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Abstract

We give several results showing that different discrete structures typically gain certain span-
ning substructures (in particular, Hamilton cycles) after a modest random perturbation. First,
we prove that adding linearly many random edges to a dense k-uniform hypergraph ensures
the (asymptotically almost sure) existence of a perfect matching or a loose Hamilton cycle.
The proof involves an interesting application of Szemerédi’s Regularity Lemma, which might
be independently useful. We next prove that digraphs with certain strong expansion proper-
ties are pancyclic, and use this to show that adding a linear number of random edges typically
makes a dense digraph pancyclic. Finally, we prove that perturbing a certain (minimum-degree-
dependent) number of random edges in a tournament typically ensures the existence of multiple
edge-disjoint Hamilton cycles. All our results are tight.

2010 Mathematics subject classification: 05C80, 05C35.

1 Introduction and Results

We say that a graph is Hamiltonian if it has a Hamilton cycle: a simple cycle containing every vertex
in the graph. Hamiltonicity is a central notion in graph theory and has been extensively studied
in a wide range of contexts. In particular, due to a seminal paper by Karp [9], it has become a
canonical NP-complete problem to determine whether an arbitrary graph is Hamiltonian. There are
nevertheless a variety of easily-checkable conditions that guarantee Hamiltonicity. The most famous
of these is given by a classical theorem of Dirac [4], which states that any n-vertex graph (n ≥ 3)
with minimum degree at least n/2 is Hamiltonian.

Dirac’s theorem demands a very strong density condition, but in a certain asymptotic sense “almost
all” dense graphs are Hamiltonian. If we fix α > 0 and select a graph uniformly at random among
the (labelled) graphs with n vertices and α

(
n
2

)
edges, then the degrees will probably each be about

αn. Such a random graph is Hamiltonian with probability 1 − o(1) (we say it is Hamiltonian
asymptotically almost surely, or a.a.s.). This follows from a stronger result independently due to
Pósa [19] and Korshunov [12] that gives a threshold for Hamiltonicity: a random n-vertex, m-edge
graph is Hamiltonian a.a.s. if m� n log n, and fails to be Hamiltonian a.a.s. if m� n log n. Here
and from now on, all asymptotics are as n→∞, and we implicitly round large quantities to integers.
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In [2], Bohman, Frieze and Martin studied the random graph model that starts with a dense graph
and adds m random edges (this model has since been studied in a number of other contexts; see
for example [1, 13]). They found that to ensure Hamiltonicity in this model we only need m to
be linear, saving a logarithmic factor over the standard model where we start with nothing. To be
precise, [2, Theorem 1] says that for every α > 0 there is c = c(α) such that if we start with a graph
with minimum degree at least αn and add cn random edges, then the resulting graph will a.a.s.
be Hamiltonian. Note that some dense graphs require a linear number of extra edges to become
Hamiltonian (consider the complete bipartite graph with partition sizes n/3 and 2n/3), so the order
of magnitude of this result is tight. We can interpret this theorem as quantifying the “fragility” of
the few dense graphs that are not Hamiltonian, by determining the amount of random perturbation
that is necessary to make a dense graph Hamiltonian. A comparison can be drawn to the notion of
smoothed analysis of algorithms introduced by Spielman and Teng [22], which involves studying the
performance of algorithms on randomly perturbed inputs.

Our first contribution in this paper is to generalize the aforementioned theorem to hypergraphs (and
to give a corresponding result for perfect matchings, which is nontrivial in the hypergraph setting).
Unfortunately, there is no single most natural notion of a cycle or of minimum degree in hypergraphs.
A k-uniform loose cycle is a k-uniform hypergraph with a cyclic ordering on its vertices such that
every edge consists of k consecutive vertices and every pair of consecutive edges intersects in exactly
one vertex. The degree of a set of vertices is the number of edges that include that set, and the
minimum (k − 1)-degree δk−1 is the minimum degree among sets of k− 1 vertices. Let Hk(n,m) be
the uniform distribution on m-edge k-uniform hypergraphs on the vertex set [n].

Theorem 1. For each α > 0 there is ck = ck(α) such that:

(a) If H is a k-uniform hypergraph on [kn] with δk−1(H) ≥ αn, and RM ∈ Hk(kn, ckn), then
H ∪R a.a.s. has a perfect matching.

(b) If H is a k-uniform hypergraph on [(k − 1)n]with δk−1(H) ≥ αn, and R ∈ H((k − 1)n, ckn),
then H ∪R a.a.s. has a loose Hamilton cycle.

All the motivation for graphs is still relevant in the hypergraph setting. Dirac’s theorem approxi-
mately generalizes to hypergraphs (see [10]): for small ε and large n, if the minimum (k − 1)-degree
of an n-vertex k-uniform hypergraph is greater than (1/(2(k − 1)) + ε)n then that hypergraph con-
tains a loose Hamilton cycle. Just as for graphs, the threshold for both perfect matchings and loose
Hamilton cycles in k-uniform hypergraphs is n log n random edges (see [5] and [8, Corollary 2.6]),
so “almost all” dense hypergraphs have Hamilton cycles and perfect matchings.

We will prove Theorem 1, and show that it is tight, in Section 2. The methods usually employed
to study Hamilton cycles and perfect matchings in random graphs are largely ineffective in the
hypergraph setting, so we need a very different proof. In particular, we cannot easily manipulate
paths for Pósa-type arguments, and we do not have an analogue of Hall’s marriage theorem allowing
us to deduce the existence of a perfect matching from an expansion property. Our proof involves
reducing the theorem to the existence of a perfect matching in a certain randomly perturbed dense
bipartite graph. The naïve approach to prove the existence of a perfect matching in this graph would
be to use Hall’s theorem and the union bound. Unfortunately this fails, and in fact the “reason” for
a perfect matching in this perturbed graph seems to be quite different depending on the structure
of the initial bipartite graph. The proof therefore makes use of the structural description provided
by Szemerédi’s regularity lemma in an interesting way.

Our second contribution in this paper is a theorem giving a general expansion condition for pan-
cyclicity. We say an n-vertex (di-)graph is pancyclic if it contains cycles of all lengths ranging from
3 to n.
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Theorem 2. Let D be a directed graph on n vertices with all in- and out- degrees at least 8k, and
suppose for every pair of disjoint sets A,B ⊆ V (D) with |A| = |B| ≥ k, there is an arc from A to
B. Then D is pancyclic.

