Algebraic Methods in Combinatorics 0366-4933 Michael Krivelevich Spring Semester 2013

Homework 2 Due: Apr. 24, 2013

1. Prove (algebraically!) that every set P of n points in the plane, not all are on one line, determines at least n distinct lines (a line is determined by P if it passes through a pair of points in P).

2. Let $\mathcal{F}_1, \mathcal{F}_2 \subseteq {\binom{[n]}{k}}$ be k-uniform families. Let L_1, L_2 be two disjoint sets of integers such that \mathcal{F}_i is L_i -intersecting, i = 1, 2. Prove that $|\mathcal{F}_1| \cdot |\mathcal{F}_2| \leq {\binom{n}{k}}$.

3. Let p be a prime number, and let $L \subseteq Z_p$ be a subset of s residues. Suppose that A_1, \ldots, A_m and B_1, \ldots, B_m are two families of subsets of [n] satisfying:

1. $|A_i \cap B_i| \pmod{p} \notin L$ for all $1 \le i \le m$;

2. $|A_j \cap B_i| \pmod{p} \in L$ for all $1 \le j < i \le m$.

Prove that $m \leq \binom{n}{\leq s} = \sum_{i=0}^{s} \binom{n}{i}$.

4. Show that for intifinely many values of *n* one can *explicitly* construct a 2-coloring of the edges of the complete bipartite graph K_{n^2,n^2} without a monochromatic copy of $K_{n+1,n+1}$.

5. For an integer $k \ge 2$, give an explicit coloring of the edges of the complete graph on $n = \begin{pmatrix} t \\ 2k-1 \end{pmatrix}$ vertices in k colors, not containing a monochromatic copy of K_{t+1} .