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Abstract

A graph G = (V,E) is said to be saturated with respect to a monotone increasing graph
property P, if G /∈ P but G∪{e} ∈ P for every e ∈

(
V
2

)
\E. The saturation game (n,P) is

played as follows. Two players, called Mini and Max, progressively build a graph G ⊆ Kn,
which does not satisfy P. Starting with the empty graph on n vertices, the two players
take turns adding edges e ∈

(
V (Kn)

2

)
\ E(G), for which G ∪ {e} /∈ P, until no such edge

exists (i.e. until G becomes P-saturated), at which point the game is over. Max’s goal is
to maximize the length of the game, whereas Mini aims to minimize it. The score of the
game, denoted by s(n,P), is the number of edges in G at the end of the game, assuming
both players follow their optimal strategies.

We prove lower and upper bounds on the score of games in which the property the play-
ers need to avoid is being k-connected, having chromatic number at least k, and admitting
a matching of a given size. In doing so we demonstrate that the score of certain games
can be as large as the Turán number or as low as the saturation number of the respective
graph property, and also that the score might strongly depend on the identity of the first
player to move.

1 Introduction

Let n be a positive integer, let P be a monotone increasing property of graphs on n vertices
and let G = ([n], E) be a graph which does not satisfy P. An edge e ∈

(
[n]
2

)
\ E is called legal

with respect to G and P if G ∪ {e} /∈ P. A graph G = ([n], E) is said to be saturated with
respect to P if G /∈ P and there are no legal edges with respect to G and P. Given a graph
H /∈ P with vertex set [n], the saturation game (H,P) is played as follows. Two players, called
Mini and Max, progressively build a graph G, where H ⊆ G ⊆ Kn, so that G does not satisfy
P. Starting with G = H, the two players take turns adding edges which are legal with respect
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to the current graph G and the property P until no such edge exists, at which point the game
is over. Max’s goal is to maximize the length of the game, whereas Mini aims to minimize it.
The score of the game, denoted by s(H,P), is the number of edges in G at the end of the game
(recall that with some abuse of notation we use G to denote the graph built by both players
at any point during the game) when both players follow their optimal strategies. In fact, we
would only be interested in the case H = Kn, where Kn is the empty graph on n vertices,
but we generalize the definition of the game for the purpose of simplifying the presentation of
some of our proofs. We abbreviate s(Kn,P) to s(n,P). Note that we did not specify which
of the two players starts the game. Since the score of a saturation game might depend on this
information, whenever studying a specific game we will consider its score in two cases – when
Mini is the first player and when Max is the first player. Where we do not explicitly specify
the identity of the first player, our related results hold in both cases.

Straightforward bounds on the score of a saturation game stem from the corresponding satura-
tion number and Turán number. Given a monotone increasing graph property P, the saturation
number of P, denoted by sat(n,P), is the minimum possible size of a saturated graph on n
vertices with respect to P. Saturation numbers have attracted a lot of attention since their
introduction by Erdős, Hajnal and Moon [7]; many related results and open problems can be
found in the survey [8]. Similarly, the Turán number of P, denoted by ex(n,P), is the maxi-
mum possible size of a saturated graph on n vertices with respect to P. The theory of Turán
numbers is a cornerstone of Extremal Combinatorics; many related results and open problems
can be found e.g. in [3]. It is immediate from the definition of the saturation game (n,P) that
sat(n,P) ≤ s(n,P) ≤ ex(n,P).

Results on scores of saturation games are quite scarce. For example, let K3 denote the property
of containing a triangle. A well-known theorem of Mantel (see e.g. [16]) asserts that ex(n,K3) =
bn2/4c. Moreover, since a star is saturated with respect to K3 and, on the other hand, no
disconnected graph is, it follows that sat(n,K3) = n− 1 (this also follows from a more general
result of Erdős, Hajnal and Moon [7]). In contrast to these exact results, very little is known
about s(n,K3). The best known lower bound, due to Füredi, Reimer and Seress [9], is of order
n log n. In the same paper, Füredi et al. attribute an upper bound of n2/5 to Erdős; however,
the proof is lost. Biró, Horn and Wildstrom [2] have recently improved the upper bound of
bn2/4c which follows from Mantel’s Theorem to 26

121n
2 + o

(
n2
)
. Additional saturation-type

games were recently studied in [5] and [14].

We begin our study of saturation games with games in which both players are required to keep
the connectivity of the graph below a certain threshold. For every positive integer k we would
like to determine s(n, Ck), where Ck is the property of being k-vertex-connected and spanning.
It is easy to see that ex(n, Ck) =

(
n−1
2

)
+ k − 1 holds for every positive integer k ≤ n. Very

recently, it was shown in [4] that s(n, C) =
(
n−2
2

)
+ 1 for every n ≥ 6. Our first result shows

that s(n, Ck) is almost as large as ex(n, Ck) for every fixed positive integer k.

Theorem 1.1 s(n, Ck) ≥
(
n
2

)
− 5kn3/2 for every positive integer k and sufficiently large n.

Using a different proof technique, for every k ≥ 5 we can improve the error term in the bound
given in Theorem 1.1.

Theorem 1.2 s(n, Ck) ≥
(
n
2

)
− (k − 1)(2k − 4)[n − (k − 1)(2k − 3)] for every k ≥ 5 and

sufficiently large n.
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Remark 1.3 The lower bounds on s(n, Ck) given in Theorems 1.1 and 1.2 are not as tight as
the lower bound on s(n, C) given in [4], which is matching the upper bound. Since Ck ⊆ C for
every k ≥ 1, it may seem at first sight like s(n, Ck) ≥ s(n, C) =

(
n−2
2

)
+ 1 should hold as well.

But as we will see later (see Remark 1.9 below), such an implication is not true in general.

We now move on to study saturation games in which both players are required to keep the
chromatic number of the graph below a certain threshold. For every integer k ≥ 2 we would
like to determine s(n, χ>k), where χ>k is the property of having chromatic number at least
k + 1 (obviously s(n, χ>1) = 0). It is easy to see that if H is a graph on n ≥ k vertices
which is saturated with respect to χ>k, then H is complete k-partite. From this it easily
follows that sat(n, χ>k) = (k− 1)(n− 1)−

(
k−1
2

)
and ex(n, χ>k) =

∑
0≤i<j≤k−1b

n+i
k c · b

n+j
k c =

(1− 1/k + o(1))
(
n
2

)
. Very recently, it was shown in [4] that s(n, χ>2) is equal to the trivial

upper bound, that is, s(n, χ>2) = ex(n, χ>2) = bn2/4c.

Our first result regarding colorability games shows that, in contrast to the (n, χ>2) game, Mini
does have a strategy to ensure that s(n, χ>3) is smaller than ex(n, χ>3) by a non-negligible
fraction.

Theorem 1.4 s(n, χ>3) ≤ 21n2/64 +O(n).

Additionally, we prove that for every sufficiently large k, Max has a strategy to ensure that
s(n, χ>k) is not much smaller than ex(n, χ>k).

Theorem 1.5 There exists a real number C such that s(n, χ>k) ≥ (1− C log k/k)
(
n
2

)
holds

for every positive integer k and sufficiently large n.

Lastly, we study saturation games in which both players are required to keep the size of
every matching in the graph below a certain threshold. Starting with the property PM of
admitting a perfect matching, it is easy to see that ex(n,PM) =

(
n−1
2

)
for every even n.

Moreover, using Tutte’s well-known necessary and sufficient condition for the existence of a
perfect matching [15], Mader [12] characterized all graphs which are saturated with respect
to PM. Using this characterization, it is not hard to show that sat(n,PM) = Θ(n3/2). We
prove that s(n,PM) is almost as large as ex(n,PM).

Theorem 1.6 Let n ≥ 8 be an even integer, then s(n,PM) ≥
(
n−4
2

)
.

We then move on to study s(n,Mk), where Mk is the property of admitting a matching of
size k for some k ≤ n/2. It was proved by Erdős and Gallai in [6] that

ex(n,Mk) = max

{
(k − 1)(n− 1)−

(
k − 1

2

)
,

(
2k − 1

2

)}
.

Applying the Berge-Tutte formula [1], Mader [12] also characterized all graphs which are
saturated with respect to Mk, for every 1 ≤ k ≤ n/2. Using this characterization, it is
not hard to derive that sat(n,Mk) = 3(k − 1) if k ≤ n/3, sat(n,Mk) = Θ(n2/(n − 2k)) if
n/3 ≤ k ≤ n/2 −

√
n and sat(n,Mk) = Θ(n3/2) if n/2 −

√
n ≤ k ≤ n/2. Our next result
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shows that, at least when k is not too large with respect to n, the score s(n,Mk) varies in
order of magnitude, depending on the parity of k and the identity of the first player. This is
in stark contrast to all of our results mentioned until now (where changing the identity of the
first player might affect the score of the game, but only by a negligible margin). Note that,
among other results and using different terminology, s(n,M2) was determined in [14].

Theorem 1.7 Let k ≥ 2 be an integer. If Max is the first player and k is even, or Mini is the
first player and k is odd, then s(n,Mk) ≥ n− 1. In all other cases s(n,Mk) ≤

(
2k−1
2

)
.

Remark 1.8 It follows from Theorem 1.7 that that if k is fixed then, depending on the parity
of k and the identity of the first player, either s(n,Mk) = Θ(sat(n,Mk)) or s(n,Mk) =
Θ(ex(n,Mk)).

Remark 1.9 It follows from Theorem 1.7 that scores of saturation games are not monotone
in the following sense. There are monotone increasing graph properties P1 and P2 such that
P1 ⊆ P2 and yet s(n,P1) < s(n,P2). Also, there are monotone increasing graph properties P1
and P2 such that sat(n,P1) < sat(n,P2) and ex(n,P1) < ex(n,P2), but s(n,P1) > s(n,P2).

1.1 Notation and preliminaries

For the sake of simplicity and clarity of presentation, we do not make a particular effort to
optimize some of the constants obtained in our proofs. We also omit floor and ceiling signs
whenever these are not crucial. Throughout the paper, log stands for the natural logarithm.
We say that a graph property P holds asymptotically almost surely, or a.a.s. for brevity, if
the probability of satisfying P tends to 1 as the number of vertices n tends to infinity. Our
graph-theoretic notation is standard and follows that of [16]. In particular, we use the following.