We hope this theorem could be of independent interest, but our particular motivation is that it
implies a number of results about randomly perturbed graphs and digraphs. In particular it provides
very simple proofs of the theorems in [2] concerning Hamiltonicity in randomly perturbed graphs
and digraphs, and allows us to extend these theorems to pancyclicity. Most generally, Theorem 2
implies the following theorem. Let D(n,m) be the uniform distribution on m-arc digraphs on the
vertex set [n] (in this paper we allow 2-cycles in digraphs, so there are 2

(
n
2

)
possible arcs).

Theorem 3. For each α > 0, there is c = c(α) such that if D is a digraph on [n] with all in- and
out- degrees at least αn, and R ∈ D(n, cn), then D ∪R is a.a.s. pancyclic.

We will prove Theorems 2 and 3 in Section 3.

Our final theorem concerns randomly perturbed tournaments. The model that starts with a fixed
(di-/hyper-)graph and adds random edges is not suitable for studying random perturbation in tour-
naments, because we want our perturbed tournament to remain a tournament. There are several
other models of random perturbation we could consider that do allow us to make sense of randomly
perturbed tournaments, or are more natural in certain contexts. However, the types of results in
this paper are not sensitive to the model used. We will briefly describe a few different models here.

First, note that for most practical purposes, models that involve the selection of m random edges are
equivalent to models that involve the selection of each edge with probability p independently, where
m = pN and N is the total number of possible edges. One perspective or the other can be more
intuitive or result in cleaner proofs; we will use both interchangeably as is convenient without further
discussion. In all the situations in this paper, equivalence can be proved with standard conditioning
and coupling arguments (see for example [7, Section 1.4]).

As suggested by Spielman and Teng in [21, Definition 1], one possible alternative model is to change
random edges, instead of adding them. So, for our results so far, instead of taking the union of a
fixed dense object with a random sparse object, we would take the symmetric difference. Our results
still hold in this alternative model, basically because we can break up such a random perturbation
into a phase that deletes edges (this does not destroy denseness), and a phase that adds edges. One
undesirable quirk of this model is that it is not “monotonic”: if we change too many edges then we
“lose our randomness” and end up at the complement of our original object.

A second alternative model is to start with our fixed object and “make it more random” by inter-
polating slightly towards the corresponding uniform distribution. For example, in the graph case
we could randomly designate a small number of pairs of vertices for “resampling” and then decide
whether the corresponding edges should be present uniformly and independently at random. This
is mostly equivalent to the symmetric difference model, and is the model in which we prefer to state
our theorem about randomly perturbed tournaments.

Although it is easy to construct tournaments with no Hamilton cycle, here we prove that every
tournament becomes Hamiltonian after a small random perturbation. We also show that randomly
perturbed tournaments are not just Hamiltonian, but have multiple edge-disjoint Hamilton cycles.
Moreover, we can give stronger results for tournaments with large minimum in- and out- degrees.
Recall that ω(f) represents a function that grows faster than f (to be precise, g = ω(f) means
g/f →∞).
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Theorem 4. Consider a tournament T with n vertices and all in- and out- degrees at least d.
Independently choose m = ω(n/(d+ 1)) random edges of T and orient them uniformly at random.
For any constant q, the resulting perturbed tournament P a.a.s. has q arc-disjoint Hamilton cycles.

Note that we allow for the case where the minimum degree d is zero, and where d is an arbitrary
function of n. We will prove Theorem 4, and show that it is tight, in Section 4.

2 Perfect Matchings and Hamilton Cycles in Hypergraphs

We first make some observations about our minimum degree requirement. The minimum q-degree
δq(H) of a hypergraph H is the minimum degree among all sets of q vertices. Note that this
generalizes the two notions of denseness for graphs: in some contexts, we say graphs are dense if
they have many edges, whereas in this paper we need a stronger notion of graph denseness based on
minimum degree. For a k-uniform hypergraph H, a double-counting argument shows that if q ≤ p
then

δq(H) ≥ δp(H)

(
n− q
p− q

)/(k − q
p− q

)
.

So, imposing that a k-uniform hypergraph has large (k − 1)-degree ensures that it has large q-degrees
for all q. In particular, our requirement δk−1(H) = Ω(n) actually implies δq(H) = Ω

(
nk−q

)
for all q.

Next, note that Theorem 1 is tight for essentially the same reason as its corresponding theorem
for graphs. Consider the dense “complete bipartite hypergraph” which has two parts of sizes n and
2kn, and has all possible k-edges that contain at least one vertex from each part. Only 2n of these
edges can contribute to a loose Hamilton cycle, so a linear number must be added to complete the
necessary (2k + 1)n/(k − 1) edges. Similarly, this graph contains only n out of the (2k + 1)n/k
required edges in a perfect matching.

Now we proceed to the proof of Theorem 1, which will follow from a sequence of lemmas. We will
assume k ≥ 3, since the case k = 2 is proved in [2]. The first step is to show that R almost gives
the structure of interest on its own. Let a partial-cycle be a hypergraph which can be extended to a
loose Hamilton cycle by adding edges. Recall that Hk(n,m) is the uniform distribution on m-edge
k-uniform hypergraphs on the vertex set [n].

Lemma 5. For any ε > 0, there is ck = ck(ε) such that:

(a) RM ∈ Hk(kn, ckn) a.a.s. has a matching of (1− ε)n edges.

(b) RH ∈ Hk((k − 1)n, ckn) a.a.s. has a partial-cycle with (1− ε)n edges.

Proof. First we define a loose path by analogy with loose cycles: a k-uniform loose path is a hyper-
graph with a vertex ordering such that every edge consists of k consecutive vertices and every pair
of consecutive edges intersects in exactly one vertex. We say that the edges at the start and at the
end of the ordering are extremal edges. A matching is a collection of loose paths of length 1, and
a partial-cycle is any collection of loose paths with enough vertices left over to link them together
into a cycle.

We will first prove the following:
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Claim: for any ` ≥ 1 and γ > 0, there is h = h(`, γ) such that the following holds. In a random
hypergraph R ∈ Hk(kn, hn), a.a.s. every set of γn vertices contains a loose path of length `.

