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Abstract

In this paper we consider Maker-Breaker games, played on the edges of sparse
graphs. For a given graph property P we seek a graph (board of the game) with the
smallest number of edges on which Maker can build a subgraph that satisfies P. In
this paper we focus on global properties. We prove the following results: 1) for the
positive minimum degree game, there is a winning board with n vertices and about
10n/7 edges, on the other hand, at least 11n/8 edges are required; 2) for the spanning
k-connectivity game, there is a winning board with n vertices and (1+ok(1))kn edges;
3) for the Hamiltonicity game, there is a winning board of constant average degree;
4) for a tree T on n vertices of bounded maximum degree ∆, there is a graph G on n
vertices and at most f(∆) · n edges, on which Maker can construct a copy of T . We
also discuss biased versions of these games and argue that the picture changes quite
drastically there.

1 Introduction

In this paper we investigate positional games played on edge-sets of graphs. Let ∅ 6= P =
P(n) ⊆ 2E(Kn) be a graph property of n-vertex graphs, and let G be a graph on the vertex
set V (G) = V (Kn). The game (E(G),P) is played by two players, called Maker and
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Breaker, who take turns in claiming one previously unclaimed edge of G, with Breaker
going first. The graph G is called the base graph or (with a slight abuse of terminology)
the board. The game ends when every edge of G has been claimed by some player. Maker
wins the game if the graph he builds by the end of the game satisfies property P, otherwise
Breaker wins. Thus, the graph property P will be sometimes referred to as the family of
winning sets (of edges). We say that the game (E(G),P) is Maker’s win if Maker has a
strategy that ensures his win in this game against any strategy of Breaker, otherwise the
game is Breaker’s win. Note that G and P alone determine whether the game is Maker’s
win or Breaker’s win. For the purposes of this paper, P is assumed to be monotone
increasing. Hence, Maker wins (E(G),P) if and only if he occupies an inclusion-minimal
element of P. Whenever there is no risk of confusion, we may use P to denote the family
of inclusion-minimal members of P.

One of the simplest examples of a positional game whose board is the edge-set of a graph is
the connectivity game, where the family C1 = C1(n) of winning sets consists of all spanning
trees of Kn – the complete graph on n vertices. Lehman’s Theorem [16] asserts that Maker
is able to win this game if the base graph contains the edge disjoint union of two spanning
trees. That is, Maker can win on a graph with as few as 2n− 2 edges. Clearly this is best
possible.

The game parameter we introduce and study in this paper is the following.

Definition 1.1 For a graph property P = P(n) ⊆ 2E(Kn) of graphs on n vertices, let m̂(P)
be the smallest integer m = m(n) for which there exists a graph G with n vertices and m
edges, such that (E(G),P) is Maker’s win. For the sake of formality we define m̂(P) to be
∞ if (E(Kn),P) is Breaker’s win.

While Definition 1.1 is very general and covers a large variety of very different games, in
this paper we restrict our attention to global properties. By the term global property, we
mean a property of n-vertex graphs that does not ignore any vertex. That is, if P is a
global property and G ∈ P, then, in particular, the minimum degree of G is positive. Two
simple examples of global properties are the property of having positive minimum degree
and the property of admitting a Hamilton cycle.

It would be interesting to consider ‘non-global’ graph properties as well. In the game
theoretic context, this is bound to make a huge difference, especially when considering
games (E(G),P) where the number of vertices of G is arbitrarily large (or even infinite),
but the inclusion-minimal winning sets of P have constant size. For example, when the
target property P is (the containment of) a triangle, it is easy to see that m̂(P) is constant.
This is true regardless of the number of vertices in the base graph. Clearly, for a global
property P(n), the number of edges in any winning set is at least n/2; in particular, it
grows with n. An intermediate case is that of properties P = P(n) for which the size of
every winning set does grow with n and yet it is possible that G ∈ P even though there are
isolated vertices in G. Natural examples of such properties are the property of admitting
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a giant component and the property of admitting an almost spanning tree. While such
properties are global in some sense, we do not consider them in this paper. We discuss this
issue in more detail in Section 7.

Lehman’s Theorem states that m̂(C1) = 2n − 2. In many contexts connectivity is tightly
related to the weaker property of having positive minimum degree, that is, of containing
no isolated vertex (see e.g. [6]). The corresponding family D1 = D1(n) consists of the edge
sets of all graphs on n vertices which have minimum degree at least 1. The next theorem
shows that connectivity and positive minimum degree behave differently in our context.

Theorem 1.2

(i) m̂(D1) ≤
10

7
n + 4 for all n ≥ 49;

(ii) m̂(D1) ≥
11

8
n for all n.

It follows from Lehman’s Theorem [16] that Maker can build a k-edge-connected spanning
subgraph, when playing on the edge set of any graph that admits 2k pairwise edge disjoint
spanning trees. Hence, for every positive integer k and sufficiently large n, there exists a
graph with n vertices and 2k(n− 1) edges, on which Maker can build a k-edge-connected
spanning subgraph. This is tight for k = 1 by Lehman’s Theorem. In our next theorem
we improve this upper bound for every k ≥ 2, even for the stronger property of being
k-vertex -connected.

Let k be a positive integer. The family Ck = Ck(n) ⊆ 2E(Kn) consists of the edge sets of all
k-vertex-connected graphs on n vertices. Since Breaker can claim at least half of the edges
incident with some fixed vertex, and since the minimum degree of any k-vertex-connected
graph is at least k, it follows that m̂(Ck) ≥ kn. We prove that this is essentially tight for
large k.

Theorem 1.3 (i) For every positive integer k and every n ≥ 3 · 2k+1, we have

m̂(Ck) ≤
(

3

2
k + 1

)

n.

(ii) For every positive integer k, and for sufficiently large n, we have

m̂(Ck) ≤ (1 + ok(1))kn.

In the Hamiltonicity game, which was introduced and first investigated in [8], the family
of winning sets H = H(n) ⊆ 2E(Kn) consists of the edge sets of all Hamilton cycles on n
vertices. Since, by the end of the game, Maker claims at most half of the board elements,
and since there are n edges in a Hamilton cycle of a graph on n vertices, it is evident that
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m̂(H) ≥ 2n. On the other hand, it was proved in [13] that Maker can almost surely build a
Hamilton cycle, in the game played on the edge set of a random graph G(n, p), where p =
(1+o(1)) lnn/n. It follows that m̂(H) ≤ (1/2+o(1))n lnn. We improve the aforementioned
trivial lower bound, and prove an upper bound which is only a multiplicative constant factor
away.

Theorem 1.4

(i) m̂(H) ≥ 2.5n for all n;

(ii) m̂(H) ≤ 21n for all n ≥ 1600.

Let T be a fixed tree on n vertices. In the tree construction game GT = GT (n), Maker’s
goal is to build a copy of T , that is, the winning sets of GT are the edge sets of all graphs
on n vertices that admit a copy of T . An obvious lower bound for m̂(GT ) is 2n − 2. We
prove that if T has bounded degree, then there exists a base graph G with a linear number
of edges, on which Maker wins GT .

