Rigid partitions: from high connectivity to random graphs

Michael Krivelevich∗ Alan Lew† Peleg Michaeli‡

Abstract

A graph is called \(d\)-rigid if there exists a generic embedding of its vertex set into \(\mathbb{R}^d\) such that every continuous motion of the vertices that preserves the lengths of all edges actually preserves the distances between all pairs of vertices. The rigidity of a graph is the maximal \(d\) such that the graph is \(d\)-rigid. We present new sufficient conditions for the \(d\)-rigidity of a graph in terms of the existence of “rigid partitions” — partitions of the graph that satisfy certain connectivity properties. This extends previous results by Crapo, Lindemann, and Lew, Nevo, Peled and Raz.

As an application, we present new results on the rigidity of highly-connected graphs, random graphs, random bipartite graphs, pseudorandom graphs, and dense graphs. In particular, we prove that there exists \(C > 0\) such that every \(Cd^2 \log^2 n\)-connected \(n\)-vertex graph is \(d\)-rigid. This can be seen as a significant step towards the Lovász–Yemini conjecture, which states that for every \(d \geq 1\) there exists \(c_d \geq 1\) such that every \(c_d\)-connected graph is \(d\)-rigid (this is known only in the case \(d = 2\), with \(c_2 = 6\)). Furthermore, we prove that random \(Cd\log d\)-regular graphs are typically \(d\)-rigid, demonstrate the existence of a giant \(d\)-rigid component in sparse random binomial graphs, and show that the rigidity of relatively sparse random binomial bipartite graphs is roughly the same as that of the complete bipartite graph, which we consider an interesting phenomenon. We also present an alternative short proof for a recent result by Lew, Nevo, Peled, and Raz, which asserts that the hitting time for \(d\)-rigidity in the random graph process typically coincides with the hitting time for minimum degree \(d\).

1 Introduction

A \(d\)-dimensional framework is a pair \((G, \mathbf{p})\) where \(G = (V, E)\) is a finite simple graph and \(\mathbf{p} : V \rightarrow \mathbb{R}^d\) is an embedding of its vertices. A framework is called rigid if every continuous motion of the vertices that preserves the lengths of all the edges does not change the distance between any two vertices. An embedding of \(G = (V, E)\) is generic if its \(d|V|\) coordinates are algebraically independent over the rationals. A framework with a generic embedding will be called a generic framework.

We define the rigidity matrix \(R(G, \mathbf{p}) \in \mathbb{R}^{|E| \times d|V|}\) of a framework \((G, \mathbf{p})\) as follows: the rows of \(R(G, \mathbf{p})\) are indexed by the edge set \(E\) and the columns are indexed by allocating \(d\) coordinates to each vertex of \(V\). The row vector \(\mathbf{r}_e\) indexed by \(e = \{u, v\}\) is supported on the coordinates of \(u, v\) where it is equal to the \(d\)-dimensional row vectors \(\mathbf{p}(u) - \mathbf{p}(v)\) and \(\mathbf{p}(v) - \mathbf{p}(u)\), respectively. For simplicity, we assume that \(G\) has at least \(d + 1\) vertices. It is known (see [6]) that the rank of \(R(G, \mathbf{p})\) is always at most \(d|V| - \binom{d+1}{2}\). The framework \((G, \mathbf{p})\) is called infinitesimally rigid if the rank of \(R(G, \mathbf{p})\) is exactly \(d|V| - \binom{d+1}{2}\). Infinitesimal rigidity is in general a stronger condition than rigidity; however, it was shown by Asimow and Roth in [6] that both conditions are equivalent for generic embeddings.

∗School of Mathematical Sciences, Tel Aviv University, Tel Aviv 6997801, Israel. Email: krivelev@tauex.tau.ac.il.
†Department of Mathematical Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Email: alanlew@andrew.cmu.edu.
‡Mathematical Institute, University of Oxford, Oxford, UK. Email: peleg.michaeli@maths.ox.ac.uk. Research partially supported by ERC Advanced Grant 883810.
We say that a graph $G = (V, E)$ is **rigid in** \mathbb{R}^d (or, **d-rigid**, for short) if there exists an embedding $p : V \rightarrow \mathbb{R}^d$ such that the framework (G, p) is infinitesimally rigid (or equivalently, if (G, p) is rigid for all generic embeddings $p : V \rightarrow \mathbb{R}^d$; see [6]). We define the **rigidity** of G to be the maximal d such that G is d-rigid. d-rigidity is thus a graph-theoretic property; however, a purely combinatorial characterization remains a major open problem in rigidity theory for $d > 2$ (see, e.g., [53]).

Rigidity theory has a long history, tracing its origins to early results such as Cauchy’s theorem (see, e.g., [1]), and has found applications (especially in two and three dimensions) in various fields outside of mathematics (see, e.g., the survey [55]). In particular, significant efforts have been directed towards characterising d-rigid graphs, with seminal works [50], [42], and [6, 7]. For further reading, we refer the reader to the textbook [29] and the survey [17].

In this paper, we present a new sufficient condition for d-rigidity based on graph partitions. We apply this to show that high connectivity implies high rigidity, a first result of its kind for dimensions greater than 2. We also utilize it to establish lower bounds for the rigidity of (pseudo)random and dense graphs, derive a simplified proof for the lower bound of rigidity in complete bipartite graphs, and examine a notable phenomenon in random bipartite graphs.

1.1 Rigid partitions

Let $G = (V, E)$ be a graph. For pairwise disjoint vertex sets V_1, \ldots, V_k, we say that V_1, \ldots, V_k is a **partial colouring** of V if $V_1 \cup \cdots \cup V_k \subseteq V$, or a **colouring** of V if $V_1 \cup \cdots \cup V_k = V$. A **partition** of V is a colouring V_1, \ldots, V_k of V in which $V_i \neq \emptyset$ for all $1 \leq i \leq k$. For two (not necessarily disjoint) vertex sets $A, B \subseteq V$, we let $E(A, B)$ be the set of edges having one endpoint in A and the other in B. Let E_1, \ldots, E_k be a partial colouring of the edge set of G, and let $E = E_1 \cup \cdots \cup E_k$. We say that $U \subseteq V$ has a **monochromatic cut** (with respect to the partial colouring) if there exists a partition $U = U' \cup U''$ such that $\hat{E} \cap E(U', U'') \subseteq E_i$ for some $i \in [k]$.

Now, fix $d \geq 1$, let $V_1 \cup \cdots \cup V_{d+1}$ be a colouring of V, and let $\{E_{ij}\}_{1 \leq i < j \leq d+1}$ be a partial colouring of E, for which $e \subseteq V_i \cup V_j$ for all $1 \leq i < j \leq d+1$ and $e \in E_{ij}$. Suppose the subgraphs $G_{ij} = (V_i \cup V_j, E_{ij})$ are connected for all $1 \leq i < j \leq d+1$ (where we consider a graph without vertices to be disconnected), and for every $1 \leq i \leq d + 1$ and $U \subseteq V_i$ with $|U| \geq 2$, U has a monochromatic cut. Then, we call the pair $\{(V_i)_{i=1}^{d+1}, \{E_{ij}\}_{1 \leq i < j \leq d+1}\}$ a **d-rigid partition** of G. For notational convenience, a vertex partition $\{V_i\}_{i=1}^{d+1}$ is also called a d-rigid partition if there exists an associated partial colouring $\{E_{ij}\}_{1 \leq i < j \leq d+1}$ for which the aforementioned pair is a d-rigid partition. Note that in a d-rigid partition of G one of the vertex sets V_i may be empty.

Our main theorem states that any graph that admits a d-rigid partition is also d-rigid.

Theorem 1.1. A graph that admits a d-rigid partition is d-rigid.

The case $d = 2$ of Theorem 1.1 was addressed by Crapo [18], who proved that a graph is 2-rigid if and only if it admits a 2-rigid partition (in fact, Crapo used a different but equivalent notion of “proper $3T2$ decompositions”). For $d = 3$, Lindemann provided a sufficient condition for 3-rigidity in his PhD thesis [47]. His condition is described in different terms, using the notion of “proper d-framework decompositions” (which extends Crapo’s notion of $3T2$ decompositions in the $d = 2$ case), but it can be shown to be equivalent to the condition stated in Theorem 1.1. Lindemann conjectured (using a different terminology; see [47, Conjecture 5.6]) that the existence of a 3-rigid partition characterizes 3-rigid graphs, and asked whether the same holds for general d. We show here that, for some values of d (and assuming the validity of certain conjectures on the rigidity of specific families of graphs, for all large enough d), the existence of a d-rigid partition is not a necessary condition for d-rigidity (see discussion in Section 2.7).

Recently, Jordán and Tanigawa [37] introduced the **d-dimensional algebraic connectivity** $\alpha_d(G)$ of a graph G, which is a high dimensional generalisation of the algebraic connectivity of G introduced...
by Fiedler in [23] (corresponding to the $d = 1$ case), and can be seen as a quantitative measure of the d-rigidity of G (see Section 2.1 for a precise definition). Using this notion, we establish here a “quantitative” version of Theorem 1.1 (see Theorem 2.1), which directly implies Theorem 1.1.

In practice, it is often difficult to apply Theorem 1.1 directly. Therefore, we introduce a few concrete graph partitions that are more applicable. Let $G = (V, E)$ be a graph. A dominating set for G is a subset S of its vertices, such that any vertex of G is either in S, or has a neighbour in S. We say that a vertex set S is connected if the induced graph $G[S]$ is connected. A connected dominating set (CDS) is a dominating set that is also connected. A CDS partition of size k is a partition V_1, \ldots, V_k of V such that each V_i is a CDS. Note that, since a set containing a CDS is also a CDS, the existence of k vertex disjoint connected dominating sets implies the existence of a CDS partition of size k. Our first application of Theorem 1.1 is the following.

Corollary 1.2. A graph that admits a CDS partition of size $\binom{d+1}{2}$ is d-rigid.

A proof of Corollary 1.2 appears in Section 2.4. We use Corollary 1.2 to prove that highly-connected graphs are highly-rigid. Let us make this statement precise. It is well known (see e.g. [31]) that highly-connected graphs are d-rigid. Lovász and Yemini [48] conjectured in 1982 that there exists a (smallest) integer c_d, possibly $c_d = d(d + 1)$, such that every c_d-connected graph is d-rigid. While they proved the conjecture for $d = 2$, it remains an open problem for $d > 2$ (but see [34,36] for related results on powers of graphs, and [31] for a partial result in the case $d = 3$). Here, we make significant progress towards establishing this conjecture, by proving the following.

Theorem 1.3 (Highly connected graphs). There exists $C > 0$ such that for all $d = d(n) \geq 1$, every n-vertex $Cd^2\log^2 n$-connected graph is d-rigid.

The proof follows by combining Corollary 1.2 with a result of Censor-Hillel, Ghaffari, Giakkoupis, Haeupler and Kuhn [12] that states that every k-connected graph has a CDS partition of size $\Omega(k/\log^2 n)$; see Section 2.5.

We proceed by presenting a few additional useful rigid partition. For two (not necessarily disjoint) vertex sets $A, B \subseteq V$, write $G[A, B]$ for the subgraph of G on the vertex set $A \cup B$ with the edge set $E(A, B)$. We say that a partition V_1, \ldots, V_d of V is a (type I) strong d-rigid partition of G, and that G admits a (type I) strong d-rigid partition, if $G[V_i, V_j]$ is connected for all $1 \leq i \leq j \leq d$. Throughout this paper we will mostly work with this definition, and omit the “type I” prefix. We say that a partition V_1, \ldots, V_{d+1} of V is a type II strong d-rigid partition of G, and that G admits a (type II) strong d-rigid partition, if $G[V_i, V_j]$ is connected for all $1 \leq i < j \leq d + 1$. For strong d-rigid partitions of type II, unlike type I, there is no connectivity requirement for the induced subgraphs $G[V_i, V_j] = G[V_i]$, but a partition into $d + 1$ parts is necessary, as opposed to the d parts required in type I. It is important to note that neither definition implies the other; however, both types qualify as rigid partitions, as detailed in Section 2.4.

Corollary 1.4. A graph that admits a (type I or type II) strong d-rigid partition is d-rigid.

A quantitative version of the “type I” case in Corollary 1.4 has recently been proved by the second author with Nevo, Peled and Raz [45, Theorem 1.3]. Indeed, our proof of Theorem 2.1 relies on an extension of their arguments.

We would like to highlight a few limitations of proving d-rigidity of a graph by showing that it admits a strong d-rigid partition. The domination number of G, denoted by $\gamma(G)$, is the number of vertices in a smallest dominating set for G. Observe that if an n-vertex graph G admits a strong d-rigid partition then $\gamma(G) \leq n/d$. Thus, this method can only be used to prove that G is d-rigid for $d \leq n/\gamma(G)$. A second limitation is that bipartite graphs do not admit strong d-rigid partitions for $d \geq 3$. Indeed, let
$G = (A \cup B, E)$ be a bipartite graph with bipartition (A, B), and let V_1, \ldots, V_d be a partition of V for $d \geq 3$. If there exists $1 \leq i < j \leq d$ such that V_i, V_j are both in A or in B then $G[V_i, V_j]$ is not connected, hence this is not a strong d-rigid partition. Otherwise, there exists $1 \leq i \leq d$ such that V_i intersects both A and B. Thus, for $j \neq i$, $G[V_i, V_j]$ is not connected, and again, V_1, \ldots, V_d is not a strong d-rigid partition. Nevertheless, bipartite graphs may be d-rigid for arbitrarily large d. This motivates the following bipartite variant of the definition above.

Let $G = (A \cup B, E)$ be a bipartite graph with bipartition (A, B). Let V_1, \ldots, V_{d+1} be a partition of $V = A \cup B$. Write $A_i = V_i \cap A$ and and $B_i = V_i \cap B$ for $1 \leq i \leq d+1$. We say that the partition is a **strong bipartite d-rigid partition** of G, and that G admits a strong bipartite d-rigid partition, if the following conditions hold: $G[A_i, B_j]$ is connected for all $i \neq j$, and there exists a sequence $0 \leq s_1 \leq s_2 \leq \cdots \leq s_{d+1}$ satisfying $\sum_{i=1}^{k} s_i \geq \left(\begin{array}{c} k \\ 2 \end{array} \right)$ for all $1 \leq k \leq d+1$, such that for every $1 \leq i \leq d+1$, $G[A_i, B_j]$ contains a forest with s_i edges.

Corollary 1.5. A bipartite graph that admits a strong bipartite d-rigid partition is d-rigid.

Whiteley [59] (see also [35, Theorem 1.2] and [49, Corollary 4]), and independently Raymond [51], both relying on previous work by Bolker and Roth [8], showed that, for $m, n \geq 2$ and $d \geq 1$, the complete bipartite graph $K_{m,n}$ is d-rigid if and only if $m, n \geq d+1$ and $m+n \geq \binom{d+2}{2}$. We show here that, in fact, any complete bipartite graph $K_{m,n}$ satisfying these conditions admits a strong bipartite d-rigid partition.

