j |sj | is just below k3/4 and is even. Since |sj | ≤ |δj | and they both
have the same sign, we can conclude that

∑
j(−2δjsj + s2j ) ≤ −

∑
j s

2
j . By Cauchy’s inequality, the

sum of the squares of sj grows asymptotically faster than k. Let s = (s1, . . . , si) and let d′ = d − s.
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Then, by Corollary 4.3 we obtain N(d) = o(N(d′)), which contradicts the maximality assumption
and proves the result.

Define d1 to be the constant sequence of length k, all of whose entries are d = (k − 1)/2. We
can now determine the asymptotic value of N(d0). Recall that k is odd; we will now assume that
k ≡ 1 (mod 4) to ensure that N(d0) is not 0. (If k ≡ 3 (mod 4), we could prove a similar result by
subtracting 1 from the first entry of d1.

Corollary 4.5 For k ≡ 1 (mod 4) we have N(d0) ∼ G(d1)/2(i
2).

Proof. Let H be one of the 2(i
2) graphs on vertex set [i] chosen at random, and let dH = {d1, . . . , di}

be its degree sequence. Then dj is a binomially distributed random variable with expectation (i−1)/2
and variance (i− 1)/4. Hence for δj = dj − (i− 1)/2 we have E[δ2j ] = Var[dj ] = (i− 1)/4. Then

E
∑
j∈[i]

δ2j ≤ i2 ,

and, by Markov’s inequality, whp
∑

j∈[i] δ
2
j = o(k). Thus, from Corollary 4.4(ii) it follows that for

almost all graphs H, N(dH) ∼ N(d0). Part (i) of the same corollary shows that for all other graphs,
N(dH) ≤ (1 + o(1))N(d0). Since N(dH) is the number of d-regular graphs G on vertex set [k] for
which G[i] = H, we have that G(d1) =

∑
H N(dH) = (1 + o(1))N(d0)2(i

2), and the corollary follows.

Proof of Lemma 3.2. From Corollary 4.4,

pk,i ∼ P[G(k, 0.5) is (k − 1)/2-regular | G[i] = H] ,

where H is a chosen to be a graph with degree sequence d0. Note that the number of random edges
outside H to be exposed is

(
k
2

)
−
(
i
2

)
, and each of them appears independently and with probability

1/2. Therefore, the above probability equals to N(d0)/2(k
2)−(i

2). By Corollary 4.5, this is asymptotic
to G(d1)/2(k

2) = pk.

5 Concluding remarks

Our technique for proving Proposition 4.1 is a rather complicated comparison argument somewhat
related to the method of switchings used for graphs of similar densities in [8]. One might be tempted
to try proving the result for |S| =

∑i
j=1 sj = 2, as sketched in the first part of the proof, and then

applying this repeatedly, as in the proof of Corollary 4.4, to go from one degree sequence to another.
However, this seems to provide insufficient accuracy. Similarly, attempts to use switchings directly
were not successful.

Of independent interest is the following estimate for the probability that a regular graph with k

vertices and degree (k − 1)/2 contains a given induced subgraph with degree sequence (d1, . . . , di)
on its first i vertices. This gives an asymptotic formula provided the sum of the absolute values of
δj = dj − (i− 1)/2 is a bounded multiple of k3/4, and otherwise gives less accurate bounds.
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Theorem 5.1 Assume i = o(
√
k), with k ≡ 1 (mod 4). Let H be a graph on vertex set [i] with degree

sequence d = (d1, . . . , di). Then the probability that a random 1
2(k − 1)-regular graph G on vertex set

[k] has the induced subgraph G[i] equal to H is

2−(i
2) exp

 2
k − i

i∑
j=1

−δ2j

 exp

o(k−3/4)
i∑

j=1

|δi|


where δj = dj − (i− 1)/2.

Proof. We may use the argument in the proof of Corollary 4.4 to jump from d to d0, using at most
k−3/4

∑i
j=1 |δi| applications of Corollary 4.3, and then apply Corollary 4.5.
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