Parts (a) and (b) of the Lemma will follow from this claim.

In accordance with the discussion in the introduction, it is equivalent to consider the model for R
where each edge is independently present with probability p = hn/

(
kn
k

)
= O

(
n1−k).

The probability a particular pair of edges is present in R is p2. There are O
(
n2
)
pairs of vertices

and for each there are O
((

n−2
k−2

)2)
= O

(
n2(k−2)

)
pairs of edges containing both those vertices. So,

the expected number of pairs of vertices which are contained in more than one edge (have degree
more than one) is O

(
n2n2(k−2)p2

)
= O(1). By Markov’s inequality, there are a.a.s. fewer than γn/2

such pairs of vertices. So if we delete a set D containing one member of each of those pairs, then
every pair of vertices in the remaining hypergraph has degree at most one.

Let d = k`. For large h, using the Chernoff bound together with the union bound, it is easy to show
that a.a.s. every set of γn/2 vertices spans at least dγn/2 edges, which is to say that the average
1-degree in the induced subhypergraph is at least kd. We assume this holds for the remainder of the
proof.

Every set S of γn vertices includes a set of γn/2 vertices disjoint from D, which has average 1-
degree at least kd. Deleting a vertex of degree less than d increases the average degree of the
induced subhypergraph, so S\D includes a set of vertices spanning a subhypergraph Q of R with
minimum degree at least d. Let P be a longest loose path in Q and let v be a vertex with degree
one in P , in one of the extremal edges of P . Since P cannot be extended to a longer path, each
of the (at least d) edges containing v also contains another vertex u of P . But because Q contains
no vertices from D, there is at most one edge containing both v and u, so P must have at least d
vertices and therefore has length at least `. This proves our claim.

We now prove Part (a). Consider a matching of maximum size in RM. There can be no edge
consisting of unmatched vertices because this would allow us to extend the matching, contradicting
maximality. Applying our claim with γ = kε and ` = 1, we can see that if ck is large enough then
a.a.s. every set of kεn vertices spans at least one edge in R. This proves there are fewer than kεn
vertices unmatched after our maximum matching, hence our matching has at least (1− ε)n edges.

Finally we prove Part (b), using roughly the same idea. It takes (k − 2)q additional vertices to link
q loose paths together into a loose cycle, and a union of q disjoint loose paths of length ` ≥ 1 has
(`(k − 1) + 1)q vertices. So, such a union of paths is a partial-cycle in RH precisely when

(k − 2)q + (`(k − 1) + 1)q ≤ (k − 1)n,

which simplifies to the condition q(`+ 1) ≤ n.

We will apply our claim with ` = 1/ε and γ = (k − 2)/(`+ 1). Consider a maximum-size collection
of disjoint length-` loose paths in RH. Our claim proves that if ck is large enough then there are
fewer than (k − 2)n/(`+ 1) vertices left over after our maximal collection of loose paths. This means
our maximal collection has at least

(k − 1)n− (k − 2)n/(`+ 1)

`(k − 1) + 1
= n/(`+ 1) =: q

loose paths. Since q(`+ 1) ≤ n, a subcollection of q of these loose paths gives a partial-cycle, which
has `q = (1− 1/(`+ 1))n > (1− ε)n edges.
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The second step to prove Theorem 1 is to show that a dense hypergraph plus a large partial structure
a.a.s. gives the structure we are looking for. For both theorems, we will be able to reduce this step
to the following lemma.

Lemma 6. There is ξ = ξ(α) > 0 such that the following holds. Let G be a bipartite graph with
parts A,B of equal size n, and suppose δ(G) ≥ αn. Let M̄ be a uniformly random perfect matching
between A and B (not necessarily contained in G) and letM be any sub-matching of M̄ with (1− ξ)n
edges. Then a.a.s. G ∪M has a perfect matching.

Note that while we require M̄ to be uniformly random, we make no assumptions about the distri-
bution of M other than that is contained within M̄ .

The immediate naïve approach to prove this lemma would be to show each set of vertices expands,
and then to apply the union bound and Hall’s marriage theorem. However, the probability of failure
to expand is not small enough for this to work. We can gain some insight into the problem by
considering two “extremal” cases for G. First, consider the case where the edges of G are not evenly-
distributed, and are “concentrated” in certain spots. For example, identify sets A′ ⊂ A and B′ ⊂ B
with |A′|, |B′| = αn, and let G contain only those edges incident to a vertex in A′ or B′. The addition
of the near-perfect matching M gives a near-perfect matching between A\A′ and B\B′, and we can
match the unmatched vertices from A (respectively B) with any element of B′ (respectively A′).
That is, if our graph is not well-distributed, then the more concentrated parts help us to augmentM
into a perfect matching in G∪M . On the other extreme, if G is a random-like, well-distributed dense
graph then we cannot augment M in the same way. But this is not necessary, because a random
dense graph G contains a perfect matching on its own! In order to apply these ideas to prove the
lemma for an arbitrary graph G, we use the structural description of G provided by Szemerédi’s
regularity lemma.

For a disjoint pair of vertex sets (X,Y ) in a graph, let its density d(X,Y ) be the number of edges
between X and Y , divided by |X||Y |. A pair of vertex sets

(
V 1, V 2

)
is said to be ε-regular if for

any U1, U2 with U ` ⊆ V ` and
∣∣U `∣∣ ≥ ε∣∣V `

∣∣, we have
∣∣d(U1, U2

)
− d
(
V 1, V 2

)∣∣ ≤ ε.
We will use a bipartite version of the regularity lemma (which can be deduced from say [23, Theo-
rem 2.3] in a similar way to [11, Theorem 1.10]). Let α′ = α/2 and let ε > 0 be a small constant
depending on α that will be determined later (assume for now that ε < α/8). There is a large con-
stant K depending only on α such that there exist partitions A = V 1

0 ∪· · ·∪V 1
r and B = V 2

0 ∪· · ·∪V 2
r

with r ≤ K, in such a way that the following conditions are satisfied. The “exceptional” clusters V 1
0

and V 2
0 both have fewer than εn vertices, and the non-exceptional clusters in A and B have equal

size:
∣∣V `
i

∣∣ = sn. (Note that this implies 1−ε ≤ rs ≤ 1). There is a subgraph G′ ⊆ G with minimum
degree at least (α′ + ε)n such that each pair of distinct clusters V 1

i , V
2
j (i, j ≥ 1) is ε-regular in G′

with density zero or at least 2ε.