Proposition 1.6. Let $d \geq 1$. If $m, n \geq d+1$ and $m + n \geq \binom{d+2}{2}$, then $K_{m,n}$ admits a strong bipartite d-rigid partition.

Combining Corollary 1.5 and Proposition 1.6, we obtain a new simple proof of the sufficient condition for the d-rigidity of complete bipartite graphs. The proofs appear in Sections 2.4 and 2.6, respectively.

1.2 Applications to random and pseudorandom graphs

We present several applications of Corollaries 1.4 and 1.5 to random and pseudorandom graphs. For all instances where we apply Corollary 1.4, we demonstrate that a particular graph (typically) admits a (type I) strong d-rigid partition. In these scenarios, similar reasoning, which we forego detailing, can be used to show that the graph also admits a type II strong d-rigid partition.

Our first application is for pseudorandom graphs, for which we are going to use the following linear-algebraic definition. Let $\lambda_1(G) \geq \lambda_2(G) \geq \cdots \geq \lambda_n(G)$ be the eigenvalues of the adjacency matrix of a graph G. An n-vertex k-regular graph G is an (n, k, λ)-graph if $\max\{|\lambda_2(G)|, |\lambda_n(G)|\} \leq \lambda$. For a comprehensive review on pseudorandom graphs, see [41].

Theorem 1.7 (Pseudorandom graphs). There exists $C > 1$ such that if G is an (n, k, λ)-graph with $k \geq \max\{9d\lambda, Cd\log d\}$ then G admits a strong d-rigid partition.

We remark that here and later we prefer clarity of presentation over optimisation of the constants. Theorem 1.7 will follow immediately from a more general statement (Proposition 4.3) about “jumbled” graphs; see Section 4.1. Note that we need G to be a relatively strong expander in order to obtain a significant bound from Theorem 1.7. We can give a different bound on the rigidity of graphs with mild expansion (or one-sided expansion), by the following argument: Recall that every k-regular graph is $(k-\lambda_2(G))$-connected (see [23]). Therefore, by Theorem 1.3, every k-regular graph with $\lambda_2(G) = (1-\varepsilon)k$ is $\Omega_d(\sqrt{k}/\log n)$-rigid. See also [15, 21] for some related results in the $d = 2$ case.

Since random regular graphs are, whp\(^1\) (n, k, λ)-graphs for $\lambda = \Theta(\sqrt{k})$ (see, e.g., [25, 24, 52]), it follows immediately from Theorem 1.7 that a random $\Omega(d^2)$-regular graph is whp d-rigid. Using a more direct

\(^{1}\)With high probability, i.e., with probability tending to 1 as n tends to ∞.

4
argument, we are able to prove the following stronger statement. Let $G_{n,k}$ denote the distribution of random k-regular graphs. We denote a graph sampled from this distribution as $G \sim G_{n,k}$, or occasionally, slightly abusing notation, simply as $G_{n,k}$.

Theorem 1.8 (Random regular graphs). There exists $C > 0$ such that for any fixed $d \geq 2$, $G \sim G_{n,Cd\log d}$ whp admits a strong d-rigid partition.

Previously, the sole result regarding the rigidity of random regular graphs came from [32], demonstrating that $G_{n,k}$ is whp 2-rigid when $k \geq 4$. It is plausible, however, that $G_{n,2d}$ is whp d-rigid for every $d \geq 2$. Our result can be viewed as a first step in that direction.

Consider the binomial random graph $G(n,p)$ which is the distribution over graphs on the vertex set $[n]$ in which each pair of vertices is connected independently with probability p. It is well known [10] that every (nontrivial) monotone graph property has a threshold in $G(n,p)$. Since rigidity is evidently a monotone property, it is natural to try and identify its threshold. The initial efforts in this direction were made by Jackson, Servatius, and Servatius [32] who proved that $p \geq (\log n + \log \log n + o(1))/n$ suffices to guarantee 2-rigidity whp. As for $d > 2$, further advancements were achieved by Király and Theran [39], as well as by Jordán and Tanigawa [37]. Eventually, Lew, Nevo, Peled, and Raz [46] established that $p_c(d) = (\log n + (d - 1) \log \log n)/n$ is the threshold for d-rigidity for any fixed value of d. In fact, for fixed d, they also proved a more robust hitting-time result, which we discuss next.

The random graph process on the vertex set $[n]$ is a stochastic process that starts with the vertex set $[n]$ and no edges, and at each step, a new edge is added by selecting uniformly from the set of missing edges. We denote by $G(n,m)$ the random graph process on n vertices at time m; note that this is a uniformly chosen random graph on n vertices with m edges. The hitting time of a monotone property refers to the first time at which the random graph process possesses that particular property. An advantage of studying random graph processes is that it allows for a higher resolution analysis of the typical emergence of (monotone) graph properties. The main result of [46] is that for every fixed $d \geq 1$, the hitting time for minimum degree d coincides, whp, with the hitting time for d-rigidity

\[\tau_d(n) = \frac{\log n}{n} \]

\[\tau_d(n) = \frac{(d - 1) \log \log n}{n} \]

2Here, we extend this result for sufficiently slowly growing d, and strengthen it by showing that the hitting time for minimum degree d coincides, whp, with the hitting time for the admittance of strong d-rigid partitions. Let τ_d denote the hitting time for minimum degree d in a random graph process.

Theorem 1.9 (Hitting time for d-rigidity). There exists $c > 0$ for which the following holds. For every $1 \leq d = d(n) \leq c \log n/\log \log n$, a random graph $G \sim G(n,\tau_d)$ whp admits a strong d-rigid partition.

The above theorem is sharp in the sense that d-rigidity implies d-connectivity, and hence also minimum degree d. For $d \geq \log n/\log \log n$, however, the threshold for d-rigidity remains unknown. In this work, we establish that $G(n,p)$ is whp d-rigid for $d = \Omega(np/\log(np))$, provided that $p \geq (1 + \varepsilon) \log n/n$, which is best possible up to logarithmic factors. Moreover, we show the existence of a strong d-rigid partition, an interesting result in its own right.

Theorem 1.10 (Binomial random graphs). For every $\varepsilon > 0$ there exists $c > 0$ such that if $p \geq (1 + \varepsilon) \log n/n$, then $G \sim G(n,p)$ whp admits a strong d-rigid partition for $d = cnp/\log(np)$.

We emphasize that the above statement is sharp, up to constants, in the following sense: a graph that admits a strong d-rigid partition has, in particular, a dominating set of size n/d. The smallest dominating set in $G(n,p)$ is whp of size $\Omega((np)/p)$ (see, e.g., [27]), implying that the largest d for which $G(n,p)$ admits a strong d-rigid partition is whp $O(np/\log(np))$. Nevertheless, we conjecture that when $f \to \infty$, the “bottleneck” for the rigidity of $G(n,p)$ lies in its number of edges: note that a d-rigid n-vertex graph
must have at least $dn - \binom{d+1}{2}$ edges (otherwise, the rigidity matrix associated to any embedding of G into \mathbb{R}^d has rank smaller than $dn - \binom{d+1}{2}$, so G is not d-rigid). Since the expected number of edges in $G(n,p)$ is $p\binom{n}{2}$, if $G(n,p)$ is d-rigid whp then it must satisfy the inequality $p\binom{n}{2} \geq dn - d(d+1)/2$, which holds for $d \leq (1 - o(1))(1 - \sqrt{1-p})n$. Accordingly, we conjecture:

Conjecture 1.11. For every $p = \omega(\log n/n)$, $G \sim G(n,p)$ is whp d-rigid for $d = (1-o(1))(1 - \sqrt{1-p})n$.

Next, we establish the following equivalent of Theorem 1.10 for random bipartite graphs. Let $G(n,n,p)$ be the binomial bipartite random graph, which is the distribution over bipartite graphs with two parts A and B, each of size n, in which each vertex in A is adjacent to each vertex in B independently with probability $p = p(n)$.

Theorem 1.12 (Binomial random bipartite graphs). For every $\varepsilon > 0$ there exists $c > 0$ such that if $p \geq (1 + \varepsilon)\log n/n$, then $G \sim G(n,n,p)$ whp admits a strong bipartite d-rigid partition for $d = \min\{cn/p, \log(np), 0.8\sqrt{n}\}$.

The upper bound $O(\sqrt{n})$ on d in Theorem 1.12 should not come as a surprise, given that the complete bipartite graph $K_{n,n}$ is d-rigid for $d \sim 2\sqrt{n}$; see Proposition 1.6 and the preceding discussion. Nonetheless, it is a noteworthy observation that relatively sparse binomial random bipartite graphs (for $p = \Omega(\log n/\sqrt{n})$) attain this maximal possible rigidity, at least up to constant factors. This stands in contrast to what is seen in non-bipartite graphs, as indicated by Theorem 1.10 and Conjecture 1.11.

Since 1-rigidity is equivalent to connectivity, the notion of d-rigidity naturally arises as a generalisation for connectivity. A fundamental phenomenon in random graphs is the “phase transition”, where a “giant” (linear-sized) connected component emerges. Extending this concept, it is natural to investigate the (sudden?) emergence of a giant d-rigid component. A d-rigid component of a graph $G = (V,E)$ is a maximal d-rigid induced subgraph of G. That is, for $U \subseteq V$, $G[U]$ is a d-rigid component of G if it is d-rigid but $G[U']$ is not d-rigid for any $U \subsetneq U'$. It is conjectured by Lew, Nevo, Peled and Raz [46] (and proved for $d = 2$ by Kasiviswanathan, Moore and Theran in [38]), that the random graph $G(n,p)$ undergoes a phase transition for the containment of a giant d-rigid component exactly at the “time” that the average degree of the $(d+1)$-core of the graph exceeds $2d$. This coincides with the threshold for d-orientability of $G(n,p)$ (see [22]), which happens at $p \sim d/n$ (see [19, Theorem 1]).

In this work, we establish that for sufficiently large $c = c(d)$, the random graph $G(n,c/n)$ contains, whp, a giant — and in fact almost spanning — d-rigid component.

Theorem 1.13 (Giant rigid component). For every $\varepsilon \in (0,1)$ there exists $C > 0$ such that for every fixed $d \geq 2$, $G \sim G(n,Cd \log d/n)$ contains whp a d-rigid component with at least $(1 - \varepsilon)n$ vertices.

1.3 Applications to dense graphs

Next, we consider the rigidity of dense graphs. More specifically, we look at “super-Dirac graphs”, that is, n-vertex graphs with minimum degree sufficiently larger than $n/2$.

Theorem 1.14 (Super-Dirac graphs). Let $\ell = \ell(n)$ satisfy $3\log n/2 \leq \ell < n/2$. Let $G = (V,E)$ be an n-vertex graph with $\delta(G) \geq \frac{n}{2} + \ell$. Then, G admits a strong d-rigid partition for $d = 2\ell / (3\log n)$.

For $\ell = \Theta(n)$, the above theorem is sharp up to constants. Indeed, letting $G \sim G(n,p)$ for $p = \frac{1}{2} + 2\varepsilon$ we have that $\delta(G) \geq \left(\frac{1}{2} + \varepsilon\right)n$ whp, but the largest d for which G admits a strong d-rigid partition is whp $O(n/\log n)$. It is also sharp in terms of the minimum degree, as there are disconnected n-vertex graphs with $\delta(G) = \lfloor n/2 \rfloor - 1$. We believe, however, that the rigidity of Dirac graphs should be much larger:

\footnote{Note that we have not made any particular effort to improve the value 0.8 in the theorem.}
Conjecture 1.15. Let $1 \leq \ell(n) < n/2$. Let G be an n-vertex graph with minimum degree $\delta(G) \geq \frac{n}{2} + \ell(n)$. Then, G is d-rigid for $d = \Omega(\ell(n))$.

Theorem 1.14 is an immediate consequence of the following theorem:

Theorem 1.16. Let $\ell = \ell(n)$ satisfy $3 \log n \leq \ell < n$. Let $G = (V, E)$ be an n-vertex graph in which every pair of vertices has at least ℓ common neighbours. Then, G admits a strong d-rigid partition for $d = \ell/(3 \log n)$.

Notation and terminology Let $G = (V, E)$ be a graph. For two (not necessarily disjoint) vertex sets A, B, we let $E(A, B)$ be the set of edges having one endpoint in A and the other in B, and write $E(A) = E(A, A)$. We denote further $e(A, B) = |\{(u, v) \in A \times B : \{u, v\} \in E\}|$. Note that if $A \cap B \neq \emptyset$ then it might be the case that $e(A, B) > |E(A, B)|$. We denote by $N(A)$ the external neighbourhood of A, that is, the set of all vertices in $V \setminus A$ that have a neighbour in A. In the above notation we often replace $\{v\}$ with v for abbreviation. The degree of a vertex $v \in V$, denoted by $\deg(v)$, is its number of incident edges. We let $\delta(G)$ and $\Delta(G)$ be the minimum and maximum degrees of G, respectively.

Throughout the paper, all logarithms are in the natural basis. If f, g are functions of n, we write $f \ll g$ if $f = o(g)$, $f \gg g$ if $f = \omega(g)$, and $f \sim g$ if $f = (1 + o(1))g$. For the sake of clarity of presentation, we will systematically omit floor and ceiling signs.

Paper organization The structure of this paper is as follows. In Section 2 we present and prove the quantitative counterpart of Theorem 1.1 (Theorem 2.1), and subsequently detail the proofs of Corollaries 1.2, 1.4 and 1.5 in Section 2.4, of Theorem 1.3 in Section 2.5, and of Proposition 1.6 in Section 2.6. In Section 2.7 we discuss some of the limitations of d-rigid partitions, and present examples of d-rigid graphs that do not admit d-rigid partitions (for certain values of d). Section 3, which is self-contained, introduces general easily verifiable sufficient conditions for the existence of rigid partitions. In Section 4, we delve into the applications of this method to various (pseudo)random graphs, presenting the proofs of Theorems 1.7 to 1.10, 1.12 and 1.13. We conclude in Section 5 with the proof of Theorems 1.14 and 1.16.

2 Rigidity via rigid partitions

2.1 Stiffness matrices and d-dimensional algebraic connectivity

Let $G = (V, E)$ be a graph and $p : V \to \mathbb{R}^d$ be an embedding. For $u, v \in V$, let

$$d_{uv}(p) = \frac{\|p(u) - p(v)\|}{\|p(u) - p(v)\|} \in \mathbb{R}^d.$$

We define the normalized rigidity matrix $\hat{R}(G, p) \in \mathbb{R}^{d|V| \times |E|}$ as follows: the columns of $\hat{R}(G, p)$ are indexed by the edges of G, and the rows are indexed by assigning d consecutive coordinates to each vertex of V. For an edge $\{u, v\} \in E$, the column of $\hat{R}(G, p)$ indexed by $\{u, v\}$ is the vector $v^T_{u,v} \in \mathbb{R}^{d|V|}$ be defined by

$$v^T_{u,v} = \begin{bmatrix} 0 & \cdots & 0 & d_{uv}(p)^T & 0 & \cdots & 0 & d_{vu}(p)^T & 0 & \cdots & 0 \end{bmatrix}.$$

That is, the vector $v^T_{u,v}$ is supported on the coordinates associated to the vertices u and v, where it is equal to the d-dimensional vectors d_{uv} and d_{vu}, respectively.

