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Abstract

We study the resilience of random and pseudorandom directed graphs with respect
to the property of having long directed cycles. For every 0 < γ < 1/2 we find a
constant c = c(γ) such that the following holds. Let G = (V,E) be a (pseudo)random
directed graph on n vertices and with at least a linear number of edges, and let G′ be
a subgraph of G with (1/2 + γ)|E| edges. Then G′ contains a directed cycle of length
at least (c − o(1))n. Moreover, there is a subgraph G′′ of G with (1/2 + γ − o(1))|E|
edges that does not contain a cycle of length at least cn.

1 Introduction

Given a property P , a typical problem in extremal graph theory can be stated as follows.
Given a number of vertices n, what is the minimal (or maximal) number fP(n) such that
any graph on n vertices with f(n) edges possesses P? Many examples of such problems and
results can be found, e.g., in [8].

Usually, the property P we consider in extremal problems is either monotone increasing
or monotone decreasing. A property P is monotone increasing (respectively, decreasing) if
it is preserved under edge addition (respectively, deletion).

The resilience of a graph G with respect to a property P measures how far the graph is
from any graph H that does not have P . In particular, the study of resilience usually focuses
on monotone properties, and the following two types of problems are studied.
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Global Resilience. Given a monotone increasing property P , the global resilience of G
with respect to P is the maximal integer R such that for every subset E0 ⊆ E(G) of |E0| = R
edges, the graph G − E0 still possesses P . For the case of a monotone decreasing property
P , the global resilience of G with respect to P is defined as the maximum number R such
that the addition of any subset of R edges to G still results in a graph G′ ∈ P .

One can also define the notion of local resilience of a graph with respect to, say, a
monotone increasing property P as the maximum number r such that for any subgraph
H ⊆ G of maximum degree r, the graph G − H is still in P . Since in this paper we will
be concerned with properties related to global resilience, we will not dwell on the notion of
local resilience anymore.

To the best of our knowledge, Sudakov and Vu were the first [18] to define the notion
of global resilience explicitly and quantitatively and to put it forward as a subject of inde-
pendent study (it is closely related though to the well studied notion of fault tolerance, see,
e.g., [1]). However, in a sense many well known theorems in extremal graph theory can be
stated using this terminology. For example, given a fixed graph H, the Turán number of H,
denoted by ex(H,n), is the minimum number m such that any graph on n vertices with m
edges contains a copy of H. Clearly, the study of Turán numbers is equivalent to the study
of the global resilience of the complete graph Kn with respect to the property of having a
copy of H.

Woodall [20] gave tight bounds for the number of edges in an undirected graph that
guarantees the existence of a cycle of length at least `. In our terminology, he gave tight
bounds on the global resilience of Kn with respect to the property of having a cycle of length
at least `. We will discuss Woodall’s result later and will also use his result in our work.
Lewin [17] studied the analogous problem for directed graphs, and he gave tight bounds on
the number of edges required for having a directed cycle of length at least `. Many extremal
results regarding the existence of cycles in directed graphs can be found, e.g., in [7].

Recently, there has been a series of works studying the resilience of graphs with respect
to different properties. Dellamonica et al. [11] studied the local and global resilience of long
cycles in pseudorandom undirected graphs. Krivelevich et al. [16] studied the resilience with
respect to pancyclicity (having a cycle of every possible length). Ben-Shimon et al. [6] stud-
ied the resilience of several graph properties in random regular graphs. Alon and Sudakov [2]
studied the resilience of the chromatic number in random graphs. Böttcher et al. [9] studied
the local resilience of G(n, p) with respect to the property of having an almost spanning
bounded degree bipartite graph with sublinear bandwidth. Later, answering a question
from [9], Huang et. al.[14] addressed the resilience with respect to having a spanning sub-
graph H. Balogh et al. [4] studied the resilience of random and pseudorandom graphs with
respect to containing a copy of a given nearly spanning tree of bounded maximum degree.