Theorem 1.5 For every ∆, there is A = A(∆), such that for all sufficiently large n,

m̂(GT ) ≤ An

holds for every tree T on n vertices with maximum degree at most ∆.

Finally, we make an observation concerning biased games – a widely studied generalization,
suggested by Chvátal and Erdős [8]. In a biased (a : b) game, Maker claims a board elements
in each round, whereas Breaker claims b board elements in each round. The games we have
studied so far are thus (1 : 1) games. For a property P = P(n) ⊆ 2E(Kn) and a positive
integer q, let m̂(P; q) be the smallest integer m for which there exists a graph G with n
vertices and m edges, such that Maker can build a graph which satisfies the property P,
when playing a (1 : q) game on E(G) (again m̂(P; q) is defined to be ∞ if the (1 : q) game
(E(Kn),P) is Breaker’s win).

Though Lehman’s Theorem [16] is a “perfect theorem” for the (1 : 1) connectivity game, it
fails to provide any implications when Breaker plays with a bias larger than 1. In fact, for
all of the games studied in our paper, the parameter m̂ undergoes a “phase transition” as
Breaker’s bias changes from 1 to 2. Indeed, as all previous theorems indicate, m̂(P) = Θ(n)
whenever P ∈ {D1(n), Ck(n),H(n),GT (n)}. Our next theorem shows that when Breaker’s
bias is at least 2, he can isolate a vertex of the base graph G as long as e(G) < cn lnn,
where c > 0 is an appropriate constant. It follows that m̂(P; q) = ω(n) whenever q ≥ 2 and
P ∈ {D1(n), Ck(n),H(n),GT (n)}. For the connectivity game C1, we obtain a fairly sharp
bound.
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Theorem 1.6 Let 0 < ε ≤ 0.1, let n = n(ε) be sufficiently large, and let q = q(n) be an
integer.

(i) If q ≤ (ln 2 − ε)n/ lnn, then m̂(C1, q) ≤ (1/2 + ε)qn log2 n;

(ii) If q ≥ 2, then m̂(D1, q) ≥ (1/2 − ε)(q − 1)n lnn.

Note that there is no upper bound on q in Part 2 of Theorem 1.6. Hence, the asserted
lower bound on m̂(D1, q) might exceed

(

n
2

)

. This is fine, as m̂ is defined to be ∞ in this
case.

For the sake of simplicity and clarity of presentation, we do not make a particular effort
to optimize the constants obtained in theorems we prove. We also omit floor and ceiling
signs whenever these are not crucial. Many of our results are asymptotic in nature and,
whenever necessary, we assume that n is sufficiently large. Throughout the paper, ln
stands for the natural logarithm, and log2 for the binary logarithm. Our graph-theoretic
notation is standard and follows that of [20]. In particular, we use the following. For a
graph G, let V (G) and E(G) denote its sets of vertices and edges respectively, and let
v(G) = |V (G)| and e(G) = |E(G)|. For a set A ⊆ V (G), let G[A] denote the subgraph of
G induced on the vertex set A. For a set A ⊆ V (G), let EG(A) denote the set of edges
of G with both endpoints in A and let eG(A) = |EG(A)|. For disjoint sets A,B ⊆ V (G),
let EG(A,B) denote the set of edges of G with one endpoint in A and one endpoint in
B, and let eG(A,B) = |EG(A,B)|. Sometimes, if there is no risk of confusion, we discard
the subscript G in the above notation. For a vertex v ∈ V (G) and A ⊆ V (G), let NA(v)
denote the set of all vertices of A that are adjacent to v in G, and let dA(v) = |NA(v)|. We
abbreviate dV (G)(v) to d(v). Let d̄(G) denote the average degree of G.

The rest of this paper is organized as follows: in Section 2 we prove Theorem 1.2; in
Section 3 we prove Theorem 1.3; in Section 4 we prove Theorem 1.4; in Section 5 we prove
Theorem 1.5, and in Section 6 we prove Theorem 1.6. Finally, in Section 7, we present
some open problems.

2 The positive min-degree game

We will make use of the following lemma, which is not hard to verify by case analysis. We
omit the straightforward details.

Lemma 2.1 Let D7 be the double diamond, that is, V (D7) = {v1, v2, . . . , v7} and E(D7) =
{v1v2, v1v3, v2v3, v2v4, v3v4, v4v5, v4v6, v5v6, v5v7, v6v7}. Playing on E(D7), Maker can win
the (1 : 1) positive minimum degree game, as the first or second player.

Note that D7 has seven vertices and ten edges.

Proof of Theorem 1.2. We will first prove the upper bound. Let n = 7k + r, where
0 ≤ r ≤ 6 and k ≥ 7. Let G be a graph consisting of 2r vertex disjoint copies of K4 and k−r
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vertex disjoint copies of D7. Note that v(G) = n and e(G) = 12r+ 10(k− r) = 10k + 2r ≤
10
7
n + 4. Moreover, it is clear that Maker wins the (1 : 1) positive minimum degree game

played on E(G), as he can play k + r separate games in parallel – one game on each
connected component; whenever Breaker claims an edge of some connected component,
Maker responds by playing in the same connected component. Lemma 2.1 implies that he
is able to win on each copy of D7. Moreover, he can win on each copy of K4 by Lehman’s
Theorem [16], as K4 admits two edge disjoint spanning trees.

We now prove the lower bound. Let G be a graph with average degree d̄(G) and with n
vertices, such that Maker has a winning strategy for the game D1 on E(G). We will prove
that d̄(G) ≥ 11/4. If G had a vertex of degree less than 2, the game would obviously be
Breaker’s win. Also, if two vertices of degree 2 are neighbors, then Breaker can win the
game in two moves. Hence, from now on we can assume that every vertex of G has degree
at least 2, and no two vertices of degree 2 are adjacent; in particular, d̄(G) > 2.

We denote by R the set of vertices of G that have degree exactly 2, and let L = V (G) \R,
r = |R|, ℓ = |L|, and

k =
∑

v∈L
(dL(v) − 2), (1)

s =
∑

v∈L
(d(v) − 3). (2)

Our first goal is to prove that

every vertex v ∈ L has dL(v) ≥ 2. (3)

Assume for a contradiction that there exists a vertex v ∈ L such that dL(v) ≤ 1. Based on
this assumption, we will devise a winning strategy for Breaker. He plays as follows.

In his first move, Breaker claims an arbitrary edge connecting v with some vertex u ∈ R.
Maker is then forced to claim the only remaining unclaimed edge incident with u, as
otherwise he would lose immediately. As long as there are unclaimed edges connecting
v with R, Breaker keeps claiming them, forcing the response of Maker in each of these
moves. When all such edges are claimed by Breaker, there will be at most one unclaimed
edge incident with v. Breaker can claim it and thus win. This contradicts our assumption
that Maker wins the game.

It follows that the following two equalities hold:

d̄(G)(ℓ + r) = d̄(G)n =
∑

v∈V (G)

d(v) = 2r + 3ℓ + s, (4)

d̄(G)(ℓ + r) = d̄(G)n =
∑

v∈V (G)

d(v) = 4r + 2ℓ + k. (5)

The first equality is obtained by simply summing the degrees of the vertices of R and L.
The second equality is obtained by considering separately the contribution of the edges
between R and L and the edges with both end points in L, to the sum of degrees.
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Figure 1: Two possible scenarios.

