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COURSE DESCRIPTION

I guess all of you played the game of Tic-Tac-Toe (Crosses and Noughts on the 3-by-3
board) in your early childhood, and probably some of you spent your time playing Tic-
Tac-Toe on a larger board (and probably none of you tried its high-dimensional version...).
Here is another very popular game – the game of Hex, played on a rhombus of hexagons
of size n × n, where the two players, White and Black, take the two opposite sides of the
board each, and then take alternatively unoccipied hexagons of the board, trying each to
connect his opposite sides of the board; whoever achieves this first wins. Another example:
the game is played on the edges of the complete graph Kn on n vertices, Player I (Maker)
takes each time one unoccupied edge, Player II (Breaker) responds by taking q unoccupied
edges. Maker wins if he creates of copy of a fixed graph G from his edges, otherwise the
win is of Breaker.

All the above games and amazing variety of other games can be cast in the following
uniform framework. Let p, q be positive integers, and let H = (E1, . . . , Ek) be a collection
of finite set (a hypergraph). The board of the game is the set of vertices of H . Two
players take turns occupying previously untaken vertices of H . Player I takes in his turn
p unoccupied vertices, Player II responds by taking q unoccupied vertices. The edges of
H are winning sets. The game is specified completely by defining who wins in every final
position. For example, whoever occupies completely an edge of H wins; or the first player
wins if he takes an edge of H by the end of the game, while the second player aims to
prevent him from achieving his goal; or the first player loses if he occupies an edge of H in
the end and wins otherwise. Those are Positional Games.

Positional Games stand at the interface of Game Theory and Combinatorics. Their
study involves a variety of combinatorial arguments of different sorts, including sometimes
probabilistic reasoning and intuition. This subject has been promoted and popularized
mainly by József Beck, whose papers will serve us as the main bibliographic sourse in this
course.
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