Problem 1 (F20A). Suppose that G is an n-vertex, triangle-free graph. Show that $\nu(G) = n - \chi(G^c)$. (Recall that $\nu(G)$ is the largest size of a matching in G.)

Problem 2 (F20A). Show that every 4-colourable graph with m edges contains a bipartite subgraph with at least $2m/3$ edges.

Problem 3 (F20A). Show that every 3-connected graph contains a subdivision of K_4.

Problem 4 (F20A). Show that, for every $n \geq 5$, the largest number of edges in a nonbipartite triangle-free graph with n vertices is $\lceil (n - 1)^2/4 \rceil + 1$.

Problem 5 (F20B). Prove that a graph G is 3^k-colourable if and only if G is the union of k three-colourable graphs.

Problem 6 (F20B). Let G be a connected graph that contains neither K_3 nor P_4 (the path with four vertices) as an induced subgraph. Prove that G is a complete bipartite graph.

Problem 7 (F20B). Suppose that every edge of a graph G appears in at most one cycle. Prove that $\chi(G) \leq 3$.

Problem 8 (F20B). Denote by $m \cdot K_2$ the graph comprising m vertex-disjoint edges (the unique 1-regular graph with $2m$ vertices). Show that $R(m \cdot K_2, m \cdot K_2) = 3m - 1$ for every $m \geq 1$. Recall that $R(H, H)$ denotes the smallest integer n such that every red/blue-colouring of the edges of K_n contains a monochromatic copy of H.

Problem 9 (F19A). Show that every 3-regular n-vertex graph contains a bipartite subgraph with n edges.

Problem 10 (F19A). Prove that every graph G with $\chi(G) \geq 3$ contains a cycle of length at least $\chi(G)$.

Problem 11 (F19A). Suppose that G is a 4-regular graph with an even number of vertices and $\kappa'(G) > 2$.\footnote{Recall that $\kappa'(G)$ is the edge connectivity of G.} Prove that G contains a perfect matching.

Problem 12 (F19A). Prove the following assertion: For every $n \geq 6$, the largest number of edges in an n-vertex graph without two edge-disjoint cycles is $n + 3$.

Problem 13 (F19B). Prove that the graph obtained from K_n by deleting one edge has exactly $(n - 2)n^{n-3}$ spanning trees.

Problem 14 (F19B). Prove that every n-vertex triangle-free graph has chromatic number at most $2\sqrt{n}$.

Problem 15 (F19B). Suppose that G is bipartite. Prove that $\chi(G^c) = \omega(G^c)$.\footnote{Recall that G^c denotes the complement of G and $\omega(H)$ is the largest order of a clique in H.}

Problem 16 (F19B). Suppose that G is a regular graph with n vertices. Show that either $G = K_n$ or the largest clique in G has at most $n/2$ vertices.

Problem 17 (F18A). Suppose that a graph G contains two edge-disjoint spanning trees. Show that G contains a spanning Eulerian subgraph, that is, a spanning subgraph that has an Eulerian tour.
Problem 18 (F18A). Let G be a bipartite graph with bipartition $V(G) = X \cup Y$ and fix some $A \subseteq X$ and $B \subseteq Y$. Suppose that G contains a matching that covers every vertex of A and also a matching that covers every vertex of B. Show that G contains a matching that covers every vertex in $A \cup B$.

Problem 19 (F18A). Suppose that a graph G does not contain three pairwise vertex-disjoint odd cycles. Show that $\chi(G) \leq 8$.

Problem 20 (F18A). Suppose that G is a 2-connected simple plane graph. Prove that G is bipartite if and only if the boundary of every face of G is an even cycle.

Problem 21 (F18B). Let G be a connected graph, let T_1 and T_2 be (the edge sets of) two spanning trees of G, and let $e \in T_1 \setminus T_2$. Show that

(a) There exists $f \in T_2 \setminus T_1$ such that $(T_1 \setminus \{e\}) \cup \{f\}$ is a spanning tree of G.