Here we study the resilience of pseudorandom (and hence, of random) directed graphs
with respect to the property of having a long directed cycle (namely, a simple directed cycle
that covers a constant fraction of the vertices). We prove asymptotically tight bounds,
and thus provide the asymptotic value of the resilience of every graph with respect to this
property, assuming it has some predefined pseudorandomness property. Our proof uses
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a variant of the celebrated Szemerédi’s regularity lemma for sparse directed graphs, and a
short and simple technique for finding a long directed path in pseudorandom directed graphs.
Using these techniques we can reduce our problem to the case of undirected graphs, where
by applying techniques of [11] we can give tight bounds.

1.1 The models

We consider here directed graphs on n vertices, where antiparallel edges are allowed. We say
that a graph D = (V,E) has density p if |E| = pn2.

Let D(n, p) be the following probability distribution on the set of n-vertex directed
graphs. Every graph in the support of D(n, p) contains n vertices, and for every two distinct
vertices x, y, there is an edge from x to y with probability p, and independently there is an
edge from y to x with probability p. Clearly, the expected number of edges is 2p

(
n
2

)
.

Once we define our random digraph model, it is usually desirable to define a pseudoran-
dom analog. That is, we would like to define a property such that graphs with this property
have many of the ’nice’ properties of random graphs. Roughly speaking, we say that a di-
rected graph is pseudorandom if the number of edges between every two large enough sets
is close to the expected number of edges in a random directed graph with the same density.
More formally, we say that a directed graph G is (p, r)-pseudorandom if it has edge density
p and for every two disjoint sets A,B ⊆ V (G), |A| = |B|, the number of edges from A to B,
denoted by eG(A,B), satisfies

|eG(A,B)− p|A||B|| ≤ r|A|√pn.

This is (up to normalization) a directed variant of the well known notion of jumbled graphs,
that was introduced by Thomason [19]. In his celebrated work, Thomason essentially proved
that a graph distributed as G(n, p) is (p,O(1))-pseudorandom with high probability.1 On
the other hand, there is no infinite sequence of (p, o(1))-pseudorandom graphs.

The following lemma can be easily verified by combining a Chernoff type bound with the
union bound.

Lemma 1.1. For every constant c > 0 there is a constant C > 0 such that for p ≥ C
n

, a
random directed graph G ∈ D(n, p) is (p, c)-pseudorandom with high probability.

Our results in this work will hold for every (p, r)-pseudorandom graph with p ≥ C
n

for
some sufficiently large constant C, and every r ≤ µ

√
pn for some small constant µ > 0 that

does not depend on C. By Lemma 1.1, a random directed graph distributed according to
D(n, p) with p ≥ C

n
has this property with high probability.

We show here that the directed case is both similar and different from the undirected
case. In fact, since we reduce here the directed case to the global resilience problem of the
undirected case, we can use ideas from Dellamonica et al. [11] in order to get our bounds on
the resilience for directed graphs. On the other hand, many of the techniques that were used

1Here a sequence of events An, n ≥ 1 is said to occur with high probability if limn→∞ P[An] = 1.
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for the undirected case cannot be applied in the directed case. Also, the range of parameters
relevant to us is rather different, since in particular the result of Dellamonica et al. [11] shows
that the removal of any 0.99-fraction of the edges of a (pseudo)random undirected graph still
leaves a cycle of linear size. For the directed case it is easy to see that one can always remove
half of the edges of any directed graph and get an acyclic directed graph, and hence a graph
with no cycles at all.

1.2 Our results

Woodall [20] studied the minimal number of edges that guarantees the existence of a long
cycle. In our terminology, he studied the global resilience of the complete graph Kn with
respect to the property of having a cycle of length at least `. He proved the following.

