

Positional Games 0366-4991

Michael Krivelevich
Spring Semester 2015

Homework 3 Due: May 27, 2015

1. Show that for every $\epsilon > 0$ there is n_0 such that the following is true. Let $G = (V, E)$ be a graph on $|V| = n > n_0$ vertices with minimum degree $\delta(G) \geq \left(\frac{1}{2} + \epsilon\right)n$. Then Maker wins the $(1 : b)$ Maker-Breaker connectivity game on $E(G)$ for $b \leq \frac{n}{2 \log_2 n}$.
2. Prove that for every $\epsilon > 0$ and integer $k > 0$ there is n_0 such that for every $n > n_0$, Maker has a strategy to create a spanning k -connected graph, playing the $(1 : b)$ Maker-Breaker game on $E(K_n)$ for $b \leq \frac{(1-\epsilon)n}{\ln n}$.
3. Let t be a positive integer. Argue that, for any $\epsilon > 0$ and all large enough n , in the $(1 : (1 - \epsilon)\frac{n}{\ln n})$ Maker-Breaker game on $E(K_n)$, Maker has a strategy to create t edge-disjoint Hamilton cycles.
4. Let P be the property “ G has a triangle and a Hamilton cycle”. Let b_P be the threshold bias of the $(1 : b)$ Maker-Breaker game on $E(K_n)$ where Maker wins if in the end his graph belongs to P . Prove: $b_P = \Theta(\sqrt{n})$.
5. For a positive integer n , define the *rake* R_n to be the graph on $2n$ vertices obtained by taking the path P_n on n vertices and attaching an edge to each vertex of the path, where the other endpoints of these edges are distinct and disjoint from P_n . Prove that there are $\delta, n_0 > 0$ such that for every $n > n_0$ Maker can create a copy of R_n playing against Breaker in the $(1 : \frac{\delta n}{\ln n})$ game on $E(K_{2n})$.