

0366.3267 Graph Theory

Fall Semester 2022

Homework assignment 1

Due date: Sunday, November 27, 2022

Problem 1. Prove that for every $n \geq 1$, the number of graphs with vertex set $\{1, \dots, n\}$ and all degrees even is $2^{\binom{n-1}{2}}$.

Problem 2. Let $n \geq 6$. Prove that every n -vertex graph with at least $4n - 9$ edges contains a subgraph with minimum degree 5.

Problem 3. Prove that every graph G with m edges admits a bipartition $V(G) = V_1 \cup V_2$ such that the number of edges of G crossing between V_1 and V_2 is at least $m/2$.

Problem 4. Let G be a graph without isolated vertices. Prove that $V(G)$ can be decomposed into sets of size at least two, each inducing a subgraph of G with a spanning star.

Problem 5. Characterize all graphs G on $n \geq 3$ vertices such that for every $v \in V(G)$, the graph $G - v$ is a tree.

Problem 6. Let T be a tree with k edges, and let G be a graph of minimum degree at least k . Prove: T is a subgraph of G .

Problem 7. Prove that the graph obtained from K_n by deleting one edge has exactly $(n-2)n^{n-3}$ spanning trees.

Problem 8. Compute the number of spanning trees of the complete bipartite graph $K_{m,n}$.

The exercises below are for you to practice — please do NOT submit their written solutions:

Exercise 1. Show that a graph is bipartite if and only if it contains no odd cycles.

Exercise 2. Prove that a graph G with $\delta(G) \geq 3$ has a cycle with a chord.

Exercise 3. Let d_1, \dots, d_n be positive integers. Prove that there exists a tree with degree sequence d_1, \dots, d_n if and only if

$$d_1 + \dots + d_n = 2n - 2.$$

Exercise 4. Show that every tree with maximum degree $\Delta \geq 1$ has at least Δ leaves.