Define the cluster graph Γ as the bipartite graph whose vertices are the non-exceptional clusters V `
i ,

and whose edges are the pairs of clusters between which there is nonzero density in G′. The fact
that G′ is dense implies that Γ is dense as well, as follows. In G′ each V `

i has at least (α′ + ε)n
∣∣V `
i

∣∣
edges to other clusters. There are at most (εn)(sn) edges to the exceptional cluster V0 and at most
(sn)2 edges to each other cluster. So, dΓ

(
V `
i

)
≥ ((α′ + ε)n− εn)sn/(sn)2 ≥ α′r and Γ has minimum

degree at least α′r.

Proof of Lemma 6. We use Hall’s marriage theorem: we need to show that a.a.s. |NG∪M (W )| ≥ |W |
for allW ⊆ A. If |W | ≤ αn, then |NG∪M (W )| ≥ |NG(W )| ≥ αn ≥ |W | by the degree condition on G.
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Similarly, if |W | ≥ (1− α)n then every b ∈ B has an edge to W in G, so |NG∪M (W )| = |B| ≥ |W |.
The difficult case is where αn ≤ |W | ≤ (1− α)n.

Apply the bipartite version of the regularity lemma above (with ε sufficiently small compared to
α), to obtain a subgraph G′ and a dense cluster graph Γ. Consider any W ⊂ A with αn ≤ |W | ≤
(1− α)n. For each i let πi =

∣∣V 1
i ∩W

∣∣/(sn), and let X be the set of clusters V 1
i with πi ≥ ε. Let

AX denote the set of all vertices in those clusters. Note that |W\AX | ≤ rεsn ≤ εn. Also, if ε is
small compared to α, then X must be nonempty. Now, if V 2

j ∈ NΓ(X) then by ε-regularity there
are edges in G′ from W to at least (1− ε)sn vertices of V 2

j . Let Y = NΓ(X) and let BY be the set
of vertices in the clusters in Y ; it follows that |BY \NG′(W )| ≤ ε|Y |sn ≤ εn.

If |Y | = r (as would occur if G was well-distributed) then

|NG∪M (W )| ≥ |NG′(W )| ≥ |BY | − εn ≥ n− 2εn ≥ |W |

for 2ε ≤ α, and we are done.

Otherwise, there is V 2
j outside Y = NΓ(D). This V 2

j must have α′r neighbours outside X in Γ,
so |X| ≤ (1− α′)r. Now, Y ≥ α′r so BY is a fixed set of at least α′rsn ≥ (1− ε)α′n vertices
in B. Also, NM̄ (AX) is a uniformly random set of |AX | ≤ (1− α′)rsn ≤ (1− α′)n vertices in B,
which means B\NM̄ (AX) is a uniformly random set of at least α′n vertices. So, |BY \NM̄ (AX)| is
hypergeometrically distributed with mean at least (1− ε)(α′)2n. By a concentration inequality (see
for example [7, Theorem 2.10]), a.a.s.

|BY \NM̄ (AX)| ≥
(
α′
)2
n− 2εn.

There are fewer than 2r = O(1) possibilities for X, so by the union bound this inequality holds a.a.s.
for the X arising from any choice of W . Now, note that |NM̄ (W )\NM̄ (AX)| = |W\AX | and recall
that |W\AX |, |BY \NG′(W )| ≤ εn, so

|NG′(W )\NM̄ (W )| ≥ |BY \NM̄ (AX)| − 2εn ≥
(
α′
)2
n− 4εn.

Also, |NM (W )| ≤ |NM̄ (W )| − ξn = |W | − ξn. We conclude that

|NG∪M (W )| ≥ |NM (W )|+ |NG′(W )\NM̄ (W )| ≥ |W | − ξn+
(
α′
)2
n− 4εn.

For small ε and ξ (say 4ε ≤ ξ = (α′)2/2 = α2/8), this gives |NG∪M (W )| ≥ |W |.

Remark. Note that ξ does not depend on any of the constants arising in the regularity lemma. These
constants only influence the value of n needed to make the probability implicit in “a.a.s.” close to 1.

Now we describe the reduction of Theorem 1 to Lemma 6. Consider a k-uniform hypergraph L.
Suppose A is a set of n vertices and B is a (k − 1)-uniform hypergraph on the remaining vertices.
Then we define a bipartite graph GA,B(L) as follows. The vertices of GA,B(L) are the vertices in A,
as well as the edges in B (we abuse notation and identify the hypergraph B with its edge set). We
put an edge between a ∈ A and {b1, . . . , bk−1} ∈ B if {a, b1, . . . , bk−1} is an edge in L. Basically, the
idea is that if L has a large matching or partial-cycle, then there is A and B such that GA,B(L) has
a large matching. Conversely, if GA,B(L) has a large matching for any A and B, then the edges of
that matching correspond to a large matching or partial-cycle in L. Lemma 5 will provide a large
matching or partial-cycle in the random hypergraph R, so there are A and B such that GA,B(R)
has a large matching (this matching is itself random). By Lemma 6, the addition of this matching
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to GA,B(H) will give a perfect matching in GA,B(H) ∪GA,B(R) = GA,B(H ∪R), corresponding to
a perfect matching or loose Hamilton cycle in H ∪R.

We make this precise as follows. For any ε > 0 depending on α, if ck(α) is large enough, Lemma 5
ensures the a.a.s. existence of a (1− ε)n-edge matching or partial-cycle Q in R. Extend this to a
perfect matching or loose Hamilton cycle Q̄ on V (R) in an arbitrary way. Note that the distribution
of R is invariant under relabelling of its vertices so we can relabel its vertices uniformly at random
to assume that Q̄ is a uniformly random perfect matching or loose Hamilton cycle.

We describe an alternative way to realize a uniformly random perfect matching or loose Hamilton
cycle. In the perfect matching case, choose a uniformly random ordering of V (R):

a1, . . . , an, b11, . . . , b
1
k−1, b

2
1, . . . , b

n
k−1.

