Algebraic Methods in Combinatorics 0366-4933 Michael Krivelevich Spring Semester 2013

Homework 3 Due: May 29, 2013

1. Let $A \in M_{n \times n}(F)$ be a matrix with non-zero permanent over F. Prove that for every vector $\overline{b} = (b_1, \ldots, b_n) \in F^n$ and for every family of sets $S_1, \ldots, S_n \subset F$, each of cardinality 2, there is a vector $\overline{x} \in S_1 \times \ldots \times S_n$ such that for every i, the *i*-th coordinate of $A\overline{x}$ differs from b_i .

2. Let G = ([n], A) be a directed graph containing a family of vertex disjoint cycles covering all vertices of G. Prove that for every family of sets $S_1, \ldots, S_n \subset \mathbb{R}$, each of cardinality 2, there is a vector $\bar{x} \in S_1 \times \ldots \times S_n$ such that for every vertex $i \in [n]$ one has: $\sum_{j:(j,i)\in A(G)} x_j \neq 0$.

3. Let K_r^k denote a complete *r*-uniform hypergraph on *k* vertices. An *r*-uniform hypergraph H = (V, E) is called K_r^k -saturated if *H* does not contain a copy of K_r^k , but any *r*-tuple from *V* missing in *H* creates a copy of K_r^k when added to *H*. Prove that if H = (V, E) is an *r*-uniform K_r^k -saturated hypergraph on *n* vertices, then $|E| \ge {n \choose r} - {n-k+r \choose r}$. Provide an example of equality.

4. Let $A_1, \ldots, A_m, B_1, \ldots, B_m$ be finite sets satisfying: $A_i \cap B_i = \emptyset$, $1 \le i \le m$, but $A_i \cap B_j \ne \emptyset$, $1 \le i < j \le m$. Prove:

$$\sum_{i=1}^{m} \left(\frac{1}{2}\right)^{|A_i| + |B_i|} \le 1.$$

Hint. There are methods other than algebraic in Combinatorics...

5. Let n > r be positive integers. The Kneser graph K(n, r) is the graph whose vertices are r-tuples of [n], where two r-tuples are connected by an edge if they are disjoint. Prove that if r divides n, then the Shannon capacity c(K(n, r)) of K(n, r) satisfies: $c(K(n, r)) = \binom{n-1}{r-1}$.

6. For a graph G = ([n], E), define $\eta(G)$ to be the smallest rank of any matrix $A \in M_{n \times n}(F)$ (over any field F) such that $a_{ii} \neq 0, 1 \leq i \leq n$, but $a_{ij} = 0$ for every $1 \leq i \neq j \leq n$ for which $(i, j) \notin E(G)$. Prove that $c(G) \leq \eta(G)$, where c(G) is the Shannon capacity of G. *Hint.* Familiarize yourself with the Kronecker product of matrices and its properties.