Theorem 1 (Woodall [20]). Let 3 ≤ ` ≤ n. Every graph G on n vertices satisfying

e(G) ≥
⌈
n− 1

`− 2

⌉
·
(
`− 1

2

)
+

(
r + 1

2

)
+ 1,

where r = (n− 1) mod (`− 2), has a cycle of length at least `.

It is easy to verify that Woodall’s bound is best possible. Indeed, take a graph formed
by dn−1

`−2
e disjoint cliques of size ` − 2, a single smaller clique of size r and a vertex that is

connected to every other vertex in the graph. Clearly, the length of a longest cycle in this
graph is at most `− 1.

The work of Dellamonica et al. [11] can be viewed as a generalization of Woodall’s work
from the case of Kn to the case of general pseudorandom graphs. In order to cite their result
and also for future reference in our paper the following function is defined.

Definition 2. For a given 0 ≤ α < 1, define

w(α) = 1− (1− α)b(1− α)−1c.

It is easy to verify that we have w(0) = 0 and limx↗1w(x) = 0. The following asymptotic
version of Woodall’s result is proved in [11].

Theorem 3 ( [11]). Let α > 0. For every β > 0 there is n0 such that for every graph G on
n > n0 vertices satisfying

|E(G)| ≥
(
n

2

)
·
(

1− (1− w(α))(α + w(α)) + β
)

has a cycle of length at least (1− α) · n.
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Observe that we can partition a vertex set of size n into k = d 1
1−αe sets, each of size

(1− α)n, and a remaining set of size (w(α)n, as 1− w(α) = k(1− α).
Dellamonica et al. proved in [11] that Theorem 3 can be extended to (sparse) pseu-

dorandom graphs; more specifically, they proved that any subgraph G′ = (V,E ′) of a
(p, r)-pseudorandom graph G = (V,E) (where p � n−1, and r is fixed) with |E ′| ≥
(1− (1−w(α))(α+w(α)) + o(1))|E| edges has a cycle of length at least (1− α) · |V |. Here
we provide tight bounds on the resilience of pseudorandom directed graphs with respect to
the property of having a long directed cycle.

Our main theorem is a directed version of their result.

Theorem 4. Fix 0 < γ < 1
2

and let G = (V,E) be a (p, r)-pseudorandom directed graph on
n vertices, where r ≤ µ

√
np and µ(γ) > 0 is a sufficiently small constant that depends only

on γ and n is sufficiently large. Let G′ be a subgraph of G with at least (1
2

+ γ)|E| edges.
Then G′ contains a directed cycle of length at least (1− α− o(1)) · n, where α satisfies

2γ = 1− (1− w(α))(α + w(α)).

Observe crucially that every directed graph G = (V,E) contains an acyclic subgraph G′

with at least |E|/2 edges. Indeed, fix a permutation σ : V → V , and let G1 be the subgraph
with all edges xy such that σ(x) > σ(y), and G2 be the subgraph with all edges xy such that
σ(x) < σ(y). Then both G1 and G2 are acyclic, and at least one of them contains at least
half of the edges of G.

Theorem 4 yields the following two immediate corollaries.

Corollary 5. For every γ > 0 there is a constant c1(γ) > 0 such that the following holds.
Let G be a (p, r)-pseudorandom graph on n vertices, r ≤ µ

√
np where µ(γ) > 0 is some

sufficiently small constant that depends only on γ and n is sufficiently large. Let G′ be a
subgraph of G with at least (1/2+γ)|E(G)| edges. Then G′ contains a directed cycle of length
at least c1n.

In other words, the above corollary guarantees that the deletion of less than half of the
edges of a pseudorandom digraph leaves a cycle of linear length.

Corollary 6. There exists a function c2(ε) with limε→0 c2(ε) = 0 such that the following
holds. Let G be a (p, r)-pseudorandom graph on n vertices, r ≤ µ

√
np where µ(γ) > 0 is

some sufficiently small constant that depends only on γ and n is sufficiently large. Let G′

be a subgraph of G with at least (1 − ε)|E(G)| edges. Then G′ contains a directed cycle of
length at least (1− c2) · n.