(b) There exists $f \in T_2 \setminus T_1$ such that $(T_2 \setminus \{f\}) \cup \{e\}$ is a spanning tree of G.

Problem 22 (F18B). Let G be an n-vertex graph such that $2\delta(G) \leq n$. Show that G contains a matching with $\delta(G)$ edges.

Problem 23 (F18B). Suppose that G is a graph without isolated vertices. Let $\gamma(G)$ be the smallest number of edges in a spanning subgraph of G that has no isolated vertices. Show that

$$\gamma(G) + \nu(G) = |V(G)|,$$

where $\nu(G)$ is the largest size of a matching in G.

Problem 24 (F18B). Suppose that m and n are positive integers such that $m - 1$ divides $n - 1$. Show that $R(T, K_{1,n}) = m + n - 1$ for every tree T with m vertices. Recall that $R(G, H)$ is the smallest integer N such that every colouring of the edges of K_N with red and blue contains either a subgraph isomorphic to G whose all edges are red or a subgraph isomorphic to H whose all edges are blue.

Problem 25 (F16A). Suppose that G is a k-connected graph, where $k \geq 2$. Show that every set of k vertices of G lies on a common cycle.

Problem 26 (F16A). Show that every graph G is a union of $\lceil \log_2 \chi(G) \rceil$ bipartite graphs.

Problem 27 (F16A). Let G be a bipartite graph with $\delta(G) = \Delta(G) \geq 2$. Show that $\kappa(G) \neq 1$.

Problem 28 (F16A). Let T be a tree with $2k$ leaves. Prove that T contains k pairwise edge-disjoint paths joining distinct leaves (so that each leaf is an endpoint of one of the paths).

Problem 29 (F16B). Let G be a non-bipartite graph with n vertices. Show that G has an odd cycle of length at most $\max \{3, 2n/\delta(G)\}$.

Problem 30 (F16B). Let G be a connected simple graph having neither K_3 nor P_4 (the path with four vertices) as an induced subgraph. Prove that G is a complete bipartite graph.

Problem 31 (F16B). Prove or disprove the following statement: Every tree has at most one perfect matching.

Problem 32 (F16B). Recall that $R(G, H)$ denotes the smallest integer n such that every red/blue-colouring of the edges of K_n contains either a red copy of G or a blue copy of H. Let T be a tree with t edges. Prove that $R(K_{s+1}, T) = st + 1$.
Problem 33 (F17A). Show that every connected graph G contains a spanning tree with at least $\Delta(G)$ leaves.

Problem 34 (F17A). Show that
\[\text{ex}(n, C_5) \leq \left(\frac{n + 2}{2} \right)^2. \]
In other words, show that an n-vertex graph without a cycle of length 5 has at most $(n + 2)^2/4$ edges.

Problem 35 (F17A). Suppose that v_1, \ldots, v_n are distinct unit (that is, of length 1) vectors in \mathbb{R}^3. Prove that there are at most $4n^{5/3}$ pairs $\{i, j\} \subseteq \{1, \ldots, n\}$ such that v_i and v_j are orthogonal.

Problem 36 (F17A). Without invoking the four-colour theorem, prove that every planar graph without a triangle is four-colourable.

Problem 37 (F17B). Let $k \geq 1$ be an integer and suppose that a connected graph G has $2k$ vertices of odd degree. Prove that the edge set of G can be partitioned into k walks.

Problem 38 (F17B). Let G be a 2-connected graph and let x and y be two distinct vertices of G. Suppose that each $z \in V(G) \setminus \{x, y\}$ has degree at least k. Prove that G contains a path of length at least k with endpoints x and y.

Problem 39 (F17B). For every even integer n, determine the largest number of edges in an n-vertex graph that does not contain a perfect matching.

Problem 40 (F17B). Prove that the edge set of every graph with n vertices can be covered by at most $\lceil n^2/4 \rceil$ edges and triangles.