0366.3267 Graph Theory

Fall Semester 2024

Homework assignment 1

Due date: Sunday, December 8, 2024

Problem 1. Prove that for every $n \ge 1$, the number of graphs with vertex set $\{1, \ldots, n\}$ and all degrees even is $2^{\binom{n-1}{2}}$.

Problem 2. Let $n \ge 7$. Show that every *n*-vertex graph with at least 5n - 14 edges contains a subgraph with minimum degree 6.

Problem 3. Prove that every graph G with m edges admits a bipartition $V(G) = V_1 \cup V_2$ such that the number of edges of G crossing between V_1 and V_2 is at least m/2.

Problem 4. Let $k \ge 2$, $g \ge 3$ be integers, and let G be a graph of minimum degree k and girth g. Show that G contains a cycle of length at least (g-2)(k-1)+2.

Problem 5. Let T be a tree with k edges, and let G be a graph of minimum degree at least k. Prove: T is a subgraph of G.

Problem 6. Prove that the graph obtained from K_n by deleting one edge has exactly $(n-2)n^{n-3}$ spanning trees.

Problem 7. Compute the number of spanning trees of the complete bipartite graph $K_{m,n}$.

The exercices below are for you to practice — please do NOT submit their written solutions:

Exercise 1. Show that a graph is bipartite if and only if it contains no odd cycles.

Exercise 2. (a) Show that every graph with at least two vertices has two vertices of equal degree. (b) For every $n \ge 2$, construct an n-vertex graph G with exactly one pair of vertices of equal degree.

Exercise 3. Characterize all graphs G on $n \ge 3$ vertices such that for every $v \in V(G)$, the graph G - v is a tree.

Exercise 4. Let d_1, \ldots, d_n be positive integers. Prove that there exists a tree with degree sequence d_1, \ldots, d_n if and only if

$$d_1 + \ldots + d_n = 2n - 2.$$

Exercise 5. Show that every tree with maximum degree Δ has at least Δ leaves.