For a graph G, let V (G) and E(G) denote its sets of vertices and edges respectively, and
let v(G) = |V (G)| and e(G) = |E(G)|. For a set U ⊆ V (G) and a vertex w ∈ V (G), let
NG(w,U) = {u ∈ U : wu ∈ E(G)} denote the set of neighbors of w in U and let dG(w,U) =
|NG(w,U)|. For disjoint sets U,W ⊆ V (G) let NG(W,U) =

⋃
w∈W NG(w,U). We abbreviate

NG(w, V (G)) to NG(w), and NG(W,V (G) \W ) to NG(W ). The minimum degree of a graph
G is denoted by δ(G). Often, when there is no risk of confusion, we omit the subscript G from
the notation above. For a set S ⊆ V (G), let G[S] denote the subgraph of G induced by the
vertices of S. A connected component C of a graph G is said to be non-trivial if it contains
an edge. The size of a maximum matching in a graph G is denoted by ν(G).

Assume that some saturation game (H,P) is in progress, where H is a graph on n vertices.
The edges of Kn \ G are called free (recall that at any point during the game, we use G to
denote the graph built by both players up to that point). A round of the game consists of a
move by the first player and a counter move by the second player. We say that a player follows
the trivial strategy if in every move he claims an arbitrary legal edge.

We end this subsection by proving the following lemma which asserts that, without any sat-
uration restrictions, either player can build a long path that includes all vertices of positive
degree. This lemma will be useful for the connectivity and the matching games we will study.
We refer to the strategy described in the proof of the lemma as the long path strategy.
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Lemma 1.10 Let n ≥ 3 and 1 ≤ ` ≤ n−2 be integers. Then starting with the empty graph on
n vertices, either player can ensure that, immediately after his ith move for some i, the graph
G will contain a path P such that the following three properties are satisfied:

(a) The length of P is either ` or `+ 1;

(b) If u ∈ V (G) \ V (P ), then dG(u) = 0;

(c) At least one of the endpoints of P has degree one in G.

Proof We prove our claim by induction on `. For convenience we denote the player who
wishes to build the path P by A and the other player by B. For ` = 1 the correctness of our
claim is obvious as, in his first move, A can build a path of length 1 if he is the first player and
of length 2 otherwise. Assume our claim holds for some 1 ≤ ` < n− 2; we will prove it holds
for `+ 1 as well. First, A builds a path P` which satisfies properties (a), (b) and (c) for `; the
induction hypothesis ensures that A has a strategy to do so. If P` is of length `+ 1 then there
is nothing to prove, so assume P` is of length `. Let P` = (u0, . . . , u`) and assume without loss
of generality that dG(u0) = 1. Let xy denote the edge B claims in his subsequent move. We
distinguish between the following four cases:

(1) If {x, y} ⊆ V (P`), then A claims u`z for some isolated vertex z.

(2) If {x, y} ∩ V (P`) = ∅, then A claims u`x.

(3) If x ∈ {u0, u`} and y /∈ V (P`), then A claims yz for some isolated vertex z.

(4) If x ∈ V (P`) \ {u0, u`} and y /∈ V (P`), then A claims u`y.

It is easy to see that in all of the four cases above, A can follow the proposed strategy and, by
doing so, he builds a path which satisfies conditions (a), (b) and (c) for `+ 1. 2

The rest of this paper is organized as follows. In Section 2 we prove Theorems 1.1 and 1.2.
In Section 3 we prove Theorems 1.4 and 1.5. In Section 4 we prove Theorems 1.6 and 1.7.
Finally, in Section 5 we present some open problems.

2 Connectivity games

In this section we study connectivity games, that is, saturation games in which both players
are required to keep the connectivity of the graph below a certain threshold.

Proof of Theorem 1.1 Since s(n, C1) was determined in [4], we can assume that k ≥ 2. We
present a strategy for Max; it is divided into the following three stages:

Stage I: Max follows the long path strategy until G contains a path P = (u0, . . . , u`) of length
` ∈ {n− k− d

√
ne − 1, n− k− d

√
ne} which includes all vertices of positive degree in G.

He then proceeds to Stage II.
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Stage II: Let t and r be the unique integers satisfying `+1 = d4
√
net+r and 0 ≤ r < d4

√
ne.

Let v1, . . . , vk be k arbitrary vertices of V (G) \ V (P ) and let F = {viud4√nej : 1 ≤ i ≤
k, 1 ≤ j ≤ t}. In each of his moves in this stage, Max claims an arbitrary free edge of
F . Once no such edge exists, this stage is over and Max proceeds to Stage III.

Stage III: Throughout this stage, Max follows the trivial strategy.

Our first goal is to prove that Max can indeed follow the proposed strategy. This is obvious for
Stage III and follows for Stage I by Lemma 1.10 (note that there are isolated vertices at the end
of Stage I so G is certainly not k-connected at that point). Since every vertex of V (G) \ V (P )
is isolated at the end of Stage I and at most 2|F | + 1 ≤ 2k

√
n/4 < k(k +

√
n − 1)/2 edges

are claimed by both players throughout Stage II, it follows that, at the end of Stage II, there
exists a vertex u ∈ V (G) \ V (P ) such that dG(u) < k; in particular, G is not k-connected at
that point. Hence, Max can follow Stage II of the proposed strategy.

At the end of the game, G is saturated with respect to k-connectivity, that is, G is not
k-connected but G + uv is k-connected for every u, v ∈ V (G) such that uv /∈ E(G). Let
S ⊆ V (G) be a cut set of G of size k − 1. Since |S| < k, it follows that {v1, . . . , vk} \ S 6= ∅;
assume without loss of generality that v1 /∈ S. Let A denote the connected component of
G \ S which contains v1 and let B = V (G) \ (A ∪ S). We claim that |B| ≤ 5k

√
n. This is

obvious if B ⊆ (V (G) \ V (P )) ∪ {u0, . . . , ud4√ne−1, ud4√net+1, . . . , u`}. Assume then that there
exists a vertex ui ∈ B ∩ {ud4√ne, . . . , ud4√net}; let 1 ≤ j < t denote the unique index such that
d4
√
nej < i < d4

√
ne(j+1) (note that, for every 1 ≤ j ≤ t, we have ud4

√
nej /∈ B as v1ud4

√
nej ∈

E(G) holds by Stage II of the proposed strategy). Since ui ∈ B, it follows that there is no
path between ui and v1 in G\S. It follows that |S∩{ud4√nej , . . . , ud4√ne(j+1)}| ≥ 2. Since this
is true for every vertex of B ∩ {ud4√ne, . . . , ud4√net}, it follows that B ∩ {ud4√ne, . . . , ud4√net}
is the union of at most |S| − 1 subpaths of P , each of length at most 4

√
n. We conclude

that |B| ≤ 5k
√
n as claimed. Since, as noted above, G is saturated with respect to k-

connectivity, it follows that xy /∈ E(G) if and only if x ∈ A and y ∈ B (or vice versa).
Hence e(G) =

(
n
2

)
− |A||B| ≥

(
n
2

)
− 5k

√
n(n− k + 1− 5k

√
n) ≥

(
n
2

)
− 5kn3/2 as claimed. 2

Proof of Theorem 1.2 We present a strategy for Max; it is divided into the following three
stages:

Stage I: Let r = n
2k−3 , let t = n − r, let V0 = {v1, . . . , vr} be a subset of V (G) and let

V (G) \ V0 = {u1, . . . , ut}. Max’s goal in this stage is to ensure that for every set B ⊆
V \V0, by the end of the stage |NG(B, V0)| ≥ |B|r/t will hold. He does so in the following
way. In each of his moves in this stage, Max claims uivdir/te where i is the smallest
positive integer for which uivdir/te is free. As soon as all edges of {uivdir/te : 1 ≤ i ≤ t}
are claimed, Max proceeds to Stage II.

Stage II: Let H be a k-connected graph on r vertices such that e(H) is minimal among all
such graphs. Max ensures that V0 will contain a copy of H and then proceeds to Stage
III.

Stage III: Throughout this stage, Max follows the trivial strategy.
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Our first goal is to prove that Max can indeed follow the proposed strategy. This is obvious
for Stage III. For Stages I and II this follows since at most 2(t + dkr/2e) < kn/2 edges are
claimed by both players during these two stages, where the inequality follows by the definition
of r since k ≥ 5. Since there is no k-connected graph on n vertices and strictly less than kn/2
edges, it follows that Max can claim any free edge throughout Stages I and II.

At the end of the game, G is saturated with respect to k-connectivity, that is, G is not
k-connected but G + uv is k-connected for every u, v ∈ V (G) such that uv /∈ E(G). Let
S ⊆ V (G) be a cut set of G of size k − 1. It follows by Stage II of Max’s strategy that
V0 \ S is contained in one connected component of G \ S; let A denote this component and let
B = V (G) \ (A∪S). We claim that |B| ≤ t(k− 1)/r. Indeed, suppose for a contradiction that
|B| > t(k−1)/r. It follows by Stage I of Max’s strategy that |NG(B, V0)| ≥ d|B|r/te ≥ k. Since
|S| < k it follows that NG(B, V0 \S) 6= ∅ contrary to S being a cut set. Since, as noted above,
G is saturated with respect to k-connectivity, it follows that xy /∈ E(G) if and only if x ∈ A
and y ∈ B (or vice versa). Hence e(G) =

(
n
2

)
− |A||B| ≥

(
n
2

)
− t(k−1)

r

(
n− k + 1− t(k−1)

r

)
=(

n
2

)
− (k − 1)(2k − 4)[n− (k − 1)(2k − 3)] as claimed. 2

3 Colorability games

In this section we study colorability games, that is, saturation games in which both players
are required to keep the chromatic number of the graph below a certain threshold.

Proof of Theorem 1.4 Since the proof is quite technical, even though it is based on a very
simple idea, we begin by briefly describing this idea. Regardless of Mini’s strategy, at the end
of the game G will be a complete 3-partite graph. Since she would like to minimize the number
of its edges, she should try to unbalance its parts. She will do so by making sure one part is
small, namely, its size is at most dn/4e. This will be achieved by connecting (by her and Max’s
edges) an arbitrary vertex v0 to roughly 3n/4 vertices. In order to eventually prove Mini can
achieve this, we will show that for every vertex x Mini cannot connect to v0, Max must have
“used up” at least 3 of his moves.

