1. [biased Lehman does not work for MB, CW games] Prove that for every positive integer \(t \) there exists a \(t \)-edge connected graph \(G \) such that Breaker wins the (1 : 2) Maker-Breaker connectivity game on \(E(G) \), and Waiter wins the (1 : 1) Client-Waiter connectivity game on \(E(G) \).

 \textit{Hint.} Box Game...

2. Show that for every positive integer \(r \) there exist \(c > 0 \) and infinitely many \(n \) for which there is an \(r \)-uniform hypergraph \((X,F)\) on \(|X| = n \) vertices with \(f^+_F - f^-_F \geq cn \), where \(f^-_F, f^+_F \) are the lower and the upper threshold biases, respectively, for the Avoider-Enforcer game on \(F \) under strict rules.

3. Prove that there is an absolute constant \(c > 0 \) such that Avoider wins the (1 : \(q \)) Avoider-Enforcer triangle game on \(E(K_n) \) for \(q \geq cn^{3/2} \), under both strict and monotone rules.

4. Let \(k = k(n) \) be the maximal size of a clique that Waiter can force Client to construct in the (1 : 1) Waiter-Client game on \(E(K_n) \). Show that there exist constants \(c_1, c_2 > 0 \) such that for all large enough \(n \), \(c_1 \ln n \leq k(n) \leq c_2 \ln n \).

5. Let \(T \) be a tree on \(k \geq 2 \) vertices. Prove that if \(q \leq cn^{\frac{k}{k-1}} \) for some \(c = c(k) > 0 \) and \(n \) is large enough, then Waiter can force Client to construct a copy of \(T \) in the (1 : \(q \)) Waiter-Client game on \(E(K_n) \).

 \textit{Hint.} Prove by induction on \(k \), proving a stronger (counting) statement.