Note that $\hat{R}(G, p)$ can be obtained from the unnormalized rigidity matrix $R(G, p)$ by first dividing each row of $R(G, p)$ by a non-zero constant $\|p(u) - p(v)\|$, and then by taking the transpose of the matrix. In particular, $\hat{R}(G, p)$ and $R(G, p)$ have the same rank.
The **stiffness matrix** of the framework \((G, p)\) is the matrix

\[
L(G, p) = \hat{R}(G, p)\hat{R}(G, p)^\top \in \mathbb{R}^{d|V| \times d|V|}.
\]

For a symmetric matrix \(M \in \mathbb{R}^{m \times m}\) and \(1 \leq i \leq m\), let \(\lambda_i(M)\) be the \(i\)-th smallest eigenvalue of \(M\). Note that \(L(G, p)\) is a positive semi-definite matrix satisfying \(\text{rank}(L(G, p)) = \text{rank}(\hat{R}(G, p)) = \text{rank}(\hat{R}(G, p)) \leq d|V| - (\frac{d+1}{2})\). Therefore, we have \(\lambda_i(L(G, p)) = 0\) for \(1 \leq i \leq (\frac{d+1}{2})\), and \((G, p)\) is infinitesimally rigid if and only if \(\lambda_{(\frac{d+1}{2})+1}(L(G, p)) > 0\).

In [37], Jordán and Tanigawa introduced the **\(d\)-dimensional algebraic connectivity** of \(G\), defined by

\[
a_d(G) = \sup \left\{ \lambda_{(\frac{d+1}{2})+1}(L(G, p)) \right\},
\]

where the supremum is taken over all embeddings \(p : V \to \mathbb{R}^d\).

Notice that \(a_d(G) > 0\) if and only if \(G\) is \(d\)-rigid. We can think of \(a_d(G)\) as a “quantitative measure” of the \(d\)-rigidity of \(G\) — we expect graphs with large \(a_d(G)\) to be more “strongly rigid”, in certain senses (see e.g. [37, Corollary 8.2] for a result quantifying such a phenomenon).

For \(d = 1\), it is easy to check that, for any embedding \(p : V \to \mathbb{R}\), the normalized rigidity matrix \(\hat{R}(G, p)\) is just the incidence matrix of the orientation of \(G\) induced by the embedding, and the stiffness matrix \(L(G, p)\) is exactly the graph Laplacian \(L(G)\). Therefore, the one-dimensional algebraic connectivity of \(G\) coincides with the classical notion of algebraic connectivity (a.k.a. Laplacian spectral gap) of a graph, introduced by Fiedler in [23]. We denote in this case \(a_1(G) = a(G) = \lambda_2(L(G))\). For convenience, we define \(a(G) = \infty\) for the graph \(G = (\{v\}, \emptyset)\).

We can now state the following quantitative version of Theorem 1.1.

Theorem 2.1. Let \(G = (V, E)\) be a graph, and let \(\{\{V_i\}_{i=1}^{d+1}, \{E_{ij}\}_{1 \leq i < j \leq d+1}\}\) be a \(d\)-rigid partition of \(G\). For \(1 \leq i < j \leq d + 1\), let \(G_{ij} = (V_i \cup V_j, E_{ij})\). Then,

\[
a_d(G) \geq \min \left\{ \frac{a(G_{ij})}{2} : 1 \leq i < j \leq d + 1 \right\}.
\]

In particular, since \(G_{ij}\) is connected for all \(1 \leq i < j \leq d + 1, G\) is \(d\)-rigid.

2.2 Limit frameworks

For the proof of Theorem 2.1, we will need to consider the limit of a sequence of frameworks. In order to do that, we introduce the notion of **generalized frameworks**, first studied by Tay in [56] (although we use here slightly different definitions and notation; see also [54]).

Let \(S^{d-1} \subset \mathbb{R}^d\) denote the \((d-1)\)-dimensional unit sphere. Let \(G = (V, E)\) be a graph, and let \(q : \{(u, e) : e \in E, u \in e\} \to S^{d-1}\). The pair \((G, q)\) is called a **generalized \(d\)-dimensional framework**. For \(e = \{u, v\} \in E\), we define \(v_{u,v} \in \mathbb{R}^{d|V|}\) by

\[
v_{u,v}^\top = \begin{bmatrix} u & v \\ 0 & \ldots & \ldots \ & q(u,e)^\top & 0 & \ldots & q(v,e)^\top & 0 & \ldots & 0 \end{bmatrix}.
\]

We define the **rigidity matrix** \(\hat{R}(G, q) \in \mathbb{R}^{d|E| \times d|V|}\) as the matrix whose columns are the vectors \(v_{u,v}\) for all \(\{u, v\} \in E\). We define the **stiffness matrix** of \((G, q)\) as

\[
L(G, q) = \hat{R}(G, q)\hat{R}(G, q)^\top \in \mathbb{R}^{d|V| \times d|V|}.
\]
Similarly, we define the lower stiffness matrix of \((G, \mathbf{q})\) as

\[
L^-(G, \mathbf{q}) = \hat{R}(G, \mathbf{q})^T \hat{R}(G, \mathbf{q}) \in \mathbb{R}^{|E| \times |E|}.
\]

We have the following explicit description of the lower stiffness matrix, which is an immediate consequence of (2.1).

Lemma 2.2. Let \((G, \mathbf{q})\) be a generalized d-dimensional framework. Let \(e_1, e_2 \in E\). Then,

\[
L^-(G, \mathbf{q})(e_1, e_2) = \begin{cases}
2 & \text{if } e_1 = e_2, \\
\mathbf{q}(u, e_1) \cdot \mathbf{q}(u, e_2) & \text{if } e_1 = \{u, v\} \text{ and } e_2 = \{u, w\}, \\
0 & \text{otherwise.}
\end{cases}
\]

Note that the non-zero eigenvalues of \(L(G, \mathbf{q})\) coincide with those of \(L^-(G, \mathbf{q})\). In particular, assuming \(|E| \geq d|V| - \left(\frac{d+1}{2}\right)\), we have

\[
\lambda_k(L(G, \mathbf{q})) = \lambda_{|E|-d|V|+k}(L^-(G, \mathbf{q})),
\]

for all \(k \geq \left(\frac{d+1}{2}\right) + 1\).

Given \(G = (V, E)\) and an embedding \(\mathbf{p} : V \to \mathbb{R}^d\), we can define a generalized framework \((G, \mathbf{q})\) by

\[
\mathbf{q}(u, \{u, v\}) = d_{uv}(\mathbf{p}) = -\frac{\mathbf{p}(u) - \mathbf{p}(v)}{\|\mathbf{p}(u) - \mathbf{p}(v)\|}
\]

for all \(\{u, v\} \in E\). The generalized framework \((G, \mathbf{q})\) is equivalent to the framework \((G, \mathbf{p})\), in the sense that \(\hat{R}(G, \mathbf{q}) = \hat{R}(G, \mathbf{p})\), and therefore \(L(G, \mathbf{q}) = L(G, \mathbf{p})\). The main “advantage” of generalized frameworks is that they allow us to talk about limits of frameworks:

We say that a generalized framework \((G, \mathbf{q})\) is a d-dimensional limit framework if there exists a sequence of d-dimensional frameworks \(\{(G_n, \mathbf{p}_n)\}_{n=1}^\infty\) such that

\[
\mathbf{q}(u, \{u, v\}) = \lim_{n \to \infty} d_{uv}(\mathbf{p}_n)
\]

for all \(\{u, v\} \in E\). We denote in this case \((G, \mathbf{p}_n) \to (G, \mathbf{q})\). Note that if \((G, \mathbf{q})\) is a limit d-dimensional framework, it must satisfy \(\mathbf{q}(u, \{u, v\}) = -\mathbf{q}(v, \{u, v\})\) for all \(\{u, v\} \in E\).

Generalized 1-dimensional frameworks correspond to signings of the graph \(G\) (that is, to functions \(\eta : \{(u, e) : e \in E, u \in e\} \to \{-1, 1\}\)), and their stiffness matrix is the “signed Laplacian” corresponding to the signing \(\eta\) (for more on the theory of signed graphs and their associated matrices, see, e.g., [60]). The 1-dimensional limit frameworks are exactly those corresponding to orientations of \(G\) (that is, to signings satisfying \(\eta(u, \{u, v\}) = -\eta(v, \{u, v\})\) for all \(\{u, v\} \in E\). Actually, any 1-dimensional limit framework can be obtained from an embedding \(\mathbf{p} : V \to \mathbb{R}^1\) as in (2.3) (without the need of taking a limit of a sequence of embeddings). The stiffness matrix \(L(G, \eta)\) in this case is just the usual graph Laplacian \(L(G)\).

Lemma 2.3. If \((G, \mathbf{q})\) is a d-dimensional limit framework, then

\[
a_d(G) \geq \lambda_{\left(\frac{d+1}{2}\right)+1}(L(G, \mathbf{q})).
\]

Proof. Let \((G, \mathbf{p}_n) \to (G, \mathbf{q})\), where \(\{\mathbf{p}_n\}_{n=1}^\infty\) is a sequence of embeddings of \(V\) into \(\mathbb{R}^d\). Note that \(\hat{R}(G, \mathbf{q})\) is the entry-wise limit of the sequence of matrices \(\hat{R}(G, \mathbf{p}_n)\), and therefore \(L(G, \mathbf{q})\) is the limit of
the matrices $L(G, p_n)$. Hence, by the continuity of eigenvalues,

$$\lambda^{(s+1)}_{G, \frac{1}{2}+1}(L(G, q)) = \lim_{n \to \infty} \lambda^{(s+1)}_{G, \frac{1}{2}+1}(L(G, p_n)) = a_d(G) \geq \sup_n \lambda^{(s+1)}_{G, \frac{1}{2}+1}(L(G, p_n)) \geq \lambda^{(s+1)}_{G, \frac{1}{2}+1}(L(G, q)).$$

Thus, we obtain

$$a_d(G) \geq a_d(G) \geq \lambda^{(s+1)}_{G, \frac{1}{2}+1}(L(G, q)).$$

\[\square\]

Lemma 2.4. Let $G = (V, E)$. Let $V = V_1 \cup \cdots \cup V_k$ be a colouring of V, and let x_1, \ldots, x_k be k distinct points in \mathbb{R}^d. Assume we have for each $1 \leq i \leq k$ a d-dimensional limit framework $(G[V_i], q_i)$. Define $q : \{(u, e) : e \in E, u \in c\} \to \mathbb{R}^{d-1}$ by

$$q(u, \{u, v\}) = \begin{cases} (x_i - x_j)/\|x_i - x_j\| & \text{if } u \in V_i, v \in V_j \text{ for } i \neq j, \\ q_i(u, \{u, v\}) & \text{if } u, v \in V_i \text{ for } 1 \leq i \leq k, \end{cases}$$

for all $\{u, v\} \in E$. Then, (G, q) is a d-dimensional limit framework.

Proof. For each $1 \leq i \leq k$, let $p_{i,n} : V_i \to \mathbb{R}^d$ be a sequence of embeddings such that $(G[V_i], p_{i,n}) \to (G[V_i], q_i)$. We may assume without loss of generality that $\|p_{i,n}(u)\| \leq 1$ for all $1 \leq i \leq k$ and $u \in V_i$ (since re-scaling of a map p does not affect the values of $d_{uv}(p)$).

Define $p_n : V \to \mathbb{R}^d$ by

$$p_n(u) = nx_i + p_{i,n}(u)$$

for all $1 \leq i \leq k$ and $u \in V_i$. We will show that $(G, p_n) \to (G, q)$. Let $\{u, v\} \in E$. If $u, v \in V_i$ for some $1 \leq i \leq k$, then

$$d_{uv}(p_n) = \frac{p_n(u) - p_n(v)}{\|p_n(u) - p_n(v)\|} = \frac{p_{i,n}(u) - p_{i,n}(v)}{\|p_{i,n}(u) - p_{i,n}(v)\|} \to q_i(u, \{u, v\}) = q(u, \{u, v\})$$

as required. If $u \in V_i$ and $v \in V_j$ for some $i \neq j$, then, since $\|p_{i,n}(u)\| \leq 1$ and $\|p_{j,n}(v)\| \leq 1$, we have

$$\lim_{n \to \infty} p_n(u)/n = x_i$$

and

$$\lim_{n \to \infty} p_n(v)/n = x_j.$$

Therefore,

$$d_{uv}(p_n) = \frac{p_n(u) - p_n(v)}{\|p_n(u) - p_n(v)\|} = \frac{p_n(u)/n - p_n(v)/n}{\|p_n(u)/n - p_n(v)/n\|} \to \frac{x_i - x_j}{\|x_i - x_j\|}$$

\[\square\]

The following lemma is a simple generalisation of an argument by Tay [56, Theorem 3.4] (see also [54, Theorem 8]).

Lemma 2.5. Let $G = (V, E)$ be a graph, and let $E = E_1 \cup \cdots \cup E_k$ be a colouring of its edge set. Let $y_1, \ldots, y_k \in \mathbb{R}^{d-1}$. If every $U \subseteq V$ of size at least 2 has a monochromatic cut, then there exists a d-dimensional limit framework (G, q) such that, for every $i \in [k]$, $q(u, \{u, v\}) \in \{y_i, -y_i\}$ for all $\{u, v\} \in E_i$.

Proof. We argue by induction on $|V|$. If $|V| = 1$, we are done. Otherwise, there exist some $i \in [k]$ and a partition $V = A \cup B$ such that all the edges in G between A and B belong to E_i. By the induction hypothesis, there exist limit frameworks $(G[A], q_A)$ and $(G[B], q_B)$ such that for every $j \in [k]$, $q_A(u, \{u, v\}) \in \{y_j, -y_j\}$ if $u, v \in A$, and $q_B(u, \{u, v\}) \in \{y_j, -y_j\}$ if $u, v \in B$. Let $x_A = y_i$ and $x_B = 0$. Note that $(x_A - x_B)/\|x_A - x_B\| = y_i$. Therefore, by Lemma 2.4, there is a d-dimensional
Lemma 3.1 \[45\] \[72x561\]

For the proof of Theorem 2.1 we will need the following very simple lemma from \[45\].

\[\text{desired.} \]

\[\text{limit framework (} G, q \text{)} \text{ satisfying} \]

\[q(u, \{u, v\}) = \begin{cases} y_i & \text{if } u \in A \text{ and } v \in B, \\ -y_i & \text{if } u \in B \text{ and } v \in A, \\ q_A(u, \{u, v\}) & \text{if } u, v \in A, \\ q_B(u, \{u, v\}) & \text{if } u, v \in B, \end{cases} \]

for all \(\{u, v\} \in E \). Note that for every \(j \in [k] \) and \(\{u, v\} \in E_j \), we obtain \(q(u, \{u, v\}) \in \{y_j, -y_j\} \), as desired.

\[\square \]

2.3 Proof of Theorem 2.1

For the proof of Theorem 2.1 we will need the following very simple lemma from \[45\].