We first introduce some notation and terminology that will be used throughout this proof.
Let v0 ∈ V (G) be an arbitrary vertex. This vertex determines the following partition V (G) =
TG ∪MG ∪ BG: TG consists of all vertices which receive the same color as v0 in any proper
3-coloring of G, MG = NG(TG) and BG = V (G)\(TG∪MG). In particular, TG = {v0}, MG = ∅
and BG = V (G) \ {v0} hold before the game starts. The vertices of TG are called top vertices,
the vertices of MG are called middle vertices and the vertices of BG are called bottom vertices.
For any vertex u ∈ V (G), let ΓG(u) denote the connected component of G[{u} ∪MG] which
contains u. A connected component of G[MG] is called a middle-component. Note that at any
point during the game, every middle-component is 2-colorable. If u ∈ BG, v ∈MG, uv ∈ E(G)
and C is the middle-component containing v, then u is said to be attached to C. When there
is no risk of confusion, we omit the subscript G from the above notation.

Note that if x is a top (respectively middle) vertex, then x remains a top (respectively middle)
vertex throughout the game. On the other hand, if x ∈ B and some player claims xy for some
top vertex y, then x is moved to the middle, that is, x becomes a middle vertex. Moreover, if
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x ∈ B and some player claims xy for some vertex y ∈M ∪B, then either x remains in B or it
is moved to the top.

During the game, Mini will want G to satisfy certain structural properties. In order to describe
these we introduce some more definitions, starting with the following two properties of a given
graph G on n vertices with the partition V (G) = T ∪M ∪B:

(P1) E(G[B]) = ∅;

(P2) Every middle-component of G has at most one attached vertex.

Next, we define the set of bad edges with respect to G as follows:

BADG := {uv ∈
(
V (G)

2

)
: ∃x, y ∈ B, x 6= y, u ∈ V (Γ(x)), and v ∈ V (Γ(y))} .

Note that in the definition of a bad edge, it is possible that x = u or y = v.

Finally, we say that a vertex x ∈ B is good if every edge in G with exactly one endpoint in
V (Γ(x)) (if such an edge exists) has its other endpoint in T .

Observation 3.1 Let G be a graph with the partition V (G) = T ∪M ∪B as described above.
The following conditions are equivalent:

1. G satisfies properties (P1) and (P2).

2. BADG ∩ E(G) = ∅.

3. Every vertex in B is good.

We say that the graph G is good if it satisfies conditions 1–3 of Observation 3.1. Given this
definition, we make another observation.

Observation 3.2 Let G be a good graph and let G′ = G ∪ {e} for some e /∈ E(G). G′ is a
good graph if and only if e /∈ BADG.

The last definition we need is that of an almost good graph. A graph G is said to be almost
good if G is good, or there exists an edge e ∈ E(G) such that G\{e} is a good graph (the edge
e is not necessarily unique).

We now state and prove several claims that will be very useful in the remainder of the proof.
In all of these claims we assume that at all times the graphs in question are 3-colorable.

Claim 3.3 Consider a graph G with the corresponding partition V (G) = T ∪M ∪ B, and let
x 6= v0 be some vertex. The following hold:

(a) If Γ(x) is not 2-colorable, then x ∈ T .

(b) If G satisfies property (P1) and Γ(x) is 2-colorable, then x 6∈ T .

8



Proof For (a), since Γ(x) is not 2-colorable, in every proper 3-coloring c of G there exists a
vertex v ∈ V (Γ(x)) such that c(v) = c(v0). Since V (Γ(x)) \ {x} ⊆M and no vertex in M can
receive the same color as v0, it follows that v = x and thus x ∈ T .

For (b), we show that there exists a proper 3-coloring of G which does not assign the same
color to x and v0. Indeed, since by definition every edge with at least one endpoint in T must
have its other endpoint in M and since B is an independent set by assumption, it follows that
T ∪ B is an independent set. Since Γ(x) is 2-colorable, and so is every middle-component, it
follows that G[{x}∪M ] is 2-colorable. Let c be some proper coloring of G[{x}∪M ] with colors
1 and 2. Extend c to a coloring of G by coloring each vertex in T ∪ B \ {x} with the color
3. This is a proper 3-coloring of G which assigns x and v0 distinct colors. We conclude that
x /∈ T . 2

Claim 3.4 If G is a good graph, e ∈ BADG and G′ = G ∪ {e}, then BG′ = BG.

Proof As G is a good graph, it follows by the contrapositive of Claim 3.3(a) and by the fact
that every middle-component is always 2-colorable, that G[MG∪BG] is also 2-colorable. Since,
by the definition of a bad edge, e connects two different components of G[MG ∪BG], it follows
that G′[MG ∪ BG] is 2-colorable as well. Thus, there exists a proper coloring of G′ which
assigns all vertices in TG the color 1, and all the vertices in MG ∪ BG the colors 2 and 3. It
follows that TG′ ⊆ TG, and therefore TG′ = TG since vertices are never moved from the top.

Now, since TG′ = TG, and since e ∩ TG = ∅, it follows by definition of the middle that
MG′ = MG, and therefore we conclude that BG′ = BG. 2

Claim 3.5 Let G be a good graph and let G′ = G ∪ {e} for some e /∈ E(G). If there exists a
vertex x such that x ∈ BG and x ∈ TG′, then there exists a middle-component C ⊆ MG′ such
that dG′(x,C) ≥ 2.

Proof Since the addition of e to G moves x from the bottom to the top, Claim 3.4 implies that
e /∈ BADG. Therefore, by Observation 3.2, G′ is a good graph. By Claim 3.3(b), ΓG′(x) is not
2-colorable, and thus contains an odd cycle. Since ΓG′(x)\{x} ⊆MG′ is 2-colorable, this cycle
must include x. The two neighbors of x in the cycle belong to the same middle-component
C ⊆MG′ , as claimed. 2

Claim 3.6 Let G be an almost good graph with the partition V (G) = TG ∪MG ∪BG, and let
G1 := G∪{ab} for some ab /∈ E(G) such that a ∈ TG. Assume that there exists a vertex x 6= a
such that ΓG1(x) 6= ΓG(x). Then b ∈ BG, b 6= x, and there exists an edge ub ∈ E(G) such that
u ∈ V (ΓG(x)).

Proof Since G ⊆ G1 and no vertex can move out of the middle, it follows that MG ⊆ MG1 .
Therefore ΓG(x) ⊆ ΓG1(x) and so if ΓG1(x) 6= ΓG(x), then there must exist an edge uw ∈ E(G1)
such that u ∈ V (ΓG(x)) and w ∈MG1 \V (ΓG(x)). Recall that a 6= x by assumption. Moreover,
a 6= u as a /∈ MG. Since no vertex can move out of the top, it follows that a ∈ TG1 and thus
a 6= w. Therefore, uw ∈ E(G). However, w /∈ V (ΓG(x)) and this can only happen if w /∈MG.
Since w ∈MG1 we conclude that w ∈ BG. We will now show that b = w, which will complete
the proof, as b /∈ V (ΓG(x)) implies b 6= x.
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Suppose for a contradiction that b 6= w. Since w ∈MG1 there exists a vertex z ∈ TG1 such that
wz ∈ E(G1). By our assumption that b 6= w, and since a 6= w as previously shown, it follows
that wz ∈ E(G). Since w /∈ MG it follows that z /∈ TG and therefore z ∈ BG. Clearly the
graph G is not good as the edge wz violates property (P1). However, since G is almost good,
there exists an edge e ∈ E(G) such that G0 := G \ {e} is a good graph. Note that w, z ∈ BG0 ,
and therefore e = wz as otherwise property (P1) would have been violated in G0 as well.

Now, similarly to the proof of Claim 3.4, there exists a proper coloring c of G which assigns
all vertices in TG the color 1 and all the vertices in MG ∪BG the colors 2 and 3. This coloring
is also a proper coloring of G1, since c(a) = 1 and c(b) 6= 1. Since z ∈ BG, it follows that
c(z) 6= c(v0) contrary to z being an element of TG1 . We conclude that indeed b = w and the
proof is complete. 2

The following result is an immediate consequence of Claim 3.6.

Corollary 3.7 Under the assumptions of Claim 3.6, and using the same terminology, ΓG1(x)
is the subgraph of G induced on the vertex set V (ΓG(x)) ∪ V (ΓG(b)).

Claim 3.8 Consider a good graph G with the corresponding partition V (G) = TG ∪MG ∪BG.
Let G1 = G ∪ {e} for some e /∈ E(G), let x, y ∈ BG1 and let G2 = G1 ∪ {v0y}. Assume that
G2 satisfies property (P1). Then, x /∈ TG2.

Proof Assume first that ΓG2(x) = ΓG1(x). By the assumption that x ∈ BG1 and by
Claim 3.3(a) we deduce that ΓG1(x) is 2-colorable and thus so is ΓG2(x). Since, moreover,
G2 satisfies property (P1) by assumption, it follows by Claim 3.3(b) that x /∈ TG2 .

Assume then that ΓG2(x) 6= ΓG1(x). As G1 is an almost good graph, by Claim 3.6 there is an
edge of G1 between V (ΓG1(x)) and y. Since G is a good graph, it contains no edges between
V (ΓG(x)) and y. Therefore, the edge e must have one endpoint in V (ΓG(x)) and one endpoint
in V (ΓG(y)). Let C denote the connected graph ΓG(x) ∪ ΓG(y) ∪ {e}. Since x, y ∈ BG, it
follows by Claim 3.3(a) that ΓG(x) and ΓG(y) are 2-colorable, and therefore so is C. Since
ΓG1(x) and ΓG1(y) are clearly subgraphs of C, it follows by Corollary 3.7 that ΓG2(x) = C.
Since G2 satisfies property (P1), and since ΓG2(x) is 2-colorable, it follows by Claim 3.3(b)
that x 6∈ TG2 . 2

Now, we present a strategy for Mini; it is divided into two simple stages. In the first stage
Mini claims only edges incident with v0, aiming to make its degree as large as possible, and in
the second stage she plays arbitrarily. For convenience we assume that Max is the first player;
if Mini is the first player, then in her first move she claims v0z for an arbitrary vertex z ∈ B
and the remainder of the proof is essentially the same.

Stage I: This stage lasts as long as there are vertices in B. Once B = ∅, this stage is over
and Mini proceeds to Stage II. Before each of Mini’s moves during Stage I, let G denote
the graph at that point and let e denote the last edge claimed by Max. Mini plays as
follows:

(i) If there exists a vertex x ∈ BG such that {e} ∩ ΓG(x) 6= ∅, then Mini claims v0x (if
there are several such bottom vertices, then Mini picks one arbitrarily).

(ii) Otherwise, Mini claims v0z, where z ∈ BG is an arbitrary vertex.
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Mini then repeats Stage I.

Stage II: Throughout this stage, Mini follows the trivial strategy.