Here, we prove that deleting a sufficiently small fraction of the edges of a pseudorandom
digraph leaves a cycle of length close to n.

Finally, we prove the following matching lower bound.
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Proposition 7. Fix 0 < γ < 1
2

and let G be a (p, r)-pseudorandom directed graph on n
vertices, where r = O(

√
np) and pn→∞. There is a subgraph G′ with (1

2
+ γ)|E| edges that

does not contain any directed cycle of length at least (1− α + o(1)) · n, where α satisfies

2γ = 1− (1− w(α))(α + w(α)).

Our Tools. One of the main tools we use in this work is a sparse directed variant of Sze-
merédi’s regularity lemma (Lemma 2.1), that was stated in [12]. This allows us to partition
our graph into a constant number of regular pairs, and essentially to reduce the problem to
finding almost spanning paths in regular pairs.

To this end, we use a simple yet powerful lemma that finds almost spanning paths in
expanding graphs (Lemma 2.3). In our case, a regular pair is a bipartite expander in both
directions. The approach is based on ideas from [10, 3, 5].

The rest of the paper is organized as follows. In Section 2 we state the sparse directed
regularity lemma, and prove that regular pairs have an almost spanning directed path. In
Section 3, we reduce the resilience problem in directed graphs to undirected graphs, and
then apply ideas from [11] and prove Theorem 4. In Section 4 we prove Proposition 7 and
show that our results are essentially tight.

Throughout the paper we assume that the order of G, denoted by n, is large enough.
We do not try to optimize constants and omit floor and ceiling signs whenever these are not
crucial.

2 The regularity lemma for sparse directed graphs and

long paths in regular pairs

2.1 The regularity lemma

In this section we follow [12] and state a regularity lemma for sparse directed graphs. We
first provide some notation.

Given a directed graph G = (V,E), for any pair of disjoint sets of vertices U,W , we let
EG(U,W ) be the set of edges directed from U to W , and let eG(U,W ) = |EG(U,W )|. We
say that G is (δ,D, p)-bounded if for any two disjoint sets U,W such that |U |, |W | ≥ δ|V |
we have

eG(U,W ) ≤ Dp|U ||W |.

The edge density from a set U to a set W is defined by eG(U,W )
|U ||W | . We say that two sets

U and W span a bipartite directed graph of bi-density p if it has edge density at least p in
both directions. Also define the directed p-density from U to W by

dG,p(U,W ) =
eG(U,W )

p|U ||W |
.
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We omit the index graph G and write dp(U,W ) whenever the base graph is clear from the
context.

For 0 < δ ≤ 1, a pair (U,W ) is (δ, p)-regular in a digraph G if for every U ′ ⊆ U and
W ′ ⊆ W such that |U ′| ≥ δ|U | and |W ′| ≥ δ|W | we have both

|dG,p(U,W )− dG,p(U ′,W ′)| < δ,

and
|dG,p(W,U)− dG,p(W ′, U ′)| < δ.

A partition P = {V0, V1, . . . , Vk} of V is (δ, k, p)-regular if the following properties hold.

(i). |V0| ≤ δ|V |.

(ii). |Vi| = |Vj| for all 1 ≤ i < j ≤ k.

(iii). At least (1− δ)
(
k
2

)
of the pairs (Vi, Vj), 1 ≤ i < j ≤ k, are (δ, p)-regular.

We will use the following variant of Szemerédi’s regularity lemma, that is stated in [12],
and whose proof follows lines similar to the proof of the regularity lemma for sparse undi-
rected graphs, proved independently by Kohayakawa and by Rödl (see, e.g., [15]). In [12]
the lemma is stated for oriented graphs (where no anti parallel edges are allowed), yet the
result can be easily adjusted to our case, where anti parallel edges are allowed.

