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Chapter 1

Introduction

Tentative plan:

• models of random graphs and random graph processes

• random regular graphs

• long paths and Hamilton cycles in random graphs

• coloring problems in random graphs

• sharp thresholds

• eigenvalues of random graphs and algorithmic applications

• pseudo-random graphs

Not to be covered:

• phase transition

• appearance of a copy of a fixed graph H

Assume:

• working familiarity with basic notions of graph theory

• knowledge of basic notions in probability, linear algebra

1.1 Basic inequalities and tools

Theorem 1.1 For all x: 1 + x ≤ ex.

Proof: f (x) = ex − 1− x attains its minimum at x = 0. As a corollary: For
all x ≥ 0, 1− x ≤ e−x.
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1. Introduction

Proposition 1.2 For 1 ≤ k ≤ n,(n
k

)k
≤
(

n
k

)
≤
( en

k

)k
.

Proof Lower bound:(
n
k

)
=

n!
(n− k)!k!

=
n(n− 1) · (n− k + 1)

k(k− 1) · 1

=
n
k
· n− 1

k− 1
· n− k + 1

1
≥
(n

k

)k
.

Upper bound: we will prove

k

∑
i=0

(
n
i

)
≤
( en

k

)k
.

Note that for all x, (1 + x)n = ∑n
i=0 (

n
i )xi hence if we assume x ≥ 0, then by

the above inequality,

(1 + x)n ≥
n

∑
i=0

(
n
i

)
xi =⇒ (1 + x)n

xk ≥
k

∑
i=0

(
n
i

)
xi−k .

So for 0 < x ≤ 1,
k

∑
i=0

(
n
i

)
≤ (1 + x)n

xk .

Choose x = k/n, which is ok because 1 ≤ k ≤ n; then

k

∑
i=0

(
n
i

)
≤

(1 + k
n )

n

( k
n )

k
≤ e

k
n n

( k
n )

k
=
( en

k

)k
.

�

Theorem 1.3 (Stirling formula)

lim
n→∞

n!√
2πn( n

e )
n
= 1 .

Theorem 1.4 (Markov inequality) Take a random variable X ≥ 0, for which
E[X] exists. Then for t > 0,

Pr[X > t] ≤ E[x]
t

.

As usual
Var[X] = E

[
(X− E[X])2] = E[X2]−E2[X] ≥ 0 ,

and σ(X) =
√

Var[X].
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1.1. Basic inequalities and tools

Theorem 1.5 (Chebyshev inequality) Let X be a random variable for which
E[X] and E[X2] exist. Then for t > 0,

Pr[|X−E[X]| > t] ≤ Var[X]

t2 .

Typical picture:

E[X]

lower tail upper tail

Θ(σ(X))

Definition 1.6 (Binomial Random Variable) Take X = X1 + · · ·+ Xn, where
each Xi is i.i.d. Bernoulli(p) distributed, i.e. Pr[Xi = 1] = p, Pr[Xi = 0] = 1− p.
Then X is a binomial random variable and we write X ∼ Bin(n, p).

Note that because of linearity and independence

E[X] = np, Var[X] = np(1− p) .

Theorem 1.7 (Chernoff-type bounds on Bin) For X ∼ Bin(n, p) and a > 0,
we have the following bounds for lower and upper tail, resp.:

Pr[X ≤ np− a] ≤ e−
a2

2np ,

Pr[X ≥ np + a] ≤ e
− a2

2np+
a3

2(np)3 .

Asymptotics We will always assume n → ∞ (but is finite!). Let Ω = (Ωn)
be a sequence of probability spaces and A = (An) a sequence of events with
An ⊆ Ωn.

We say that A holds with high probability (w.h.p.) in Ω if

lim
n→∞

PrΩn [An] = 1.

3



1. Introduction

For f , g : N→ R+, we write

f = o(g) ⇐⇒ limn→∞ f (n)/g(n) = 0 ,
f = O(g) ⇐⇒ ∃C > 0 such that f (n) ≤ Cg(n)∀n ,
f = Ω(g) ⇐⇒ g = O( f ) ,
f = ω(g) ⇐⇒ g = o( f ) ,
f = Θ(g) ⇐⇒ f = O(g) and f = Ω(g) .

1.2 Basic models: G(n, p), G(n, m), random graph pro-
cess

Write [n] := {1, . . . , n} and N = (n
2).

Definition 1.8 (G(n, p)) Take V = [n]: note that this means the vertices are
labelled! For each pair 1 ≤ i ≤ j ≤ n, we let

Pr[{i, j} ∈ E] = p = p(n) ,

independently of the other pairs. Then G(V, E) is the binomial random graph
G(n, p).

Informally, we have N independent coins and each has probability p of
showing head. For a fixed graph G,

Pr[G] = p|E(G)|(1− p)N−|E(G)| .

In fact, the two definitions are equivalent.

Example 1.9 Let p = 1/3 and

G =

2

1 3

4

,

Then Pr[G] = ( 1
3 )

4( 2
3 )

2.

Edges in G(n, p) appear independently, so we work with product probability
spaces.

Special case: if p = 1
2 , then ∀G = (V, E), we have

Pr[G] = ( 1
2 )
|E(G)|( 1

2 )
N−|E(G)| ,

So all graphs are equiprobable, hence a typical graph in G(n, 1
2 ) has property

P ⇔ a typical graph with vertex set [n] has property P.

4



1.2. Basic models: G(n, p), G(n, m), random graph process

Definition 1.10 (G(n, m), Erdős-Rényi) Take the ground set

Ω = {G = (V, E), V = [n], |E| = m} .

Let all graphs be equiprobable:

Pr[G] =
1
|Ω| =

1
(N

m)
.

Comparing G(n, p) to G(n, m) We expect G(n, p) ≈ G(n, m) if we choose
p(n) and m(n) such that m = (n

2)p.

Random graph process The idea is to evolve/grow G gradually from the
empty graph to the complete graph. Formally:

Definition 1.11 (Random graph process) Take a permutation σ = (e1, . . . , eN)
of the edges of Kn. Define

G0 = ([n], ∅) ,
Gi = ([n], {e1, . . . , ei}) ∀1 ≤ i ≤ N .

Then G̃ = G̃(σ) = (Gi)
N
i=0 is a graph process.

If you choose σ ∈ SN uniformly at random, then G̃(σ) is called a random graph
process.

Informally:

1. Start with G0 = ([n], ∅).

2. At step i (1 ≤ i ≤ N): choose a random missing edge ei uniformly
from E(Kn) \ E(Gi−1). Set Gi := Gi−1 + {ei}.

Obviously |E(Gi)| = i. We can take a “snapshot” of G̃:

Proposition 1.12 Let G̃ = (Gi) be a random graph process. Then Gi ∼ G(n, i).

Proof ∀G = ([n], E) with |E| = i, just staring at the evolution gives

Pr[Gi = G] =
i!(N − i)!

N!
=

1
(N

i )
.

We have the same probability for every fixed G, so Gi must induce the dis-
tribution G(n, i). �

Hence random graph processes encode/contain G(n, m).

5



1. Introduction

1.3 Staged exposure

Proposition 1.13 (Staged exposure in G(n, p)) Suppose 0 ≤ p, p1, . . . , pk ≤
1 satisfy

1− p =
k

∏
i=1

(1− pi) .

Then the distributions G(n, p) and
⋃k

i=1 G(n, pi) are identical.

Proof Let G1 ∼ G(n, p) and G2 ∼
⋃k

i=1 G(n, pi). Observe that in both G1
and G2, every edge e = {i, j} appears independently. Moreover, Pr[e /∈
G1] = 1− p and

Pr[e /∈ G2] =
k

∏
i=1

(1− pi) = 1− p .
�

1.4 Monotonicity

A graph property is just a subset of graphs that are said to satisfy the property.

Definition 1.14 A graph property P is called monotone (increasing) if

G ∈ P and H ⊇ G =⇒ H ∈ P .

Examples include: Hamiltonicity, connectivity, containment of a copy of a
fixed graph H.

Proposition 1.15 Let P be a monotone graph property, 0 ≤ p1 ≤ p2 ≤ 1 and
0 ≤ m1 ≤ m2 ≤ N. Then:

(i) Pr[G(n, p1) ∈ P] ≤ Pr[G(n, p2) ∈ P].

(ii) Pr[G(n, m1) ∈ P] ≤ Pr[G(n, m2) ∈ P].

Proof (ii) Consider a random graph process G̃ = (Gi), and let Gm1 ∼
G(n, m1), Gm2 ∼ G(n, m2). Then the event “Gm1 ∈ P” is contained in
the event “Gm2 ∈ P” (by monotonicity of P). From this we immediately
have Pr[G(n, m1) ∈ P] ≤ Pr[G(n, m2) ∈ P].

(i) Take G2 ∼ G(n, p2), G1 ∼ G(n, p1) and G0 ∼ G(n, p0) where (1 −
p1)(1 − p0) = 1 − p2 (with p0 ≥ 1. Then we can represent G2 as
G1 ∪ G0 and then

{G1 has P} ⊆ {G2 has P} =⇒ Pr[G1 has P] ≤ Pr[G2 has P] . �

6



1.5. Reminder from Graph Theory

1.5 Reminder from Graph Theory

For a graph G = (V, E), the complement Ḡ is defined via

V(Ḡ) = V(G), E(Ḡ) =

(
V(G)

2

)
\ E(G) .

We say that a subset V0 ⊆ V(G) is an independent (or stable) set in G if V0
spans no edges of G. The maximum size of an independent set in G is its
independence number α(G).

V0 ⊆ V(G) is a clique in G if V0 spans a complete graph in G, i.e., ∀u, v ∈
V0 : {u, v} ∈ E(G). The maximum size of a clique in G is its clique number
ω(G).