Lemma 2.6 (\[45, \text{Lemma 3.1}\]). Let \(M \in \mathbb{R}^{n \times n} \) be a block diagonal symmetric matrix with blocks \(M_1, \ldots, M_k \), where \(M_i \in \mathbb{R}^{n \times n} \) for every \(1 \leq i \leq k \). Let \(1 \leq m \leq n \) and \(r_1, \ldots, r_k \) be such that \(\sum_{i=1}^{k} r_i = m + k - 1 \). Then,

\[\lambda_m(M) \geq \min \{ \lambda_{r_i}(M_i) : 1 \leq i \leq k \}. \]

For convenience, given a “0×0” matrix \(M \), we define \(\lambda_1(M) = \infty \). Note then that Lemma 2.6 applies even if we allow values \(n_i = 0 \) and \(r_i = 1 \) for one or more \(1 \leq i \leq k \).

Proof of Theorem 2.1. Without loss of generality, we assume that \(\{E_{ij}\}_{1 \leq i < j \leq d+1} \) is a colouring of \(E \). Otherwise, we can apply the arguments below to the subgraph \(G' = (V, \cup_{1 \leq i < j \leq d+1} E_{ij}) \) (and then use the fact that \(a_d(G) \geq a_d(G') \), see e.g. [44, Theorem 2.3]).

Recall that, for \(1 \leq i < j \leq d+1 \), we define \(G_{ij} = (V_i \cup V_j, E_{ij}) \). For convenience, for \(i > j \), we define \(G_{ij} = G_{ji} \). Let \(x_1, \ldots, x_{d+1} \in \mathbb{R}^d \) be the vertices of a regular simplex. For \(i \neq j \), let \(y_{ij} = (x_i - x_j)/\|x_i - x_j\| \).

Let \(1 \leq i \leq d+1 \). By Lemma 2.5 (using the fact that any \(U \subseteq V_i \) of size at least 2 has a monochromatic cut), there exists a \(d \)-dimensional limit framework \((G[V_i], q_i) \), satisfying \(q_i(u, \{u, v\}) \in \{y_{ij}, -y_{ij}\} \) for all \(j \neq i \) and \(\{u, v\} \in E_{ij} \). Therefore, by Lemma 2.4, there exists a \(d \)-dimensional limit framework \((G, q) \) satisfying, for all \(i \neq j \) and \(\{u, v\} \in E_{ij} \), \(q(u, \{u, v\}) \in \{y_{ij}, -y_{ij}\} \) if \(u, v \in V_i \) or \(u, v \in V_j \), and \(q(u, \{u, v\}) = y_{ij} \) if \(u \in V_i \) and \(v \in V_j \).

Let \(\eta : \{(u, e) : e \in E, u \in e \} \to \{1, -1\} \) be defined by

\[\eta(u, \{u, v\}) = \begin{cases} 1 & \text{if } q(u, \{u, v\}) = y_{ij}, \\ -1 & \text{if } q(u, \{u, v\}) = -y_{ij} \end{cases} \]

for all \(\{u, v\} \in E_{ij} \) such that \(u \in V_i \). Note that, if \(u \in V_i \) and \(v \in V_j \) for \(i \neq j \), then \(\eta(u, \{u, v\}) = \eta(v, \{u, v\}) = 1 \). Moreover, since \(q \) is a \(d \)-dimensional limit framework, we have \(q(u, \{u, v\}) = -q(v, \{u, v\}) \) for all \(\{u, v\} \in E \). Therefore, we have \(\eta(u, \{u, v\}) = -\eta(v, \{u, v\}) \) whenever \(u, v \in V_i \) for some \(1 \leq i \leq d+1 \).

It is easy to check that if \(e = \{u, v\} \in E_{ij} \) and \(e' = \{u, w\} \in E_{ik} \) for \(i \neq j, k \), then

\[q(u, e) \cdot q(u, e') = (y_{ij} \cdot y_{ik})\eta(u, e)\eta(u, e'). \]
Note that, if \(j \neq k \), \(y_{ij} \cdot y_{ik} = 1/2 \), and if \(j = k \), \(y_{ij} \cdot y_{ik} = 1 \). Therefore, by Lemma 2.2, we obtain

\[
L^{-}(G, q)(e, e') = \begin{cases}
2 & \text{if } e = e', \\
\eta(u, e) \cdot \eta(u, e') & \text{if } e \cap e' = \{u\}, e, e' \in E_{ij} \text{ for } i \neq j, \\
\frac{1}{2} \eta(u, e) \cdot \eta(u, e') & \text{if } e \cap e' = \{u\}, e \in E_{ij}, e' \in E_{ik} \text{ for pairwise distinct } i, j, k, \\
0 & \text{otherwise.}
\end{cases}
\]

We can write \(L^{-}(G, q) \) as a sum

\[
L^{-}(G, q) = \frac{1}{2} M + \frac{1}{2} T,
\]

where \(M \) is the matrix defined by

\[
M(e, e') = \begin{cases}
2 & \text{if } e = e', \\
\eta(u, e) \cdot \eta(u, e') & \text{if } e \cap e' = \{u\}, \\
0 & \text{otherwise,}
\end{cases}
\]

and \(T \) is a block diagonal matrix with blocks \(T_{ij} \) for \(1 \leq i < j \leq d + 1 \), where each block \(T_{ij} \) is supported on the rows and columns corresponding to \(E_{ij} \), and is defined by

\[
T_{ij}(e, e') = \begin{cases}
2 & \text{if } e = e', \\
\eta(u, e) \cdot \eta(u, e') & \text{if } e \cap e' = \{u\}, \\
0 & \text{otherwise,}
\end{cases}
\]

Note that \(M = L^{-}(G, \eta) \), and in particular it is a positive semi-definite matrix. Thus, by Weyl’s inequality (see, e.g., [11, Theorem 2.8.1(iii)]),

\[
\lambda_i(L^{-}(G, q)) \geq \frac{1}{2} \lambda_i(T) \text{ for all } 1 \leq i \leq |E|. \tag{2.4}
\]

Let \(1 \leq i < j \leq d + 1 \). Define a signing \(\eta_{ij} : \{(u, e) : e \in E_{ij}, u \in e\} \to \{1, -1\} \) by

\[
\eta_{ij}(u, \{u, v\}) = \begin{cases}
\eta(u, \{u, v\}) & \text{if } u, v \in V_i, \\
-\eta(u, \{u, v\}) & \text{if } u, v \in V_j, \\
1 & \text{if } u \in V_i, v \in V_j, \\
-1 & \text{if } i \in V_j, v \in V_i.
\end{cases}
\]

Note that \(\eta_{ij}(v, \{u, v\}) = -\eta_{ij}(u, \{u, v\}) \), so \(\eta_{ij} \) is an orientation of \(G_{ij} \), and therefore \(L(G_{ij}, \eta_{ij}) \) is actually the Laplacian matrix \(L(G_{ij}) \). Moreover, for any \(\{u, v\}, \{u, w\} \in E_{ij} \),

\[
\eta(u, \{u, v\}) \cdot \eta(u, \{u, w\}) = \eta_{ij}(u, \{u, v\}) \cdot \eta_{ij}(u, \{u, w\}),
\]

and therefore \(T_{ij} = L^{-}(G_{ij}, \eta_{ij}) \). Let \(r_{ij} = |E_{ij}| - |V_i \cup V_j| + 2 \). Since \(G_{ij} \) is connected, we have \(|E_{ij}| \geq |V_i \cup V_j| - 1 \). So, by (2.2), we obtain

\[
\lambda_{r_{ij}}(T_{ij}) = \lambda_{r_{ij}}(L^{-}(G_{ij}, \eta_{ij})) = \lambda_2(L(G_{ij}, \eta_{ij})) = \lambda_2(L(G_{ij})) = \lambda(G_{ij}).
\]

12
Let $m = |E| - d|V| + \left(\frac{d+1}{2}\right) + 1$. Note that

$$
\sum_{1 \leq i < j \leq d+1} r_{ij} = \sum_{1 \leq i < j \leq d+1} |E_{ij}| - d \sum_{i=1}^{d+1} |V_i| + 2 \left(\frac{d+1}{2}\right)
= |E| - d|V| + 2 \left(\frac{d+1}{2}\right) = m + \left(\frac{d+1}{2}\right) - 1.
$$

So, by Lemma 2.6,

$$
\lambda_m(T) \geq \min \{ \lambda_{r_{ij}}(T_{ij}) : 1 \leq i < j \leq d + 1 \} = \min \{ a(G_{ij}) : 1 \leq i < j \leq d + 1 \}.
$$

By Lemma 2.3, (2.2) and (2.4), we obtain

$$
a_d(G) \geq \lambda_{\left(\frac{d+1}{2}\right)+1}(L(G, q)) = \lambda_m(L^-(G, q)) \geq \frac{1}{2} \lambda_m(T) \geq \min \left\{ \frac{a(G_{ij})}{2} : 1 \leq i < j \leq d + 1 \right\},
$$
as wanted.

\[\square\]

2.4 Special rigid partitions

We proceed to prove Corollaries 1.2, 1.4 and 1.5. Corollary 1.2 follows from the next proposition together with Theorem 1.1.

Proposition 2.7. A graph that admits a CDS partition of size $\left(\frac{d+1}{2}\right)$ admits a d-rigid partition.

Proof. If $d = 1$ then the claim is trivial; we therefore assume that $d \geq 2$. Let \{\(A_{ij} : 1 \leq i < j \leq d + 1\)\} be a partition of V into $\left(\frac{d+1}{2}\right)$ connected dominating sets. Let $V_1 = A_{13}$, $V_2 = A_{12}$, $V_3 = A_{23}$, and $V_j = \bigcup_{i<j} A_{ij}$ for $4 \leq j \leq d + 1$. For $1 \leq i < j \leq d + 1$, let $E_{ij} = E(V_i, V_j) \cup E(A_{ij})$, and let $G_{ij} = (V_i \cup V_j, E_{ij})$. For convenience, we define $E_{jj} = E_{ij}$ and $A_{ij} = A_{1j}$.

First, we show that the graphs G_{ij} are connected. Let $1 \leq i < j \leq d + 1$. Assume that $A_{ij} \subseteq V_j$ (this is the case unless $i = 1$ and $j = 3$, in which case the proof follows in essentially the same way). Since A_{ij} is a dominating set, every vertex in V_i is adjacent to a vertex in A_{ij}. Similarly, since V_i is a dominating set (as it contains a dominating set), every vertex in V_j is adjacent in G_{ij} to a vertex in V_i. Therefore, every vertex in $V_i \cup V_j$ is connected in G_{ij} to a vertex in A_{ij} (by a path of length at most two). Since A_{ij} is connected in G_{ij}, this implies that G_{ij} is connected.

We proceed to show that for every $1 \leq i < j < d + 1$, every $U \subseteq V_i$ of size at least 2 has a monochromatic cut (that is, a partition into U', U'' such that $\hat{E} \cap E(U', U'') \subseteq E_{ij}$ for some $j \neq i$, where $\hat{E} = \bigcup_{1 \leq i' < j' \leq d+1} E_{i'j'}$). But this is trivially true: Let $u \in U$. Then $u \in A_{ij}$ for some $j \neq i$. Let $U' = \{u\}$ and $U'' = U \setminus \{u\}$. Then, $\hat{E} \cap E(U', U'') \subseteq E(A_{ij}) \subseteq E_{ij}$. Therefore, \((\{V_i\}_{i=1}^{d+1}, \{E_{ij}\}_{1 \leq i < j \leq d+1})\) is a d-rigid partition of G.

Corollary 1.4 follows from the next two propositions together with Theorem 1.1. Recall that, given a colouring V_1, \ldots, V_d+1 of V and a partial colouring \{\(E_{ij}\)\}_{1 \leq i < j \leq d+1} of E, we denote by G_{ij} the subgraph $(V_i \cup V_j, E_{ij})$ of G and set $\hat{E} = \bigcup_{1 \leq i < j \leq d+1} E_{ij}$.

Proposition 2.8. A graph that admits a type I strong d-rigid partition admits a d-rigid partition.

Proof. Let V_1, \ldots, V_d be a type I strong d-rigid partition of a graph $G = (V, E)$. Let $V_{d+1} = \emptyset$, so V_1, \ldots, V_d+1 is a colouring of V. For $1 \leq i < j \leq d$ let $E_{ij} = E(V_i, V_j)$, and for $1 \leq i \leq d$ and $j = d + 1$ let $E_{ij} = E(V_i)$. Thus, \{\(E_{ij}\)\}_{1 \leq i < j \leq d+1} is a partial colouring of E. Moreover, for $1 \leq i < j \leq d$, G_{ij} is connected since $G_{ij} = G[V_i, V_j]$, and for $1 \leq i \leq d$ and $j = d+1$, G_{ij} is connected since $G_{ij} = G[V_i]$.\[\square\]
Finally, let $1 \leq i \leq d+1$ and let $U \subseteq V_i$ with $|U| \geq 2$ (so $i \leq d$). We have to show that U has a monochromatic cut. However, that follows directly from the fact that $E(U) \subseteq E_{i,d+1}$. □

Proposition 2.9. A graph that admits a type II strong d-rigid partition admits a d-rigid partition.

Proof. Let V_1, \ldots, V_{d+1} be a type II strong d-rigid partition of a graph $G = (V, E)$. So V_1, \ldots, V_{d+1} is a colouring of V. For $1 \leq i < j \leq d+1$ let $E_{ij} = E(V_i, V_j)$. Thus, $\{E_{ij}\}_{1 \leq i < j \leq d+1}$ is a partial colouring of E. Moreover, for $1 \leq i < j \leq d+1$, G_{ij} is connected since $G_{ij} = G[V_i, V_j]$. Finally, let $1 \leq i \leq d+1$ and let $U \subseteq V_i$ with $|U| \geq 2$. We have to show that U has a monochromatic cut. However, that follows directly from the fact that $\hat{E} \cap E(V_i) = \varnothing$ for every $1 \leq i \leq d+1$. □

Corollary 1.5 follows from the next proposition together with Theorem 1.1.

Proposition 2.10. A graph that admits a strong bipartite d-rigid partition admits a d-rigid partition.