For every vertex v ∈ L, we say that v is satisfied if one of the two following conditions
holds:

1. dL(v) ≥ 3 or d(v) ≥ 4.

In this case we say that v is satisfied by itself.

2. The first condition does not hold, and there exists w ∈ NL(v) such that dL(w) ≥ 3.

Here, we say that v is satisfied by w.

We will show that every vertex in L must be satisfied. Assume for a contradiction that
v ∈ L is not satisfied. Then, neither of the conditions above holds. Since the first condition
is not satisfied we have dL(v) = 2 and d(v) = 3, which means that v has two neighbors,
w1 and w2, in L, and one neighbor v′ in R. Since the second condition is not satisfied, we
have dL(wi) = 2, for every i ∈ {1, 2}. Since d(v′) = 2 and v is its neighbor, there has to
be an index i0 ∈ {1, 2} such that wi0 is not a neighbor of v′. If Breaker starts the game by
claiming the edge vwi0 in his first move, Maker has to leave one of the vertices v and wi0

untouched after his first move. Then, Breaker can routinely isolate that untouched vertex,
by claiming incident edges one by one, leaving the only edge inside L for the last move.
This contradicts our assumption that Maker wins the game.

We proceed by showing that

∀v ∈ L such that d(v) = dL(v) = 3, ∃w ∈ NL(v) that satisfies itself. (6)

Assume for a contradiction that there exists a vertex v ∈ L such that d(v) = dL(v) = 3,
and, for every w ∈ NL(v), we have dL(w) = 2 and d(w) = 3. Then, some part of G
resembles one of the two scenarios shown in Figure 1. Assume first that the situation is as
depicted on the left. Vertex z cannot be adjacent to both x and y; assume without loss of
generality that x and z are not adjacent. Breaker can win the game by claiming the edges
zb, zv, ax, xv in his first 4 moves. Note that each of these moves forces some counter move
of Maker by creating an immediate threat of Breaker’s win. Moreover, Breaker’s 4th move
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creates a double threat, at x and v. Since Maker cannot claim an edge which is incident
with both x and v in his next move, Breaker can isolate one of them in Maker’s graph and
thus win. In the other possible scenario, Breaker can win similarly. Either way, the game
is Breaker’s win contrary to our assumption.

It follows that every vertex v ∈ L such that d(v) = dL(v) = 3 satisfies at most 3 vertices
(including itself).

Now, we claim that
3k + s ≥ ℓ. (7)

To see this we go over every vertex in L and count the number of vertices it satisfies.
As noted above, every vertex v ∈ L with d(v) = dL(v) = 3 satisfies at most 3 vertices.
Moreover, its contribution to the sum in (1) is dL(v) − 2 = 1 and its contribution to the
sum in (2) is d(v) − 3 = 0. Hence, its total contribution to the left hand side of (7) is
3. Every other vertex u ∈ L satisfies at most dL(u) + 1 vertices. On the other hand its
contribution to the left hand side of (7) is

3(dL(u) − 2) + (d(u) − 3) ≥ dL(u) + 1,

where this inequality holds whenever dL(u) ≥ 3 and d(u) ≥ 4. Claim (7) now readily
follows since every vertex of L is satisfied.

Adding equality (4) to equality (5) multiplied by 3, and applying (7), we get

d̄(G)(ℓ + r) ≥ 7

2
r +

5

2
ℓ. (8)

It follows by (4) and by the definition of L that

d̄(G)(ℓ + r) ≥ 2r + 3ℓ.

Since d̄(G) > 2 this implies

r

ℓ
≥ 3 − d̄(G)

d̄(G) − 2
. (9)

Similarly, it follows from (8) that

ℓ

(

d̄(G) − 5

2

)

≥ r

(

7

2
− d̄(G)

)

.

If d̄(G) ≥ 7/2, then we are done. Otherwise, we obtain

d̄(G) − 5
2

7
2
− d̄(G)

≥ r

ℓ
. (10)
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Combining (9) and (10), we get

d̄(G) − 5
2

7
2
− d̄(G)

≥ 3 − d̄(G)

d̄(G) − 2
,

entailing d̄(G) ≥ 11/4 as claimed. 2

3 The k-connectivity game

We will make use of the following lemma, which is not hard to verify by case analysis. We
omit the straightforward details.

Lemma 3.1 Playing on the edge set of K3,3, Maker, as the first or second player, has a
winning strategy for the positive minimum degree game.

Also, we will need the following result from [10].

Theorem 3.2 [10] If n is sufficiently large, then Maker has a winning strategy for the
(n/2 − 3

√
n lnn)-vertex-connectivity game, played on the edge-set of Kn.

Proof of Theorem 1.3.

Proof of Part (i) We proceed by induction on k. Actually, we are going to prove a
slightly stronger statement, by constructing a graph Gk

n on n vertices with average degree
at most 3k+ 2−5/n, such that Maker has a winning strategy for the k-vertex-connectivity
game, played on the edge-set of Gk

n. For k = 1, take G1
n to be any graph which is the union

of two edge disjoint trees on the same n vertices. The fact that the connectivity game on
E(G1

n) is Maker’s win, follows from Lehman’s Theorem [16]. Note that such a graph on n
vertices exists for every n ≥ 4, and its average degree is 4 − 4/n ≤ 5 − 5/n.

Next, assume that for every n ≥ 3 ·2k+1, there exists a graph Gk
n on n vertices with average

degree at most 3k + 2 − 5/n, such that Maker can win the k-vertex-connectivity game on
E(Gk

n). Given n0 ≥ 3 · 2k+2, we want to construct the graph Gk+1
n0

.

Let n0 = 6t + s for some t ∈ N and 0 ≤ s ≤ 5, and let n1 = ⌈n0

2
⌉ = 3t + ⌈ s

2
⌉ and

n2 = ⌊n0

2
⌋ = 3t + ⌊ s

2
⌋. We will construct Gk+1

n0
by taking a copy G1 = (V1, E1) of Gk

n1
, a

(disjoint) copy G2 = (V2, E2) of Gk
n2

, and then adding some edges between V1 and V2.

Let V1 = {v1, . . . , vn1
} and let V2 = {u1, . . . , un2

}. Connect the vertices of G1 to the
vertices of G2 by t vertex disjoint copies of K3,3 and by additional s pairs of edges, that is,
Gk+1

n0
:= (V k+1

n0
, Ek+1

n0
), where V k+1

n0
= V1 ∪ V2 and Ek+1

n0
= E1 ∪ E2 ∪ {v3r−iu3r−j : 1 ≤ r ≤
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t, 0 ≤ i, j ≤ 2} ∪ {v3t+iuj : 1 ≤ i ≤ ⌈ s
2
⌉, 1 ≤ j ≤ 2} ∪ {u3t+ivj : 1 ≤ i ≤ ⌊ s

2
⌋, 1 ≤ j ≤ 2}.