Note that V0 is an independent set in G iff it is a clique in Ḡ, hence α(G) =
ω(Ḡ).

A function f : V → [k] is a k-coloring of G if for every edge {u, v} ∈ E(G),
f (u) 6= f (v). G is k-colorable if it admits a k-coloring.

Observe: if f is a k-coloring of G, then ∀1 ≤ i < k,

f−1(i) = {v ∈ V | f (v) = i} ⊆ V

is an independent set. So G is k-colorable iff V(G) can be partitioned as
V = V1 ∪ · · · ∪Vk into k independent sets Vi.

We denote by χ(G) the chromatic number of G: the minimum k for which G
is k-colorable.

For example: χ(Kn) = n.

Proposition 1.16 Let G = (V, E) be a graph. Then

χ(G) ≥ |V(G)|
α(G)

.

Proof If V = V1 ∪ · · · ∪ Vk is an optimal coloring of G, i.e., k = χ(G), then
|Vi| ≤ α(G), so

|V| =
k

∑
i=1
|Vi| ≤ k · α(G) = χ(G) · α(G) .

�
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1. Introduction

1.6 Three illustrative examples

1.6.1 Lower bounds for Ramsey numbers

Definition 1.17 Given integers k, ` ≥ 2, the Ramsey number R(k, `) is the small-
est n such that every red-blue coloring of the edges of Kn contains a red copy of Kk
or a blue copy of K`.

Theorem 1.18 (Ramsey, 1930) R(k, `) < ∞.

We will use the following equivalent definition:

Definition 1.19 R(k, `) is the minimal n such that every graph of size |V| = n
satisfies ω(G) ≥ k or α(G) ≥ ` (or both).

They are equivalent because a red-blue coloring of E(Kn) induces a red
graph G and its blue complement Ḡ. A red copy of Kk then corresponds
to a clique of size k in G, and a blue copy of K` corresponds to an indepen-
dent set of size ` in G.

Theorem 1.20 (Erdős, 1947) Lower bounds for diagonal Ramsey numbers R(k, k):

R(k, k) ≥ 2k/2

for k large enough.

Proof Need to prove: there is a G = (V, E) with |V| ≥ 2k/2 such that
ω(G) < k and α(G) < k. Set n = d2k/2e, and consider G(n, 1

2 ).

Let X be the number of k-cliques in G (a random variable). Then

E[X] =

(
n
k

)(
1
2

)(k
2)

≤
( en

k

)k
2
−k(k−1)

2 =
( en

k
2−

k−1
2

)k

≤
(

e2k/2

k
2−

k
2+

1
2

)k

=

(
e
√

2
k

)k

= o(1) ,

where in the last step we assumed k to be large enough, i.e., k → ∞. By
Markov Pr[X ≥ 1] = o(1).

Now let Y be the number of k-independent sets in G. Then by the same
computation

E[Y] =
(

n
k

)
2−(

k
2) = o(1) ,

so also Pr[Y ≥ 1] = o(1).

From this we get
Pr[X = 0 and Y = 0] = 1− o(1) ,

8



1.6. Three illustrative examples

which is a positive probability, so there must be at least one graph G with
|V| = n and ω(G), α(G) < k. �

Problems (posed by Erdős):

1. Does the limit
lim
k→∞

k
√

R(k, k)

exist? (This carries a prize of $100.)

2. Compute the above limit ($250).

Current state of knowledge is

√
2 ≤ k

√
R(k, k) ≤ 4 ,

where the lower bound is from [Erd47] and the upper bound from [ES35].

1.6.2 Graphs with high girth and high chromatic number

Definition 1.21 The girth of a graph G, denoted by girth(G), is the length of a
shortest cycle in G. If G is a forest, we set girth(G) = ∞.

Theorem 1.22 (Erdős, 1959) For all integers k, ` ≥ 3, there is a graph G with
girth(G) > ` and χ(G) > k.

Proof Fix a constant θ, where 0 < θ < 1/`, and consider a random graph
G(n, p), where p = n−1+θ .

Let X be the number of cycles of length at most ` in G. We compute

E[X] =
`

∑
i=3

(number of i-cycles in Kn) · pi

=
`

∑
i=3

n(n− 1) · · · (n− i + 1)
2 · i · pi

≤
`

∑
i=3

ni pi ≤
`

∑
i=3

nθi = O(nθ`) = o(n) .

Hence by Markov, Pr[X ≥ n/2] = o(1).

Bounding α(G): Set t = d 3 ln n
p e, then

Pr[α(G) ≥ t] ≤
(

n
t

)
(1− p)(

t
2) ≤

( en
t

)t
e−

1
2 pt(t−1)

=

(
en
t

e−
1
2 p(t−1)

)t

≤
(

en · e−1.4 ln n
)t

= o(1) .

9



1. Introduction

V1

V2
V3

V4

Figure 1.1: Example of a K4 minor

Taking the two halves together, we get

Pr[α(G) ≥ t or X ≥ n/2] = o(1) ,

so there exists a graph G with |V| = n such that α(G) < t and χ(G) ≤ n/2.

For every cycle of length ≤ ` in G, delete an arbitrary vertex. We get an
induced subgraph G′ ⊆ G, with |V(G′)| ≥ n/2, girth(G′) > `, and α(G′) ≤
α(G) < t. Finally,

χ(G′) ≥ |V(G′)|
α(G′)

≥ n/2⌈
3 ln n

p

⌉ ≥ nθ/2 > k .

So G′ has all the properties we want. �

1.6.3 Hadwiger’s Conjecture

Definition 1.23 A graph H = ([k], F) is a minor of G if V(G) contains k
nonempty disjoint subsets V1, . . . , Vk, such that:

(i) G[Vi] is connected,

(ii) for every f = {i, j} ∈ F, there is an edge between Vi and Vj in G.

See Figure 1.1 for an example. An equivalent way to put it is:

10



1.6. Three illustrative examples

Definition 1.24 H is a minor of G if H can be obtained from G by a sequence of
the following operations:

(i) deleting a vertex,

(ii) deleting an edge,

(iii) contracting an edge: replacing an edge e = {u, v} by a new vertex uv, and
connecting uv to all vertices in N(u) ∪ N(v) \ {u, v} (and deleting parallel
edges).

Definition 1.25 The Hadwiger number of G is the maximum k such that Kk is
a minor of G.

Conjecture 1.26 (Hadwiger, 1943) For all graphs, h(G) ≥ χ(G).

Very little is known:

k = 2: obviously trivial.

k = 3: trivial because every cycle can be contracted to K3.

k = 4: was proven by Hadwiger himself.

k = 5: equivalent to the four-color theorem (Wagner, 1937).

k = 6: proven by Robertson, Seymour, and Thomas.

What if we give up on answering the question for all graphs, and weaken
it to a probabilistic statement: does Hadwiger’s conjecture hold for almost
every graph? Formally, let G ∼ G(n, 1

2 ). What about Hadwiger’s conjecture
for such G?

Theorem 1.27 (Bollobás, Catlin and Erdős, 1980) Hadwiger’s conjecture holds
w.h.p. for G ∼ G(n, 1

2 ).

Proof We will prove: if G ∼ G(n, 1
2 ), then w.h.p.

(i) h(G) ≥ n
6
√

log2 n
.

(ii) χ(G) ≤ 6n
log2 n .

(We ignore rounding issues; they can be fixed.)

Part (i) We represent G = G1 ∪ G2, where G1, G2 ∼ G(n, p) such that
1
2 = (1− p)2. From there p ≥ 1

4 , which will be enough.

Claim W.h.p. G1 ∼ G(n, p) has a path on n/2 vertices.

We use the following algorithm:

1. Choose v1 arbitrarily, and set i := 1.

11



1. Introduction

2. As long as i < n/2, find a neighbor u of vi outside {v1, . . . , vi}. If there
is no such neighbor, declare failure.

Otherwise set vi+1 := u and update i := i + 1.

Analyzing the algorithm:

v1 vi−1 vi n− i

At vi, we have explored only edges from vi to {v1, . . . , vi−1}, so

Pr[no edge in G(n, p) between vi and V \ {v1, . . . , vi−1}]
= Pr[Bin(n− i, p) = 0] ≤ (1− p)n−i ≤ (1− p)n/2

hence

Pr[fail] ≤
n/2

∑
i=1

(1− p)n−i ≤ n
2
(1− p)n/2 = o(1) .

This proves the claim.

By the end of phase 1, w.h.p. we have created a path P on n/2 vertices.

Phase 2: split P into s = n
6
√

log2n
disjoint paths P1, . . . , Ps, with |V(Pi)| =

n/2
s = 3

√
log2n.

Expose G2 ∼ G(n, p) (p ≥ 1
4 ):

Pr[∃1 ≤ i 6= j ≤ s s.t. G2 has no edge between V(Pi) and V(Pj)]

≤
(

s
2

)
(1− p)(3

√
log2 n)2 ≤ n2

(
3
4

)9 log2 n

= o(1) .

Both stages succeed w.h.p. and between them create a clique minor of size s
on sets V(P1), . . . , V(Ps). Therefore w.h.p. h(G) ≥ s = n

6
√

log2 n
.

Remark: Actually, w.h.p. h(G(n, 1
2 )) = (1 + o(1)) n√

log2 n
.

Part (ii): We use the following:

Definition 1.28 A sequence of k subsets C1, . . . , Ck is a rigid k-coloring of G if

(i) V = C1 ] · · · ] Ck,

(ii) each Ci is independent,

(iii) ∀1 ≤ i < j ≤ k, ∀v ∈ Cj: v has a neighbor in Ci.

12



1.6. Three illustrative examples

C1 Ci Cj Ck

· · · · · · · · ·

Claim If χ(G) = k, then G admits a rigid k-coloring.