Lemma 2.1 (Lemma 3 in [12]). For any real number δ > 0, any integer k0 ≥ 1 and any
real number D > 1, there exist constants η = η(δ, k0, D) and K = K(δ, k0, D) ≥ k0 such
that for any 0 < p(n) ≤ 1, any (η,D, p)-bounded directed graph G admits a (δ, k, p)-regular
partition for some k0 ≤ k ≤ K.

2.2 Every regular pair contains a long path

We next prove that every regular pair of positive bi-density contains an almost spanning
path. To this end, we first show a trivial expansion property of regular pairs, and then use
this property to prove the desired result.

Claim 2.2. Let (U,W ) be a (δ, p)-regular pair for |U | = |W | with bi-density at least 2δp,
where p > 0. Then for every two sets U ′ ⊆ U and W ′ ⊆ W such that |U ′| ≥ δ|U | and
|W ′| ≥ δ|W | there is a directed edge from U ′ to W ′.

Proof. By regularity we have

eG(U ′,W ′) ≥ (dp(U,W )− δ)p|U ′||W ′| ≥ (2δ − δ)p|U ′||W ′| = δp|U ′||W ′| > 0.

The claim follows. ut

We next show that a bipartite directed graph with a simple expansion property contains
a long directed path. The proof follows ideas from [10, 3, 5].
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Lemma 2.3. Let H = (V1, V2, E), where |V1| = |V2| = t, be a directed bipartite graph that
satisfies the following property: for every two sets A ⊆ V1, B ⊆ V2 of size k, there is at least
one edge from A to B and there is at least one edge from B to A. Then H contains a directed
path of length 2t− 4k + 3.

Proof. Recall that DFS (Depth First Search) is a graph search algorithm that visits all the
vertices of a (directed or undirected) graph G as follows. It maintains three sets of vertices,
letting S be the set of vertices which we have completed exploring, T be the set of unvisited
vertices, and U = V (G) \ (S ∪ T ), where the vertices of U are kept in a stack (a last in, first
out data structure). It is also assumed that some order σ on the vertices of G is fixed, and
the algorithm prioritizes vertices according to σ. The algorithm starts with S = ∅, U = ∅
and T = V (G).

While there is a vertex in V (G) \ S, if U is non-empty, let v be the last vertex that was
added to U . If v has an out-neighbor u ∈ T , the algorithm inserts u to U . If v does not
have an out-neighbor in T then v is popped out from U and is moved to S. If U is empty,
the algorithm chooses an arbitrary vertex from T and pushes it to U .

We now proceed to the proof of the lemma. We execute the DFS algorithm for an
arbitrary chosen order σ on the vertices of the graph H. We let again S, T, U be three sets
of vertices as defined above. At the beginning of the algorithm, all the vertices are in T , and
at each step a single vertex either moves from T to U or from U to S. At the end of the
algorithm, all the vertices are in S.

Consider the point during the execution of the algorithm when |S| = |T |. Observe
crucially that all the vertices in U form a directed path, and we have ||U ∩ V1| − |U ∩ V2|| ≤ 1.
Since |U | = 2t− |S| − |T | = 2t− 2|S| is even, we have in fact

|U ∩ V1| = |U ∩ V2| .

We get that

|S| = |S ∩ V1|+ |S ∩ V2| = |T ∩ V1|+ |T ∩ V2| = |T |,

and
|V1 \ U | = |S ∩ V1|+ |T ∩ V1| = |S ∩ V2|+ |T ∩ V2| = |V2 \ U |.

Hence, we get both
|S ∩ V2| = |T ∩ V1| ,

and
|S ∩ V1| = |T ∩ V2| .

Assume without loss of generality that

|S ∩ V1| ≥ |S|/2 ≥ |S ∩ V2|.