Proof. Let V_1, \ldots, V_{d+1} be a strong bipartite d-rigid partition of a bipartite graph $G = (A \cup B, E)$ with bipartition (A, B). So V_1, \ldots, V_{d+1} is a colouring of $V = A \cup B$. For $1 \leq i \leq d+1$, write $A_i = V_i \cap A$ and $B_i = V_i \cap B$. There is a sequence $0 \leq s_1 \leq s_2 \leq \cdots \leq s_{d+1}$ satisfying $\sum_{i=1}^{k} s_i \geq \binom{k}{2}$ for all $1 \leq k \leq d+1$ such that $G[A_i, B_i]$ contains a forest F_i with s_i edges for all $1 \leq i \leq d+1$. Without loss of generality, we may assume that $\sum_{i=1}^{d+1} s_i = \binom{d+1}{2}$. By a theorem of Landau [43], there exists a tournament T on vertex set $[d+1]$ such that the out-degree of vertex i is exactly s_i for all $1 \leq i \leq d+1$. For each $1 \leq i \leq d+1$, denote the edges of F_i by $e_{i,1}^{(d)}, \ldots, e_{i,s_i}^{(d)}$, where j_1, \ldots, j_{s_i} are the s_i out-neighbours of i in T.

Let $1 \leq i < j \leq d+1$. If (i, j) is a directed edge of T, set $e_{ij} = e_j^{(i)}$; otherwise set $e_{ij} = e_j^{(i)}$. In any case, define $E_{ij} = E(V_i, V_j) \cup \{e_{ij}\}$. Thus, $\{E_{ij}\}_{1 \leq i < j \leq d+1}$ is a partial colouring of E. Moreover, for $1 \leq i < j \leq d+1$, $G_{ij} = (V_i \cup V_j, E_{ij})$ is connected since $G[V_i, V_j]$ is a subgraph of G_{ij} with two connected components (as $G[A_i, B_j]$ and $G[A_j, B_i]$ are both connected) and e_{ij} is an edge connecting them. Finally, let $1 \leq i \leq d+1$ and let $U \subseteq V_i$ with $|U| \geq 2$. We have to show that U has a monochromatic cut. Let $\hat{E} = \cup_{1 \leq i' < j' \leq d+1} E_{i'j'}$. If U does not span any of the edges $e_j^{(i)}$ for $j \neq i$ then $\hat{E} \cap E(U) = \varnothing$, hence U has a monochromatic cut trivially. Otherwise, suppose $e_j^{(i)} \subseteq U$ for some $j \neq i$, and write $e_j^{(i)} = \{u, v\}$. Let U' be the connected component of u in $F_i \setminus e_j^{(i)}$, and $U'' = U \setminus U'$. Since F_i is a forest, we have $v \in U''$, and therefore $U', U'' \neq \varnothing$. Then, $\hat{E} \cap E(U', U'') = \{e_j^{(i)}\}$, which is a subset of either E_{ij} (if $i < j$) or E_{ji} (if $j < i$). Thus, U', U'' is a monochromatic cut for U, as wanted. □

For our arguments on random bipartite graphs, we will use the following special class of strong bipartite d-rigid partitions:

Lemma 2.11. Let $G = (A \cup B, E)$ be a bipartite graph with bipartition (A, B). Let V_1, \ldots, V_{d+1} be a partition of $V = A \cup B$. Write $A_i = V_i \cap A$ and $B_i = V_i \cap B$ for $1 \leq i \leq d+1$. Assume that $G[A_i, B_j]$ is connected for all $i \neq j$, and that $G[A_i, B_j]$ contains a matching of size d for all $1 \leq i \leq d+1$. Then, V_1, \ldots, V_{d+1} is a strong bipartite d-rigid partition of G.

Proof. The claim follows immediately from the definition of a strong bipartite d-rigid partition, using the fact that a matching is a forest, and that for all $1 \leq k \leq d+1$ we have $kd \geq \binom{k}{2}$. □

2.5 Rigidity of highly-connected graphs

For the proof of Theorem 1.3, we will need the following result by Censor-Hillel et al. [12], showing that highly-connected graphs admit a large CDS partition.

Theorem 2.12 ([12, Corollary 1.6]). There exists $c > 0$ such that every k-connected n-vertex graph admits a CDS partition of size $ck/\log^2 n$.

Proof of Theorem 1.3. Let \(c > 0 \) be the constant from Theorem 2.12, and let \(C = 1/c \). Let \(d = d(n) \geq 1 \), and let \(k = Cd^2 \log^2 n \). Let \(G = (V, E) \) be a \(k \)-connected \(n \)-vertex graph. By Theorem 2.12, \(G \) admits a CDS partition of size \(ck/\log^2 n \) = \(d^2 \geq (d+1)/2 \). Hence, by Corollary 1.2, \(G \) is \(d \)-rigid.

Note that improving the bound in Theorem 2.12 would immediately imply an improved bound in Theorem 1.3. However, Censor-Hillel, Ghaffari and Kuhn showed in [13] that there exist \(k \)-connected graphs that can be partitioned into at most \(O(k/\log n) \) connected dominating sets. Therefore, the best that we can hope for, using our current arguments, is to reduce the requirement on the connectivity of \(G \) in Theorem 1.3 from \(\Omega(1) \) to \(\Omega(d^2 \log^2 n) \) to \(\Omega(d^2 \log n) \).

2.6 Rigidity of complete bipartite graphs

We conclude this section with a proof of Proposition 1.6.

Proof of Proposition 1.6. We define for \(1 \leq i \leq d + 1 \),

\[
 s_i = \begin{cases}
 1 & \text{if } i \leq 3, \\
 i - 1 & \text{if } i > 3.
 \end{cases}
\]

Note that \(0 \leq s_i \leq s_{i+1} \) for all \(1 \leq i \leq d \), \(\sum_{i=1}^{d} s_i \geq \binom{k}{2} \) for all \(1 \leq k \leq d + 1 \), and \(\sum_{i=1}^{d+1} s_i = \binom{d+1}{2} \). Let \(V = A \cup B \) be the vertex set of \(G = K_{m,n} \), and let \(A \) and \(B \) be its two parts, with \(|A| = m \) and \(|B| = n \). Since \(m, n \geq d + 1 \) and \(|V| = m + n \geq (d+2)^2 = \sum_{i=1}^{d+1} (s_i + 1) \), there is a partition \(V_1, \ldots, V_{d+1} \) of \(V \) such that \(V_i \cap A \neq \emptyset, V_i \cap B \neq \emptyset \) and \(|V_i| \geq s_i + 1 \) for all \(1 \leq i \leq d + 1 \).

For \(1 \leq i \leq d + 1 \), let \(A_i = V_i \cap A \) and \(B_i = V_i \cap B \). Note that \(G[V_i] = G[A_i, B_i] \) is connected for all \(1 \leq i \leq d + 1 \) (since it is a complete bipartite graph itself, with parts \(A_i, B_i \neq \emptyset \)). Therefore, it contains a spanning tree with \(|V_i| - 1 \geq s_i \) edges. Moreover, for any \(i \neq j \), \(G[A_i, B_j] \) is connected (again, since it is a complete bipartite graph with parts \(A_i, B_j \neq \emptyset \)). Therefore, \(V_1, \ldots, V_{d+1} \) is a strong bipartite \(d \)-rigid partition of \(G = K_{m,n} \).

2.7 Limitations of rigid partitions

We do not expect the existence of a \(d \)-rigid partition to be a necessary condition for \(d \)-rigidity, except for \(d = 2 \). Indeed, we have the following restriction on the maximum \(d \) for which a graph \(G \) admits a \(d \)-rigid partition:

Proposition 2.13. Let \(G = (V, E) \) be a graph with clique number \(\omega(G) \). Assume that \(G \) admits a \(d \)-rigid partition. Then

\[
 d \leq \frac{|V| + \omega(G)}{2}.
\]

Proof. Let \((\{V_i\}_{i=1}^{d+1}, \{E_{ij}\}_{1 \leq i < j \leq d+1}) \) be a \(d \)-rigid partition of \(G \). For \(1 \leq i < j \leq d + 1 \), let \(G_{ij} = (V_i \cup V_j, E_{ij}) \). First, note that at most one of the sets \(V_i \) may be empty. Let \(I = \{1 \leq i \leq d+1 : |V_i| = 1\} \). Note that, for \(i, j \in I \) with \(i < j \), the unique vertex in \(V_i \) must be adjacent in \(G \) to the unique vertex in \(V_j \), otherwise the graph \(G_{ij} \) would be disconnected. Therefore, the vertices in \(\bigcup_{i \in I} V_i \) form a clique in \(G \). In particular, we must have \(|I| \leq \omega(G) \). On the other hand, we have

\[
 0 \cdot 1 + 1 \cdot |I| + 2 \cdot (d + 1 - |I| - 1) \leq \sum_{i=1}^{d+1} V_i = |V|,
\]

and therefore \(|I| \geq 2d - |V| \). We obtain \(d \leq (|V| + \omega(G))/2 \), as wanted.
Now, let n be an even number, and let G_n be the n-hyperoctahedral graph — that is, the graph obtained by removing a perfect matching from the complete graph on n vertices. It is conjectured that the rigidity of G_n is $n - 1 - \lfloor \sqrt{n} + 1/2 \rfloor$ (see [14, Conjecture 3.4]). We verified this conjecture by computer calculation for $n \leq 150$. On the other hand, since a maximal clique in G_n is of size $n/2$, then by Proposition 2.13 G_n does not admit a d-rigid partition for $d > \frac{2n}{n}$. Let us consider another example that, assuming the validity of Conjecture 1.11, highlights an even greater disparity between graph rigidity and the existence of rigid partitions. Consider the binomial random graph $G \sim G(n, 1/2)$ (any constant edge probability would serve similarly). If G has a d-rigid partition $\{(V_i)_{i=1}^{d+1}, \{E_{ij}\}_{1 \leq i < j \leq d+1}\}$, then there must be an edge in G between each pair (V_i, V_j) for $G_{ij} = (V_i \cup V_j, E_{ij})$ to be connected. However, standard calculations show (see [9]) that for $d \geq Cn/\log n$ (for some $C > 0$), such a family of d disjoint vertex sets does not exist whp. Therefore, if we accept the validity of Conjecture 1.11, it follows that G is whp d-rigid for $d = \Theta(n)$, yet it does not admit a d-rigid partition for any $d \geq Cn/\log n$.

It would be interesting to find examples of d-rigid graphs that do not admit d-rigid partitions for small values of d, and in particular for $d = 3$.

3 Conditions for rigid partitions

In this section, we develop general and easily verifiable sufficient conditions for the existence of rigid partitions. Central to our findings is the notion that “sparse” graphs that exhibit certain weak expansion properties admit strong rigid partitions. In Section 4, this observation will be applied to various scenarios.

We will repeatedly make use of the following version of Chernoff bounds (see, e.g., in [33, Chapter 2]). Let $\varphi(x) = (1 + x) \log(1 + x) - x$ for $x > -1$.

Theorem 3.1 (Chernoff bounds). Let $n \geq 1$ be an integer and let $p \in [0, 1]$, let $X \sim \text{Bin}(n, p)$, and let $\mu = EX = np$. Then, for every $\nu > 0$,

\[
\mathbb{P}(X \leq \mu - \nu) \leq \exp\left(- \mu \varphi\left(\frac{\nu}{\mu} \right) \right) \leq \exp\left(- \frac{\nu^2}{2\mu} \right),
\]

\[
\mathbb{P}(X \geq \mu + \nu) \leq \exp\left(- \mu \varphi\left(\frac{\nu}{\mu} \right) \right) \leq \exp\left(- \frac{\nu^2}{2(\mu + \nu/3)} \right),
\]

from which it follows, in particular, that for $\nu < \mu$,

\[
\mathbb{P}(|X - \mu| \geq \nu) \leq 2 \exp\left(- \frac{\nu^2}{3\mu} \right).
\]

We will also need the following version of the Lovász Local Lemma; see, e.g., [4, Section 5.1].

Theorem 3.2 (Lovász Local Lemma). Let A_1, \ldots, A_n be events in some probability space. Suppose that for every $i \in [n]$, each A_i is mutually independent of a set of all other events A_j but at most Δ, and that $\mathbb{P}(A_i) \leq 1/(e(\Delta + 1))$. Then:

\[
\mathbb{P}\left(\bigcap_{i=1}^{n} \overline{A_i} \right) \geq (1 - 1/(\Delta + 1))^n.
\]

Our next lemma is the key lemma of this section and plays a crucial role throughout the rest of the paper. In essence, it asserts that for any graph with a sufficiently large minimum degree and a bounded min-to-max degree ratio, there exists a partition of its vertex set into d parts in which every vertex has an ample number of neighbours in each part.
Lemma 3.3 (Partition lemma). For every $\alpha \in (0,1)$ and $\Gamma \geq 1$ there exists $C = C(\alpha, \Gamma) > 1$ such that the following holds. For every $d \geq 2$, any n-vertex graph $G = (V,E)$ with minimum degree $\delta \geq C d \log d$ and maximum degree $\Delta \leq \Gamma \delta$ has a partition $V = V_1 \cup \cdots \cup V_d$ such that every vertex in V_i has at least $(1-\alpha)\delta/d$ neighbours in V_i for all $1 \leq i \leq d$.

Moreover, the probability of obtaining such a partition, if we partition the vertex set at random by independently assigning each vertex $v \in V$ to the set V_i with probability $1/d$, is at least $(1 - 1/\Delta^2)^n$.

Proof. Let $\{m(v) : v \in V\}$ be a family of independent random variables, each uniformly distributed on $[d]$. For all $1 \leq i \leq d$, let $V_i = \{v \in V : m(v) = i\}$. For $v \in V$ and $i \in [d]$ let $A_{v,i}$ be the event that $|N(v) \cap V_i| \leq (1-\alpha)\delta/d$, and let $A_v = \bigcup_{i \in [d]} A_{v,i}$. Note that $|N(v) \cap V_i| \sim \text{Bin}((d-1)\delta/d, 1/d)$, so by Chernoff’s bounds (Theorem 3.1) we obtain

$$
\mathbb{P}(A_{v,i}) = \mathbb{P}(|N(v) \cap V_i| \leq (1-\alpha)\delta/d) \leq \mathbb{P}(|N(v) \cap V_i| \leq (1-\alpha)\deg(v)/d) \leq e^{-\frac{\alpha^2 \deg(v)}{d}} \leq e^{-\frac{\alpha^2}{d}}.
$$

By the union bound we have

$$
p := \mathbb{P}(A_v) \leq \sum_{i=1}^d \mathbb{P}(A_{v,i}) \leq de^{-\frac{\alpha^2}{d}}.
$$

Note that for every $u \in V$, there are at most $\Delta(\Delta - 1) \leq \Delta^2 - 1$ vertices v for which $N(u) \cap N(v) \neq \emptyset$. Thus, the event A_u is mutually independent of the set of all other events A_v but at most $\Delta^2 - 1$. To use the Lovász Local Lemma (Theorem 3.2), it is enough to show that $ep\Delta^2 \leq 1$. Indeed, letting $\delta = Cd \log d$,

$$
ep\Delta^2 \leq e \cdot de^{-\frac{\alpha^2}{d}} = e\Gamma^2 \log^2 d \cdot C^2 d^{3-\frac{\alpha^2}{d}}.
$$

Write $\psi(d) = \log^2 d/d$. The function $\psi(d)$ attains its maximum at $d = e^2$, where it equals $4/e^2$. Thus, for $C \geq 8/e^2$, we obtain

$$
e\Gamma^2 \log^2 d C^2 d^{3-\frac{\alpha^2}{d}} = e\Gamma^2 \psi(d) C^2 d^{(\alpha^2 C/2-4)} \leq \frac{4\Gamma^2}{e} C^2 d^{(\alpha^2 C/2-4)} \leq \frac{4\Gamma^2}{e} C^2 2^{-(\alpha^2 C/2-4)}.
$$

Thus, there exists $C_1 = C_1(\alpha, \Gamma)$ for which for every $C \geq C_1$ the above expression is at most 1.