Start with any k-coloring C1, . . . , Ck, and as long as there exist 1 ≤ i < j ≤ k
and v ∈ Cj s.t. v has no neighbor in Ci, move v over to Ci. The final collection
(C∗1 , . . . , C∗k ) is a valid k-coloring of G, which is rigid and with no empty
color classes (as χ(G) ≥ k). This proves the claim.

Back to G(n, 1
2 ): Let k = 6n

log2 n . Assume that χ(G) = t ≥ k. By the claim
there is a rigid t-coloring (C1, . . . , Ct) of G.

Then for the last k/3 color classes Cj, every v ∈ Cj has a neighbor in Ci for
all i < j.

· · ·

≥ 2k/3 k/3

t ≥ k

Take a vertex vj in each of the last k/3 color classes Cj.

Between the first t − k/3 ≥ 2k/3 color classes, there are at least k/3 color
classes of cardinality at most 3n/k each (as otherwise the largest k/3 color
classes between them are of size > 3n/k each, totaling in size > n, a contra-
diction).

· · ·

≥ 2k/3 k/3

v

Now we estimate the probability for this to happen, by fixing a coloring and
looking at the probability that edges between v and Ci exist for all last v and
small color classes Ci:

Pr[χ(G) ≥ k] = Pr[∃ rigid χ(G)-coloring of G] ≤ kn
(

1− 2−3n/k
) k

3 ·
k
3

≤ kn · e−2−3n/k · k2
9 ≤ kn · e−

1√
n

cn2
log2 n = o(1) . �

13



1. Introduction

1.7 Asymptotic equivalence between G(n, p) and G(n, m)

Denote N = (n
2) and q = 1− p.

Informally: G(n, p) and G(n, m) are “similar” if m = Np(1 + o(1)).

Of course this is only an intuition, and it cannot be true literally:

Pr[|E(G(n, m))| = m] = 1 ,

Pr[|E(G(n, p))| = m] =
1

Ω(
√

Npq)
.

Still, we get some results.

Proposition 1.29 Let P = (Pn)n≥1 (Pn a set of graphs on [n]) be an arbitrary
graph property. Let p = p(n) be a sequence of real numbers with 0 ≤ p(n) ≤ 1.
Let further 0 ≤ a ≤ 1.

If for every sequence m = m(n) satisfying m = Np + O(
√

Npq) we have

lim
n→∞

Pr[G(n, m) ∈ P] = a (1.1)

then also
lim
n→∞

Pr[G(n, p) ∈ P] = a . (1.2)

Proof Choose large enough constant c > 0. Denote

M = M(c) = {0 ≤ m ≤ N : |m− Np| ≤ c
√

Npq} ,

then by Chebyshev

Pr[|E(G(n, p))| /∈ M] ≤ 1
c2 .

Also, denote

m∗ = arg min
m∈M

Pr[G(n, m) ∈ P] ,

m∗ = arg max
m∈M

Pr[G(n, m) ∈ P] .

Then, by the law of total probability

Pr[G(n, p) ∈ P] =
M

∑
m=0

Pr[|E(G(n, p))| = m] · Pr[G(n, m) ∈ P]

≥ ∑
m∈M

Pr[|E(G(n, p))| = m] · Pr[G(n, m) ∈ P]

≥ ∑
m∈M

Pr[|E(G(n, p))| = m] · Pr[G(n, m∗) ∈ P]

= Pr[G(n, m∗) ∈ P] · Pr[|E(G(n, p))| ∈ M]

= Pr[G(n, m∗) ∈ P]
(
1− c−2) ,

14



1.7. Asymptotic equivalence between G(n, p) and G(n, m)

hence

lim inf
n→∞

Pr[G(n, p) ∈ P] ≥ a(1− c−2)

=⇒ lim
n→∞

Pr[G(n, p) ∈ P] ≥ a .

For the upper bound, we treat M and the rest of the interval separately:

Pr[G(n, p) ∈ P] =
M

∑
m=0

Pr[|E(G(n, p))| = m] · Pr[G(n, m) ∈ P]

≤ c−2 + ∑
m∈M

Pr[|E(G(n, p))| = m] · Pr[G(n, m) ∈ P]

≤ c−2 + Pr[G(n, m∗) ∈ P] ,

therefore
lim inf

n→∞
Pr[G(n, p) ∈ P] ≤ a + c−2 .

Taking c large enough, we get

lim
n→∞

Pr[G(n, p) ∈ P] = a . �

For the direction G(n, p)  G(n, m), we have to be a bit more careful. We
need monotonicity; consider the counterexample of P being the property of
having exactly m edges. We also need a bit of slack.

Proposition 1.30 Let P be a monotone graph property. Let 0 ≤ m = m(n) ≤ N,
and 0 ≤ a ≤ 1. If for every sequence p = p(n) s.t.

p =
m
N

+ O

(√
m(N −m)

N3

)

it holds that limn→∞ Pr[G(n, p) ∈ P] = a, then

lim
n→∞

Pr[G(n, m) ∈ P] = a .

15





Chapter 2

Random Regular Graphs

2.1 Preliminaries

Notation:

1. For an even m,

(m− 1)!! := (m− 1)(m− 3) · · · 3 · 1

By Stirling we have

(m− 1)!! =
m(m− 1)(m− 2) · · · 3 · 2 · 1

m(m− 1) · · · 4 · 2

=
m!

2m/2(m/2)!
= (1 + o(1))

√
2mm/2

em/2 .

2. Falling factorial: for x ∈ R and an integer k ≥ 1, define

(x)k := x(x− 1)(x− 2) · · · (x− k + 1) .

Use: (
n
k

)
=

n!
(n− k)!k!

=
n(n− 1) · · · (n− k + 1)

k!
=

(n)k

k!
.

3. For a random variable X and an integer k ≥ 1, the k-th factorial moment
of X is

E[(X)k] = E[X(X− 1) · · · (X− k + 1)] .

17



2. Random Regular Graphs

Definition 2.1 A random variable X is said to have Poisson with parameter λ
distribution, written X ∼ Poi(λ), if X takes non-negative integer values and for
every k ≥ 0,

Pr[X = k] = e−λ λk

k!
.

Note that Bin(n, p)→ Poi(λ, p) if λ = np.

We have

E[X] =
∞

∑
k=0

ke−λ λk

k!
= e−λ

∞

∑
k=1

λk

(k− 1)!
= e−λλ

∞

∑
k=0

λk

k!
= λ .

More generally, if X ∼ Poi(λ), then the k-th factorial moment of X is λk.

Definition 2.2 (Convergence in distribution) Let (Xn) be a sequence of ran-
dom variables, Z another r.v., and let them take integer values only. We say that

Xn converges in distribution to Z, written Xn
d→ Z, if for every integer k,

lim
n→∞

Pr[Xn = k] = Pr[Z = k] .

This can be extended to vectors of random variables by requiring conver-
gence in every component. Finally, it can be extended to infinite vectors by
requiring that every finite subvector converges.

Definition 2.3 Let n, r ≥ 1 be integers. Denote by Gn,r the set of all r-regular
graphs with vertex set [n]. Endow Gn,r with the uniform distribution: Pr[G] =
1/|Gn,r| for every G ∈ Gn,r. This defines the probability space of r-regular
graphs on [n].

Obvious necessary condition:

nr = ∑
v∈V(G)

d(v) = 2|E| ,

so we assume nr is even.

Questions to address:

1. How many graphs Ln,r = |Gn,r| are there?

2. What are the properties of a typical graph G ∈ Gn,r?

3. How to sample G ∈ Gn,r?

18



2.2. Configurations

w1

w2

w3

w4

Π

r

n

Figure 2.1: Example configuration and its projection

2.2 Configurations

Approach invented by [BC78] and independently [Bol80].

Define W = [n] × [r]. Elements of W are called cells. We can represent
W =

⋃n
i=1 Wi, |Wi| = r; cells of Wi are the cells of vertex i.

A configuration F on W is a partition of W into nr/2 pairs. (In graph terms,
it is a perfect matching on W.)

There are
(nr− 1)(nr− 3) · · · 3 · 1 = (nr− 1)!!

configurations:

1. Each permutation σ on W produces a partition as follows: (σ(1), σ(2)),
(σ(3), σ(4)), . . . In this way we get every configuration F. Moreover,
each F is obtained

(nr/2)!2nr/2

times (ordering of the elements and orientation of the pairs), so the
total number is (nr− 1)!!.

2. Fix an arbitrary order on the cells of W.

• Match the first cell of W: (nr− 1) options,

• Match the first currently unmatched cell: (nr− 3) options, etc.

Altogether we get (nr− 1)!!.

From configurations to (multi)graphs Given a configuration F on W, project
it into a multigraph G = Π(F) in the following way: let V = [n]. For every
pair ((ui, xi), (vi, yi)) ∈ F (where 1 ≤ ui, vi ≤ n and 1 ≤ xi, yi ≤ r) we put an
edge (ui, vi) into E (and forget about xi and yi). See Figure 2.1.

19



2. Random Regular Graphs

The result G = Π(F) is an r-regular multigraph (can contain loops and mul-
tiple edges) on the vertex set [n]. Loops contribute 2 to the degree of their
vertex.

Claim Every r-regular graph G on [n] is obtained from exactly (r!)n configurations
F.

Proof Need to match, for every i ∈ [n], the r edges entering i with r cells
of Wi: can be done in r! ways per vertex, altogether in (r!)n ways. Thus
|Π−1(G)| = (r!)n. �

Turn the space of (nr − 1)!! configurations on W into a probability space
by putting the uniform measure Pr[F] = 1/(nr − 1)!!. Then the uniform
probability measure on all configurations induces the probability measure
on r-regular multigraphs on [n] through the projection operator. Denote the
latter probability space by G∗n,r. This G∗n,r is different from Gn,r, as in particular
G∗n,r contains multigraphs. However, if we condition on not having loops or
multi-edges, then we get a random element G ∈ Gn,r.