Then |S ∩ V1| ≥ t/2 − |U |/4 and therefore |T ∩ V2| ≥ t/2 − |U |/4. Observe crucially
that there are no edges from S to T . By the assumption of the lemma we conclude that
|S∩V1| = |T∩V2| ≤ k−1 and therefore we get t/2−|U |/4 ≤ k−1 and hence |U | ≥ 2t−4k+4.
Thus H contains a directed path |U | of length 2t− 4k + 3, as desired. ut
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We therefore have the following corollary.

Corollary 2.4. Let (U,W ) be a (δ, p)-regular pair with bi-density at least 2δp and |U | =
|W | = t, p > 0. Then the bipartite directed graph between U and W contains a directed path
of length (1− 2δ) · 2t+ 2 that starts at U .

Proof. By Claim 2.2, there is an edge in each direction between every two sets of size δt in U
and W . Therefore Lemma 2.3 implies the existence of a directed path of length (1−2δ)2t+3.
Note that if the first vertex in the path is from W we may remove it, thus getting a directed
path of length at least (1− 2δ)2t+ 2 that starts at U . ut

3 Proof of Theorem 4

In this section we prove our main result. Given a constant γ > 0, we essentially want to
prove that every subgraph with a (1/2+γ)-fraction of the edges of a pseudorandom directed
graph contains a long directed cycle. Let δ = δ(γ) be a constant that we will fix later,
K = K(δ, 1/δ, 1 + δ) and η = η(δ, 1/δ, 1 + δ) be the constants defined by the regularity
lemma (Lemma 2.1).

Let G = (V,E) be a (p, r)-pseudorandom directed graph with r ≤ µ
√
np. For µ ≤

δ ·min{η, 1/K} we have
r ≤ δ

√
np ·min{η, 1/K}.

Let A,B be two sets of vertices of size ηn in G. Observe that

r
√
pn|A||B| ≤ δ

√
np η

√
pη2n3 = δη2n2p ≤ δη2n2 = δ|A||B|.

Therefore, we get that G is (η, 1 + δ, p)-bounded.
Given a subgraph G′ = (V,E ′) of G that contains (1/2 + γ)|E| edges, our goal is to show

that G′ contains a long directed cycle.
Clearly, G′ is (η, 1 + δ, p)-bounded as well, and hence we can apply the sparse directed

regularity lemma (Lemma 2.1) to G′ and get a partition of V to clusters V0, V1, . . . , Vm, where
1/δ ≤ m ≤ K, |V0| ≤ δn, |V1| = |V2| = · · · = |Vm| = t and all but at most a δ-fraction of the

pairs (Vi, Vj) are (δ, p)-regular. Note that n(1−δ)
m
≤ t ≤ n

m
.

We next define an undirected auxiliary graph H on the clusters V1, . . . , Vm. With a
slight abuse of notation, we denote the vertices of H by V1, V2, . . . , Vm. Two vertices Vi and
Vj are connected if the pair (Vi, Vj) is (δ, p)-regular and has bi-density at least 2δp.

Since G is (p, r)-pseudorandom and r ≤ δ·√np
K
≤ δ·√np

m
, we get that the p-density of every

pair (Vi, Vj) in G is at least 1− δ and at most 1 + δ.
Observe that if Vi and Vj are not connected by an edge in H, one of the following must

happen.

• The pair (Vi, Vj) is not regular.

• Either |EG′(Vi, Vj)| < 2δp|Vi||Vj| or |EG′(Vj, Vi)| < 2δp|Vi||Vj| . In other words, at least
(1− 3δ)p|Vi||Vj| of the edges from Vi to Vj or from Vj to Vi in G are not in G′.
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The number of non-regular pairs is at most δ
(
m
2

)
. Since in every pair with edge bi-density

less than 2δp at least (1− 3δ)pt2 edges were lost when moving from G to G′, we get that the
number of pairs in G′ with edge bi-density less than 2δp is bounded by

(1/2− γ)pn2

(1− 3δ)pt2
≤ (1/2− γ)pn2

(1− 3δ)p(n(1−δ)
m

)2
=

1/2− γ
(1− 3δ)(1− δ)2

·m2.