Let bi =
{
bi1, . . . b

i
k−1

}
, and let our perfect matching have edges of the form

{
ai
}
∪ bi. This gives a

uniformly random perfect matching, so we can couple our random ordering with R in such a way that
the perfect matching defined by the ordering coincides with Q̄. Then, let A consist of the vertices
ai and let B be the hypergraph with edges bi. Note that A is a uniformly random n-vertex set
with a uniformly random ordering a1, . . . , an, and B is a uniformly random (k − 1)-uniform perfect
matching on the remaining vertices. Also, if we condition on A and B then GA,B

(
Q̄
)
is a uniformly

random perfect matching, and GA,B(Q) is a sub-matching with (1− ε)n of its edges.

The Hamilton cycle case is similar. Again we want to define a uniformly random loose Hamilton
cycle via a random ordering of V (R). So, choose a uniformly random ordering:

a1, . . . , an, b0, . . . , b(k−2)n−1.

For each i let bi be the (k − 1)-vertex set
{
b(k−2)i, b(k−2)i+1, . . . , b(k−2)(i+1)

}
(where the subscripts

are interpreted modulo (k − 2)n). Note that in this case consecutive bi intersect each other in one
vertex. We define our loose Hamilton cycle to have edges of the form

{
ai
}
∪ bi. This loose Hamilton

cycle is uniformly random, so we can couple our random ordering with R in such a way that our
loose Hamilton cycle coincides with Q̄. Let A contain the vertices ai and let B contain the edges
bi. Exactly the same considerations hold: A is a uniformly random n-vertex set with a uniformly
random ordering a1, . . . , an, B is a uniformly random (k − 1)-uniform loose Hamilton cycle on the
remaining vertices, and GA,B(Q) is a (1− ε)n-edge sub-matching of the uniformly random perfect
matching GA,B

(
Q̄
)
.

We give one final lemma, establishing that GA,B(H) is a.a.s. dense if H is.

Lemma 7. There is βk = βk(α) > 0 such that the following holds.

(a) Let H satisfy the conditions of Theorem 1(a), let A be a uniformly random set of n vertices,
and let B be a uniformly random perfect matching on V (H)\A. Then a.a.s. GA,B(H) has
minimum degree at least βkn.

(b) Let H satisfy the conditions of Theorem 1(b), let A be a uniformly random set of n vertices,
and let B be a uniformly random loose Hamilton cycle on V (H)\A. Then a.a.s. GA,B(H) has
minimum degree at least βkn.

Proof of Lemma 7(a). As in the preceding discussion, it is convenient to realize the uniform distri-
bution of A and B via a random ordering of V (H). Let

a1, . . . , an, b11, . . . , b
1
k−1, b

2
1, . . . , b

n
k−1.
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be a uniformly random ordering of V (H), with A, bi and B defined as before.

First, condition on some (k − 1)-tuple b ∈ B, and imagine that the ai are chosen one-by-one. Given
b and a1, . . . , ai, this means that ai+1 has a uniformly random distribution from the remaining
vertices. There are at least δk−1(H) choices of a that will make b ∪ {a} an edge of E(H), so for
i ≤ αn/2,

P
(
b ∪
{
ai+1

}
∈ E(H) | a1, . . . , ai

)
≥ (δk−1(H)− i)/(kn) ≥ α/(2k).

The degree of b in GA,B(H) is the number of edges b ∪
{
ai
}
in E(H), which we have just shown

stochastically dominates a Bin(αn/2, α/(2k)) distribution. By the Chernoff bound, dGA,B(H)(b) ≥
α2n/(8k) with probability 1− e−Ω(n). With the union bound, a.a.s. dGA,B(H)(b) ≥ α2n/(8k) for all
b.

Now, instead condition on some a ∈ A and imagine that the (k − 1)-tuples bi are chosen one-by-one
from the remaining vertices (before choosing the rest of vertices of A). Note that there are at least
δ1(H) choices of a (k − 1)-tuple b such that {a} ∪ b ∈ E(H), and note that each bij shares at most(
kn
k−2

)
edges with a. Recall that δ1(H) = Ω

(
nk−1

)
, so if i ≤ 2

√
βkn for sufficiently small βk and large

n, then

P
(
{a} ∪ bi+1 ∈ E(H) | b1, . . . , bi

)
≥
(
δ1(H)− (k − 1)i

(
kn

k − 2

))/( kn

k − 1

)
≥
√
βk.

By the same argument as in the previous paragraph, using the Chernoff bound and the union bound,
a.a.s. each dGA,B(H)(a) ≥ βkn.

Proof of Lemma 7(b). We give essentially the same proof as for Lemma 7(a). As in the discussion
preceding the lemma, choose a uniformly random ordering

a1, . . . , an, b0, . . . , b(k−2)n−1,

and let A, bi and B be defined as before.

With exactly the same proof as for Lemma 7(a), there is small βk such that a.a.s. dGA,B(H)(b) ≥ βkn
for all b ∈ B. Next, condition on some a ∈ A, and imagine the bi are chosen one-by-one (before
choosing the rest of vertices of A). Note that the only intersection of bi with any of b0, . . . , bi−1 is
the vertex b(k−2)i, and the other vertices of bi are chosen uniformly at random from what remains.
Also note that each bj shares at most

((k−1)n
k−3

)
edges with both a and b(k−2)i. So, for small βk, large

n and 1 ≤ i ≤ 2
√
βkn,

P
(
{a} ∪ bi ∈ E(H) | b0, . . . , bi−1

)
≥
(
δ2(H)− (k − 2)i

(
(k − 1)n

k − 3

))/((k − 1)n

k − 2

)
≥
√
βk.

By the same argument as before, a.a.s. each dGA,B(H)(a) ≥ βkn.