Call a configuration simple if Π(F) has no loops or multiple edges. Denote
the event that a random configuration is simple by simple. Then

Ln,r = |Gn,r| =
(nr− 1)!! · Pr[simple]

(r!)n .

The probability of simple is non-negligible, so computing it will be key.

Lemma 2.4 Let 1 ≤ k ≤ nr/2. Let E0 = {e1, . . . , ek} be a fixed set of k disjoint
pairs in W. Then

pk := Pr[E0 ⊆ F] =
1

(nr− 1)(nr− 3) · · · (nr− 2k + 1)
.

Proof Let ei = ((ui, xi), (vi, yi)) and E0 = {e1, . . . , ek}. Then

Pr[e1 ∈ F] = 1/(nr− 1) ,

by symmetry: the probability that (ui, xi) is matched to (vi, yi) is exactly
1/(nr− 1). Next,

Pr[e2 ∈ F | e1 ∈ F] = 1/(nr− 3) ,

because there are only (nr− 3) choices of (v2, y2) left to match (u2, x2) with.
Continue in this way, and eventually we get

Pr[E0 ⊆ F] =
1

(nr− 1)(nr− 3) · · · (nr− 2k + 1)
.

�
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2.2. Configurations

wi4

wi3

wi2

wi1 p1 q1

p2 q2

p3q3

p4q4

Figure 2.2: Enumerating cycles via ordered pairs

Remark 2.5 For a constant k,

pk =
1

(nr− 1)(nr− 3) · · · (nr− 2k + 1)
∼ 1

(rn)k .

We will look at cycle lengths in G∗n,r.

Theorem 2.6 For k = 1, 2, . . . denote λk := (r− 1)k/2k. Also, let Z∗k ∼ Poi(λk)
be independent. Finally, let Zk denote the number of k-cycles in G∗n,r. Then the
vector of random variables (Zk)k≥1 converges in distribution to the vector (Z∗k )k≥1.

Note that the Zk are not independent, they just converge in distribution to
the independent Z∗k .

Proof We will use the method of moments. We will prove that the joint
factorial moments of (Zk) converge to the corresponding joint factorial mo-
ments of (Z∗k ).

Let us first compute the expected values of Zk. Denote by ak the number
of possible k-cycles in W, i.e., the number of families of k pairs in W that
produce a k-cycle when projected by Π. We can generate all possible k-cycles
in W as follows:

1. Choose the ordered set of vertices of a k-cycle in G in n(n− 1) · · · (n−
k + 1) = (n)k ways.

2. For each vertex i of the cycle choose an ordered pair (pi, qi) where
1 ≤ pi 6= qi ≤ r, using pi for the outgoing edge and qi for the incoming
edge (Figure 2.2). There are r(r − 1) ways to do this for every vertex,
thus (r(r− 1))k altogether.

We get (n)k(r(r − 1))k ways. We counted ordered cycles and hence over-
counted by 2 for the choice of direction and k for the choice of the initial
vertex. Therefore

ak =
(n)k(r(r− 1))k

2k
.
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2. Random Regular Graphs

Each possible cycle appears with probability pk, so

E[Zk] = ak · pk =
(n)k(r(r− 1))k

2k
1

(nr− 1)(nr− 3) · · · (nr− 2k + 1)

hence

E[Zk]→
(r− 1)k

2k
= λk = E[Z∗k ] .

This accounts for the first moment.

Remark: For every fixed graph H, the expected number of copies of H in G∗n,r

is O(n|V(H)|n−|E(H)|). In particular, if |E(H)| > |V(H)| then the expected
number of copies of H in G∗n,r is O(n−1) and by Markov we do not expect
them to appear at all.

Proceed to higher factorial moments of (Zk)k≥1. Let’s estimate the second
factorial moments

E[(Zk)2] = E[Zk(Zk − 1)] .

Notice that (Zk)2 is the number of ordered pairs of distinct k-cycles in G∗n,r.

We represent (Zk)2 = Y′ + Y′′ where Y′ is the number of ordered pairs of
disjoint k-cycles and Y′′ accounts for k-cycles that share at least one vertex.

In order to estimate E[Y′′] we go over all possible ways H to create two
k-cycles sharing a vertex. In each of them |E(V)| > |V(H)| and there is
a bounded (by some function of k) number of them. Hence, by the above
remark, each H is expected to appear O(n−1) times, and therefore E[Y′′] =
O(n−1).

Denote by a2k the number of sets of 2k pairs in W projecting to 2 disjoint
k-cycles. Then

a2k =
n(n− 1) · · · (n− 2k + 1)(r(r− 1))2k

(2k)2 ∼ n2k(r(r− 1))2k

(2k)2 ,

hence

E[Y′] ∼ (n)2k(r(r− 1))2k

(2k)2 p2k ∼
n2k(r(r− 1))2k

(2k)2
1

(rn)2k =
(r− 1)2k

(2k)2 = λ2
k .

It follows that E[(Zk)2] = λ2
k + O(n−1).

In general, using similar arguments, one can prove: for t1, . . . , tm ≥ 0 inte-
gers,

E[(Z1)t1 · · · (Zm)tm ] ∼ λt1
1 · · · λ

tm
m .

Now we cite the following probabilistic statement:
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2.2. Configurations

Let (Z(1)
n , . . . , Z(m)

n )n be a sequence of random variables. Assume that there
exist λ1, . . . , λm ≥ 0 such that for all integers t1, . . . , tm ≥ 0,

lim
n→∞

E[Z(1)
t1
· · · Z(m)

tm
] = λt1

1 · · · λ
tm
m .

Then the vector (Z(1)
n , . . . , Z(m)

n ) converges in distribution to (Z(i)∗)m
i=1 where

Z(i)∗ ∼ Poi(λi), and the Z(i)∗ are independent. �

Corollary 2.7 The probability that a configuration is simple is a constant if r is
constant:

Pr[simple] = Pr[Z1 = Z2 = 0] ∼ Pr[Z∗1 = Z∗2 = 0] = e−λ1 e−λ2

= e−(r−1)/2−(r−1)2/4 = e−(r
2−1)/4 .

Therefore

Ln,r = |Gn,r| ∼
(rn− 1)!!e−(r

2−1)/4

(r!)n ∼
√

2e−(r
2−1)/4

(
rr/2e−r/2

r!

)n

nnr/2 .

And probably more importantly:

Corollary 2.8 If G∗n,r has property P w.h.p., then Gn,r has P w.h.p.

Proof Use the definition of conditional probability:

Pr[Gn,r /∈ P] = Pr[G∗n,r /∈ P | simple] =
Pr[G∗n,r /∈ P ∧ simple]

Pr[simple]

≤
Pr[G∗n,r /∈ P]
Pr[simple]

=
o(1)

e−(r2−1)/4
= o(1) . �

Remark 2.9 Our estimate on Pr[simple] allows us to derive and analyze the
following algorithm for generating a random r-regular graph with vertex
set [n]:

1. Generate a random configuration F,

2. Project to get G = Π(F),

3. If G has no loops or multiple edges, output G; otherwise restart.

Each round succeeds with probability Pr[simple] ∼ e−(r
2−1)/4. Therefore we

expect to need about e(r
2−1)/4 rounds to generate a random r-regular graph.

Similar techniques can also be used for r = r(n) slowly growing to infinity,
but then the probability of simple is negligible, so the last few statements
do not hold.
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Chapter 3

Long paths and Hamiltonicity

3.1 Long paths

Take G ∼ G(n, p). What is the typical behaviour of a longest path in G?

What to expect:

• For p = (1− ε)/n, with ε > 0, all connected components are O(log n)
big w.h.p. Therefore the longest path is also O(log n) w.h.p. (and you
can indeed obtain such a path).

• For p ≥ (1 + ε)/n, w.h.p. G has a connected component with linear
size. We may hope to get a path of linear length w.h.p.

• For p ≥ (log n + ω(1))/n, w.h.p. G has no isolated vertices. We may
hope to get a Hamilton path or cycle.

Theorem 3.1 (Ajtai, Komlós, Szemerédi [AKS81]) There is a function α =
α(c) = (1, ∞) → (0, 1) such that limc→∞ α(c) = 1 such that a random graph
G ∼ G(n, c/n) has a path of length at least α(c)n.

We will instead prove a weaker result by W. Fernandez de la Vega [dlV79]
which gives a similar result but with the domain of α being (4 log 2, ∞).

Theorem 3.2 (W. Fernandez de la Vega) Let p(n) = θ/n. Then w.h.p. a ran-
dom graph G(n, p) has a path of length at least(

1− 4 log 2
θ

)
n .

Proof Represent G ∼ G(n, p) as G = G1 ∪ G2 where G1, G2 ∼ G(n, r) are
independent. The value of r is determined by (1− p) = (1− r)2, implying
r ≥ p/2 = θ/2n. Call G1 the red graph and G2 the blue graph.

25



3. Long paths and Hamiltonicity

Informal description: Try to advance using red edges first. If you can’t advance
using red edges, rewind the current path to the last vertex from which blue
edges haven’t been tried. If this fails, give up the current path and start from
scratch.

Formal description: During the course of the algorithm, maintain the triple
(Pk, Uk, Bk) where:

• Pk is the current path from vertex yk to vertex yk.

• Uk ⊆ V \V(Pk) is the set of untried vertices.

• Bk ⊆ V is the set of blue vertices, i.e., the vertices in which we have
exposed red edges.

Denote uk = |Uk|.

We will maintain the following properties:

• If yk /∈ Bk, then the red edges between yk and Uk have not been ex-
posed.

• If yk ∈ Bk, then the blue edges between yk and Uk have not been
exposed.

Initialization: Choose an arbitrary x0, and define

P0 = (x0) , y0 = (x0) , U0 = V \ {x0} , B0 = ∅ .