Therefore, by the Lovász Local Lemma (Theorem 3.2), for $C \geq C_1$, the probability none of the A_v occur is at least $(1 - 1/\Delta^2)^n$. \hfill \Box

In certain applications, we need the partition to be “balanced” with respect to some underlying colouring of the vertex set. That is, given a colouring of the vertex set, we need our partition to split each of the colour classes into roughly equally sized parts. In our specific setting, we will exclusively apply this lemma to the case of two colour classes (see Proposition 3.10).

Lemma 3.4 (Balanced partition lemma). For every $\alpha, \zeta \in (0,1)$ and $\Gamma, t \geq 1$ there exist $C = C(\alpha, \zeta, \Gamma, t) > 1$ such that the following holds. Let $d \geq 2$, and let $G = (V,E)$ be an n-vertex graph with minimum degree $\delta \geq C d \log d$ and maximum degree $\Delta \leq \Gamma \delta$. Assume that V is partitioned into t sets A_1, \ldots, A_t, such that $|A_i| = n/t$ for all $1 \leq i \leq t$. Then, there exists a partition $V = V_1 \cup \cdots \cup V_d$ such that every vertex in V_i has at least $(1-\alpha)\delta/d$ neighbours in V_i for all $1 \leq i \leq d$, and $(1-\zeta)n/(td) \leq |V_i \cap A_j| \leq (1+\zeta)n/(td)$ for all $1 \leq i \leq d$ and $1 \leq j \leq t$.

Proof. Let $\{m(v) : v \in V\}$ be a family of independent random variables, each uniformly distributed on $[d]$. For all $1 \leq i \leq d$, let $V_i = \{v \in V : m(v) = i\}$.

Let A be the event that all vertices in V have at least $(1-\alpha)n/d$ neighbours in each V_i, and let B be the event that for all $1 \leq i \leq d$ and $1 \leq j \leq t$, $|V_i \cap A_j| - n/(td) \leq \zeta n/(td)$. Let $p_1 = \mathbb{P}(A)$ and $p_2 = \mathbb{P}(B)$. \hfill \Box
In order to show that $\mathbb{P}(A \cap B) > 0$, it is enough to show that $p_1 + p_2 > 1$. By the partition lemma (Lemma 3.3), there exists $C_1 = C_1(\alpha, \Gamma)$ such that, for $C \geq C_1$, one has

$$p_1 \geq \left(1 - \frac{1}{\Delta^2}\right)^n \geq e^{-n/(\Delta^2-1)} \geq e^{-n/(\delta^2-1)} \geq e^{-2n/(C^2d)},$$

where we used the inequality $1 - x > e^{-x/(1-x)}$ which holds for $x \in (0,1)$, and the fact that $\delta^2 - 1 \geq C^2d\log^2 d - 1 \geq C^2d - 1 \geq C^2d/2$. On the other hand, for $1 \leq i \leq d$ and $1 \leq j \leq t$, we have by Chernoff’s bounds (Theorem 3.1),

$$\mathbb{P}(|V_i \cap A_j| - n/(td)) \leq 2e^{-C^2n/(3td)},$$

so by the union bound,

$$p_2 \geq 1 - 2td e^{-C^2n/(3td)}.$$

Let $C_2 = C_2(\zeta, t)$ be such that $(\zeta^2/(3t))C^2 - (1 + \log(2t)/\log 2)C - 2 > 0$ for all $C \geq C_2$. Note that $C_2 > 6t/\zeta^2$. Then, for $C \geq \max\{C_1, C_2\}$, we obtain (using the inequality $n \geq \delta \geq Cd\log d$),

$$\log(p_1/(1 - p_2)) \geq \frac{2n}{C^2d} + \frac{\zeta^2n}{3td} - \log(2td) = \frac{n}{d} \left(\frac{\zeta^2}{3t} - \frac{2}{C^2}\right) - \log(2td) \geq C \log d \left(\frac{\zeta^2}{3t} - \frac{2}{C^2}\right) - \log(2td) = \frac{\log d}{C} \left(\frac{\zeta^2}{3t}C^2 - \frac{\log(2td)}{\log d}C - 2\right).$$

Since

$$\frac{\log(2td)}{\log d} = 1 + \log(2t)/\log d \leq 1 + \log(2t)/\log 2,$$

we obtain

$$\log(p_1/(1 - p_2)) \geq \frac{\log d}{C} \left(\frac{\zeta^2}{3t}C^2 - \left(1 + \frac{\log(2t)}{\log 2}\right)C - 2\right) > 0.$$

Thus, for $C \geq \max\{C_1, C_2\}$, we obtain $p_1 + p_2 > 1$, as wanted. \hfill \square

We now embark on the task of identifying basic graph properties that will guarantee the existence of rigid partitions. Say that a graph $G = (V, E)$ is an R-expander if every set $A \subseteq V$ with $|A| \leq R$ has $|N(A)| \geq 2|A|$. We say it is an (x, y)-sparse if every set $A \subseteq V$ with $|A| = a \leq x$ spans at most ay edges. Note that if G is (x, y)-sparse then it is (x', y')-sparse for every $x' \leq x$ and $y' \geq y$. Moreover, if G is (x, y)-sparse then every subgraph G' of G is (x, y)-sparse. The next lemma roughly shows that sparse graphs with sufficiently high minimum degree are expanders.

Lemma 3.5. Let $G = (V, E)$ be an (x, y)-sparse graph with minimum degree $\delta \geq 6y$. Then, G is an $(x/3)$-expander.

Proof. Let $A \subseteq V$ with $|A| \leq x/3$, and let $B = A \cup N(A)$. Assume for contradiction that $|N(A)| < 2|A|$. Then $|B| < 3|A| \leq x$, and therefore, since G is (x, y)-sparse, we have

$$|E(B)| \leq |B|y < 3|A|y.$$

On the other hand, since $\delta(G) = \delta \geq 6y$, we have

$$|E(B)| \geq \frac{1}{2} \sum_{v \in A} \deg(v) \geq \delta |A|/2 \geq 3|A|y,$$

a contradiction. \hfill \square
Say that a graph $G = (V, E)$ is a K-connector if every two disjoint vertex sets of size at least K are connected by an edge. Similarly, if $G = (V_1 \cup V_2, E)$ is a bipartite graph, we say that G is a K-bi-connector if every $A_1 \subseteq V_1$ and $A_2 \subseteq V_2$, both of size at least K, are connected by an edge. Note that if G is a K-connector, then it is also a K'-connector for any $K' > K$. Moreover, if G is a K-connector, then, for every $U \subseteq V$, $G[U]$ is also a K-connector, and for every two disjoint sets $U_1, U_2 \subseteq V$, $G[U_1, U_2]$ is a K-bi-connector. Finally, note that the property of being a K-connector is monotone increasing. The next lemma roughly shows that graphs that are both expanders and connectors are connected.

Lemma 3.6. Let G be an R-expander. Then, if G is a $3R$-connector, G is connected. Similarly, if G is bipartite and a $2R$-bi-connector, then G is connected.

Proof. Note that for any R-expander G, every connected component of G is of size at least $3R$. On the other hand, if G is a K-connector, any connected component except possibly the largest one must have less than K vertices. Therefore, any R-expander that is also a $3R$-connector must be connected.

Now, assume that G is bipartite with parts V_1 and V_2. Note that if G is an R-expander, then every connected component of G has at least $2R$ elements in each V_i. On the other hand, if G is a K-bi-connector, any connected component expect possibly the largest one has less than K elements in one of V_1, V_2. Thus, a bipartite R-expander that is also a $(2R)$-bi-connector is connected.

Using the last two lemmas, we now show that in sparse connectors, induced subgraphs with sufficiently large minimum degree are connected.

Lemma 3.7. Let $G = (V, E)$ be an (x, y)-sparse graph that is also a $(2x/3)$-connector. Let $U_1, U_2 \subseteq V$ such that either $U_1 = U_2$ or $U_1 \cap U_2 = \emptyset$, and assume that $\delta(G[U_1, U_2]) \geq 6y$. Then, $G[U_1, U_2]$ is connected.

Proof. Let $G' = G[U_1, U_2]$. Note that any subgraph of an (x, y)-sparse graph is also (x, y)-sparse. In particular, G' is (x, y)-sparse. Since the minimum degree of G' is at least $6y$, then by Lemma 3.5 G' is an $(x/3)$-expander.

We now divide into two cases: if $U_1 = U_2$ then, since G is a $(2x/3)$-connector, so is $G' = G[U_1]$. In particular, G' is an x-connector, so by Lemma 3.6 it is connected. If $U_1 \cap U_2 = \emptyset$, then, since G is a $(2x/3)$-connector, $G' = G[U_1, U_2]$ is a $(2x/3)$-bi-connector. Thus, by Lemma 3.6, it is connected.

We now deduce from the last lemma and the partition lemma (Lemma 3.3) a useful sufficient condition for the admittance of strong rigid partitions.

Proposition 3.8. For every $\Gamma \geq 1$ there exists $C = C(\Gamma) > 1$ such that the following holds. Let $d \geq 2$ and let $G = (V, E)$ be a graph with minimum degree $\delta \geq Cd \log d$ and maximum degree $\Delta \leq \Gamma \delta$. Assume that G is $(x, \delta/(7d))$-sparse and a $(2x/3)$-connector, for some x. Then G admits a strong d-rigid partition.

Proof. Let $\alpha = 1/7$. By the partition lemma (Lemma 3.3), there is $C = C(\alpha, \Gamma) = C(\Gamma)$ such that if $\delta \geq Cd \log d$ and $\Delta \leq \Gamma \delta$, there exists a partition $V = V_1 \cup \cdots \cup V_d$ such that the minimum degree of $G[V_i, V_j]$ is at least $(1 - \alpha)\delta/d = 6\delta/(7d)$ for all $1 \leq i, j \leq d$. By Lemma 3.7, $G[V_i, V_j]$ is connected for all $1 \leq i, j \leq d$, as wanted.

In order to address the bipartite scenario, we will utilize the following simple lemma.

Lemma 3.9. Let $m, K \geq 1$ be integers, and let G be a bipartite graph with sides A, B of size at least m each. Suppose further that G is K-bi-connector. Then, G admits a matching of size $m - K + 1$.

19
Proof. Let M be a maximal matching in G. Assume for contradiction that $|M| \leq m - K$. Let $A' \subseteq A$ and $B' \subseteq B$ be the vertices not incident to any edge of M. Then, we have $|A'| = |B'| \geq K$. Since G is a K-bi-connector, there exists an edge in G connecting a vertex $u \in A'$ and a vertex $v \in B'$. But then $M \cup \{u, v\}$ is a matching containing M, in contradiction to the maximality of M. \qed

Proposition 3.10. For every $\Gamma \geq 1$ there exists $C = C(\Gamma) > 1$ such that the following holds. Let $d \geq 2$, write $d' = d + 1$, and let $G = (V, E)$ be a bipartite graph with bipartition (A, B) with $|A| = |B|$, minimum degree $\delta \geq Cd' \log d'$ and maximum degree $\Delta \leq \Gamma \delta$. Assume that $d' \leq \sqrt{3|A|/4}$, and that G is $(x, \delta/(7d'))$-sparse and a $(2x/3)$-bi-connector for $x \leq |A|/(7d')$. Then G admits a strong bipartite d-rigid partition.

Proof. By the balanced partition lemma (Lemma 3.4), there is $C = C(\Gamma)$ such that if $\delta \geq Cd' \log d'$ and $\Delta \leq \Gamma \delta$, there exists a partition $V = V_1 \cup \cdots \cup V_d \cup V_{d+1}$ with the following properties. Write $A_i = V_i \cap A$ and $B_i = V_i \cap B$. Then, $\delta(G[V_i, V_j]) \geq \frac{6\delta}{7d'}$ for all $1 \leq i < j \leq d + 1$, and hence $\delta(G[A_i, B_j]) \geq \frac{6\delta}{7d'}$ for all $i \neq j$ in $[d + 1]$. In addition, $|A_i|, |B_i| \geq \frac{6|A|}{7d'}$ for all $1 \leq i \leq d + 1$. Fix $i \neq j$ and let $G' = G[A_i, B_j]$. Repeating the argument in the proof of Lemma 3.7, we observe that by Lemma 3.5, G' is an $(x/3)$-expander; and by Lemma 3.6, it is connected. Let $G^* = G[A_i, B_j]$. Since G^* is $(2x/3)$-bi-connector, it follows from Lemma 3.9 that it contains a matching of size at least $\frac{6|A|}{7d'} - \frac{2x}{3} > \frac{3|A|}{4d'} > d$. Thus, by Lemma 2.11, G admits a strong bipartite d-rigid partition. \qed

4 Pseudorandom and random graphs

4.1 Jumbled graphs

Roughly speaking, pseudorandom graphs are graphs with properties that one expects to find in random graphs. One such property, captured by the notion of “jumbledness”, originally introduced by Thomason [57, 58]\(^5\) is that the graph has essentially the same edge density between any two (sufficiently large) vertex sets. Formally, we say that a graph $G = (V, E)$ is (p, β)-jumbled if it satisfies, for all $A, B \subseteq V$,

$$|e(A, B) - p|A||B| \leq \beta \sqrt{|A||B|}.$$

In the next two lemmas we show that jumbled graphs are sparse connectors.

Lemma 4.1. A (p, β)-jumbled graph is $(x, (px + \beta)/2)$-sparse for every positive integer x.

Proof. Let x be a positive integer, and let $A \subseteq V$ with $|A| \leq x$. Then,

$$2|E(A)| = e(A, A) \leq p|A|^2 + \beta|A| \leq |A|(px + \beta).$$ \qed

Lemma 4.2. A (p, β)-jumbled graph is K-connector for every $K > \beta/p$.