Observe that by our choice of parameters for the regularity lemma we have m ≥ 1
δ
, and

hence we have

m2 ≤ 2

(
m

2

)
(1 + 2/m) ≤ 2

(
m

2

)
(1 + 2δ).

We conclude that the fraction of non-edges in H is bounded by

δ +
(1− 2γ)(1 + 2δ)

(1− 3δ)(1− δ)2
.

By taking δ � γ, we get that the fraction of edges in H is at least 2γ(1 − o(1)), where
the o(1) term depends only on δ and can be made arbitrary small.

Let α be the minimal solution of the equation

2γ = 1− (1− w(α))(α + w(α)),

where w is the function defined in Subsection 1.2. By Theorem 3, we get that H contains
an undirected cycle of length at least (1− α− o(1))m.

We complete the proof by showing how to construct a long cycle in G′ given a long cycle
in H. We start with the case that H contains a long cycle of even length, and later show
how to modify the proof in the case of odd length.

Let Vi1 , Vi2 , . . . Vi2b
be a cycle of length (1 − α + o(1))m in H. Note that for every

1 ≤ q ≤ 2b, the pair (Viq , Viq+1) (where we identify Vi2b+1
with Vi1) is (δ, p)-regular and has

edge bi-density at least 2δp. Therefore, by Corollary 2.4, for every 1 ≤ q ≤ b, there is a
directed path Pq of length at least (1− 2δ) · 2t that alternates between Vi2q−1 and Vi2q . For
every 1 ≤ q ≤ b, let PR

q = Pq ∩ Vi2q and let PL
q = Pq ∩ Vi2q−1 .

Observe that for every 1 ≤ q ≤ b, by Claim 2.2 there is an edge from the last δt vertices of
PR
q to the first δt vertices of PL

q+1 (here we identify PL
b+1 with PL

1 ). Thus we can paste every
two consecutive paths together, losing at most 2δt vertices from each path. We conclude
that we can paste all the paths together to get a directed cycle of length st least

b · (1− 2δ − δ) · 2t = (1− α− o(1))mt = (1− α− o(1))|V (G′)|,

where the o(1) term depends only on δ(γ) and can be made arbitrary small (as α depends
on γ only).

Finally, suppose there is an odd cycle of length (1−α+ o(1))m in H, whose vertices are
by Vi1 , Vi2 , . . . Vi2b+1

. As in the previous case, for every 1 ≤ q ≤ b, let Pq be a path of length
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at least(1− 2δ) · 2t that alternates between Vi2q−1 and Vi2q . Let Z ′ be the first δt vertices in
PL

1 and Z ′′ be the last δt vertices in PR
b . Moreover, let

V ′i2b+1
= {v ∈ Vi2b+1

: ∀u ∈ Z ′, (u, v) /∈ E},

and

V ′′i2b+1
= {v ∈ Vi2b+1

: ∀u ∈ Z ′′, (v, u) /∈ E}.

By Claim 2.2, we have |V ′i2b+1
|, |V ′′i2b+1

| ≤ δt, and therefore for all but 2δt of the vertices
in Vi2b+1

we have an edge from the last 2δt vertices in Pb and an edge to the first 2δt first
vertices in P1. Since t > 2δt we conclude that we can connect Pb and P1 through a vertex in
Vi2b+1

, thus getting a path of length at least

(b− 1) · (1− 2δ − δ)2t = (1− α− o(1))|V (G′)|.

Theorem 4 follows. ut

4 Lower bounds

Let G = (V,E) be a directed graph. Recall that by fixing a permutation σ on the vertices,
we can partition the edges of G into two acyclic sets as follows. The first set contains all
directed edges xy where σ(x) > σ(y), and the second set contains all directed edges xy
where σ(y) > σ(x). Therefore, the global resilience of every directed graph with respect to
the property of having directed cycles is at most 1/2. Here we extend this idea and show
that our main result is asymptotically tight.