As the algorithm advances, the set Uk shrinks, while the set Bk grows:
Uk+1 ⊆ Uk and Bk+1 ⊇ Bk.

At a generic step k we distinguish between the following cases:

Case 1, yk /∈ Bk: If there is a red edge yk–Uk, say edge (yk, yk+1) ∈ E(G1),
then extend the current path by adding edge (yk, yk+1), i.e., update:

Pk+1 = xkPkykyk+1 , Uk+1 = Uk \ {yk+1} , Bk+1 = Bk .

If there is no such edge, put yk into Bk:

Pk+1 = Pk , Uk+1 = Uk , Bk+1 = Bk ∪ {yk} .

Case 2, yk ∈ Bk and V(Pk) \ Bk 6= ∅: If there is a blue edge yk–Uk, say edge
(yk, yk+1) ∈ E(G2), then update:

Pk+1 = xkPkykyk+1 , Uk+1 = Uk \ {yk+1} , Bk+1 = Bk .

If there is no such edge, let yk+1 be the last vertex in Pk that is not in
Bk, shorten Pk and recolor yk+1 blue:

Pk+1 = xkPkyk+1 , Uk+1 = Uk , Bk+1 = Bk ∪ {yk+1} .
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3.1. Long paths

Case 3, V(Pk) ⊆ Bk: For technical reasons (to become apparent later) stay
put with probability (1− r)uk , i.e.,

Pk+1 = Pk , Uk+1 = Uk , Bk+1 = Bk .

With probability 1− (1− r)uk , check for a blue edge between yk and
Uk. If there is such an edge, extend Pk as in Case 2. Otherwise give up
the current path Pk and restart by choosing u ∈ Uk and setting

Pk+1 = (u) , Uk+1 = Uk − {u} , Bk+1 = Bk .

Let us analyze the above algorithm. Denote bk = |Bk|. Observe that under no
circumstances we both shrink Uk and extend Bk in the same step. Therefore

(n− uk+1) + bk+1 ≤ (n− uk) + bk + 1 .

Since in the beginning we have n− u0 = 1 and b0 = 0, we conclude that

(n− uk) + bk ≤ k + 1 . (3.1)

Also, V \V(Pk) \Uk ⊆ Bk. Hence using (3.1),

|V(Pk)| − 1 ≥ n− uk − bk − 1 ≥ n− uk − (k + 1− (n− uk))− 1
= 2(n− uk)− k− 2 . (3.2)

In the (very unlikely) case when we use red edges successfully to extend the
current path in k rounds, we get n− uk = k + 1, i.e.,

|V(P− k)| − 1 ≥ 2(k + 1)− k− 2 = k .

This is very unlikely, but still we prove that w.h.p. the RHS of (3.2) is large
for some k.

Let us turn to the sequence (uk). Observe that in all three cases, uk+1 = uk
or uk+1 = uk − 1, where

Pr[uk+1 = uk] = (1− r)uk ,
Pr[uk+1 = uk − 1] = 1− (1− r)uk .

(3.3)

Therefore the sequence (uk) forms a Markov chain governed by (3.3). Define
the r.v. Xi as

Xi = max{k− ` | uk = u` = i} .

Then the sequence (uk) spends exactly time Xi + 1 at state i. Furthermore
define

Yi =
n−1

∑
i=j+1

(Xi + 1) .
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3. Long paths and Hamiltonicity

which is the total time spent by the sequence uk to reach value j.

Background: suppose we conduct independent experiments where each ex-
periment succeeds with probability p. Then the number of unsuccessful
experiments before the first success is a geometric random variable with
parameter p.

Formally, a geometric r.v. with parameter p is a r.v. X taking non-negative
integer values k = 0, 1, . . . such that

Pr[X = k] = (1− p)k p

and one can show that

E[X] =
1− p

p
, Var[X] =

1− p
p2 .

Going back to the proof, Xi is geometrically distributed with parameter 1−
(1− r)i. Hence

E[Xi] =
(1− r)i

1− (1− r)i , Var[Xi] =
(1− r)i

(1− (1− r)i)2 .

Therefore, since the Xi’s are independent, we get

E[Yj] =
n−1

∑
i=j+1

1 + E[Xi] =
n−1

∑
i=j+1

1 +
(1− r)i

1− (1− r)i .

Also,

Var[Yj] =
n−1

∑
i=j+1

(1− r)i

(1− (1− r)i)2 .

Choose j = d log 2
r e (note that this means j = Θ(n)). Then

(1− r)j ≤ e−rj ≤ 1
2 .

Hence the standard deviation is on the order of
√

n:

Var[Yj] ≤
n−1

∑
i=j+1

1/2
(1− 1/2)2 ≤ 2n .

On the other hand, the expectation is linear:

E[Yj] =
n−1

∑
i=j+1

1
1− (1− r)i ≤

n−1

∑
i=j+1

1
1− e−ri ≤

∫ n−1

j

dx
1− e−rx =

log(ern − 1)
r

.
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3.2. Hamiltonicity

By Chebyshev we derive that w.h.p.

Yj ≤
log(ern − 1)

r
+
√

nω(1) .

Therefore the algorithm w.h.p. finds a path of length at least

2
(

n−
⌈

log 2
r

⌉)
− log(ern − 1)

2
−
√

nω(1) ≥ n− 2
log 2

r
≥ n− 4 log 2

θ
n .

�

Remarks:

1. We took p = θ/n and assumed θ > 0 to be constant. In fact the
same proof goes through even if θ = θ(n) increases “slightly” with n,
implying in particular that if p � 1/n then w.h.p. the G(n, p) has a
path of length (1− o(1))n.

2. Observe that the algorithm analyzed never reversed the direction of
any edge. Therefore the algorithm and its analysis also produce the
following result.

Theorem 3.3 Let ~G(n, p) be a random directed graph, where each ordered
pair (u, v) is a directed edge independently with probability p. Let p = θ/n.
Then w.h.p. Ḡ(n, p) has a directed path of length at least (1− 4 log 2

θ )n.

3. Since the property of containing a path of length ` is monotone, we
can derive the corresponding result for the model G(n, m):

Theorem 3.4 Consider G(n, m) with m = θn/2. Then w.h.p. G ∼ G(n, m)

has a path of length at least (1− 4 log 2
θ )n.

3.2 Hamiltonicity

Definition 3.5 (Hamiltonicity) Let G be a graph on n vertices.

(i) A path P in G is called Hamilton if it has n− 1 edges.

(ii) A cycle C in G is called Hamilton if it has n edges.

(iii) The graph G itself is called Hamiltonian if it has a Hamilton cycle.

One ultimate goal is to establish the threshold for Hamiltonicity in the ran-
dom graph G(n, p) and to prove the following result:

Theorem 3.6 The threshold for Hamiltonicity is at p = (log n + log log n)/n:
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3. Long paths and Hamiltonicity

1. Let

p(n) =
log n + log log n−ω(1)

n
,

where ω(1)→ ∞. Then w.h.p. G(n, p) is not Hamiltonian.

2. Let

p(n) =
log n + log log n + ω(1)

n
,

where ω(1)→ ∞. Then w.h.p. G(n, p) is Hamiltonian.

Note that the first part hinges on proving that not all vertices have degree at
least 2, which of course is a necessary condition, and is thus fairly easy.

3.2.1 Combinatorial background

Notation: Given a graph G, let `(G) be the length of a longest path in G.

Definition 3.7 Let G = (V, E) be a graph and e = (u, v) /∈ E. If adding e to G
results in a graph G′ = G + e such that `(G′) > `(G) or G′ has a Hamilton cycle,
then e is called a booster.

Observe that if G is already Hamiltonian, then every edge e /∈ E(G) is a
booster. More importantly, starting from any graph G and adding a sequence
of n boosters creates a Hamiltonian graph (observe that the set of boosters
may change with every addition).

Claim Let G be a connected graph. Let P = (v0, . . . , v`) be a longest path in G. If
e = (v0, v`) /∈ E(G) then e is a booster in G.

Proof Consider G′ = G+ e. Obviously, G′ contains a cycle C = (v0, . . . , v`, v0).
If C is Hamilton, e is obviously a booster. Otherwise, V(C) ( V(G) = V(G′)
and therefore there is u ∈ V(G) \ V(C). Furthermore G is connected, and
hence so is G′. Therefore G′ contains a path P′ from u to C. Let w be the last
vertex of P′ before hitting C, and let (w, vi) ∈ E(P′). Then G contains a path
Q as follows:

Q := (w, vi, vi−1, . . . , v0, v`, v`−1, . . . , vi+1) .

Observe that V(P) ( V(Q) because w ∈ V(Q) \ V(P). Hence Q is strictly
longer than P, implying `(G′) > `(G). �

3.2.2 Pósa’s rotation-extension technique

Developed by Pósa in 1976 [Pós76] (in his proof that G(n, C log n/n) is w.h.p.
Hamiltonian, for some large enough C > 0). Suppose P = (v0, . . . , v`) is a
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3.2. Hamiltonicity

v0 vi vi+1 v`P

e

Figure 3.1: Pósa rotation

longest path in G. For every edge e ∈ E(G) containing v`, the other endpoint
of e is on P (otherwise you could extend the path).

If e = (v0, v`) then we get a cycle C with V(C) = V(P). If e = (vi, v`) with
1 ≤ i ≤ `− 2, we can rotate P at vi by adding edge e, deleting (vi, vi+1) to
get a new path P′ (see Figure 3.1):

P′ := (v0, . . . , vi, v`, v`−1, . . . , vi+1) .

Observe that V(P′) = V(P), and therefore P′ is also a longest path in G, but
ending at vi+1 instead of v`. We can then rotate P′ to get a new longest path
etc.