We have established that if ck(α) is large enough then GA,B(H) is a.a.s. a bipartite graph with
minimum degree βk(α)n, and GA,B(R) contains a (1− ξ(βk(α)))n-edge sub-matching GA,B(Q) of
the uniformly random perfect matching GA,B

(
Q̄
)
. Lemma 6 then ensures the existence of a perfect

matching in GA,B(H ∪R). This corresponds to a perfect matching or loose Hamilton cycle in H∪R.
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3 Pancyclicity in dense digraphs

In this section we prove Theorems 2 and 3. One motivation to consider pancyclicity instead of just
Hamiltonicity is an observation by Bondy (see [3]), that almost all known non-trivial conditions that
ensure Hamiltonicity also ensure pancyclicity. He even made an informal “metaconjecture” that this
was always the case; our Theorem 3 verifies his metaconjecture in the setting of randomly perturbed
dense graphs and digraphs.

Theorem 3 obviously implies [2, Theorems 1 and 3]. We do not fight very hard to optimize constants,
but we note that if we make more careful calculations with our proof approach, then the resulting
values of c(α) seem to be better than those found in [2], for most values of α.

We now turn to the proof of Theorem 2, which will follow from the corresponding result for Hamil-
tonicity.

Lemma 8. Let D be a directed graph with all in- and out- degrees at least 4k, and suppose for every
pair of disjoint sets A,B ⊆ V (D) with |A| = |B| ≥ k, there is an arc from A to B. Then D is
Hamiltonian.

The idea of the proof is to start with a longest path P and to manipulate it into a cycle C on the
same vertex set. We will show that D is strongly connected, so if C were not Hamiltonian, there
would be an arc from V (C) to its complement, which could be combined with C to give a longer
path than P , contradicting maximality. This type of argument goes back to the proof of Dirac’s
theorem [4, Theorem 3]. It also bears some resemblance to the “rotation-extension” idea introduced
by Pósa in [19], and a variation for directed graphs by Frieze and Krivelevich [6, Section 4.3].

Proof of Lemma 8. First we acknowledge some immediate consequences of the condition on D. Note
that if A and B are disjoint sets with size at least k, then in fact there are at least |A| − k vertices
of A with an arc into B. To see this, note that for any fewer number of such vertices in A, we can
delete those vertices and at least k will remain, one of which has an arc to B. Also, D is strongly
connected. To see this, note that for any v, w, both of N+(v) and N−(w) have size at least 4k > k.
If they intersect then there is a length-2 path from v to w; otherwise there must be an arc from
N+(v) to N−(w) giving a length-3 path.

Let P = u, . . . , w be a maximum-length directed path inD. We will use the notation v+ (respectively
v−) for the successor (respectively predecessor) of a vertex v on P , and also write U+, U− for the
set of successors or predecessors of a set of vertices U .

By maximality, N+(w) ⊂ P and N−(u) ⊂ P . Let U1 be the first 3k elements of N−(u) on P , and
let U2 be the last k (note U1 ∩U2 = ∅). Similarly let W1 be the first k and W2 the last 3k elements
of N+(w). We will now show that there is a cycle on the vertex set V (P ).

First, consider the case where each vertex of W1 precedes each vertex of U2. If wu is in D then
we can immediately close P into a cycle. Otherwise,

∣∣W−1 ∣∣ = |W1| =
∣∣U+

2

∣∣ = |U2| = k, so there is
an arc w1u2 from W−1 to U+

2 . This is enough to piece together a cycle on V (P ): start at u2 and
move along P to w, from where there is a shortcut back to w+

1 . Now move along P from w+
1 to u−2 ,

from where we can jump back to u, then move along P to w1, then jump to u2. See Figure 1 for an
illustration.
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w1

w+
1 u−2

u2u w

Figure 1. The case where the vertices ofW1 precede the vertices of U2. The horizontal line through
the center is P ; the broken lines indicate subpaths.

Otherwise, each vertex of U1 precedes each vertex of W2. Let U12 contain the k elements of U1

furthest down the path. Note that there are at least 2k vertices of P (e.g., vertices of U1\U12)
preceding all vertices in U12. Let U11 be the set of vertices among those first 2k vertices of P which
have an arc to U+

12. By the discussion at the beginning of the proof, |U11| ≥ k. Similarly, let W21

contain the k elements ofW2 first appearing on the path, and letW22 be the set of at least k vertices
among the last 2k on P which have an arc from W−21. By the condition on D, there is an arc w22u11

from W−22 to U+
11. By definition, there is u12 ∈ U+

12 and w21 ∈ W−21 such that the arcs u−11u12 and
w21w

+
22 are in D. We can piece everything together to get a cycle on the vertices of P : start at u11,

move along P until u−12, then jump back to u. Move along P until u−11, then take the shortcut to
u12. Continue along P to w21, jump to w+

22, continue to w, jump back to w+
21, and continue to w22.

From here there is a shortcut back to u11. See Figure 2.

u u−11

u11 u−12

u12 w21

w+
21 w22

w+
22 w

Figure 2. The case where the vertices of U1 precede the vertices of W2.

As outlined, the fact that D is strongly connected, combined with the fact that the vertex set of P
induces a cycle C, implies that C is a Hamilton cycle.

We note that with some effort, the ideas in the proof of Lemma 8 can be used directly to prove
Theorem 2 with a weaker degree condition. We do not know whether the condition can be weakened
all the way to 4k, as Bondy’s metaconjecture would suggest. Also, the constants in Theorem 2
and Lemma 8 can both be halved for the undirected case, just by simplifying the main argument in
the proof of Lemma 8.

Proof of Theorem 2. Fix a vertex v. Let U+ and U− be arbitrary disjoint k-subsets of N+(v) and
N−(v) respectively. There is an arc from U+ to U− which immediately gives a 3-cycle.

Next, let W+ be the set of (fewer than k) vertices with no arc from U+, and similarly let W− be
the set of vertices with no arc into U−. Now consider the induced digraph D′ obtained from D by
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deleting v and the vertices in U+, U−,W+,W−. Since we have removed fewer than 4k vertices, D′
satisfies the conditions of Lemma 8 so has a Hamilton cycle. In particular, for every ` satisfying
4 ≤ ` ≤ n − 4k, there is a path P` = u`, . . . , w` in D′ of length ` − 4. By construction, there is an
arc from U+ to u` and from w` to U−, which we can combine with arcs to and from v to get a cycle
of length `.

Finally, for every ` > n − 4k, arbitrarily delete vertices from D to obtain an induced digraph D′′
with ` vertices which satisfies the conditions of Lemma 8. Since D′′ has a Hamilton cycle, D has a
cycle of length `.