Proof of Proposition 7. We show that there is a subgraph G′ with a (1/2 + γ)-fraction
of the edges, whose longest directed cycle is of length at most (1−α+ o(1))n. Our approach
follows [11].

Recall that G is (p, r)-pseudorandom with r ≤ µ
√
np and pn → ∞. We first claim

that for every two disjoint sets A,B of size Ω(n), the number of edges from A to B is
p|A||B|(1 + o(1)). Indeed, let |A| = an and |B| = bn, and suppose that a < b. If B′ is a
random subset of B of size an, then by linearity of expectation the number of edges between
A and B′ is E(A,B) · |B

′|
B

. Therefore, if the number of edges between A and B is smaller
than (respectively, larger than) p|A||B|(1 + o(1)) then there is a choice of a set B′ such that
A and B′ contradicts the (p, r)-pseudorandomness of G.

We partition the vertices of G into k classes V1, V2, . . . , Vk of size (1− α)n each, and one
additional class Vk+1 of size w(α)n ≤ (1− α)n. Let G′ be the subgraph with all edges from
Vi to Vj, for 1 ≤ i < j ≤ k + 1, and all the edges within each class Vi. Clearly, G′ does not
contain a cycle longer than (1−α)n, since a directed path leaving a certain Vi cannot return
there. Therefore, we can conclude the proof by showing that the number of edges in G′ is
as claimed.
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Indeed, since G is (p, r)-pseudorandom and each Vi is of size Ω(n), we get that for every
1 ≤ i < j ≤ k, the number of edges from Vj to Vi is (1− α)2 · pn2(1 + o(1)). The number of
edges from Vk+1 to ∪i≤kVi in G is k(1− α)w(α) · pn2(1 + o(1)). Recalling that by definition
of w(x) we have (1 − α)k = 1 − w(α), we get that the number of edges we deleted from G
to get G′ is

((
k

2

)
(1− α)2 + k(1− α)w(α)

)
· pn2(1 + o(1))

= (1− α)k((1− α)(k − 1) + 2w(α))(1 + o(1))
pn2

2

= (1− w(α))(α− w(α) + 2w(α)) · pn
2(1 + o(1))

2

= (1− w(α))(α + w(α)) + o(1))
pn2

2
.

Note that the number of edges in G is pn2(1 + o(1)). Let the number of edges in G′ be
(1/2 + γ) · pn2. Then the number of edges we deleted satsifies

(1 + o(1))(1/2− γ)pn2 = (1− w(α))(α + w(α)) + o(1))
pn2

2
,

and therefore γ satisfies

2γ = 1− (1− w(α))(α + w(α)) + o(1)),

as claimed. The statement follows. ut

5 Concluding remarks

We studied the global resilience of pseudorandom directed graphs with respect to the prop-
erty of having a long directed cycle. We gave matching lower and upper bounds, and our
proof essentially reduced our problem to the case of undirected graphs.

A variety of questions regarding the resilience of directed graphs can be asked. A few,
somewhat arbitrary examples are the problem of local resilience with respect to having a
long directed cycle, the resilience with respect to the property of having some fixed directed
graph. Another interesting problem is the resilience with respect to Hamilitonicity, which in
the dense case is settled in [13].

In this work we considered subgraphs with a (1/2+γ)-fraction of the edges, and observed
that every directed graph contains an acyclic subgraph with a 1/2-fraction of the edges. In [5],
the authors proved that every two-coloring of the edges of a pseudorandom digraph contains
a relatively long monochromatic path. That is, instead of proving that a large subgraph has
a certain property, it is proved that every partition of the edges of the graph has a certain
property. It will be interesting to give such results for other properties of directed graphs.
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