Since the average degree of G1 and G2 is at most 3k+2−5/n1 and 3k+2−5/n2, respectively,
we conclude after a straightforward calculation that d̄(Gk+1

n0
) ≤ 3(k + 1) + 2 − 5/n0.

It remains to prove that Maker can win the (k+1)-vertex-connectivity game, played on the
edges of Gk+1

n0
. His strategy is the following. Whenever Breaker claims some edge of Gi,

where i = 1, 2, Maker claims an edge of Gi as well, playing according to the strategy whose
existence is guaranteed by the induction hypothesis. Similarly, whenever Breaker claims an
edge of some copy of K3,3 that connects V1 and V2, Maker plays in this same copy of K3,3

according to the strategy whose existence is guaranteed by Lemma 3.1. Whenever Breaker
claims an edge v3t+iuj for some 1 ≤ i ≤ ⌈ s

2
⌉ and 1 ≤ j ≤ 2, Maker claims v3t+iuℓ, where

ℓ ∈ {1, 2} \ {j}. Similarly, whenever Breaker claims an edge u3t+ivj for some 1 ≤ i ≤ ⌊ s
2
⌋

and 1 ≤ j ≤ 2, Maker claims u3t+ivℓ, where ℓ ∈ {1, 2} \ {j}. Whenever Maker cannot play
according to these rules, he claims some arbitrary free edge.

It follows that the subgraph of Gi, i = 1, 2, that Maker will claim by the end of the game
will be k-vertex-connected. Moreover, in Maker’s graph, every vertex of V1 has at least one
neighbor in V2 and vice versa.

Let GM denote the graph that Maker has built by the end of the game. We will prove that
GM is (k + 1)-vertex-connected. Let S ⊆ V1 ∪V2 be any set of size at most k. Assume first
that |S∩V1| ≤ k−1 and |S∩V2| ≤ k−1. By the induction hypothesis, both (GM ∩G1)\S
and (GM ∩ G2) \ S are connected. Moreover, there is at least one edge of Maker between
(GM ∩G1) \S and (GM ∩G2) \S as, by the choice of n0, there are t ≥ k+ 1 vertex disjoint
copies of K3,3 connecting V1 and V2, and Maker has claimed at least one edge in each of
them.

Next, assume without loss of generality that S ⊆ V1 is of size k. Let u ∈ V1\S. By Maker’s
strategy, there is at least one edge of GM connecting u with some vertex x of V2. Since
S ∩ V2 = ∅ and since G2 ∩ GM is connected by the induction hypothesis, it follows that
(G2 ∩GM) \ S is connected as well. It follows that GM \ S is connected.

Proof of Part (ii) Let k0 be the smallest integer for which Theorem 3.2 holds with
n = k0. For k < k0/2 the assertion of the theorem holds by Part (i) of this theorem. Let
k ≥ k0/2, and let ε = ε(k) be the real number which satisfies the equation

(2 + ε)k

2
− 3

√

(2 + ε)k ln((2 + ε)k) = k.

Clearly, such an ε exists, it is unique, and it tends to 0 as k tends to infinity. Let G
consist of m ≥ (2 + ε)k cliques Q1, . . . , Qm, each on either (2 + ε)k vertices, or one more
vertex, where Qi is connected to Qi+1 by a matching of size 2k, for every 1 ≤ i ≤ m − 1.
Note that, by choosing appropriate values for m and |Qi|, for every 1 ≤ i ≤ m, we
can choose V (G) to be any integer, as long as it is larger than ⌈(2 + ε)k⌉2. Clearly,
e(G) ≤ m

(

(2+ε)k+1
2

)

+ 2k(m− 1) = (1 + ok(1))kv(G).
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Let us now describe Maker’s strategy. Whenever Breaker claims an edge which connects
some vertex of Qi, for some 1 ≤ i ≤ m−1, with some vertex of Qi+1, Maker claims another
such edge. By applying a straightforward pairing strategy, he can make sure he claims k
edges with one end point in Qi and the other in Qi+1, for every 1 ≤ i ≤ m− 1. Whenever
Breaker claims an edge of Qi, for some 1 ≤ i ≤ m, Maker responds by claiming an edge
in Qi, and by Theorem 3.2, which is applicable since (2 + ε)k ≥ k0, Maker can build a
k-vertex-connected subgraph of Qi, for every 1 ≤ i ≤ m. It is easy to verify that the graph
obtained by connecting two vertex disjoint k-connected graphs by a matching of size k is
k-connected. This ensures that the graph Maker builds by the end of the game will be
k-vertex-connected. 2

4 The Hamilton cycle game

The Hamilton cycle game was introduced in [8], where it was first proved that Maker can
win the game, if n is large enough. Here, we will make use of the following stronger result
from [14].

Proposition 4.1 [14] Maker (as the first or second player) has a winning strategy for the
Hamilton cycle game, played on the edges of Kn, provided n ≥ 38.

Proof of Theorem 1.4. First, we prove the lower bound. Let G = (V,E) be a graph on
n vertices, on which Maker wins the Hamilton cycle game. We will prove that e(G) ≥ 2.5n.
It is clear that the minimum degree of G is at least 4. Indeed, if x ∈ V is of degree at
most 3, then, since Breaker is the first player, he can force the degree of x in Maker’s
graph to be at most 1. Similarly, if x, y ∈ V are two adjacent vertices of degree 4, then
Breaker can win by claiming xy in his first move and then forcing the degree of either
x or y in Maker’s graph to be at most 1. Hence, the vertices of degree 4 in G form an
independent set (note that the empty set is considered to be independent). Since Maker
wins the game, G must be Hamiltonian; let C = (v0, . . . , vn−1, v0) be a Hamilton cycle of
G. Let {vij ∈ V : 0 ≤ j ≤ r − 1} denote the vertices of degree 4 in G. We will prove that
there are at least r vertices of degree at least 6 each; note that this entails e(G) ≥ 2.5n.
First, assume that r ≥ 2. In order to prove our claim, it suffices to prove that there is a
vertex of degree at least 6 between any two consecutive vertices of degree 4, that is, for
every 0 ≤ j ≤ r − 1 there exists an index ij < t < ij+1, where j + 1 is reduced modulo
r, and t and ij+1 are reduced modulo n, such that d(vt) ≥ 6. Assume for a contradiction
that d(vs) = 5, for every ij < s < ij+1. We will provide Breaker with a winning strategy,
contrary to our assumption that the game is Maker’s win. Let Gj denote the subgraph of
G, induced on the vertices {vs : ij ≤ s ≤ ij+1}. Let P : vij , w1, . . . , wℓ, vij+1

be a shortest
path between vij and vij+1

in Gj . Breaker plays as follows. In his first move, he claims
vijw1. If Maker does not respond by claiming an edge which is incident with vij , then

11



Breaker can claim two more edges which are incident with it and thus win. Hence, assume
that in his first move Maker claims an edge vijx, for some x ∈ V . Note that x 6∈ P , as
P is a shortest path. Similarly, in his second move, Breaker claims w1w2. Maker is forced
to claim some edge w1y for some y ∈ V \ P , as otherwise Breaker will force the degree of
w1 in Maker’s graph to be at most 1. Breaker continues playing in this fashion until he
either wins or claims wℓvij+1