Suppose Q is obtained from P by a sequence of rotations with a fixed starting
point v0. Let v be the endpoint of Q. If (v0, v) ∈ E(G), then G has a cycle
C′ with V(C′) = V(P). If (v, u) ∈ E(G) for some u /∈ V(P), then we can
append (v, u) to Q and get a longer path (extension step).

3.2.3 Pósa’s lemma

Let G = (V, E) be a graph, with longest path P = (v0, . . . , v`). Notation:

1. For U ⊆ V(G), denote by N(U) the external neighborhood of U in G,

N(U) := {v ∈ V \U | v has a neighbor in U} .

2. Suppose R ⊆ V(P). Denote by R− and R+ the set of vertices of P
which are neighbors of R to the left and right, respectively, relative
to P.

For example, if P = (v0, . . . , v6) and R = {v2, v3, v6}, then R− = {v1, v2, v5}
and R+ = {v3, v4}. Observe that |R−| ≤ |R| and |R+| ≤ |R|. Moreover,
|R+| = |R| − 1 if v` ∈ R.

Lemma 3.8 (Pósa) Let G and P as before. Let R be the set of endpoints of paths Q
obtained from P by a sequence of rotations with a fixed starting point v0. Then

N(R) ⊆ R− ∪ R+ .
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3. Long paths and Hamiltonicity

v0 vi vi+1 v`

R
−
∪

R
+
3 ∈

R

Figure 3.2: Rotation (situation in proof)

v0 u w v v0 u w v

Figure 3.3: u, v rotation

This is useful, because if every small set U of G expands itself, then R has to
be large, as

|N(R)| ≤ |R−|+ |R+| ≤ 2|R| .

Proof Let v ∈ R, and let u ∈ V(G) \ (R ∪ R− ∪ R+). We need to prove
(u, v) /∈ E(G).

If u /∈ V(P), consider a path Q ending at v and obtained from P by a
sequence of rotations with v0 as a fixed starting point. Then (u, v) /∈ E(G)
as otherwise one can append (u, v) to Q and get a longer path, contradicting
the choice of P.

If u ∈ V(P) \ (R ∪ R− ∪ R+) (as in Figure 3.2), then u has the exact same
neighbors along every path P′ obtained from P by a sequence of rotations
(as breaking an edge during a rotation puts one of its endpoints in R and
the other in R− ∪ R+).

Consider now the path Q as before. If (u, v) ∈ E(G), we can rotate Q at u
(Figure 3.3) to get a new path R′ ending at w such that w is a neighbor of u
along P. Such a rotation puts u into R− ∪ R+, which is a contradiction. �

Definition 3.9 Let k be a positive integer and let t > 0 be real. A graph G =
(V, E) is called a (k, t)-expander if |N(U)| > t|U| for every U ⊆ V with |U| ≤ k.

Theorem 3.10 Let G be a (k, 2)-expander. Then G has a path of length at least
3k − 1. If G is in addition connected and non-Hamiltonian, then G has at least
(k + 1)2/2 boosters.

Proof Let P = (v0, . . . , v`) be a longest path in G, and let R be the set of
endpoints of paths Q obtained from P by a sequence of rotations with a
fixed starting point v0.
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Then |R−| ≤ |R| and |R+| ≤ |R| − 1 (as v` ∈ R). By Pósa’s lemma, N(R) ⊆
R− ∪ R+, implying

|N(R)| ≤ |R−|+ |R+| ≤ 2|R| − 1 .

By our assumption this implies that |R| > k. Let R0 ⊆ R with |R0| = k.
Then N(R0) ⊆ R ∪ R− ∪ R+, implying N(R0) ⊆ V(P). By our assumption
|N(R0)| ≥ 2|R0| = 2k. But R0 and N(R0) are both contained in V(P), hence

|V(P)| ≥ k + 2k = 3k .

implying that P has at least 3k− 1 edges, as required.

For the second part, assume G is connected and non-Hamiltonian. If v ∈ R,
then (v0, v) /∈ E(G) (as otherwise we would get a cycle C with V(C) = V(P)
and would proceed as before). For the same reason, (v0, v) is a booster. It
follows that v0 participates in ≥ (k + 1) boosters (v0, v) (for v ∈ R).

Now, for every v ∈ R, there is a longest path P(v) starting at v. We can now
rotate P(v) while keeping v as a fixed starting point, to get a set of endpoints
R(v), satisfying |R(V)| ≥ k + 1. Every pair (u, v) with u ∈ R(v) is a non-
edge of G and is a booster as before. Altogether we get (k + 1)2 pairs. Each
pair is counted at most twice, therefore we get at least (k + 1)2/2 boosters.�

3.2.4 Hamiltonicity of G(n, p)

The goal of this section is to prove Theorem 3.6.

The lower bound follows immediately from the following proposition: if
δ(G) < 2 (where δ is the minimum degree as usual), then G is not Hamilto-
nian.

Proposition 3.11 Let k ≥ 1 be a fixed integer.

(i) If

p(n) =
log n + (k− 1) log log n−ω(n)

n

where ω(n)→ ∞, then w.h.p. δ(G(n, p)) ≤ k− 1.

(ii) If

p(n) =
log n + (k− 1) log log n + ω(n)

n

where ω(n)→ ∞, then w.h.p. δ(G(n, p)) ≥ k.

Proof Homework. �
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3. Long paths and Hamiltonicity

Let G ∼ G(n, p) and represent G as G = G1 ∪ G2, where Gi ∼ G(n, pi),
i = 1, 2. Set p2 = c

n for c > 0 large enough. From (1− p1)(1− p2) = 1− p
we get p1 ≥ p− p2 and therefore

p1 =
log n + log log n + ω1(n)

n
,

where ω1(n)→ ∞.

Lemma 3.12 Let p(n) = log n+log log n+ω1(n)
n . Then with high probability the ran-

dom graph G(n, p) is an (n/4, 2)-expander.

To prove this lemma we first define the subset Small ⊆ [n] by

Small = {v ∈ [n] : dG(v) ≤ log7/8 n} .

The lemma is an immediate consequence of the following two propositions.

Proposition 3.13 Let p = p(n) be as above. Then with high probability G(n, p)
has the following property:

(a) δ(G) ≥ 2.

(b) No vertex of Small lies on a cycle of length ≤ 4. G does not contain a path
between two vertices of Small of length at most 4.

(c) G has an edge between every two disjoint vertex subsets A, B of sizes |A|, |B| ≥
n

log1/2 n
.

(d) Every vertex set V0 ⊆ [n] of size |V0| ≤ 2n
log3/8 n

spans at most 3|V0| log5/8 n

edges.

Proposition 3.14 Let G be a graph with vertex set [n] satisfying the properties
(a)-(d) above. Then G is an (n/4, 2)-expander, for large enough n.

Proof (of Proposition 3.13)

(a) Apply Proposition 3.11 with k = 2.

(Remark: Property (a) is in fact the bottleneck of the proof. Properties
(b)-(d) hold with high probability for somewhat smaller values of p(n),
for example for p(n) ≥ log n

n .)

(b) Intuition first. For a fixed v ∈ [n], its degree d(v) in G(n, p) is Bin(n−
1, p) distributed. Note that for every constant c > 0 and for every k ≤
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3.2. Hamiltonicity

log1−ε n we have

Pr[Bin(n− c, p) ≤ k] ≤ (k + 1)Pr[Bin(n− c, p) = k]

= (k + 1)
(

n− c
k

)
pk(1− p)n−c−k

≤ log n(np)ke−pne(k+c)p

≤ log n(2 log n)k 1
n
≤ n−0.9 .

where the first inequality is due to the monotonicity of Bin. In particular
this implies that

E
[
|Small|

]
≤ nn−0.9 = n0.1

and so by Markov we have w.h.p. |Small| ≤ n0.2.

Now we prove (b) formally. Let’s prove that with high probability Small

is an independent set. For u 6= v ∈ [n] let Au,v be the event

Au,v = “u, v ∈ Small, (u, v) ∈ E(G)′′ .

We have that

Pr[Au,v] = p
(
Pr[Bin(n− 2, p) ≤ log7/8 n− 1]

)2 ≤ pn−0.9·2 ≤ n−2.7

Hence by the union bound

Pr[Small is not ind.] = Pr
[⋃

u 6=v

Au,v

]
≤
(

n
2

)
n−2.7 = o(1) .

Let’s prove that with high probability every two vertices in Small do
not have a common neighbor. For u, v, w ∈ [n] distinct denote by Au,v,w
the event

Au,v,w = “u, v ∈ Small; (u, w), (v, w) ∈ E(G)” .

Here we have that

Pr[Au,v,w] = p2
(

p
(
Pr[Bin(n− 3, p) ≤ log7/8 n− 2]

)2

+
(
(1− p)Pr[Bin(n− 3, p) ≤ log7/8 n− 1]

)2
)

≤ p2n−0.9·2 ≤ n−3.7 .

Then by the union bound Pr[∃u, v, w Au,v,w] = o(1). The remaining cases
are treated similarly.
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3. Long paths and Hamiltonicity

(c) For this case we have that

Pr[(c) does not hold]

= Pr[∃A, B disjoint, |A|, |B| = n
log1/2 n

, eG(A, B) = 0]

≤
(

n
n

log1/2 n

)2

(1− p)n2/ log n

≤ (e log1/2 n)
2n

log1/2 n e−
pn2

log n = o(1) .

(d) Here we have

Pr
[
∃V0 ⊆ [n], |V0| ≤

2n
log3/8 n

, e(V0) ≥ 3|V0| log5/8 n
]

≤ ∑
k≤ 2n

log3/8 n

(
n
k

)
Pr[Bin

(
(k

2), p
)
≥ 3k log5/8 n]

≤ ∑
k≤ 2n

log3/8 n

(
n
k

)(
(k

2)

3k log5/8 n

)
p3k log5/8 n

≤ ∑
k≤ 2n

log3/8 n

(
en
k

( ekp
6 log5/8 n

)3 log5/8 n
)k

= ∑
k≤ 2n

log3/8 n

ak

where

ak =

(
en
k

( ekp
6 log5/8 n

)3 log5/8 n
)k

.