Proof of Theorem 3. In view of the discussion in the introduction, we assume each possible arc is
present in R with probability p = cn/

(
2
(
n
2

))
≥ c/n independently. (Recall that digraphs are allowed

to have 2-cycles).

If A,B ⊆ V (D) are disjoint sets with |A| = |B| = αn/8, the probability that there are no arcs from
A to B in D ∪R is at most

(1− p)(αn/8)2 ≤ e−pα2n2/64 ≤ e−cα2n/64.

The number of choices of such pairs of disjoint sets A,B is at most 22n. By the union bound,
the probability that D ∪ R does not satisfy the condition of Lemma 8 is at most 22ne−cα

2n/64,
which converges to zero for sufficiently large c. Therefore the digraph D ∪ R is a.a.s. pancyclic by
Lemma 8.

4 Hamilton cycles in tournaments

There are several seemingly different conditions that are equivalent to Hamiltonicity for tournaments
(see [16, Chapters 2-3]). A tournament is Hamiltonian if and only if it is irreducible (cannot be
divided into two parts with all arcs between the two parts in the same direction), if and only if
it is strongly connected (has a directed path from every vertex to every other), if and only if it is
pancyclic (contains cycles of all lengths). All tournaments have a Hamilton path, and it was first
proved by Moon and Moser in [17] that a uniformly random tournament is a.a.s. irreducible, hence
Hamiltonian.

More recently, Kühn, Lapinskas, Osthus and Patel [14] proved in that if a tournament is t-strongly
connected (it remains strongly connected after the deletion of t−1 vertices), then it has Ω

(√
t/ log t

)
arc-disjoint Hamilton cycles. (This was improved to Ω

(√
t
)
by Pokrovskiy [18]). Therefore, to show

a tournament has q arc-disjoint Hamilton cycles for any q = O(1), it suffices to show that the
tournament is t-strongly connected for any fixed t. In particular, it is not difficult to show that a
random tournament is a.a.s. t-strongly connected for fixed t, which motivates Theorem 4.

Before we proceed to the proof, we first explain why Theorem 4 is sharp. The “obvious” worst case
for T is a transitive tournament (corresponding to a linear order on the vertices). In this case, a
superlinear number of random edges must be flipped in order to a.a.s. flip one of the arcs pointing
away from the least element of the linear order. Actually, Łuczak, Ruciński and Gruszka [15] have
already studied the model where random edges are flipped in a transitive tournament, by analogy
to the evolution of the random graph.
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More generally, consider a “transitive cluster-tournament” T on n = r(2d+ 1) vertices defined as
follows. Let R be a regular tournament on 2d+ 1 vertices (this means every vertex has indegree and
outdegree d). To construct T , start with r disjoint copies R1, . . . , Rr of R, then put an arc from v to
w for every v ∈ Ri, w ∈ Rj with i < j. In order for the perturbed tournament P to be Hamiltonian,
there must be an arc entering R1, so one of the O(n(d+ 1)) arcs exiting R1 must be changed. This
will not happen a.a.s. unless m = ω(n/(d+ 1)).

We now prove Theorem 4. In accordance with the discussion in the introduction, we will work
with the model where each edge is flipped with probability p independently, where 2p

(
n
2

)
= m.

(Designating an edge for resampling with probability 2p is the same as flipping it with probability
p). Note that p ≤ 1/2 and in particular p ≤ 1− p.

Fix t, and let T be a tournament with n vertices and all in- and out- degrees at least d. As described
above, flip each edge with probability p = ω(1/(n(d+ 1))), to obtain a perturbed tournament P .
We will prove that P is a.a.s. t-strongly connected.

The idea of the proof is to choose a set S of t vertices with a large indegree and outdegree, then to
show that with high probability almost every vertex has many paths to and from each vertex in S.
The probability that a vertex v has paths to and from from S is smallest if v has small indegree, so
we need to show that not many vertices can have small indegree.

Lemma 9. In any tournament, there are fewer than k vertices with indegree (respectively outdegree)
less than (k − 1)/2.

Proof. The sum of indegrees (respectively outdegrees) of a tournament on k vertices is
(
k
2

)
, because

each arc contributes 1 to this sum. Therefore in every set of k vertices of a tournament, there is a
vertex of outdegree (indegree) at least (k − 1)/2 in the induced sub-tournament.

A consequence of Lemma 9 is that the set of all vertices with indegree (respectively outdegree) less
than n/6 in T , has size smaller than n/3. So, there are at least n/3 vertices whose indegree and
outdegree in T are both at least n/6. We can therefore choose a set S of t such vertices.

Now, we prove that the random perturbation typically does not reduce the in- and out- degrees very
much.

Lemma 10. If a vertex v has outdegree (respectively indegree) k in T , then it has outdegree (respec-
tively indegree) at least k/3 in the randomly perturbed tournament P , with probability 1− o

(
e−k
)
−

o(1/n) (uniformly over k).

Proof. We only prove the statement where v has outdegree k; the indegree case is identical.

There are k arcs pointing away from v in T . If p < 1/
√
n then the probability more than 2k/3 of

those arcs are changed by the perturbation is at most 2kp2k/3 = e−kΩ(logn) = o
(
e−k
)
. If k ≥

√
n/2

then by the Chernoff bound and the fact that p ≤ 1/2, the probability more than 2k/3 arcs are
changed is e−Ω(

√
n) = o(1/n). In both of these cases, k/3 of the original out-neighbours survive the

perturbation with the required probability.

The remaining case is where p ≥ 1/
√
n and k <

√
n/2. In this case there is a set of n/2 arcs

pointing towards v in T . The Chernoff bound says that the probability less than k/3 of these arcs
are changed is e−Ω(

√
n) = o(1/n). That is, with the required probability, k/3 new out-neighbours

are added by the perturbation.
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Lemma 11. Suppose w has outdegree (respectively indegree) at least n/6 in T , and v is a vertex
different from w with indegree (respectively outdegree) at least k in T . Then with probability 1 −
o
(
e−k/(d+1)

)
− o(1/n) (uniformly over k), there are t′ = 3t internally vertex-disjoint paths of length

at most 3 from w to v (respectively from v to w) in the randomly perturbed tournament P .