. At this point, in order to avoid losing, Maker must claim
some edge which is incident with wℓ as well as some edge which is incident with vij+1

.
Clearly, this is impossible, and thus Breaker wins in two moves. Finally, assume for a
contradiction that r = 1 and that the maximum degree of G is 5. Again we will prove that
Breaker wins the game in this case. Assume without loss of generality that d(v0) = 4. Let
{v1, vi, vj , vn−1} denote the set of neighbors of v0, where 1 < i < j < n − 1. In his first
move Breaker claims v0vi. We can clearly assume that Maker responds by claiming v0vq
for some q ∈ {1, j, n− 1}, as otherwise he loses immediately. Assume first that q 6= j. Let
P be a shortest path between vi and vj in the subgraph of G induced on the vertices of
{vs : i ≤ s ≤ j}. As in the case r ≥ 2, unless he has already ensured he will win, Breaker
can claim all edges of P as well as vjv0. At this point he creates a double threat – at vj
and at v0 and thus wins. If q = j, then Breaker plays similarly on a path connecting vi
and v0. Either way we conclude that e(G) ≥ 2.5n as claimed.

Next, we prove the upper bound. Let m ≥ 40 be an integer and let Gn = (V,E) be a graph
on n = m(d + 1) + r vertices where d = 38 and 0 ≤ r ≤ d. The graph Gn consists of m
cliques K0, . . . , Km−1 and m additional vertices u0, . . . , um−1, where v(Ki) = d+1, for every
0 ≤ i ≤ r−1, and v(Ki) = d, for every r ≤ i ≤ m−1. For every 0 ≤ i ≤ m−1, there is an
edge in Gn between ui and every vertex of both Ki and Ki+1 (the indices are reduced modulo
m). Clearly, the number of edges in Gn is at most m

(

d+1
2

)

+ 2m(d + 1) ≤
(

d
2

+ 2
)

n = 21n.
For every 1 ≤ i ≤ m, the subgraph of Gn, induced on the vertices of {ui−1, ui} ∪ V (Ki)
(the indices are taken modulo m), will be called the i-th part of Gn.

Now we provide Maker with a winning strategy for the Hamilton cycle game, played on
the edge set of Gn. Maker plays m separate games in parallel, that is, whenever Breaker
claims some edge of the i-th part of Gn, for some 1 ≤ i ≤ m, Maker claims an edge in the
same part (this is always possible, except for maybe once for each part, if Breaker claims
the last edge of this part; whenever this happens Maker claims an arbitrary free edge).
Maker’s strategy for the i-th part of Gn is as follows. He subdivides this game further into
two separate games played in parallel, one on the edges of Ki and the other on the board
Êi := {ui−1v : v ∈ V (Ki)} ∪ {uiv : v ∈ V (Ki)}. Again, in each of the moves he responds
by claiming an edge in the same subgame as Breaker.

Playing on E(Ki), Maker will build a spanning cycle; this is possible by Proposition 4.1. On
Êi, in his first two moves, Maker claims edges uiw1 and ui−1w2, for some w1, w2 ∈ V (Ki),
w1 6= w2. Then he proceeds by claiming arbitrary edges, just making sure that he does not
claim both uiw2 and ui−1w1.

It remains to prove that, if Maker plays according to this strategy, then, for every 1 ≤ i ≤ m,
his graph will contain a path between ui−1 and ui (the indices are reduced modulo m)
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which spans the i-th part of Gn. Fix some 1 ≤ i ≤ m. The strategy presented above
ensures that Maker’s graph will contain a spanning cycle C = (v1, v2, . . . , vt, v1) of Ki,
and moreover, it will satisfy dV (Ki)(ui−1) ≥ 1, dV (Ki)(ui) ≥ 1, dV (Ki)(ui−1) + dV (Ki)(ui) ≥
t, where t := |V (Ki)|, and NV (Ki)(ui−1) 6= NV (Ki)(ui). Let Γ(ui−1) := {w ∈ V (Ki) :
∃u ∈ NV (Ki)(ui−1), uw ∈ E(C)}. Obviously, |Γ(ui−1)| ≥ dV (Ki)(ui−1), implying |Γ(ui−1)| +
dV (Ki)(ui) ≥ t. To prove our claim, it suffices to show that Γ(ui−1)∩NV (Ki)(ui) 6= ∅, as this
would imply that for two vertices that are consecutive on C, one of them is a neighbor of
ui−1 and the other one is a neighbor of ui.

If |Γ(ui−1)| + dV (Ki)(ui) > t, our claim follows directly. Assume then that |Γ(ui−1)| +
dV (Ki)(ui) = t. It follows that |Γ(ui−1)| = dV (Ki)(ui−1) and that dV (Ki)(ui−1)+dV (Ki)(ui) = t.
It is not hard to see that |Γ(ui−1)| = dV (Ki)(ui−1) can hold only if either NV (Ki)(ui−1) =
V (Ki) or NV (Ki)(ui−1) = {vi : 1 ≤ i ≤ t, i ≡ 0 mod 2} or NV (Ki)(ui−1) = {vi : 1 ≤
i ≤ t, i ≡ 1 mod 2}. In the first case we obtain a contradiction with dV (Ki)(ui) ≥ 1 and
dV (Ki)(ui−1)+dV (Ki)(ui) = t. In the latter two cases we have dV (Ki)(ui−1) = dV (Ki)(ui) = t/2,
and then NV (Ki)(ui−1) 6= NV (Ki)(ui) implies Γ(ui−1) ∩ NV (Ki)(ui) 6= ∅. This concludes the
proof of the theorem. 2

5 The tree construction game

In this section we will prove Theorem 1.5. We begin by introducing several tools that will
be used in our proof. For the sake of uniformity of presentation, we label all of them as
lemmas, though they are of quite different nature and depth.

Lemma 5.1 Let ∆, K ≥ 2 be integers. Let T = (V,E) be a tree on v(T ) ≥ K vertices,
with maximum degree at most ∆. Then, there exists a decomposition V = V1 ∪ . . . ∪ Vt of
the vertex set of T such that:

1. K ≤ |Vi| ≤ (∆ + 1)K, for every 1 ≤ i ≤ t;

2. T [Vi] is connected, for every 1 ≤ i ≤ t.

Proof of Lemma 5.1. If v(T ) ≤ (∆+1)K, we take the whole of V to be V1. Otherwise we
choose an arbitrary vertex v of T , and root T at v. For every vertex w ∈ V , let D(w) be the
vertex set of the subtree of T rooted at w. We claim that there exists a vertex w ∈ V such
that K ≤ |D(w)| ≤ ∆K. Indeed, assume for a contradiction that no vertex of V satisfies
the inequality above. Let w ∈ V be such that |D(w)| ≥ K is minimal. It follows by our
assumption that |D(w)| ≥ ∆K + 1. Let u1, . . . , us be the children of w in T . Then clearly
s ≤ ∆ and |D(w)| = 1 +

∑s
i=1 |D(ui)|. Hence, for some ui we have |D(ui)| ≥ ∆K/s ≥ K.