If k ≤
√

n, then

ak ≤
(

enn−
1
3 3 log5/8 n

)k
= o(1/n) .

If on the other hand
√

n ≤ k ≤ 2n
log3/8 n

, then

ak =

(
en
k

ekp
6 log5/8 n

( ekp
6 log5/8 n

)3 log5/8 n−1
)k

≤
(

log n
( ekp

6 log5/8 n

)2 log5/8 n
)k

≤
(

log n0.952 log3/8 n
)√n

= o(1/n) .

Therefore (d) holds with high probability. �
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3.2. Hamiltonicity

Proof (of Proposition 3.14) We need to prove that if G has properties (a)-(d)
then for all U ⊆ [n], |U| ≤ n/4 we have that |N(U)| ≥ 2|U|.

If |U| ≥ n
log1/2 n

we have by property (c) that

|N(U)| ≥ n− |U| − n
log1/2 n

≥ n
2
≥ 2|U| .

Assume now that |U| ≤ n
log1/2 n

. Let A = U ∩ Small, and B = U \ Small =

U − A. Then

N(U) = N(A ∪ B) = N(A)−
(

B ∩ N(A)
)
+
(

N(B)− A ∪ N(N)
)

so we obtain

|N(U)| ≥ |N(A)| − |B|+ |N(B)− A ∪ N(A)| .

Recall that by Property (a), d(u) ≥ 2 for every v ∈ [n]. Also, by Property (b),
Small is an independent set, and the neighborhoods of the vertices in Small

are pairwise disjoint. Hence

|N(A)| = ∑
v∈A

d(v) ≥ 2|A| .

Now let us estimate |N(B)|. Since B ∩ Small = ∅, we have d(v) ≥ log7/8 n
for every v ∈ B. It thus follows that the set B ∪ N(B) spans all edges touch-
ing B, whose number is at least (|B| log7/8 n)/2 (every edge is counted at
most twice). We claim that |N(B)| ≥ |B| log1/8 n. Assume otherwise. Then

|B ∪ N(B)| ≤ |B|+ |B| log1/8 n ≤ 2n
log3/8 n

.

This is because we assumed that |U| ≤ n
log1/2 n

, and hence Property (d) ap-

plies to B ∪ N(B). Thus, B ∪ N(B) has at most |B|+ |B| log1/8 n vertices and
yet spans at least (|B| log7/8 n)/2 edges. We obtain

e(B ∪ N(B))
|B ∪ N(B)| ≥

|B| log7/8 n
|B|(1 + log1/8 n)

= Ω(log3/4 n)

thus contradicting Property (d).

Also observe that by Property (b), every vertex b ∈ B has at most one neigh-
bor in A ∪ N(A). Hence |N(B)− A ∪ N(A)| ≥ |N(B)| − |B|.

Putting everything together, we get

|N(U)| ≥ |N(A)| − |B|+ |N(B)| − |B|
≥ 2|A|+ |B| log1/8 n− 2|B| ≥ 2|A|+ 2|B| = 2|U| .

�
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The second part of Theorem 3.6 will be established by proving the following
statement.

Lemma 3.15 Let G1 be an (n/4, 2)-expander with vertex set [n]. Let furthermore
G2 ∼ G(n, p2) with p2 = 80/n. Then with high probability (over the choice of G2)
the graph G = G1 ∪ G2 is Hamiltonian.

Proof First observe that G1 is necessarily connected. Indeed, let C be a
connected component of G1. Then N(C) = ∅, implying that |C| > n/4.
Choose V0 ⊆ C with |V0| = n/4. Then |N(V0)| ≥ n/2, and V0 ∪ N(V0) ⊆ C,
implying |C| ≥ 3n/4. So there is no room for more than one connected
component.

Represent

G2 =
2n⋃
j=1

G2,j

where G2,j ∼ G(n, ρ) and ρ = ρ(n) satisfies (1− ρ)2n = (1− p2), implying
ρ ≥ p2/(2n) = 40/n2. For 0 ≤ j ≤ 2n denote

Hj = G1 ∪
j⋃

k=1

G2,k .

We say that round j is successful if Hj−1 is Hamiltonian or E(G2,j) hits the set
of boosters of Hj−1.

Observe that if at least n rounds are successful, then the final graph G1 ∪ G2
is necessarily Hamiltonian. Let us consider round j. Either Hj−1 is Hamil-
tonian, or, due to the fact that Hj−1 ⊇ G1 and G1 is a connected (n/4, 2)-
expander, Hj−1 has at least (n/4)2/2 = n2/32 boosters.

In either case,

Pr[round j is successful] ≥ 1− (1− ρ)n2/32 ≥ 1− e−ρn2/32

≥ 1− e−
40
n2

n2
32 = 1− e−5/4 ≥ 2

3
.

Let X be the random variable counting the number of successful rounds.
Then X stochastically dominates the binomial r.v. Bin(2n, 2/3). Hence w.h.p.
(in fact with exponentially high probability) X ≥ n. �

Proof (Proof of Theorem 3.6) Represent G = G1 ∪G2, with Gi ∼ G(n, pi) as
usual, and

p1 =
log n + log log n + ω1(n)

n
, p2 =

c
n

.

Then by Proposition 3.14 and Lemma 3.15 the result follows. �
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Chapter 4

Random Graph Processes
and Hitting Times

Recall from Section 1.2:

Definition 4.1 (Random graph process) Take a permutation σ = (e1, . . . , eN)
of the edges of Kn. Define

G0 = ([n], ∅) ,
Gi = ([n], {e1, . . . , ei}) ∀1 ≤ i ≤ N .

Then G̃ = G̃(σ) = (Gi)
N
i=0 is a graph process.

If you choose σ ∈ SN uniformly at random, then G̃(σ) is called a random graph
process.

Informally:

1. Start with G0 = ([n], ∅).

2. At step i (1 ≤ i ≤ N): choose a random missing edge ei uniformly
from E(Kn) \ E(Gi−1). Set Gi := Gi−1 + {ei}.

Generating the random graph process G̃ and taking a snapshot at time m (i.e.
looking at the graph Gm) induces the probability space G(n, m).

Definition 4.2 (Hitting time) Let P be a monotone (increasing) graph property.
Let us assume that K̄n /∈ P (the empty graph does not satisfy the property) and
Kn ∈ P. The hitting time of property P w.r.t. a graph process G̃, denoted by
τ(G̃, P), is defined by

τ(G̃, P) = min{i | Gi ∈ P} .

Since P is monotone, Gi ∈ P for every i ≥ τ(G̃, P).

If G̃ is a random graph process, τ(G̃, P) becomes a random variable.
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4.1 Hitting Time of Connectivity

Define

τ1(G̃) := min{i | δ(Gi) ≥ 1} ,

τc(G̃) := min{i | Gi is connected} .

Obviously τ1(G̃) ≤ τc(G̃).

Theorem 4.3 A typical random graph process G̃ becomes connected exactly at the
moment the last isolated vertex disappears. Formally, for a random graph process
G̃, w.h.p.

τ1(G̃) = τc(G̃) .

Corollary 4.4 Consider the random graph G(n, m). Then

(a) If m = 1
2 n(log n − ω(n)) (with ω(n) → ∞), then w.h.p. G(n, m) is not

connected.

(b) If m = 1
2 n(log n + ω(n)) (with ω(n) → ∞), then w.h.p. G(n, m) is con-

nected.

Proof For the first part, recall that for such m = m(n), w.h.p. G(n, m) does
have isolated vertices. Hence w.h.p. it is not connected.

For the second part, recall that for such m = m(n), w.h.p. G(n, m) has no
isolated vertices. Take a random graph process G̃ and run it till m as above.
Then w.h.p. τ1(G̃) ≤ m. By Theorem 4.3, τ1(G̃) = τc(G̃), implying that
G(n, m) is connected w.h.p. �

Corollary 4.5 Let G ∼ G(n, p).

(a) If p = (log n−ω(n))/n, then w.h.p. G(n, p) is not connected.

(b) If p = (log n + ω(n))/n, then w.h.p. G(n, p) is connected.

Proof Follows from the asymptotic equivalence of G(n, p) and G(n, m). �

Proof (Proof of Theorem 4.3) Given a graph G = ([n], E), define the vertex
subset Small as

Small(G) = {v ∈ [n] | dG(v) ≤ log7/8 n} .

Define the following three graph properties:

(A1) G has no isolated vertices.

(A2) Small is an independent set in G.
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4.1. Hitting Time of Connectivity

(A3) For every partition V = V1 ∪V2 with |V1|, |V2| ≥ log7/8 n, the graph G
has an edge between V1 and V2.

Then the proof will follow from the following lemmas. �

Lemma 4.6 Let G be a graph on n vertices having properties (A1), (A2) and (A3).
Then G is connected.

Proof Observe that if v is a vertex of G and C is a connected components of
G including v, then N(v) ⊆ C, and for every neighbor u of v, also N(u) ⊆ C.

Let C be a connected component of G, and let v ∈ C. If v ∈ Small, then
by property (A1), v has a neighbor u, and by property (A2) u /∈ Small,
implying |C| ≥ |N(u)| > log7/8 n. On the other hand, if v /∈ Small, then
|N(v)| ≥ log7/8 n, again implying |C| ≥ |N(u)| > log7/8 n.

Now, if G is disconnected, then there is a partition V = V1 ∪ V2 such that
both V1 and V2 contain some connected components of G in full, and G has
no edge between V1 and V2. But then |V1|, |V2| ≥ log7/8 n, thus contradicting
property (A3). �

Lemma 4.7 W.h.p. the random graph process G̃ is such that Gτ1 has properties
(A1), (A2) and (A3).