It remains to prove that Mini can indeed follow the proposed strategy and that, by doing so,
she ensures that e(G) ≤ 21n2/64 + O(n) will hold at the end of the game. Starting with the
former, note that Mini can clearly follow Stage II of the strategy. As for Stage I, in each of her
moves in this stage Mini claims an edge between v0 and some vertex u ∈ BG. By definition
v0u is free and χ(G ∪ {v0u}) ≤ 3. Hence Mini can follow the proposed strategy. In order to
prove the latter, we first prove the following four additional claims.

Claim 3.9 Immediately after each of Mini’s moves in Stage I, the current graph G built by
both players is good.

Proof We will prove this claim by induction on the number of moves played by Mini. The
claim clearly holds before the game starts. Assume that it holds immediately after Mini’s ith
move for some non-negative integer i (where i = 0 we refer to the initial graph before the game
begins); we will prove it holds after her (i+ 1)st move as well (assuming it is played in Stage
I). Let G denote the graph immediately after Mini’s ith move, let uv denote the edge claimed
by Max in his subsequent move, let G1 = G ∪ {uv}, and let G2 denote the graph immediately
after Mini’s (i+ 1)st move.

If uv /∈ BADG, then by Observation 3.2 G1 is good. Mini then claims an edge e with one
endpoint in TG1 (the vertex v0), and so e /∈ BADG1 by definition. Therefore, applying Obser-
vation 3.2 once again we infer that G2 is good.

Assume then that uv is a bad edge. Therefore, by definition, there exist distinct vertices
x, y ∈ BG such that u ∈ V (ΓG(x)) and v ∈ V (ΓG(y)). Note that according to her strategy,
in her next move Mini claims either v0x or v0y (by the induction hypothesis, no other bottom
vertex is a candidate); without loss of generality assume that she claims v0y. In order to
prove that G2 is good, we will show that every vertex of BG2 is good. Consider first a vertex
z ∈ BG2 \{x} (note that z 6= y as y ∈MG2). Clearly z ∈ BG and since G is a good graph, z is a
good vertex in G. Since {uv, v0y} ∩ΓG(z) = ∅, it is easy to see that ΓG2(z) = ΓG1(z) = ΓG(z)
and that z is a good vertex in G2 as well. Now consider x. Since G1 is an almost good graph,
ΓG2(x) = ΓG(x) ∪ ΓG(y) ∪ {uv} by Corollary 3.7. Since x and y are both good vertices in G,
it is evident that x is a good vertex in G2 as well. This concludes the proof of the claim. 2

Claim 3.10 Throughout Stage I, no vertex is moved from B to T as a result of a move by
Mini.

Proof Recall that by assumption Max is the first player to move. Let i be some positive
integer, let G denote the graph immediately before Max’s ith move, let G1 denote the graph
immediately after Max’s ith move, and let G2 denote the graph immediately after Mini’s ith
move. Since, by Claim 3.9, G and G2 are good graphs, and since Mini in her ith move claims
v0y for some y ∈ BG1 , it follows by Claim 3.8 that for every vertex x ∈ BG1 (including y),
x /∈ TG2 . 2
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Claim 3.11 Let x be a bottom vertex which is attached to a middle-component C. If at some
point during Stage I x is moved to the top, then from this point until the end of Stage I,
immediately after every move of Mini, no bottom vertex will be attached to the unique middle-
component containing C.

Proof We prove this claim by induction on the number of rounds played after x was moved
to the top. Consider first the moment at which x is moved to the top. By Claim 3.10 this
happens as a result of Max’s i0th move, for some positive integer i0. Denote the players’ graph
immediately before this move by G0 and the graph immediately after this move by G′0. Since
by Claim 3.9, G0 is a good graph, it is not hard to see (similarly to the proof of Claim 3.5)
that in his i0th move Max claimed an edge e ⊆ ΓG0(x), and thus V (ΓG′0

(x)) = V (ΓG0(x)).
Therefore, there are no edges of G′0 between V (ΓG′0

(x)) and BG′0
, as x itself is in TG′0 by

assumption, and it was the only vertex attached to the middle-components of ΓG0(x) (that is,
the middle-components of G0 contained in ΓG0(x)) since G0 is a good graph. In her subsequent
move, Mini certainly does not attach any vertex to any of the middle-components of ΓG0(x),
nor does she change Γ(x), so the claim holds at this point.

Now let i ≥ i0 and assume the claim holds immediately after Mini’s ith move. Let G1 be the
graph after Mini’s ith move, let G2 be the graph after Max’s subsequent move, and let G3 be
the graph after Mini’s (i+1)st move. Let C be a middle-component of ΓG0(x) and for j = 1, 2, 3
let Cj denote the middle-component containing C in Gj . If there is no bottom vertex attached
to C2 in G2, then by Mini’s strategy C3 = C2 and there will be no such vertex in G3 either.
Assume then that there is such a vertex y. It follows that in his (i+1)st move Max claimed an
edge uv such that u ∈ C1 and v ∈ V (ΓG1(y)). Therefore C1 ⊆ ΓG2(y). Since, by the induction
hypothesis, there is no vertex attached to C1 in G1 and since y is the only vertex attached to
any middle-component of ΓG1(y) in G1 (by property (P2), as G1 is a good graph), it follows
that there is no bottom vertex z 6= y in G2 such that {uv} ∩ ΓG2(z) 6= ∅. Therefore, by the
proposed strategy Mini claims v0y in her (i+ 1)st move and thus C3 = C1 ∪ ΓG1(y)∪ {uv}. It
follows that no bottom vertex is attached to C3 in G3. 2

Claim 3.12 |T | ≤ n+3
4 holds at the end of Stage I.

Proof Consider the moment at which some vertex x is moved from the bottom to the top (if
this never happens, then |T | = 1). At this moment we assign to x every edge of G which is
incident with x and every edge of every middle-component to which x is attached. We claim
that any edge of G is assigned to at most one vertex. Indeed, this is evident for the edges
incident to the vertex that was moved to the top, and is also true for the edges inside the
middle-components it was attached to by Claims 3.10 and 3.11. In addition, it follows by
Claims 3.10 and 3.5 that every top vertex, other than v0, is assigned at least 3 edges. Since
throughout Stage I Mini claims only edges which are incident with v0, all assigned edges were
claimed by Max. It thus follows that for every vertex of T \ {v0}, Mini increased the degree of
v0 by at least 3, that is, |M | ≥ d(v0) ≥ 3(|T | − 1). Since B = ∅ holds by definition at the end
of Stage I, it follows that |T | + |M | = n holds at that point. We conclude that |T | ≤ n+3

4 as
claimed. 2

We can now complete the proof of Theorem 1.4. Let X,Y and Z denote the color classes in
the unique proper 3-coloring of G at the end of the game. It follows by the definition of T,M
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and B that without loss of generality X ∪ Y = M and Z = T . We thus conclude that

e(G) = |T |(|X|+ |Y |) + |X||Y | ≤ n+ 3

4
· 3n− 3

4
+

(
3n− 3

8

)2

=
21

64
n2 +O(n)

as claimed. 2

Proof of Theorem 1.5 For convenience we assume that Mini is the first player; if Max is the
first player, then he makes an arbitrary first move and the remainder of the proof is essentially
the same. Let k, C and n be as in the statement of the theorem; by choosing C to be sufficiently
large, we can assume that k is large as well, as otherwise the statement of the theorem trivially
holds. Since the game in question is a finite, perfect information game, with no chance moves,
then exactly one of the following must hold:

(a) Max has a strategy to ensure that e(G) ≥ (1− C log k/k)
(
n
2

)
will hold at the end of the

game against any strategy of Mini.

(b) Mini has a strategy to ensure that e(G) < (1− C log k/k)
(
n
2

)
will hold at the end of the

game against any strategy of Max.

We present a random strategy for Max, and show that with positive probability (in fact, a.a.s.),
e(G) ≥ (1− C log k/k)

(
n
2

)
will hold at the end of the game. Therefore, (b) cannot hold, which

implies (a), thus proving Theorem 1.5.

We will need the following Chernoff type bound for our calculations.

Theorem 3.13 [10] Let X ∼ Bin(n, p) and let x ≥ 7np. Then Pr(X ≥ x) ≤ e−x.

The proposed strategy for Max is divided into the following two stages:

Stage I: This stage is over as soon as δ(G) ≥ k − 1; at that point Max proceeds to Stage II.
For every positive integer i, let aibi denote the edge claimed by Mini in her ith move of
this stage and, immediately after Mini’s ith move, let Si = {x ∈ {ai, bi} : dG(x) ≤ k−2}.
Max plays his ith move as follows:

(i) If Si = ∅, then Max claims a free edge xy such that min{dG(x), dG(y)} ≤ k − 2
uniformly at random among all such edges; we refer to such moves as being fully-
random.

(ii) If Si 6= ∅, then, with probability 139/140, Max makes a fully-random move and,
with probability 1/140, he claims an edge xy such that x ∈ Si and subsequently
y ∈ {z ∈ V (Kn) : xz /∈ E(G)} are chosen uniformly at random; we refer to such
moves as being semi-random.

Stage II: Throughout this stage, Max follows the trivial strategy.

Note that if H is a graph with chromatic number χ(H) ≤ k and u, v ∈ V (H) are two vertices
such that dH(u) ≤ k− 2, then χ(H + uv) ≤ k. It thus follows that Max can play according to
the proposed strategy.
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Fix r := Cn log k/k and let U ⊆ V (Kn) be an arbitrary set of size r. Assume that for some
positive integer i, in her ith move Mini claims an edge aibi such that Si ∩ U = ∅. Max’s ith
move xy is said to be bad with respect to U if it is semi-random and {x, y} ∩ U 6= ∅. The set
U is said to be bad if throughout Stage I Max makes at least kr/20 bad moves with respect to
U . We claim that a.a.s. there will be no bad sets. Indeed, fix some U of size r and let BU be
the random variable which counts the number of bad moves with respect to U . Throughout
the game Mini can claim at most (k − 2)n edges aibi for which Si 6= ∅. Hence, it follows by
the proposed strategy that BU ∼ Bin(N, p), where N ≤ (k − 2)n and p ≤ 1

140 ·
r

n−k+1 . In
particular, E(BU ) = Np ≤ kr/140. Therefore, by Theorem 3.13 we have

Pr(U is bad) = Pr(BU ≥ kr/20) ≤ e−kr/20 .

Thus

Pr(there exists a bad set U) ≤
(
n

r

)
e−kr/20 ≤

[
ek

C log k
· e−k/20

]r
= o(1) .