This contradicts the minimality of |D(w)|, as clearly |D(ui)| < |D(w)|. Hence, let w ∈ V
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be some vertex satisfying K ≤ |D(w)| ≤ ∆K. Define V1 = D(w) and remove w and its
descendants from T . Note that T [V1] is connected. Moreover, T ′ := T \V1 is also connected
and is therefore a tree. Since v(T ′) ≥ (∆ + 1)K −∆K = K, we can apply induction to T ′.
This yields the desired partition, and concludes the proof of the lemma. 2

In order to state our next lemma, we need the following definition.

Definition 5.2 A graph G = (V,E) is called (p, ε)-regular if:

1. |d(v) − p|V || ≤ ε|V | for every v ∈ V ;

2. |eG(S, T )−p|S||T || ≤ ε|S||T | for every pair of disjoint subsets S, T ⊂ V with |S|, |T | ≥
ε|V |.

Lemma 5.3 There exists a constant k1 such that for every n ≥ k1, Maker can build a
(1/2, n−0.1)-regular graph in a (1 : 1) Maker-Breaker game, played on the edge set of the
complete graph Kn.

Proof of Lemma 5.3. This was proved in [10] (see also [3] for an alternative proof). 2

Lemma 5.4 For every ∆ there exists k2 = k2(∆), such that for every n ≥ k2, the following
holds. Let T be a tree on n vertices, with maximum degree at most ∆, rooted at r. Let G
be a (1/2, n−0.1)-regular graph on n vertices, and let v be an arbitrary vertex of G. Then G
contains a copy of T , rooted at v.

Proof of Lemma 5.4. This is a particular instance of the famous Blow-Up Lemma,
proved by Komlós, Sárközy and Szemerédi [15]. 2

One should note that the Blow-Up Lemma is usually stated without the additional require-
ment that the embedding is such that a particular vertex r of the embedded graph T is to
be mapped into a specified vertex v of the host graph G. However, a study of the proof of
the Blow-Up Lemma, certainly of the version given by Rödl and Ruciński in [18], readily
reveals that this extra condition can be met too.

Lemma 5.5 There exists a constant k3 such that for every n1, n2 ≥ k3, Maker can build a
graph of positive minimum degree in a (1 : 1) Maker-Breaker game, played on the edge-set
of the complete bipartite graph Kn1,n2

.
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Proof of Lemma 5.5. It follows by Lemma 10 in [13], that Maker can build a subgraph
of Kn1,n2

with minimum degree at least min{⌊n1/4⌋, ⌊n2/4⌋}. The lemma now follows by
choosing k3 ≥ 4. 2

Proof of Theorem 1.5.

Let T be a tree with vertex set {1, . . . , n}, and with maximum degree at most ∆. Let
K = max{k1, k2, k3}, where k1, k2, and k3 are the constants whose existence is guaranteed
by Lemmas 5.3 , 5.4, and 5.5, respectively. Apply Lemma 5.1 to T with ∆, K as defined
above. Let (V1, . . . , Vt) be the obtained decomposition of V (T ); clearly t = Θ(n).

Before defining the board of the game, we define an auxiliary graph S with vertex set
{v1, . . . , vt}. The vertices of S are associated with the parts Vi of the aforementioned
decomposition of V (T ) in a straightforward way, namely, vi corresponds to Vi for every
1 ≤ i ≤ t. For every 1 ≤ i < j ≤ t, there is an edge of S between vi and vj if and only if
there is an edge of T connecting some vertex of Vi and some vertex of Vj . It is easy to see
that S is in fact a tree. Moreover, since the degrees in T do not exceed ∆ and each part Vi

has at most (∆ + 1)K vertices, the maximum degree of S is at most (∆ + 1)∆K.

The board of the tree construction game is the edge set of a simple graph G on the vertex
set {1, . . . , n}. The edge set of G is

t
⋃

i=1

{xy : x, y ∈ Vi} ∪
⋃

vivj∈E(S)

{xy : x ∈ Vi, y ∈ Vj},

that is, we put a complete graph inside each Vi, and connect Vi and Vj by a complete
bipartite graph whenever they are connected by an edge in T .

Observe that the maximum degree of G can be bounded from above as follows,

∆(G) ≤ (max |Vi|) · (1 + (∆ + 1)∆K) = O(1) .

It follows that G has Θ(n) edges.

We now prove that Maker can build a copy of T , while playing against Breaker in a (1 : 1)
game on the edge-set of G. Maker’s strategy is as follows: he plays 2t− 1 separate games
in parallel. That is, whenever Breaker claims an edge with both end points in Vi (for
some 1 ≤ i ≤ t), Maker responds by claiming a free edge with both end points in Vi, and
whenever Breaker claims an edge with one end point in Vi and the other in Vj (for some
1 ≤ i < j ≤ t), Maker responds by claiming a free edge with one end point in Vi and the
other in Vj. Whenever this is not possible (at most 2t− 1 times – once per game), Maker
claims an arbitrary free edge. Maker’s strategy for each separate game is as follows:

• For every 1 ≤ i ≤ t, when playing on E(G[Vi]) Maker creates a (1/2, |Vi|−0.1)-regular
graph. This is possible due to Lemma 5.3.
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• For every 1 ≤ i < j ≤ t for which vivj ∈ E(S), when playing on the edges of
the complete bipartite graph between Vi and Vj , Maker builds a graph of positive
minimum degree, thus connecting every vertex of Vi to Vj and every vertex of Vj to
Vi. This is possible due to Lemma 5.5.

Let M denote the graph built by Maker by the end of the game. We claim that M admits a
copy of T . We will construct such a copy by embedding it in pieces, following some search
order (say, BFS) on the auxiliary tree S. Assume without loss of generality that the order
in which we wish to embed the T [Vi]’s in M is T [V1], T [V2], . . . , T [Vt]. Assume we have
already embedded T [V1], . . . , T [Vi] and the edges of T that connect them, and now wish to
embed T [Vi+1]. Note that (unless i = 0) some vertex ri+1 ∈ Vi+1 is connected in T to some
(already embedded) vertex u ∈ Vj, for some 1 ≤ j ≤ i. Let u′ denote the image of u in the
embedding and let v′ ∈ Vi+1 be an arbitrary neighbor of u′ in M . Note that such a neigh-
bor v′ exists by Maker’s strategy for the game on the complete bipartite graph connecting
Vj and Vi+1. We embed the edge uri+1 into the edge u′v′. Then we embed T [Vi+1] into
M [Vi+1] such that ri+1 serves as the root of T [Vi+1] and is mapped into v′. Since M [Vi+1]
is (1/2, |Vi+1|−0.1)-regular, such a rooted embedding is possible due to Lemma 5.4. 2

6 The biased positive minimum degree and connec-

tivity games

We will use the following result from [7] regarding the distribution of edges in the probability
space Gn,d of random n-vertex d-regular graphs.

Theorem 6.1 [7] If d = o(
√
n), then almost surely every subset U of the vertices of a

graph G, drawn uniformly at random from Gn,d, satisfies
∣

∣

∣

∣

eG(U) −
(|U |

2

)

d

n

∣

∣

∣

∣

= O(|U |
√
d).