Proof. Let $A, B \subseteq V$ with $A \cap B = \emptyset$ and $|A| = |B| = K > \beta/p$. Then,

$$|E(A, B)| = e(A, B) \geq p|A||B| - \beta \sqrt{|A||B|} = K(pK - \beta) > 0.$$ \qed

Proposition 4.3. For every Γ there exists $C = C(\Gamma) > 1$ such that the following holds. Let $d \geq 2$, and let $G = (V, E)$ be a (p, β)-jumbled graph with minimum degree $\delta \geq \max\{9d\beta, Cd\log d\}$ and maximum degree $\Delta \leq \Gamma \delta$. Then G admits a strong d-rigid partition.

\(^5\)Here, we do not use the original definition of Thomason, but rather a similar definition that appears in [16].
Proof. Let \(x = 11\beta/(7p) \). Note that \(\delta/(7d) \geq 9\beta/7 = (px + \beta)/2 \). Hence, by Lemma 4.1, \(G \) is \((x, \delta/(7d))\)-sparse. Since \(2x/3 > \beta/p \), by Lemma 4.2 \(G \) is a \((2x/3)\)-connector. Let \(C = C(\Gamma) \) be the constant from Proposition 3.8. Since \(\delta \geq C' \log d \) and \(\Delta \leq \Gamma \delta \), by Proposition 3.8, \(G \) admits a strong \(d \)-rigid partition.

To prove Theorem 1.7, we use the Expander Mixing Lemma, stated below.

Theorem 4.4 ([3]; see also [30, Lemma 2.5]). Every \((n, k, \lambda)\)-graph is \((k/n, \lambda)\)-jumbled.

Theorem 1.7 follows immediately:

Proof of Theorem 1.7. Let \(G \) be an \((n, k, \lambda)\)-graph. By the Expander Mixing Lemma (Theorem 4.4) \(G \) is \((k/n, \lambda)\)-jumbled. The result follows from Proposition 4.3 by taking \(C = C(1) \).

4.2 Spread measures

Following (and slightly extending) terminology from [5], we say that a distribution \(\mathcal{G} \) of \(n \)-vertex graphs is \((p; Z)\)-spread if for every set \(E_0 \) of pairs of vertices with \(|E_0| = m \leq Z \) we have that \(P(E_0 \subseteq E(\mathcal{G})) \leq p^m \).

We say that \(\mathcal{G} \) is \(p\)-spread if it is \((p; \binom{n}{2})\)-spread. This section is dedicated to proving that spread measures of sufficiently high density are (locally and relatively) “sparse”. The following lemma, which will be instrumental in the next few sections, makes this concept precise.

Lemma 4.5. For every \(\Lambda > 0 \) there exists \(k > 0 \) such that the following holds. Suppose \(p \geq k/n \), and let \(\mathcal{G} \) be a \((p; Z)\)-spread distribution of \(n \)-vertex graphs. Set \(x = 2\Lambda e^{-(1+1/\Lambda) \log(np)/p} \) and \(y = \Lambda \log(np) \), and assume that \(xy \leq Z \). Then, \(G \sim \mathcal{G} \) is whp \((x, y)\)-sparse.

Proof. Let \(\eta = 2\Lambda e^{-(1+1/\Lambda)} \). For an edge set \(F \subseteq E(K_n) \) of size \(m \leq Z \), the probability that \(F \subseteq E(G) \) is at most \(p^m \). Fix \(1 \leq a \leq x \) and let \(m = ay \leq xy \leq Z \). By the union bound, the probability that there exists a vertex set of size \(a \) that spans at least \(m \) edges is at most

\[
\frac{n}{a} \left(\frac{\binom{n}{2}}{m} \right) p^m \leq \left(\frac{en}{a} \cdot \left(\frac{eap}{2y} \right)^y \right)^a.
\]

Write \(f(a) = (en/a) \cdot (eap/(2y))^y \) and note that \(f \) is increasing in \(a \). Thus, for every \(a \geq x \), taking \(k > \exp(2e/\eta) \),

\[
f(a) \leq f(x) = \frac{en}{x} \cdot \left(\frac{e}{2y} \right)^y = \frac{en \log(np)}{\eta \log(np)} \cdot \left(\frac{en}{2\Lambda} \right)^{\Lambda \log(np)} = \frac{en \log(np)}{\eta \log(np)} \cdot (np)^{-1} \leq \frac{e}{\eta \log k} < \frac{1}{2}.
\]

Let \(x' = x'(n) \) satisfy \(1 \ll x' \ll x \). Note that \(f(x')/f(x) = (x'/x)^{y-1} \ll 1 \), hence, for \(a \leq x' \), \(f(a) \leq f(x') \ll f(x) < 1/2 \). Then, by the union bound, the probability that there exists a set of size at most \(x \) that spans at least \(ay \) edges is at most

\[
\sum_{a=1}^{x} (f(a))^a = \sum_{a=1}^{x'} (f(a))^a + \sum_{a=x'}^{x} (f(a))^a \leq \sum_{a=1}^{x'} (f(x'))^a + \sum_{a=x'}^{x} (f(x))^a = o(1),
\]

as required.

4.3 Random regular graphs

To prove Theorem 1.8, we show that random regular graphs are whp sparse connectors, and apply Proposition 3.8. We cast our arguments in the configuration model. Let us lay formal grounds. Let
Let $K_{n,k}$ be the complete graph on the vertex set $[n] \times [k]$. The vertices of $K_{n,k}$ are called half-edges, and the vertex sets $V_i = \{(i,j) : j \in [k]\}, i \in [n]$, are called clusters. For a subgraph $G \subseteq K_{n,k}$, denote by $\pi(G)$ the multigraph obtained from G by contracting each cluster V_i into a single vertex i. Assume that nk is even, and denote by $M_{n,k}$ the uniform distribution over perfect matchings in $K_{n,k}$. Denote further by $G_{n,k}^*$ the distribution of $\pi(M)$ for $M \sim M_{n,k}$. We will repeatedly use the following result (see, e.g., [33, Theorem 9.9]): if $G_{n,k}^*$ satisfies a property \textbf{whp} then $G_{n,k}^*$ satisfies that property \textbf{whp} as well.

To prove that random regular graphs are typically sparse, we show that they (or, rather, $G_{n,k}^*$) are typically well-spread.

Lemma 4.6. For every $\varepsilon \in (0,1)$ and every $k \geq 3$, $G_{n,k}^*$ is $(p; M)$-spread for $p = \varepsilon^{-1}k/n$ and $M = (1-\varepsilon)kn/2$.

Proof. Let $G^* \sim G_{n,k}^*$, and let E_0 be a set of pairs of vertices of G^* of size at most $(1-\varepsilon)kn/2$. We think of E_0 as a (simple) subgraph of K_n. Note that the number of matchings M_0 of size m of $K_{n,k}$ for which $\pi(M_0) = E_0$ is at most $(k^2)^m$. Fix one such matching $M_0 = \{e_1, \ldots, e_m\}$. Let $M \sim M_{n,k}$, and note that for every $i \in [m]$,

$$\mathbb{P}(e_i \in M \mid e_1, \ldots, e_{i-1} \in M) \leq \frac{1}{kn-2m} \leq \frac{1}{\varepsilon kn}.$$

Thus, $\mathbb{P}(M_0 \subseteq M) \leq (\varepsilon kn)^{-m}$. We couple $G^* \sim G_{n,k}^*$ with M by letting $G^* = \pi(M)$. By the union bound, $\mathbb{P}(E_0 \subseteq E(G^*)) \leq (\varepsilon^{-1}k/n)^m$. \hfill \square

Lemma 4.7. For every sufficiently large constant k, $G \sim G_{n,k}$ is \textbf{whp} (x, y)-sparse for $x = 12 \log k \cdot n/k$ and $y = 70 \log k$.

Proof. We prove the statement for $G \sim G_{n,k}^*$ and deduce it for $G_{n,k}$. Let $\Lambda = 35$. By Lemma 4.6, for $\varepsilon = 1/2$, $G_{n,k}^*$ is $(p; M)$-spread for $p = 2k/n$ and $M = kn/4$. Note that $x = 12 \log k \cdot n/k \leq 24 \log(np)/p \leq 2\Lambda e^{-(1+1/\Lambda)} \log(np)/p$, and $y = 70 \log k \geq \Lambda \log(np)$. Note also that $xy < M$ for sufficiently large k. Thus, by Lemma 4.5, for sufficiently large k, $G^* \sim G_{n,k}^*$ is \textbf{whp} (x, y)-sparse. \hfill \square

We proceed to prove that $G_{n,k}^*$ is typically a good connector.

Lemma 4.8. Suppose $k \geq 3$, and let $G \sim G_{n,k}$. Then, \textbf{whp} G is a K-connector for $K = 8 \log k \cdot \frac{n}{k}$.

Proof. As before, we prove the statement for $G \sim G_{n,k}^*$ and deduce it for $G_{n,k}$. Let U, W be disjoint vertex sets of $K_{n,k}$ with $|U| = a$ and $|W| = b$. Write $U = \{u_1, \ldots, u_a\}$. For $i \in [a]$ let A_i be the event that $M \sim M_{n,k}$ does not contain an edge from u_i to W. Denote by B_i the event that M contains an edge from u_i to u_j for $j < i$. Note that

$$\mathbb{P} \left(A_i \mid \neg B_i \land \left(\bigwedge_{j<i} A_j \right) \right) \leq 1 - \frac{b}{kn-1}.$$

Thus, since B_i — deterministically — occurs for at most $a/2$ indices i,

$$\mathbb{P} \left(\bigwedge_{i} A_i \right) \leq \left(1 - \frac{b}{kn-1} \right)^{a/2}.$$

Now, we couple G with M by setting $G = \pi(M)$. We deduce from the discussion above and the union bound that the probability that there exist two vertex sets A, B of G with $|A| = |B| = K$ and
Thus, G is whp a K-connector. \hfill \Box

Proof of Theorem 1.8. Let $C_1 = C(1)$ be the constant from Proposition 3.8, and let $\Lambda = 70$. Let C be a constant satisfying $C \geq C_1$ and $C \geq 28 \Lambda \log C$. Let $k = Cd \log d$. We also assume that k is sufficiently large for Lemma 4.7 to hold (otherwise, we make C larger). Let $x = 12 \log k \cdot n/k$ and $y = 70 \log k$. By Lemma 4.7, G is whp (x,y)-sparse, and by Lemma 4.8, G is whp a $(2x/3)$-connector. Note that

$$y = \Lambda \log k = \Lambda \log(Cd \log d) \leq \Lambda \log C + 2\Lambda \log d$$

$$\leq C/28 + C \log d/14 \leq C \log d/14 + C \log d/14 = C \log d/7 = \frac{k}{7d}.$$

So G is whp $(x, k/(7d))$-sparse. Hence, since $k = Cd \log d \geq C_1 d \log d$, by Proposition 3.8, G whp admits a d-rigid partition. \hfill \Box

4.4 Binomial random graphs

We begin with several lemmas about expansion properties of $G(n,p)$. The following is a well-known statement about the degrees of $G(n,p)$.

Lemma 4.9. For every $\varepsilon > 0$ there exists $\xi > 0$ such that the following holds. Let $p \geq (1 + \varepsilon) \log n/n$, and let $G \sim G(n,p)$. Then, whp, $(1 - \xi)np \leq \Delta(G) \leq \Delta(G) \leq np$.

Proof. The degree of a vertex is distributed as a binomial random variable with $n-1$ attempts and success probability p. Thus, by Chernoff bounds (Theorem 3.1),

$$\mathbb{P}(\text{deg}(v) \geq np) \leq \exp(-np\varphi(e - 1)) \leq n^{-(1+\varepsilon)} \ll n^{-1},$$

$$\mathbb{P}(\text{deg}(v) \leq (1 - \xi)np) \leq \exp(-np\varphi(-\xi)) \leq n^{-(1+\varepsilon)}e^{-\xi},$$

where the last expression is $o(n^{-1})$ if $\xi < 1$ is close enough to 1 (since $\varphi(x) \rightarrow 1$ as $x \rightarrow 1$). The result follows by applying the union bound over all n vertices. \hfill \Box

Since $G(n,p)$ is (trivially) p-spread, we obtain the following.

Lemma 4.10. There exists a sufficiently large constant k such that if $p \geq k/n$, then $G \sim G(n,p)$ is whp (x,y)-sparse for (i) $x = 3 \log(np)/p$ and $y = 5 \log(np)$; (ii) for $x = 7 \log(np)/p$ and $y = 11 \log(np)$.

Proof. The result follows from Lemma 4.5 since $G(n,p)$ is p-spread, and by noting that $3 \leq 2 \cdot 5e^{-(1+5/11)}$ and $7 \leq 2 \cdot 11e^{-(1+1/11)}$. \hfill \Box

Lemma 4.11. Suppose $p \geq A/n$, and let $G \sim G(n,p)$. Then, whp G is a K-connector for $K = 2\log(np)/p$.

Proof. Let A, B be two disjoint vertex sets with $|A| = |B| = K$. The probability that G contains no edge between A and B is $(1-p)^{K^2}$. Thus, by the union bound over all sets A, B, the probability that the assertion of the claim fails is at most

$$\left(\frac{n}{K}\right)^2 (1-p)^{K^2} \leq \left(\frac{en}{K}\right)^2 e^{-pK} \leq \left(\frac{e}{2\log(np)}\right)^{2K} < 0.99^{2K} = o(1).$$
We are now ready to prove Theorem 1.10.

Proof of Theorem 1.10. Let $\xi = \frac{\varepsilon}{\log \varepsilon}$ be the constant guaranteed by Lemma 4.9, and let $\Gamma = \frac{1}{1 - \xi}$.

Write $\delta = \delta(G)$ and $\Delta = \Delta(G)$. Note that by Lemma 4.9, $\Delta \leq \Gamma \delta$ whp. Let $G = C(\Gamma)$ be the constant from Proposition 3.8. Let $c = \min\{1, 35, 1/\Gamma\}$, and let $d = c\delta / (\log np)$.

Let $x = 3\log(np)/p$ and $y = 5\log(np)$. By Lemma 4.10, G is whp (x, y)-sparse. By Lemma 4.11, G is whp a $(2x/3)$-connector. Note that $5\log(np) \leq \delta/(7d)$, so G is whp $(x, \delta/(7d))$-sparse. Furthermore, using the fact that $d \leq c\delta \leq cnp < np$, we obtain $\delta = d\log(np)/c \geq C\delta \log(np) > C\delta \log d$. Hence, by Proposition 3.8, G whp admits a d-rigid partition. \hfill \square

4.5 Random graph processes

In this section we prove Theorem 1.9. Let $2 \leq d = d(n) \leq c \log n / \log \log n$ for a small constant $c > 0$ to be determined later, and let $G \sim G(n, \tau_d)$. For $\eta > 0$ denote $S_\eta = \{v \in V : \deg_G(v) < \eta \log n\}$.

It will be useful to couple G with $G^+ \sim G(n, p)$ for $p = 2\log n / n$, $G^- \sim G(n, p)$ for $p = \log n / n$, and $G^\circ \sim G(n, m)$ for $m = n \log n$, so that G^- is a subgraph of G and G is a subgraph of G^+, G°. Such a coupling is possible since $\tau_d < n \log n$ whp (see Lemma 4.9) and by using standard translations between $G(n, p)$ and $G(n, m)$ (see, e.g., [26]).