Hence, from now on we will assume that there are no bad sets.

Our next goal is to prove that a.a.s. α(G) ≤ Cn log k/k holds at the end of the game. Let
U ⊆ V (G) be an arbitrary set of size r. At any point during the game let XU = {x ∈ U :
dG(x) ≥ k − 1} and let YU = U \XU . Consider the point in time at which |XU | ≥ |YU | first
occurs; clearly |U |/2 ≤ |XU | ≤ d|U |/2e+ 1 at this point. Note that such a moment must occur
during Stage I, since there are no vertices of degree at most k− 2 at the end of Stage I; denote
this moment by t.

We say that a claimed edge uv is a Y -edge if {u, v} ∩ YU 6= ∅ holds immediately after uv
is claimed (by either player). Let AU denote the event: “up until the moment t, Max has
played at least kr/20 fully-random moves in which he claimed Y -edges” and let Ac

U denote
its complement. Let IU denote the event: “at the end of the game, U is an independent set”.
Clearly Pr(IU ) = Pr(IU ∧AU ) + Pr(IU ∧Ac

U ).

We wish to bound Pr(IU ) from above. Consider first a fully-random move e such that e is a
Y -edge, and assume that U is independent immediately before this move. We have

Pr(e ⊆ U) ≥
|YU ||U | −

(|YU |
2

)
|YU |n

(1)

≥
|YU | |U |2
|YU |n

=
r

2n
. (2)

It follows by (1) and by the definition of AU that

Pr(IU ∧AU ) = Pr(IU | AU ) · Pr(AU ) ≤ Pr(IU | AU ) ≤
(

1− r

2n

)kr/20
. (3)

Next, assume that for some positive integer i, in her ith move Mini has claimed a Y -edge
aibi; assume without loss of generality that ai ∈ YU . We again assume that U is independent
immediately after Mini’s ith move; in particular, bi ∈ V (Kn) \ U . According to the proposed
strategy, with probability 1/140 in his subsequent move Max claims an edge xy such that
x ∈ {ai, bi} and y ∈ V (Kn). Moreover, Pr(x = ai) ≥ 1/2 and, based on the assumption that

U is independent, Pr(y ∈ U | x = ai) ≥ |U\{ai}|n ≥ r−1
n . Therefore

Pr({x, y} ⊆ U) ≥ 1/140 · Pr(x = ai) · Pr(y ∈ U | x = ai) ≥
r

290n
. (4)
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SinceXU = ∅ before the game starts, if U is an independent set at the end of the game, it follows
that by time t the number of Y -edges claimed by both players is at least (k−2)|XU | ≥ (k−2)r/2.
Since U is not a bad set, if by time t Max makes at most kr/20 fully-random moves in which
he claims Y -edges, then the number of Y -edges Mini must claim up to that point is at least
[(k − 2)r/2− kr/20− kr/20]/2 ≥ kr/10. It thus follows by the proposed strategy, by (4) and
by the definition of AU , that

Pr(IU ∧Ac
U ) = Pr(IU | Ac

U ) · Pr(Ac
U ) ≤ Pr(IU | Ac

U ) ≤
(

1− r

290n

)kr/10
. (5)

Putting inequalities (3) and (5) together we conclude that

Pr(IU ) = Pr(IU ∧AU ) + Pr(IU ∧Ac
U ) ≤

(
1− r

2n

)kr/20
+
(

1− r

290n

)kr/10
≤ exp

{
− r

2n
· kr

20

}
+ exp

{
− r

290n
· kr

10

}
≤ exp

{
−C

2n log2 k

3000k

}
. (6)

Using (6), we can now show that a.a.s. α(G) ≤ Cn log k/k holds at the end of the game by the
following union bound estimate:

Pr(α(G) ≥ Cn log k/k) ≤
(

n

Cn log k/k

)
· exp

{
−C

2n log2 k

3000k

}
≤

(
ek

C log k

)Cn log k/k

· exp

{
−C

2n log2 k

3000k

}
≤ exp

{
Cn log2 k

k
− C2n log2 k

3000k

}
= o(1) ,

where the last equality holds for C > 3000. Since α(G) ≤ Cn log k/k holds a.a.s., Max has a
deterministic strategy to achieve this, as was shown above.

Once the game is over, G is saturated and thus complete k-partite; let A1, . . . , Ak denote its
parts. Max can ensure that |Ai| ≤ Cn log k/k holds for every 1 ≤ i ≤ k, and therefore

e(G) =
1

2

k∑
i=1

|Ai|(n− |Ai|) ≥
1

2

k∑
i=1

|Ai|(n− Cn log k/k) =
n2

2
(1− C log k/k) .

2

4 Matching games

In this section we study matching games, that is, saturation games in which both players are
required to keep the size of every matching in the graph below a certain threshold.

Proof of Theorem 1.6 In order to prove the theorem, we present a strategy for Max. In
order to simplify the description of the strategy, we first consider several possible end-games.
These are described in the following lemmas.
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Lemma 4.1 Let n ≥ 6 be an even integer and let G0 = (V,E) be a graph on n vertices.
Assume that there exist vertices x, y ∈ V such that dG0(x) = dG0(y) = 0 and G0 \{x, y} admits
a Hamilton cycle C. If Max is the second player, then s(G0,PM) ≥

(
n−2
2

)
.

Proof Max plays according to the following simple strategy which consists of two stages.

Stage I: Let uv denote the last edge claimed by Mini; we distinguish between the following
two cases:

(1) If {u, v}∩{x, y} = ∅, then Max claims an arbitrary free edge ww′ such that {w,w′}∩
{x, y} = ∅ and repeats Stage I; if this is not possible, then he skips to Stage II.

(2) Otherwise, if u ∈ {x, y} and v ∈ V \ {x, y}, then Max claims a free edge uv′, where
v′ is a neighbor of v in C. He then proceeds to Stage II.

Stage II: Throughout this stage, Max follows the trivial strategy.

Note that at any point during the game, the graph G ∪ {xy} admits a perfect matching; it
follows that xy /∈ E(G). In particular, the proposed strategy does account for every legal move
of Mini. Moreover, if Max never plays according to Case (2) of Stage I, then clearly ww′ ∈ E(G)
holds for every w,w′ ∈ V \ {x, y} at the end of the game. If on the other hand Max does play
according to Case (2) of Stage I, then, at the end of the game, ww′ ∈ E(G) holds for every
w,w′ ∈ V \ {z} for some z ∈ {x, y}. In either case we conclude that s(G0,PM) ≥

(
n−2
2

)
as

claimed. 2

Lemma 4.2 Let n ≥ 6 be an even integer and let G0 = (V,E) be a graph on n vertices. Assume
that there exist vertices x, y, z ∈ V such that xy ∈ E, dG0(x) = dG0(y) = 1, dG0(z) = 0 and
G0\{x, y, z} admits a Hamilton cycle C. If Max is the second player, then s(G0,PM) ≥

(
n−3
2

)
.

Proof Max plays according to the following simple strategy which consists of two stages.

Stage I: Let uv denote the last edge claimed by Mini; we distinguish between the following
three cases:

(1) If {u, v} ∩ {x, y, z} = ∅, then Max claims an arbitrary free edge ww′ such that
{w,w′} ∩ {x, y, z} = ∅ and repeats Stage I; if this is not possible, then he skips to
Stage II.

(2) Otherwise, if uv = xz (respectively uv = yz), then Max claims yz (respectively xz)
and proceeds to Stage II.

(3) Otherwise, if u ∈ {x, y} and v ∈ V \ {x, y, z}, then Max claims a free edge u′v′,
where u′ is the unique vertex in {x, y} \ {u} and v′ is a neighbor of v in C. He then
proceeds to Stage II.

Stage II: Throughout this stage, Max follows the trivial strategy.

Note that at any point during the game, for every w ∈ V \ {x, y, z}, the graph G ∪ {wz}
admits a perfect matching; it follows that wz /∈ E(G). In particular, the proposed strategy
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does account for every legal move of Mini. Moreover, note that if {xz, yz} ⊆ E(G), then
ww′ /∈ E(G) for every w ∈ {x, y, z} and w′ ∈ V \ {x, y, z}. Therefore, if Max never plays
according to Case (3) of Stage I, then ww′ ∈ E(G) holds for every w,w′ ∈ V \ {x, y, z} at the
end of the game. If on the other hand Max does play according to Case (3) of Stage I, then
ww′ ∈ E(G) holds for every w,w′ ∈ V \{z} at the end of the game. In either case we conclude
that s(G0,PM) ≥

(
n−3
2

)
as claimed. 2

Lemma 4.3 Let n ≥ 6 be an even integer and let G0 = (V,E) be a graph on n vertices. Assume
that there exist vertices w, x, y, z ∈ V such that wx ∈ E, dG0(x) = 1, dG0(y) = dG0(z) = 0 and
G0\{x, y, z} admits a Hamilton cycle C. If Max is the second player, then s(G0,PM) ≥

(
n−2
2

)
.

Proof Max plays according to the following simple strategy which consists of two stages.

Stage I: Let uv denote the last edge claimed by Mini; we distinguish between the following
three cases:

(1) If {u, v} ∩ {y, z} = ∅, then Max claims an arbitrary free edge ab such that {a, b} ∩
{y, z} = ∅ and repeats Stage I; if this is not possible, then he skips to Stage II.

(2) Otherwise, if u ∈ {y, z} and v ∈ V \ {x, y, z}, then Max claims ux and proceeds to
Stage II.

(3) Otherwise, if u ∈ {y, z} and v = x, then Max claims an arbitrary free edge uu′,
where u′ ∈ V \ {x, y, z}. He then proceeds to Stage II.

Stage II: Throughout this stage, Max follows the trivial strategy.

Note that at any point during the game, the graph G ∪ {yz} admits a perfect matching; it
follows that yz /∈ E(G). In particular, the proposed strategy does account for every legal move
of Mini. Moreover, if Max never plays according to Cases (2) and (3) of Stage I, then clearly
ww′ ∈ E(G) holds for every w,w′ ∈ V \{y, z} at the end of the game. If on the other hand Max
does play according to Cases (2) or (3) of Stage I, then without loss of generality xy ∈ E(G)
(otherwise xz ∈ E(G) and the proof can be completed by an analogous argument). In these
cases, Max claims an edge and immediately proceeds to Stage II. Note that starting from that
point and until the end of the game, G \ {z, t} admits a perfect matching for every t ∈ V .
Hence dG(z) = 0, and it follows that ww′ ∈ E(G) holds for every w,w′ ∈ V \ {z} at the end of
the game. In either case we conclude that s(G0,PM) ≥

(
n−2
2

)
as claimed. 2

Lemma 4.4 Let n ≥ 8 be an even integer and let G0 = (V,E) be a graph on n vertices.
Assume that there exist vertices w1, w2, w3, w4 ∈ V such that G0[{w1, w2, w3}] ∼= K3, dG0(w1) =
dG0(w2) = dG0(w3) = 2, dG0(w4) = 0 and G0 \ {w1, w2, w3, w4} admits a Hamilton cycle C. If
Max is the second player, then s(G0,PM) ≥

(
n−4
2

)
.