Proof of Theorem 1.6.

Proof of Part (i) Fix 0 < ε ≤ 0.1, sufficiently large n = n(ε), and q = q(n) ≤ (ln 2 −
ε)n/ lnn. We first prove that there exists a graph G = (V,E) with n vertices and dn(1/2 +
o(1)) edges, where d = (1 + ε)q log2 n, which satisfies the following property,

e(A, V \ A) ≥ (1 − ε/2)d|A||V \ A|/n, for every A ⊆ V. (11)

If d = Ω(
√
n), then almost surely a binomial random graph G ∈ G(n, d/n) satisfies (11);

this follows from standard bounds on the tails of the binomial distribution.
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For d = o(
√
n), we will prove that a random n-vertex d-regular graph G = (V,E) satisfies

property (11) almost surely. According to Theorem 6.1, we have that, almost surely, for
every A ⊆ V of size 1 ≤ a ≤ n/2, the number of edges of G between A and V \ A is

eG(A, V \ A) = da− 2e(A)

≥ da(n− a)

n
− O(a

√
d)

= (1 − o(1))da(n− a)/n.

Now, assume that G is a graph with n vertices and dn(1/2 + o(1)) edges, which satisfies
Property (11) (if d = o(

√
n) and dn is odd, then take G′ ∈ Gn−1,d, add a new vertex v, and

connect it to arbitrary d vertices of G′). In order to build a spanning connected subgraph
of G (and thus win) Maker will claim an edge in every cut of G, that is, he will assume the
role of Cut-Breaker in the so-called Cut game on G. (The Cut game on G is the positional
game played by two players, Cut-Maker and Cut-Breaker, on the hypergraph F whose
vertices are the edges of G and whose hyperedges are the edge sets of all bipartite spanning
induced subgraphs of G.) Note that due to (11) we have

∑

A∈F
2−|A|/q ≤

n/2
∑

r=1

(

n

r

)

2−(1−ε/2)dr(n−r)/(qn)

≤
n/2
∑

r=1

[en

r
2−(1−ε/2)(1+ε)(1−r/n) log2 n

]r

≤
√
n

∑

r=1

[en

1
· n−(1−ε/2)(1+ε)(1−

√

n
n

)
]r

+

n/2
∑

r=
√
n

[

en√
n
· n−(1−ε/2)(1+ε)(1−n/2

n
)

]r

≤
√
n

∑

r=1

[

en1−(1+ε/3)
]r

+

n/2
∑

r=
√
n

[

en1/2−(1/2+ε/6)
]r

= o(1).

It follows that we can apply Beck’s criterion for Breaker’s win in biased positional games [5],
to conclude that Cut-Breaker has a winning strategy for the (q : 1) Cut game on G, and
thus Maker has a winning strategy for the (1 : q) connectivity game on G.

Proof of Part (ii) Our argument is a generalization of the argument applied by Chvátal
and Erdős [8] to provide a winning strategy for Breaker in the biased Maker-Breaker con-
nectivity game played on the edge set of the complete graph Kn. Let G = (V,E) be a
graph with n vertices and m ≤ (1/2 − ε)(q − 1)n lnn edges. Let d̄(G) = 2m/n denote the
average degree of G.

Set

s = n1−ε/2, d1 = d̄(G) +
d̄(G)

ln lnn
.

17



Breaker’s strategy is divided into two phases. In the first phase, Breaker builds a graph
GB ⊆ G, such that there exists a subset U ⊆ V (G) with the following properties:

(a) |U | = s.

(b) dG(v) ≤ d1 for every v ∈ U .

(c) Every edge of G[U ] is claimed by Breaker, that is, E(G[U ]) ⊆ E(GB).

(d) Maker has not claimed any edge which is incident with U .

In the second phase, Breaker isolates one of the vertices of U in Maker’s graph.

Let V0 be the set of vertices of G of degree at most d1, and let x = |V0|. Clearly,

(n− x)d1 ≤
∑

v∈V \V0

dG(v) ≤
∑

v∈V
dG(v) = d̄(G)n ,

implying

x ≥ n

1 + ln lnn
.

In the first phase, Breaker plays as follows. If q = O(1), then Breaker, even before the game
has started, can choose U ⊆ V0 to be any independent set of G of size s (such a set exists
as G[V0] has x vertices and its maximum degree is at most d1; therefore its independence
number is at least x/(d1 + 1) ≫ n1−ε/2.)

Assume then, that q = ω(1). Breaker builds the required graph GB in at most s rounds.
Assume that just after Breaker’s ith move, where 0 ≤ i < s, Breaker has built a graph Gi,
such that there exists a set Ui ⊆ V (G) of size i that satisfies properties (b), (c), and (d)
(where GB is replaced by Gi). Let Mi ⊆ V (G) denote the set of vertices of degree 0 in
Maker’s current graph, and let Ri = Mi ∩ (V0 \ Ui). Clearly, |Ri| ≥ |V0| − |Ui| − 2i ≥ (1 −
o(1))n/ ln lnn. Since dG(v) ≤ d1 holds for every v ∈ Ui, we have e(Ui, Ri) ≤ d1|Ui| ≤ d1s.
It follows that there exist two vertices u, v ∈ Ri such that

dUi
(u) + dUi

(v) ≤ 2e(Ui, Ri)

|Ri|
≤ (1 + o(1))2d1s

n
ln lnn

≤ (1 + o(1))2q lnn ln lnn

nε/2
= o(q) . (12)

In his (i + 1)st move, Breaker claims all edges of

Ei+1 := E(G) ∩ ({uv} ∪ {ux : x ∈ Ui} ∪ {vx : x ∈ Ui}).

This is possible by (12). He then claims additional q−|Ei+1| arbitrary free edges. Let Gi+1

denote Breaker’s graph just after his (i + 1)st move. Let U ′
i+1 = Ui ∪ {u, v}. On his next

move, Maker claims some edge xy. Clearly, |U ′
i+1 ∩ {x, y}| ≤ 1. Deleting an appropriate
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vertex from U ′
i+1 we obtain a set Ui+1 ⊆ V0 of size i + 1 that satisfies properties (b), (c),

and (d) (where GB is replaced by Gi+1). In particular, after Breaker’s sth move he builds
the desired graph, with GB := Gs and U := Us. This concludes the first phase of Breaker’s
strategy.