Claim 4.12. There exists $\eta > 0$ such that in G, whp, the distance between any two vertices in S_η is at least 5, and no vertex in S_η lies in a cycle of length at most 4.

Proof. From monotonicity, it suffices to prove that whp G° does not contain a path of length 4 between two potentially identical vertices in S_η. This fact is proved in [40, Lemma 4.5] for a small enough constant $\eta > 0$. \hfill \square

Proof of Theorem 1.9. For $d = 1$ the claim follows from the known fact that $G(n, \tau_1)$ is whp connected (see, e.g., [20]). Therefore, we will assume $d \geq 2$. We also assume that $d \leq c \log n / \log \log n$ for $c > 0$ to be chosen later. Let $\eta > 0$ be the constant from Claim 4.12. Let $V^* = V \setminus S_\eta$ and consider the graph $G^* = G[V^*]$. Write $\delta = \delta(G^*)$ and $\Delta = \Delta(G^*)$. Note that by Lemma 4.9, $\Delta \leq \Gamma \delta$ for $\Gamma = 1/\eta$ whp. Let $\alpha = 1/8$ and let $C = C(\alpha, \Gamma)$ be the constant guaranteed by the partition lemma (Lemma 3.3). Let $c = \min\{\eta/12, \eta/C\}$. Note that $\delta \geq \eta \log n \geq Cc \log n \geq C\delta \log n > C\delta \log d$. Thus, there exists a partition $V^* = V_1 \cup \cdots \cup V_d$ with $e(v, V_i) \geq 7\delta/(8d)$ for every $v \in V^*$ and $i \in [d]$.

We now adjust the partition as follows: for every $v \in S_\eta$, let v_1, \ldots, v_d be d arbitrary neighbours of v. Note that Claim 4.12 implies that the sets $\{v_1, \ldots, v_d\}$ are whp disjoint for distinct $v \in S_\eta$, and are subsets of V_i. For every $v \in S_\eta$ and $i \in [d]$, we move v_i to V_i. Note that after the change, $e(v, V_i) \geq 7\delta/(8d) - 1 \geq 6\delta/(7d)$ for large enough n for every $v \in V^*$ and $i \in [d]$.

Let $p = \log n / n$ and $x = 3\log(np)/p$. By Lemma 4.11, G^- (and hence G, and hence G°) is whp a $(2x/3)$-connector. Let $p' = 2p$, and note that $x \sim 6\log(np)/p' < 7\log(np)/p'$. Let $y = 11\log(np') \sim 11 \log \log n$. By Lemma 4.10, G^+ (and hence G, and hence G°) is whp (x, y)-sparse. Noting that $6\delta/(7d) \geq \frac{6\delta}{7d} \log \log n \geq 72 \log \log n > 6y$, by Lemma 3.7, $G[V_i, V_j]$ is connected for all $1 \leq i, j \leq d$, and thus the partition $V^* = V_1 \cup \cdots \cup V_d$ is a strong d-rigid partition of G^*. By adding S_η to V_1 (say), noting that every $v \in S_\eta$ has a neighbour in each V_i, we obtain a strong d-rigid partition of G. \hfill \square

4.6 Binomial random bipartite graphs

We state the following lemmas without proofs; they are the bipartite analogs of Lemmas 4.9 to 4.11, and their proofs are essentially identical.

Lemma 4.13. For every $\varepsilon > 0$ there exists $\xi > 0$ such that the following holds. Let $p \geq (1 + \varepsilon) \log n / n$, and let $G \sim G(n, n, p)$. Then, whp, $(1 - \xi)np \leq \delta(G) \leq \Delta(G) \leq cnp$.

24
Lemma 4.14. There exists a sufficiently large constant k such that if $p \geq k/n$, $G \sim G(n, n, p)$ is \textbf{whp} (x, y)-sparse for $x = 3\log(np)/p$ and $y = 5\log(np)$.

Lemma 4.15. Suppose $p \gg 1/n$ and let $G \sim G(n, n, p)$. Then, \textbf{whp} G is a K-bi-connector for $K = 2\log(np)/p$.

Proof of Theorem 1.12. Let $\xi = \xi(\epsilon)$ be the constant guaranteed by Lemma 4.13, and let $\Gamma = \epsilon/(1 - \xi)$. Write $\delta = \delta(G)$ and $\Delta = \Delta(G)$. Note that by Lemma 4.13, $\Delta \leq \Gamma\delta$ \textbf{whp}. Let $C = C(\Gamma)$ be the constant from Proposition 3.10. Let $c = \min\{1/70, 1/(2C)\}$, and let $d = \min\{cd/log(np), 0.8\sqrt{n}\}$.

We assume that $\delta \leq cnp$, as guaranteed to occur \textbf{whp} by Lemma 4.13. Let $d' = d + 1, x = 3\log(np)/p$ and $y = 5\log(np)$. Note that $x = 3\log(np)/p \leq 3\epsilon\log(np)/\delta = 3\epsilon\log(d) < n/(7d')$. By Lemma 4.15, G is \textbf{whp} a $(2x/3)$-bi-connector. By Lemma 4.14, G is \textbf{whp} (x, y)-sparse. Note that $5\log(np) \leq \delta/(7d')$, so G is \textbf{whp} $(x, \delta/(7d'))$-sparse. Furthermore, using the fact that $d \leq c\delta \leq c\epsilon np \leq np - 1$, we obtain $\delta \geq d\log(np)/c \geq 2C\delta\log(np) > Cd'\log(d')$. Finally, $d' \leq 0.8\sqrt{n} + 1 < \sqrt{3n/4}$. Hence, by Proposition 3.10, G \textbf{whp} admits a strong bipartite d-rigid partition.

4.7 Giant rigid component

In this section we prove Theorem 1.13, showing the typical existence of a giant d-rigid component in sparse binomial random graphs. The initial step in this direction is the establishment of a lemma, which posits the presence of a giant “balanced” component.

Lemma 4.16. For any $\epsilon \in (0, 1)$ and $c \in (0, 1 - \epsilon)$ there exists $k_0 = k_0(\epsilon, c) > 0$ such that for every $k \geq k_0$, $G(n, k/n)$ contains \textbf{whp} an induced subgraph on at least $(1 - \epsilon)n$ vertices, with minimum degree at least ck and maximum degree at most $4k/\epsilon$.

For the proof of Lemma 4.16 we use the following generalisation of [2, Lemma 5.2].

Lemma 4.17. For any $\epsilon \in (0, 1/2)$ and $c \in (0, 1 - 2\epsilon)$ there exists $k_0 = k_0(\epsilon, c) > 0$ such that for every $k \geq k_0$, $G \sim G(n, k/n)$ satisfies the following property \textbf{whp}: every vertex set U with $|U| \geq (1 - \epsilon)n$ contains a subset U' with $|U'| \geq (1 - 2\epsilon)n$ such that $\delta(G[U']) \geq ck$.

Proof. We follow [2]. Write $b = 1 - 2\epsilon$. By Chernoff bounds (Theorem 3.1) and the union bound, the probability that there exist disjoint vertex sets A, B with $|A| = \epsilon n$, $|B| \geq bn$ and $e(A, B) < \epsilon\epsilon kn$ is at most

$$2^n \cdot 2^n \cdot P(\text{Bin}(\epsilon m n^2, k/n) \leq \epsilon\epsilon kn) = 4^n e^{-\frac{1}{2}(b-c)^2\epsilon kn} = o(1),$$

for large enough k. We thus assume from now on that for every disjoint A, B with $|A| = \epsilon n$ and $|B| \geq bn$ we have that $e(A, B) \geq \epsilon\epsilon kn$. Fix U with $|U| \geq (1 - \epsilon)n$. We build a sequence U_0, U_1, \ldots, U_m of subsets of U in the following way: set $U_0 = U$. For every $i \geq 0$, if U_i has a vertex of degree smaller than ck in $G[U_i]$, we denote that vertex by u_{i+1}, and set $U_{i+1} = U_i \setminus \{u_{i+1}\}$; otherwise, set $m = i$. Let $U' = U_m$. Suppose that $m \geq \epsilon n$, and let $A = \{u_1, \ldots, u_m\}$. Let $B = U \setminus A$, and note that $|B| \geq bn$. Note also that every $u \in A$ has less than ck neighbours in B. Therefore,

$$\epsilon\epsilon kn \leq e(A, B) < |A|ck = \epsilon\epsilon kn,$$

a contradiction. Thus, $m \leq \epsilon n$, and $|U'| \geq |U| - \epsilon n \geq (1 - 2\epsilon)n$. The statement follows since $\delta(G[U']) \geq ck$.

Proof of Lemma 4.16. Let B be the set of vertices of degree larger than $4k/\epsilon$, and let $m = |E(G)|$. Then, deterministically, $|B| \leq 2m/\left(4k/\epsilon\right) = \epsilon m/(2k)$. Note that m is distributed as a binomial random variable with $\binom{n}{\epsilon n}$ attempts and success probability k/n; thus, by Chernoff bounds (Theorem 3.1), $P(m \geq
Proof of Theorem 1.16.

Lemma 5.1. Let \(U' \subseteq U \) with \(|U'| \geq (1 - \varepsilon)n \) satisfying \(\delta(G[U']) \geq ck \). Since \(U' \subseteq U = V(G) \setminus B \), we also have \(\Delta(G[U']) \leq 4k/\varepsilon \).

Using the fact that \(G(n, p) \) is typically \((p, \Theta(\sqrt{np})) \)-jumbled (see [41]), we can readily infer from Proposition 4.3 that for any \(\varepsilon \in (0, 1) \), \(G(n, \Omega_{\varepsilon}(d^2/n)) \) includes a \(d \)-rigid component comprising at least \((1 - \varepsilon)n \) vertices. To further refine the dependence of \(p \) on \(d \), we apply the same methodology used in previous sections. This involves showing that the (nearly spanning) induced subgraph found in Lemma 4.16 is a "sparse connector".

Proof of Theorem 1.13. Let \(G \sim G(k/n) \), for \(k \) to be determined later. Let \(\varepsilon \in (0, 1) \) and set \(c = (1 - \varepsilon)/2 \).

By Lemma 4.16, there exists \(k_0 \) such that \(k \geq k_0 \) implies the existence of a set \(U \) of size at least \((1 - \varepsilon)n \) with \(ck \leq \delta(G[U]) \leq \Delta(G[U]) \leq 4k/\varepsilon \). Write \(G' = G[U] \) and \(\delta = \delta(G') \). Let \(\Gamma = 4/(c\varepsilon) \), and let \(C = C(\Gamma) \) be the constant from Proposition 3.8. Let \(x = 3\log(np)/p \) and \(y = 5\log(np) \). By Lemma 4.10, there exists \(k_1 \) such that \(k \geq k_1 \) implies that \(G \) (and hence \(G' \)) is \(\text{whp} \) \((x, y)\)-sparse. By Lemma 4.11, for \(k \geq 4 \), \(G \) (and hence \(G' \)) is \(\text{whp} \) a \((2x/3)\)-connector. Take \(C \) to be sufficiently large so that \(k := Cc^{-1}\log d \geq \max\{k_0, k_1, 4\} \) and that \(C \geq 35\log k/\log d \), and set \(p = k/n \). Note that \(\delta \geq C d \log d \) and that \(5\log(np) = 5\log k \leq C \log d/7 \leq \delta/(7d) \), so \(G' \) is \(\text{whp} \) \((x, \delta/(7d))\)-sparse. Thus, by Proposition 3.8, \(G' \) \(\text{whp} \) admits a strong \(d \)-rigid partition, and is therefore (by Corollary 1.4) \(d \)-rigid.

5 Dense graphs

For the proof of Theorem 1.16, we will need the following simple lemma.

Lemma 5.1. Let \(G = (V, E) \) be an \(n \)-vertex graph in which every pair of vertices has at least \(\ell \) common neighbours. Let \(U \) be a uniformly random subset of \(V \) of size \(t \). Then, with probability at least \(1 - n^2e^{-\ell t/n} \), every pair of vertices in \(V \) has a common neighbour in \(U \).

Proof. Fix a pair of distinct vertices \(u, v \in V \). Let \(p \) be the probability that \(U \) is disjoint from the set of common neighbours of \(u, v \). Then,

\[
p \leq \frac{\binom{n-\ell}{\ell}}{\binom{n}{\ell}} = \prod_{i=1}^{\ell} \left(1 - \frac{t}{n - \ell + i} \right) \leq \left(1 - \frac{t}{n} \right)^\ell \leq e^{-\ell t/n}.
\]

The result follows by the union bound.

Proof of Theorem 1.16. Let \(\ell = \ell(n) \) and let \(d = \ell/(3\log n) \). Partition our vertex set \(V \) at random into sets \(V_1, \ldots, V_d \), each of size \(n/d = 3n \log n/\ell \). By Lemma 5.1, for every \(1 \leq i \leq d \), the probability that there is a pair of vertices in \(V \) without a common neighbour in \(V_i \) at most \(n^2e^{-\ell t/n} \) is \(1/n \). By the union bound, the probability that there exist \(i \in [d] \) and a pair of vertices in \(V \) without a common neighbour in \(V_i \) is at most \(d/n < 1 \). Therefore, there exists a partition \(V_1, \ldots, V_d \) such that every pair of vertices in \(V \) has a common neighbour in \(V_i \) for every \(1 \leq i \leq d \).

We are left to show that \(V_1, \ldots, V_d \) is a strong \(d \)-rigid partition of \(G \). Indeed, for all \(1 \leq i \leq d \), \(G[V_i] \) is connected, since every pair of distinct vertices \(u, v \in V_i \) has a common neighbour in \(V_i \). Similarly, let \(i \neq j \), and let \(u, v \in V_i \cup V_j \). If \(u, v \in V_i \), then they have a common neighbour in \(V_j \), so there is a path between them in \(G[V_i, V_j] \). If \(u \in V_i \) and \(v \in V_j \), we divide into two cases: if \(u \) and \(v \) are adjacent, then we are done. Otherwise, let \(w \) be a neighbour of \(u \) in \(V_j \), and let \(z \) be a common neighbour of \(v \) and \(w \) in \(V_i \). Then \((u, w, z, v) \) is a path from \(u \) to \(v \) in \(G[V_i, V_j] \). So, \(G[V_i, V_j] \) is connected for all \(i \neq j \). Therefore, \(V_1, \ldots, V_d \) is a strong \(d \)-rigid partition of \(G \).
Proof of Theorem 1.14. Let $u, v \in V$. Then, the number of common neighbours of u and v is at least $\deg(u) + \deg(v) - n \geq 2\ell$. Therefore, by Theorem 1.16, G has a strong d-rigid partition for $d = 2\ell/(3 \log n)$. \qed

References