Proof Max plays according to the following simple strategy which consists of two stages.

Stage I: Let uv denote the last edge claimed by Mini; we distinguish between the following
three cases:
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(1) If {u, v}∩{w1, w2, w3, w4} = ∅, then Max claims an arbitrary free edge xy such that
{x, y} ∩ {w1, w2, w3, w4} = ∅ and repeats Stage I; if this is not possible, then he
proceeds to Stage II.

(2) Otherwise, if u = w4 and v ∈ V \ {w1, w2, w3, w4}, then Max claims uv′, where v′ is
a neighbor of v in C. He then proceeds to Stage II.

(3) Otherwise, if u ∈ {w1, w2, w3} and v ∈ V \ {w1, w2, w3, w4}, then Max claims a free
edge u′v′, where u′ ∈ {w1, w2, w3} \ {u} and v′ is a neighbor of v in C. He then
proceeds to Stage II.

Stage II: Throughout this stage, Max follows the trivial strategy.

Note that at any point during the game, the graph G ∪ {wiw4} admits a perfect matching for
every 1 ≤ i ≤ 3; it follows that wiw4 /∈ E(G). In particular, the proposed strategy does account
for every legal move of Mini. Moreover, if Max proceeds from Case (1) to Stage II, then clearly
xy ∈ E(G) holds for every x, y ∈ V \{w1, w2, w3, w4} at the end of the game. Similarly, if Max
proceeds from Case (2) to Stage II, then xy ∈ E(G) holds for every x, y ∈ V \ {w1, w2, w3}
at the end of the game. Finally, if Max proceeds from Case (3) to Stage II, then xy ∈ E(G)
holds for every x, y ∈ V \ {w4} at the end of the game. In either case we conclude that
s(G0,PM) ≥

(
n−4
2

)
as claimed. 2

Lemma 4.5 Let n ≥ 8 be an even integer and let G0 = (V,E) be a graph on n vertices. Assume
that there exist vertices w1, w2, w3, w4 ∈ V such that w3w4 ∈ E, dG0(w1) = dG0(w2) = 0,
dG0(w3) = dG0(w4) = 1 and G0 \ {w1, w2, w3, w4} admits a Hamilton cycle C. If Max is the
second player, then s(G0,PM) ≥

(
n−4
2

)
.

Proof Max plays according to the following simple strategy which consists of two stages.

Stage I: Let uv denote the last edge claimed by Mini; we distinguish between the following
four cases:

(1) If {u, v}∩{w1, w2, w3, w4} = ∅, then Max claims an arbitrary free edge xy such that
{x, y} ∩ {w1, w2, w3, w4} = ∅ and repeats Stage I; if this is not possible, then he
proceeds to Stage II.

(2) Otherwise, if u ∈ {w1, w2} and v ∈ V \{w1, w2, w3, w4}, then Max claims uv′, where
v′ is a neighbor of v in C. He then follows the strategy described in the proof of
Lemma 4.2 until the end of the game.

(3) Otherwise, if u ∈ {w3, w4} and v ∈ V \{w1, w2, w3, w4}, then Max claims a free edge
u′v′, where v′ is a neighbor of v in C and u′ is the unique vertex in {w3, w4} \ {u}.
He then follows the strategy described in the proof of Lemma 4.1 until the end of
the game.

(4) Otherwise, if u ∈ {w1, w2} and v ∈ {w3, w4}, then Max claims uv′, where v′ is the
unique vertex in {w3, w4} \ {v}. He then follows the strategy described in the proof
of Lemma 4.4 until the end of the game.

Stage II: Throughout this stage, Max follows the trivial strategy.
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Note that at any point during the game, the graph G ∪ {w1w2} admits a perfect matching; it
follows that w1w2 /∈ E(G). In particular, the proposed strategy does account for every legal
move of Mini. Moreover, if Max never plays according to Cases (2), (3) and (4) of Stage I,
then clearly xy ∈ E(G) holds for every x, y ∈ V \ {w1, w2, w3, w4} at the end of the game. If
on the other hand Max does play according to Cases (2), (3) or (4) of Stage I, then it follows
by Lemmas 4.2, 4.1 and 4.4, respectively, that s(G0,PM) ≥

(
n−4
2

)
. In either case we conclude

that s(G0,PM) ≥
(
n−4
2

)
as claimed. 2

We can now describe Max’s strategy for the perfect matching game (n,PM). At any point
during Stages I – III, if Max is unable to follow the proposed strategy, then he skips to Stage
IV. The proposed strategy is divided into the following four stages.

Stage I: Max follows the long path strategy until G contains a path P = (u0, . . . , u`) of
length ` ∈ {n− 5, n− 4} which includes all vertices of positive degree. At that moment,
if ` = n− 4, then Max skips to Stage III, otherwise he proceeds to Stage II.

Stage II: Let V (G) \ V (P ) = {w1, w2, w3, w4}. Let uv denote the edge Mini claims in her
subsequent move; we distinguish between the following two cases:

(1) If {u, v} ∩ V (P ) 6= ∅, then Max plays as follows. If {u, v} ⊆ V (P ), then Max claims
u`w4. Otherwise, assume without loss of generality that u /∈ V (P ). Max then claims
u`u if it is free and u0u otherwise. In either case he extends P to a path of length
n− 4. By abuse of notation and for simplicity of presentation, we denote this path
by P = (u0, . . . , u`) as well. Max then proceeds to Stage III.

(2) Otherwise, assume without loss of generality that u = w3 and v = w4. Max claims
u0u`, and then follows the strategy described in the proof of Lemma 4.5 until the
end of the game.

Stage III: Let V (G) \ V (P ) = {w1, w2, w3}. Let uv denote the edge Mini claims in her
subsequent move; we distinguish between the following three cases:

(1) If {u, v} ⊆ V (P ), then Max claims a free edge xx′ such that {x, x′} ⊆ V (P ) and
repeats Stage III.

(2) Otherwise, if {u, v} ⊆ {w1, w2, w3}, then Max claims u0u` if it is free and an arbitrary
free edge xx′ such that {x, x′} ⊆ V (P ) otherwise. He then follows the strategy
described in the proof of Lemma 4.2 until the end of the game.

(3) Otherwise, assume without loss of generality that u ∈ V (P ) and v ∈ {w1, w2, w3}.
Max claims u0u` if it is free and an arbitrary free edge xx′ such that {x, x′} ⊆ V (P )
otherwise. He then follows the strategy described in the proof of Lemma 4.3 until
the end of the game.

Stage IV: Throughout this stage, Max follows the trivial strategy.

It remains to prove that Max can indeed follow the proposed strategy and that, by doing so,
he ensures that e(G) ≥

(
n−4
2

)
holds at the end of the game. Starting with the former, note that

Max can follow Stage I of the proposed strategy by Lemma 1.10 (throughout Stage I there are
isolated vertices in G and thus it does not admit a perfect matching). He can follow Stage II
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by Lemma 4.5 and by the properties of P , and can follow Stage III by Lemmas 4.2 and 4.3.
Finally, it is obvious that he can follow Stage IV of the proposed strategy.

As for the latter, if Max does not reach Stage IV of the proposed strategy, then it follows by
Lemmas 4.5, 4.2 and 4.3 that e(G) ≥

(
n−4
2

)
holds at the end of the game. If on the other hand

Max does reach Stage IV of the proposed strategy, then it follows by the description of the
proposed strategy that xy ∈ E(G) holds at the end of the game for every x, y ∈ V (P ) and
thus e(G) ≥

(
n−4
2

)
. 2

Proof of Theorem 1.7 Throughout this proof, we assume that n ≥ 2k, as otherwise
s(n,Mk) =

(
n
2

)
and so the assertion of the theorem holds trivially. We will use the fol-

lowing terminology: the parity of a player is odd if he is the first to move and even otherwise.
Assume first that the parity of Max is opposite to the parity of k. In order to prove that
s(n,Mk) ≥ n − 1, we present a strategy for Max. Before doing so, we prove the following
auxiliary lemma.

Lemma 4.6 Let k ≥ 2 be an integer and let G0 = (V,E) be a graph. Assume that there exists
a partition V = U ∪W such that ν(G0) = ν(G0 \W ) = k− 1. Assume further that there exist
vertices w1, w2 ∈ W and u ∈ U such that dG0(w1) = dG0(w2) = 1 and {uw1, uw2} ⊆ E. Then
Max, as the second player, has a strategy to ensure that at the end of the (G0,Mk) game,
dG(w,U) ≥ 1 will hold for every w ∈W .

Proof We present a strategy for Max; it is divided into the following two stages.

Stage I: At any point during this stage, let I = {w ∈ W : dG(w,U) = 0}. If I = ∅, then this
stage is over and Max proceeds to Stage II. Otherwise, Max claims uw, where w ∈ I is
an arbitrary vertex.

Stage II: Throughout this stage, Max follows the trivial strategy.

It is evident that, if Max is able to follow the proposed strategy, then dG(w,U) ≥ 1 holds for
every w ∈ W at the end of the game. It thus suffices to prove that he can indeed do so. We
will prove this by induction on the size of I in the beginning of the game. If |I| = 0, then
there is nothing to prove, as clearly Max can follow Stage II of the proposed strategy. Assume
that our claim holds if |I| ≤ m for some non-negative integer m; we will prove it holds for
m+ 1 as well. Let xy denote the edge Mini claims in her first move. Since no edge with both
endpoints in W is legal (with respect to G0 andMk), we can assume without loss of generality
that x ∈ U . In particular, |{x, y} ∩ {w1, w2}| ≤ 1 and thus we can assume that y 6= w1. If
I = ∅ holds immediately after this move, then there is nothing to prove; hence, let z ∈ I be an
arbitrary vertex and assume that Max claims uz in his first move. Suppose for a contradiction
that this is not a legal move, that is, that H := G0 ∪ {xy, uz} admits a matching of size k.
Since this matching must contain uz, and no matching of H can cover both z and w1, it follows
that ν(H \ {w1}) = k. On the other hand, ν(H \ {z}) = k − 1 holds by assumption. This is
a contradiction as clearly H \ {w1} is isomorphic to H \ {z}. Immediately after Max’s first
move, z ∈ W \ I and thus |I| ≤ m. Moreover, dH(w1) = dH(z) = 1 and {uw1, uz} ⊆ E(H).
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By the induction hypothesis, we conclude that Max can follow the proposed strategy until the
end of the game. 2

We can now describe Max’s strategy for the k-matching saturation game (n,Mk). At any
point during the game, if Max is unable to follow the proposed strategy, then he forfeits the
game. The proposed strategy is divided into the following three stages.