In the second phase, Breaker isolates one of the vertices of U in Maker’s graph. In order
to prove that he can achieve this goal, we use the formalism of the so-called Box Game,
introduced in [8]. Let H = {A1, A2, . . . , As} be a family of pairwise disjoint sets. The
(1 : q) Box Game H, is played by two players, called Box-Maker and Box-Breaker, who
take turns claiming elements of the board

⋃s
i=1Ai. Box-Breaker claims one element per

move whereas Box-Maker claims q. Box-Maker wins the game if and only if he claims all
elements of Ai, for some 1 ≤ i ≤ s. It was proved in [8] that Box-Maker (as the first or
second player) wins this game if s · maxi |Ai| ≤ f(s, q) (in fact they only consider the case
in which ||Ai| − |Aj|| ≤ 1 for every 1 ≤ i < j ≤ s, but the more general claim follows from
theirs in a straightforward way), where the function f(s, q) satisfies

f(s, q) ≥ (q − 1)s
s−1
∑

i=1

1/i . (13)

Coming back to the (1 : q) connectivity game, we set U = {u1, . . . , us}, and define the
family HG = {A1, A2, . . . , As}, where Ai = {uiv ∈ E(G) : v ∈ V (G) \ U}, for every
1 ≤ i ≤ s. Breaker plays as in the Box Game, assuming the role of Box-Maker on HG. It is
evident that, if Box-Maker can win the (1 : q) game HG, then Breaker can win the (1 : q)
connectivity game, by isolating some vertex of U in Maker’s graph.

Hence, it remains to prove that the aforementioned sufficient condition for Box-Maker’s
win in HG is satisfied. By (13), we have

f(s, q) ≥ (q − 1)s
s−1
∑

i=1

1

i

≥ (q − 1)s ln(s− 1)

≥ (q − 1)s ln(n1−ε/2 − 1)

≥ (q − 1)s(1 − ε) lnn.

The claim now follows since maxi |Ai| ≤ d1 and d̄(G) ≤ (1−2ε)(q−1) lnn. This concludes
the proof of Theorem 1.6. 2

7 Concluding remarks and open problems

Bounded degree graphs. It would be very interesting to find out if Theorem 1.5 could
be extended from bounded degree trees to arbitrary bounded degree graphs.
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Problem 7.1 Does there exist a constant B = B(∆) for which the following holds: for
any n-vertex graph H of maximum degree at most ∆, there exists an n-vertex graph G with
at most Bn edges, such that Maker can build a copy of H when playing on E(G)?

Finiteness. Despite our efforts, the precise asymptotic form of m̂(D1) still eludes us. The
following question might actually be of greater importance than the actual numerical value
of the asymptotics.

Problem 7.2 Is the determination of m̂(D1) a finite problem? That is, does there exist a
constant c0 for which there is a graph K on at most c0 vertices such that

m̂(D1) =
e(K)

v(K)
· n + O(1)?

Asking an analogous question for the perfect matching game, or more generally, for any
spanning graph game in which there is a winning set consisting of disconnected pieces of
constant order, is also interesting.

Various definitions of sparseness. Throughout this paper, sparseness was measured in
terms of the edge number. However, other natural measures of sparseness could be used.
One possibility would be to use measures involving the property itself.

For example, if Maker’s goal is to build a connected spanning graph, then a natural question
to ask is how large must the connectivity of the board be, in order to ensure Maker’s win?
It follows from Lehman’s Theorem and from a theorem of Tutte [19] and independently
Nash-Williams [17], that Maker can win the connectivity game on any 4-edge-connected
graph. On the other hand, it is easy to find 3-vertex-connected graphs (for example, almost
every 3-regular graph) on which Breaker wins this game.

An analogous but more challenging question concerns a coloring game, in which Maker’s
goal is to build a non-k-colorable graph. It is easy to see that there exists a non-k-colorable
graph G, for example a complete (k + 1)-partite graph with sufficiently large parts, such
that playing on E(G), Maker is able to build a graph GM ⊆ G, satisfying χ(GM) = χ(G)
and thus, in particular, GM is non-k-colorable.

A more interesting question to ask is how large should the chromatic number of the base
graph be, in order to guarantee that Maker wins the non-k-colorability game, played on
its edges. Formally, we are interested in the smallest integer r = rq(k) such that playing a
(1 : q) game on any non-r-colorable graph, Maker is able to build a non-k-colorable graph.
It is not hard to show that r1(k) ≤ k2 + 1. Indeed, let G be an arbitrary non-(k2 + 1)-
colorable graph. Let e ∈ E(G) denote the edge Breaker claims in his first move, and let
G′ := G \ e. Clearly χ(G′) ≥ χ(G) − 1 ≥ k2 + 1. It is well-known (and easy to see) that
for any subgraph H ⊆ G′, we have χ(G′) ≤ χ(H)χ(G′ − E(H)). In particular, at the end
of the game, at least one of the players will claim the edges of a non-k-colorable graph.
Assume for a contradiction that Maker does not have a winning strategy. It follows by
the argument above that Breaker has a winning strategy. Since Maker starts the game
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on G′, he can apply strategy stealing and win the game, a contradiction. This settles
the existence of r1(k). For biased games however, we know hardly anything. We do not
know any upper bound on rq(k), even when Breaker’s bias q is as small as 2. Indeed, even
the following, seemingly innocent, question is open: can Maker build a non-bipartite graph
when playing a (1 : 2) game on the edge-set of a 1000-chromatic graph? An analogous open
problem for vertices appeared in the paper of Duffus,  Luczak, and Rödl [9]. Here we suggest
the following problem whose resolution might prove useful in tackling the aforementioned
problem of Duffus,  Luczak, and Rödl.

Problem 7.3 Let G be an arbitrary r-chromatic graph, where r ≥ r1(2) is a large constant.
Find an explicit strategy for Maker to claim the edges of a non-bipartite graph, in a (1 : 1)
game on E(G).

Questions of similar flavor are discussed in more detail in a recent paper [1] of Alon and
the first two authors of the present paper.

Biased connectivity game: Theorem 1.6 establishes an abrupt change in the number
of edges required for Maker’s win in the connectivity game when Breaker’s bias changes
from 1 to 2. It would be very interesting to determine the exact constant in the asymptotic
dependence of m̂(C1, q) on q. We conjecture the following.

Conjecture 7.4

m̂(C1, q) =
1

2
(q − 1 + o(1))n lnn.

The validity of Conjecture 7.4 would imply that m̂(D1, q) = (1 + o(1))m̂(C1, q) holds for
every q ≥ 2. It would thus follow that, as in many other scenarios, the properties ‘connec-
tivity’ and ‘positive minimum degree’ are tightly connected with respect to m̂ (in biased
games). Moreover, it might indicate that the aforementioned abrupt change in m̂, which
occurs in the transition from unbiased to biased games, is due to the vanishing of the
leading term in the right hand side of 7.4 when q = 1.

Non-global properties: As noted in the Introduction, it makes sense to study m̂ for
different properties as well. For example, for a fixed graph H one could study the smallest
number of edges of a graph G on which Maker can build a copy of H . Clearly, the answer is
a function of H which is independent of the number of vertices of the base graph. Indeed,
it is evident (via Strategy Stealing) that m̂(PH) ≤ r̂(H), where PH is the property of
admitting a copy of H and r̂(H) is the so-called size Ramsey number of H . Somewhat
similarly, one could study m̂(PT (α, n, d)), where G ∈ PT (α, n, d) if and only if |V (G)| = n
and G admits a copy of every tree on αn vertices with maximum degree at most d. When
studying this parameter, one could use different known sufficient conditions for embedding
such trees in expanding graphs (see, e.g., [11, 12, 2, 4]). It seems therefore that studying
m̂(P) for non-global properties P is of a different flavor and might require different tools.
We plan to study them in a separate paper.
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