Proof. We will only prove the statement where v has indegree at least k; the outdegree case is
identical. By independence, we can condition on the outcome of the perturbation on individual arcs.
Condition on the outcome for all arcs adjacent to w, and let N+

P (w) be the set of vertices to which
there is an arc from w in P . By Lemma 10, we can assume

∣∣N+
P (w)

∣∣ ≥ n/18.

We first prove the lemma for the case where k ≤ 6t′. There are at least n′ = n/18 − 1 arcs
between N+

P (w) and v, each of which will be pointing towards v in P with probability at least p
independently. By the Chernoff bound, the probability less than t′ arcs will point from N+

P (w) to v
in P is e−Ω(np) = o

(
e−k/(d+1)

)
. So, with the required probability there are t′ suitable length-2 paths

from w to v.

We can now assume k > 6t′. Condition on the result of the perturbation for the arcs adjacent to v
(in addition to the arcs we have conditioned on so far). Let N−P (v) be the set of vertices from which
there is an edge into v in P ; by Lemma 10, we can assume

∣∣N−P (v)
∣∣ ≥ k/3.

Now, if
∣∣N+

P (w) ∩N−P (v)
∣∣ ≥ t′ then there are t′ disjoint length-2 paths from w to v and we are

done. So we can assume U+ = N+
P (w)\

(
N−P (v) ∪ {v}

)
has at least n′ = n/18− t′ − 1 vertices, and

U− = N−P (v)\{w} has at least k′ = k/3− 1 vertices (note k′ ≥ 2t′ by assumption).

Now, we would like to show that with the required probability there is a set of t′ independent arcs
from U+ into U− in P , which will give t′ suitable length-3 paths. Partition U+(respectively U−)
into subsets U+

1 , . . . , U
+
t′ of size at least n′/(2t′) (respectively, subsets U−1 , . . . , U

−
t′ of size at least

k′/(2t′)). Recall that 1− p ≥ p, so for each i, the probability that there is no arc from U+
i into U−i

after the perturbation is at most

(1− p)n
′k′/(2t′)2 = e−Ω(npk) = o

(
e−k/(d+1)

)
.

We conclude that with the required probability, there is a set of t′ suitable independent arcs, each
between a pair U+

i , U
−
i .

Lemma 12. Fix some w ∈ S. In the randomly perturbed tournament P , there are a.a.s. t internally
vertex-disjoint paths from w to each other vertex (respectively, from each other vertex to w).

Proof. We only prove there are paths from w to each other vertex; the reverse case is identical. If
there are 3t internally vertex-disjoint paths from w to v in P of length at most 3, then we say v
is safe. It follows from Lemma 11 that a vertex with indegree k is safe with probability at least
1− f(n)e−k/(d+1) + f(n)/n, for some f(n) = o(1).

By Lemma 9, there are at most 2d+ 1 vertices with indegree d in T , and the vertex with the 2k-th
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smallest indegree has indegree at least k − 1. Let Q be the set of non-safe vertices, and note

E[|Q|] ≤ (2d+ 1)f(n)e−d/(d+1) +
n∑

k=d+1

2f(n)e−k/(d+1) + nf(n)/n

= f(n)

(
O(d+ 1) +

1

1− e−1/(d+1)

)
= f(n)O(d+ 1).

(We have used the geometric series formula and the inequality 1− e−x ≥ (x ∧ 1)/2 for positive x).

By Markov’s inequality, a.a.s. |Q| ≤
√
f(n)O(d+ 1) = o(d+ 1). If d ≤ 12t then |Q| = 0 for large n

and we are done. Otherwise, d > 12t, and we will show that there are a.a.s. suitable paths of length
at most 4 from w to each other vertex.

By Lemma 10 the perturbation a.a.s. reduces the degree of each vertex by a factor of at most 3 (the
probability of this not occurring is o

(∑∞
k=0 e

−k) + o(1) = o(1)), so every vertex v ∈ Q a.a.s. has
indegree at least d/3. We have |Q| < d/12 for large n, and we are assuming d > 12t, so for every
vertex v we can choose d/3−d/12−1 = d/4−1 ≥ 3t safe in-neighbours v1, . . . , v3t different from w.

Now, fix some v and consider a maximum-size collection M of internally vertex-disjoint paths of
length at most 4 from w to v in P . For the purpose of contradiction assume that |M | < t. There
are fewer than 3t internal vertices in the paths in M , so there is some vi not in any path of M .
Then, there are 3t internally vertex-disjoint paths from w to vi, so one of these does not contain any
internal vertex of a path in M . It follows that w, . . . , vi, v is a path from w to v which is internally
vertex-disjoint from every path in M , contradicting maximality.

It follows from Lemma 12 that in P , a.a.s. every vertex outside S has t internally vertex-disjoint
paths to and from every vertex in S. If P has this property and we delete t− 1 vertices, then there
is at least one vertex w of S remaining, and w has least one path to and from every other vertex.
That is, P is a.a.s. t-strongly connected. (In fact, we have also proved that P a.a.s. has diameter
at most 8, since there is a path of length at most 4 between w and any other vertex). Recall that a
t-strongly connected tournament has Ω

(√
t
)
arc-disjoint Hamilton cycles, so we can conclude that

P a.a.s. has q arc-disjoint Hamilton cycles for any q = O(1).

5 Concluding Remarks

We have determined the amount of random perturbation typically required to make a tournament,
dense digraph or dense uniform hypergraph Hamiltonian. In the process, we have proved a general
lemma about pancyclicity in highly connected digraphs, and demonstrated an interesting application
of the Szemerédi regularity lemma. In the hypergraph setting, there are some important questions
this paper leaves open.

First, we have only studied loose Hamiltonicity. The other most popular notion of a hypergraph
cycle is a tight cycle, in which every consecutive pair of edges in the cycle intersects in k−1 vertices.
More generally, an `-cycle has consecutive edges intersecting in k − ` vertices. Also, we have only
studied hypergraphs with high (k − 1)-degree, which is the strongest density assumption we could
make. There are a large variety of Dirac-type theorems for different types of minimum degree and
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different types of cycles (see [20] for a survey), which would suggest that similar random perturbation
results are possible in these settings.
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