Stage I: Max follows the long path strategy until G contains a path P = (u0, . . . , u`) of length
` ∈ {2k − 4, 2k − 3} which includes all vertices of positive degree. At that moment, if
` = 2k − 4, then Max proceeds to Stage II, otherwise he skips to Stage III.

Stage II: Let wv denote the edge Mini claims in her subsequent move; we distinguish between
the following two cases:

(1) If {w, v}∩V (P ) 6= ∅, then Max plays as follows. If {w, v} ⊆ V (P ), then Max claims
u`z for an arbitrary vertex z ∈ V (G) \ V (P ). Otherwise, assume without loss of
generality that w /∈ V (P ). Max then claims u`w if it is free and u0w otherwise. In
either case he extends P to a path of length 2k − 3. By abuse of notation and for
simplicity of presentation, we denote this path by P = (u0, . . . , u`) as well. Max
then proceeds to Stage III.

(2) Otherwise, assume without loss of generality that dG(u0) = 1 (recall property (c) in
Lemma 1.10). Max claims u1z for an arbitrary isolated vertex z, and then follows the
strategy described in the proof of Lemma 4.6, with U = {w, v, u1, . . . , u`}, u = u1
and {w1, w2} = {z, u0}, until the end of the game.

Stage III: Let wv denote the edge Mini claims in her subsequent move; we distinguish between
the following two cases:

(1) If {w, v} ⊆ V (P ), then Max claims a free edge xy such that {x, y} ⊆ V (P ) and
repeats Stage III.

(2) Otherwise, assume without loss of generality that w ∈ V (P ) and v /∈ V (P ). Max
claims wz for some arbitrary isolated vertex z, and then follows the strategy de-
scribed in the proof of Lemma 4.6, with U = V (P ), u = w and {w1, w2} = {z, v},
until the end of the game.

It remains to prove that Max can indeed follow the proposed strategy and that, by doing so,
he ensures that e(G) ≥ n−1 holds at the end of the game. Starting with the former, note that
Max can follow Stage I of the proposed strategy by Lemma 1.10 (throughout Stage I there are
at most 2k − 2 vertices of positive degree in G and thus ν(G) < k). An analogous argument
shows that he can follow Case (1) of Stage II. Max can make his first move in Case (2) of Stage
II, as n ≥ 2k and immediately after this move, there are exactly 2k vertices of positive degree
in G but no matching of G covers both z and u0. Moreover, he can follow the remainder of
Case (2) of Stage II by Lemma 4.6. Next, consider Stage III. Mini cannot claim an edge wv
such that {w, v}∩V (P ) = ∅ as no such edge is legal. Therefore, Cases (1) and (2) of Stage III
account for every legal move of Mini. Suppose for a contradiction that at some point during
the game Max forfeits the game while attempting to follow Case (1) of Stage III. Since every
free edge with both endpoints in V (P ) is clearly legal, it follows that no such edges remain.
Therefore, the total number of edges played thus far is

(
2k−2
2

)
= (k−1)(2k−3) and it is Max’s
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turn to play. Since Max’s parity is opposite to that of k, this is a contradiction. Moreover,
Max can make his first move in Case (2) of Stage III, as immediately after this move, there are
exactly 2k vertices of positive degree in G but no matching of G covers both z and v. Finally,
he can follow the remainder of Case (2) of Stage III by Lemma 4.6.

In order to prove that e(G) ≥ n − 1 holds at the end of the game, we examine the graph G
at the end of the game. If the game ends when Max plays according to Case (2) of Stage
III, then G is connected and thus e(G) ≥ n − 1. Otherwise, the game ends when Max plays
according to Case (2) of Stage II. Suppose for a contradiction that e(G) < n− 1 holds at the
end of the game; in particular, G must be disconnected. It thus follows by the description of
the proposed strategy, that G consists of exactly two connected components, C1 ⊇ V (P ) and
C2 ⊇ {w, v}. Since P admits a matching of size k−2 and ν(G) < k, it follows that C2 is either
a star or a triangle. Since e(G) ≥ n − 1 holds in the latter case, we can assume that C2 is a
star. However, any edge xy, where x is the center of the star and y ∈ C1, is still legal in this
case, contrary to our assumption that the game is over.

Next, assume that the parity of Mini is opposite to the parity of k. Since the case k = 2 was
considered in [14], we can assume that k ≥ 3. In order to prove the theorem, we present a
strategy for Mini. In order to simplify the description of the strategy, we first consider several
possible end-games which are described in the following lemmas. Since these lemmas and their
proofs are quite similar to those of Lemmas 4.1 – 4.5, we will omit some of the details. Though
this is not always necessary, in each of these lemmas we assume that Mini is the second player.

Lemma 4.7 Let k ≥ 3 be an integer and let G0 = (V,E) be a graph on n ≥ 6 vertices.
Assume that there exists a non-trivial connected component C1 of G0 such that G0[C1] admits
a Hamilton cycle C and that dG0(u) = 0 for every u ∈ V \ C1.

(a) If |C1| = 2k − 1, then s(G0,Mk) ≤
(
2k−1
2

)
.

(b) If |C1| = 2k − 2 and
(
2k−2
2

)
− e(G0) is even, then s(G0,Mk) ≤

(
2k−1
2

)
.

Proof Part (a) is trivial since, throughout the (G0,Mk) game, the only legal edges are those
with both endpoints in C1. Hence, e(G) ≤

(
2k−1
2

)
will hold at the end of the game no matter

how Mini plays. As for (b), Mini plays according to the following simple strategy.

Stage I: Let uv denote the last edge claimed by Max; we distinguish between the following
two cases:

(1) If {u, v} ⊆ C1, then Mini claims an arbitrary free edge ww′ such that {w,w′} ⊆ C1

and repeats Stage I.

(2) Otherwise, assume without loss of generality that v ∈ C1 and u /∈ C1. Mini claims
uv′, where v′ is a neighbor of v in C. She then proceeds to Stage II.

Stage II: Throughout this stage, Mini follows the trivial strategy.

Since no edge xy such that {x, y} ∈ V \ C1 is legal, it follows that the proposed strategy
does account for every legal move of Max. Moreover, since Mini is the second player and(
2k−2
2

)
− e(G0) is even, it follows that she can play according to Case (1) of Stage I. Hence, at
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some point during the game, Max must claim an edge uv such that |{u, v}∩C1| = 1. By Case
(2) of Stage I and by the analysis of Part (a) of the lemma, we conclude that e(G) ≤

(
2k−1
2

)
will hold at the end of the game. 2

Lemma 4.8 Let k ≥ 3 be an integer and let G0 = (V,E) be a graph on n ≥ 6 vertices.
Assume that there are two non-trivial connected component C1 and C2 of G0, where |C1| =
2k − 3. Assume further that G0[C1] admits a Hamilton cycle C and that dG0(u) = 0 for every
u ∈ V \ (C1 ∪ C2).

(a) If G0[C2] ∼= K3, then s(G0,Mk) ≤
(
2k−1
2

)
.

(b) If G0[C2] ∼= K2 and
(
2k−3
2

)
− e(G0[C1]) is even, then s(G0,Mk) ≤

(
2k−1
2

)
.

Proof Part (a) is trivial since, throughout the (G0,Mk) game, the only legal edges are those
with both endpoints in C1. Hence, by following the trivial strategy, Mini ensures that e(G) ≤
3 +

(
2k−3
2

)
≤
(
2k−1
2

)
will hold at the end of the game. As for (b), Mini plays according to the

following simple strategy.

Stage I: Let uv denote the last edge claimed by Max; we distinguish between the following
two cases:

(1) If {u, v} ⊆ C1, then Mini claims an arbitrary free edge ww′ such that {w,w′} ⊆ C1

and repeats Stage I.

(2) Otherwise, assume without loss of generality that u ∈ C2. Let u′ be the unique
vertex in C2 \ {u}. If v ∈ C1, Mini claims u′v′, where v′ is a neighbor of v in C.
Otherwise, Mini claims u′v. In either case, she then proceeds to Stage II.

Stage II: Throughout this stage, Mini follows the trivial strategy.

Since every legal edge either has two endpoints in C1 or one endpoint in C2, the proposed
strategy does account for every legal move of Max. Moreover, since Mini is the second player
and

(
2k−3
2

)
− e(G0[C1]) is even, it follows that she can play according to Case (1) of Stage I.

Hence, at some point during the game, Max must claim an edge uv such that |{u, v}∩C1| ≤ 1.
If |{u, v} ∩ C1| = 0, then by Case (2) of Stage I and by the analysis of Part (a) of the lemma,
we conclude that e(G) ≤

(
2k−1
2

)
will hold at the end of the game. If |{u, v} ∩C1| = 1, then by

Case (2) of Stage I and by Lemma 4.7(a), we conclude that e(G) ≤
(
2k−1
2

)
will hold at the end

of the game. 2

Lemma 4.9 Let k ≥ 4 be an integer and let G0 = (V,E) be a graph on n ≥ 8 vertices.
Assume that there are two non-trivial connected component C1 and C2 of G0, where |C1| =
2k − 4. Assume further that G0[C1] admits a Hamilton cycle C, that dG0(u) = 0 for every
u ∈ V \ (C1 ∪ C2), and that

(
2k−4
2

)
− e(G0[C1]) is even.

(a) If G0[C2] ∼= K3, then s(G0,Mk) ≤
(
2k−1
2

)
.

(b) If G0[C2] ∼= K2, then s(G0,Mk) ≤
(
2k−1
2

)
.
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Proof Starting with (a), Mini plays according to the following simple strategy.

Stage I: Let uv denote the last edge claimed by Max; we distinguish between the following
two cases:

(1) If {u, v} ⊆ C1, then Mini claims an arbitrary free edge ww′ such that {w,w′} ⊆ C1

and repeats Stage I.

(2) Otherwise, assume without loss of generality that v ∈ C1 and u /∈ C1. If u ∈ C2,
Mini claims u′v′, where u′ is some vertex of C2 \ {u} and v′ is a neighbor of v in
C. Otherwise, Mini claims uv′, where v′ is a neighbor of v in C. In either case, she
then proceeds to Stage II.

Stage II: Throughout this stage, Mini follows the trivial strategy.

Since every legal edge has at least one endpoint in C1, it follows that the proposed strategy
does account for every legal move of Max. Moreover, since Mini is the second player and(
2k−4
2

)
− e(G0[C1]) is even, it follows that she can play according to Case (1) of Stage I. Hence,

at some point during the game, Max must claim an edge uv such that |{u, v} ∩ C1| = 1. If
|{u, v} ∩C2| = 1, then by Case (2) of Stage I and by Lemma 4.7(a) and its proof, we conclude
that e(G) ≤

(
2k−1
2

)
will hold at the end of the game. Otherwise, by Case (2) of Stage I and by

Lemma 4.8(a) and its proof, we conclude that e(G) ≤
(
2k−1
2

)
will hold at the end of the game.

As for (b), Mini plays according to the following simple strategy. Let uv denote the last edge
claimed by Max; we distinguish between the following three cases:

(1) If {u, v} ⊆ C1, then Mini claims an arbitrary free edge ww′ such that {w,w′} ⊆ C1.

(2) Otherwise, if {u, v} ∩ C1 = ∅, assume without loss of generality that u ∈ C2 and v ∈
V \ (C1∪C2). Mini claims u′v, where u′ is the unique vertex in C2 \{u} and then follows
the strategy described in the proof of Part (a) of the lemma until the end of the game.

(3) Otherwise, assume without loss of generality that v ∈ C1 and let v′ be a neighbor of v in C.
If u ∈ C2, Mini claims u′v′, where u′ is the unique vertex in C2 \{u} and then follows the
strategy described in the proof of Lemma 4.7(b) until the end of the game. Otherwise,
Mini claims uv′ and then follows the strategy described in the proof of Lemma 4.8(b)
until the end of the game.

Since every legal edge has at least one endpoint in C1 ∪ C2, it follows that the proposed
strategy does account for every legal move of Max. Moreover, since Mini is the second player
and

(
2k−4
2

)
− e(G0[C1]) is even, it follows that she can play according to Case (1). Hence,

at some point during the game, Max must claim an edge uv such that |{u, v} ∩ C1| ≤ 1. If
|{u, v}∩C1| = 0, then by Case (2) and by Part (a) of the lemma, we conclude that e(G) ≤

(
2k−1
2

)
will hold at the end of the game. Otherwise, by Case (3) and by Lemmas 4.7(b) and 4.8(b),
we conclude that e(G) ≤

(
2k−1
2

)
will hold at the end of the game. 2

Lemma 4.10 Let k ≥ 3 be an integer and let G0 = (V,E) be a graph on n ≥ 6 vertices.
Assume that there exists a non-trivial connected component C1 of G0 of order 2k− 3 such that
G0[C1] admits a Hamilton cycle C. Let x ∈ V \C1 and assume that dG0(x) ≤ 1 and dG0(u) = 0
for every u ∈ V \ (C1 ∪ {x}).
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(a) If
(
2k−2
2

)
− e(G0) is even and there exists a vertex w ∈ C1 such that wx ∈ E, then

s(G0,Mk) ≤
(
2k−1
2

)
.

(b) If
(
2k−3
2

)
− e(G0) is odd and dG0(x) = 0, then s(G0,Mk) ≤

(
2k−1
2

)
.

Proof Starting with (a), Mini plays according to the following simple strategy.

Stage I: Let uv denote the last edge claimed by Max; we distinguish between the following
two cases:

(1) If {u, v} ⊆ C1 ∪ {x}, then Mini claims a free edge xw′, where w′ is a neighbor of w
in C. She then follows the strategy described in the proof of Lemma 4.7(b) until
the end of the game.

(2) Otherwise, assume without loss of generality that dG0(u) = 0. If v = x, Mini claims
uz, where z ∈ C1 is an arbitrary vertex and otherwise she claims ux. In either case,
she then proceeds to Stage II.

Stage II: Throughout this stage, Mini follows the trivial strategy.

Since Mini is the second player and
(
2k−2
2

)
− e(G0) is even, it follows that Mini can play

according to Case (1) of Stage I and thus, by Lemma 4.7(b), ensure that e(G) ≤
(
2k−1
2

)
will

hold at the end of the game. If Mini plays according to Case (2) of Stage I, then after her first
move, every legal edge has both endpoints in C1 ∪ {u, x} and thus e(G) ≤

(
2k−1
2

)
will hold at

the end of the game.

As for (b), Mini plays according to the following simple strategy. Let uv denote the last edge
claimed by Max; we distinguish between the following three cases:

(1) If {u, v} ⊆ C1, then Mini claims an arbitrary free edge ww′ such that dG0(w) = dG0(w′) = 0
and then follows the strategy described in the proof of Lemma 4.8(b) until the end of
the game.

(2) Otherwise, if {u, v} ∩ C1 = ∅, then Mini claims an arbitrary free edge ww′ such that
{w,w′} ⊆ C1 and then follows the strategy described in the proof of Lemma 4.8(b) until
the end of the game.

(3) Otherwise, assume without loss of generality that v ∈ C1 and dG0(u) = 0. Mini claims
uv′, where v′ is a neighbor of v in C and then follows the strategy described in the proof
of Lemma 4.7(b) until the end of the game.

Since
(
2k−3
2

)
− e(G0) is odd, it follows that Mini can play according to the proposed strategy.

Moreover, it follows by Lemmas 4.8(b) and 4.7(b) that e(G) ≤
(
2k−1
2

)
will hold at the end of

the game. 2

We can now describe Mini’s strategy for the k-matching saturation game (n,Mk). At any
point during the game, if Mini is unable to follow the proposed strategy, then she forfeits the
game. The proposed strategy is divided into the following three stages.

25



Stage I: Mini follows the long path strategy until G contains a path P = (u0, . . . , u`) of length
` ∈ {2k − 5, 2k − 4} which includes all vertices of positive degree. At that moment, if
` = 2k − 5, then Mini proceeds to Stage II, otherwise she skips to Stage III.

Stage II: Let uv denote the edge Max claims in his subsequent move; we distinguish between
the following two cases:

(1) If {u, v} ∩ V (P ) 6= ∅, then Mini plays as follows. If {u, v} ⊆ V (P ), then Mini claims
u`z for an arbitrary vertex z ∈ V (G) \ V (P ). Otherwise, assume without loss of
generality that u /∈ V (P ). Mini then claims u`u if it is free and u0u otherwise. In
either case she extends P to a path of length 2k − 4. By abuse of notation and for
simplicity of presentation, we denote this path by P = (u0, . . . , u`) as well. Mini
then proceeds to Stage III.

(2) Otherwise, Mini claims the edge u0u`, and then plays according to the strategy
described in the proof of Lemma 4.9(b) until the end of the game.

Stage III: Let uv denote the edge Max claims in his subsequent move. Mini claims u0u`
if it is free and an arbitrary edge ww′ such that {w,w′} ⊆ V (P ) otherwise; we then
distinguish between the following three cases:

(1) If |{u, v} ∩ V (P )| = 0, then Mini plays according to the strategy described in the
proof of Lemma 4.8(b) until the end of the game.

(2) If |{u, v} ∩ V (P )| = 1, then Mini plays according to the strategy described in the
proof of Lemma 4.10(a) until the end of the game.

(3) If |{u, v} ∩ V (P )| = 2, then Mini plays according to the strategy described in the
proof of Lemma 4.10(b) until the end of the game.

It follows by Lemma 1.10 that Mini can play according to Stage I of the proposed strategy.
Lemma 1.10 also ensures that u0u` is free if Mini wishes to follow Case (2) of Stage II (the
only possible exception is the case ` = 1, but this can only occur if k = 3 and Mini is the first
player; this case is excluded by our assumption that the parity of Mini is opposite to the parity
of k). Mini can play according to the remainder of the proposed strategy by our assumption
that the parity of Mini is opposite to the parity of k.

Finally, it follows by Lemmas 4.9(b), 4.8(b), 4.10(a) and 4.10(b) that e(G) ≤
(
2k−1
2

)
will hold

at the end of the game. 2

5 Concluding remarks and open problems

In this paper we proved lower and upper bounds on the scores of several natural saturation
games, namely, connectivity, colorability and matching games. Other natural graph properties
could be considered; one interesting example is Hamiltonicity. LetH denote the graph property
of admitting a Hamilton cycle. It was proved by Ore [13] that ex(n,H) =

(
n−1
2

)
+ 1. On the

other hand, it is known (see, e.g., [8]) that if n is not too small, then sat(n,H) = d3n/2e. Our
attempts to determine s(n,H) lead us to make the following conjecture.
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Conjecture 5.1 s(n,H) = Θ(n2).

All games considered in this paper require Max and Mini to avoid certain large structures. An-
other interesting line of research would be to avoid small structures. Given a fixed graph H, let
FH denote the graph property of admitting a copy of H. It follows from the celebrated Stone-
Erdős-Simonovits Theorem (see, e.g., [3]) that ex(n,FH) = Θ(n2) holds for every non-bipartite
graph H. On the other hand, it was proved by Kászonyi and Tuza [11] that sat(n,FH) = O(n)
for every graph H. As noted in the introduction, very little is known about s(n,FH), even in
the case H = K3. Several simpler cases were considered in [4].

For most graph properties P considered in this paper, we have shown that the score of the
(n,P) saturation game is very close to the trivial upper bound ex(n,P). A bold exception
are the k-matching games under some assumptions on the parity of k and the identity of the
first player. It is not hard to find examples of properties P for which the trivial lower bound
s(n,P) ≥ sat(n,P) is in fact tight. For example, as shown in Theorem 1.7, if Mini is the first
player, then s(n,M2) = 3 = sat(n,M2). In fact, there are infinitely many such examples.
For every integer k ≥ 2, let αk denote the property of having independence number less than
k. If G ∈ αk then clearly G admits an independent set I of size k and uv ∈ E(G) whenever
{u, v} \ I 6= ∅. It follows that sat(n, αk) = ex(n, αk) =

(
n
2

)
−
(
k
2

)
and thus s(n, αk) =

(
n
2

)
−
(
k
2

)
as well. It would be interesting to find less obvious examples of the tightness of the trivial
lower bound.
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