Proof (A1) follows by definition of τ1. To prove (A2) and (A3), define

m1 := 1
2 n log n− 1

2 n log log log n ,

m2 := 1
2 n log n + 1

2 n log log log n ,

p1 :=
m1

(n
2)
≥ log n− log log log n

n
.

The lemma then follows from the following propositions. �

Proposition 4.8 W.h.p.,
m1 ≤ τ1 ≤ m2 .

Proof Follows from previously cited results about isolated vertices. �

Corollary 4.9 W.h.p.,

Small(Gm1) ⊇ Small(Gτ1) ⊇ Small(Gm2) .

Proposition 4.10 W.h.p. Small(Gm1) is an independent set.

Proof Follows from Proposition 3.13. �

Proposition 4.11 W.h.p. no edge of G̃ falls into Small(Gm1) between m1 and m2.
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4. Random Graph Processes and Hitting Times

Proof We have previously observed that for every v ∈ [n], we can bound
Pr[v ∈ Small] ≤ n−0.9, implying E[|Small|] ≤ n0.1. By Markov, w.h.p.
|Small(Gm1)| ≤ n0.2. Then the probability of putting some edge inside
Small(Gm1) between m1 and m2 can be estimated as follows:

(m2 −m1)
(
|Small(Gm1 )|

2 )

(n
2)−m2

= o(1) .

Hence w.h.p. Small(Gτ1) is independent as well. �

This proves (A2), so it remains to show (A3). Since w.h.p. τ1 ≥ m1, it is
enough to prove that Gm1 ∼ G(n, m1) has property (A3). By the asymptotic
equivalence of G(n, p) and G(n, m) it is enough to prove it for G(n, p1).

Proposition 4.12 W.h.p. G(n, p1) has the property (A3).

Proof

Pr[(A3) is violated in G(n, p1)] ≤
n/2

∑
i=log7/8 n

(
n
i

)
(1− p1)

i(n−i)

≤
n/2

∑
i=log7/8 n

( en
i

e−p1(n−i)
)i

=
n/2

∑
i=log7/8 n

g(i) ,

where
g(i) =

( en
i

e−p1(n−i)
)i

.

If i ≤ n2/3, then

g(i) ≤
( en

i
e−(log n−log log log n)(1−i/n)

)i
≤
( en

i
e− log n+2 log log log n

)i

≤
(

en
log7/8 n

(log log n)2

n

)i

≤
(

1

log1/2 n

)i

.

If n2/3 ≤ i ≤ n/2, then

g(i) ≤
( en

i
e−(log n−log log log n)(1−i/n)

)i
≤
(

en
i

e−
1
2 log n+ 1

2 log log log n
)i

≤
(

en1/3 (log log n)1/2

n1/2

)i

= o(1/n) .

So altogether, Pr[(A3) does not hold] = o(1). �
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Chapter 5

Coloring Random Graphs

5.1 Graph Theoretic Background

Let G = (V, E) be a graph.

Definition 5.1 A set I ⊂ V is independent (or stable) if I spans no edges of
G. The independence number of G, denoted by α(G), is the largest size of an
independent set in G.

A partition V = C1 ∪ · · · ∪ Ck is a k-coloring of G if each color class Ci is an
independent set. Equivalently, a function f : V → [k] is a k-coloring if for every
edge e = (u, v) ∈ E, we have f (u) 6= f (v).

G is called k-colorable if it admits a k-coloring. The chromatic number χ(G) of
G is the smallest k for which G is k-colorable.

Examples:

1. Let G = Kn, then α(G) = 1 and χ(G) = n.

2. Let G = Km,n, then α(G) = max(m, n) and χ(G) = 2.

5.2 Elementary Facts About Coloring

1. If V(G) = V1 ∪̇V2, then

χ(G) ≤ χ(G[V1]) + χ(G[V2]) ≤ χ(G[V1]) + |V2| .

2. χ(G) ≥ |V(G)|/α(G): Let V = C1 ∪ · · · ∪ Ck such that k = χ(G) and
each Ci is independent. Then |V| = ∑k

i=1|Ci| ≤ kα(G).
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5. Coloring Random Graphs

1

2

1

3

3

2

Figure 5.1: Greedy coloring example (vertices ordered left-to-right)

u1 u2 u3 un

v1 v2 v3 vn

Figure 5.2: Greedy performs arbitrarily bad in this construction

5.3 Greedy Coloring

Take G = (V, E) with V = [n]. Let σ ∈ Sn be a permutation of [n]. The
greedy coloring of G according to σ is defined by setting, for i ≤ i ≤ n,

c(σ(i)) = min {j ≥ 1 | j /∈ {c(u) | u ∈ N(σ(i))}} .

In general the greedy algorithm performs reasonably well (see Figure 5.1
but note that this graph could be colored with only two colors). However,
there are some bad cases: Take G = Kn,n−M where M is a perfect matching
consisting of edges e1 = (u1, v1), . . . , en = (un, vn) (see Figure 5.2). Let the
permutation σ alternate between the parts of the bipartition in the order
(u1, v1, u2, . . . , un, vn). Then the greedy algorithm uses n colors while χ(G) =
2.

Remark 5.2 For every graph G, there is a permutation σ of V(G) such that
the greedy algorithm on G according to σ uses exactly χ(G) colors.

5.4 Coloring G(n, 1
2)

p = 1
2 is chosen for illustrative purposes; similar results available for other

values of p = p(n).

5.4.1 Lower bound for χ(G(n, 1
2))

Define

f (k) =
(

n
k

)
·
(

1
2

)(k
2)

.
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5.4. Coloring G(n, 1
2 )

f (k)

k

1

log2 n k∗

Figure 5.3: Expected number of independent sets in G(n, 1
2 )

Clearly, f (k) is the expected number of independent sets of size k in G(n, 1
2 ).

Calculate
f (k + 1)

f (k)
=

( n
k+1) · 2−(

k+1
2 )

(n
k) · 2−(

k
2)

=
n− k
k + 1

2−k .

The maximum is attained roughly at log2 n (Figure 5.3).

Let k∗ = max{k | f (k) ≥ 1}. It is easy to get

k∗ = 2 log2 n− 2 log2 log2 n + Θ(1) .

For k ≈ k∗, f (k + 1)/ f (k) = Θ̃(1/n).

Claim W.h.p. in G(n, 1
2 ), we have α(G) < k∗ + 2.

Proof Since f (k∗ + 1) < 1 by the definition of k∗, we get that

f (k∗ + 2) = f (k∗ + 1)Θ̃(1/n) = o(1) .

Therefore the expected number of independent sets of size k∗ + 2 in G(n, 1
2 )

is o(1). By Markov, w.h.p. G has no independent sets of size k∗ + 2. �

Corollary 5.3 W.h.p. in G(n, 1
2 ),

χ(G) ≥ n
2 log2 n− 2 log2 log2 n + Θ(1)

.

5.4.2 Greedy’s Performance

Look at the performance of the greedy algorithm on G(n, 1/2). Let σ be the
identity permutation. Let χg(G) denote the random variable counting the
number of colors used by the greedy algorithm on G(n, 1

2 ) according to σ.

Observe that one can expose/generate G(n, 1
2 ) as follows: for each 2 ≤ i ≤ n,

each pair (j, i) (where 1 ≤ j ≤ i− 1) is an edge of G with probability 1
2 . Thus

the greedy algorithm is easy to analyze on random graphs.
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5. Coloring Random Graphs

Theorem 5.4 ([GM]) W.h.p.,

χg(G(n, 1
2 )) ≤ (1 + o(1))

n
log2 n

.

Proof Set

t =
⌈

n
log2 n− 3 log2 log2 n

⌉
.

We will prove that w.h.p. in G(n, 1
2 ), we have χg(G) ≤ t.

for t + 1 ≤ i ≤ n, let Ai be the event “i is the first vertex colored by color
t + 1 by the greedy algorithm”. Then

“χg(G) > t” =
n⋃

i=t+1

Ai ,

hence

Pr[χg(G) > t] = Pr

[
n⋃

i=t+1

Ai

]
=

n

∑
i=t+1

Pr[Ai] .

Consider Ai0 with t + 1 ≤ i0 ≤ n. In order for Ai0 to happen, the following
should occur:

(i) The greedy algorithm has used all of t colors at vertices 1, . . . , i0 − 1.

(ii) i0 has a neighbor in each of the t color classes created so far.

Condition on a coloring C1, . . . , Ct of the first i0 − 1 vertices; observe that
Cj 6= ∅ (for 1 ≤ j ≤ t) by (i). Expose the edges from i0 to [i0 − 1]. Then the
probability that i0 has a neighbor in each Cj (1 ≤ j ≤ t) is

t

∏
j=1

(
1− 2−|Cj|

)
.

46



5.4. Coloring G(n, 1
2 )

The function g(x) = 1− 2−x is concave, so

t

∏
j=1

(
1− 2−|Cj|

)
≤
(

1− 2−
1
t ∑t

j=1|Cj|
)t

=
(

1− 2−
i0−1

t

)t

≤
(

1− 2−
n
t

)t

≤ exp
(
−t2−n/t

)
= exp

(
−
⌈

n
log2 n− 3 log2 log2 n

⌉
2− log2 n+3 log2 log2 n

)
≤ exp

(
−(1− o(1)) log2

2 n
)

= o
(

1
n

)
Lifting the conditioning on the particular coloring (C1, . . . , Ct), we get

Pr[χg(G) > t] = o(1) . �

The greedy algorithm is extremely robust when applied to G(n, 1
2 ), as wit-

nessed by the following result.

Theorem 5.5 ([McD79])

Pr
[

χg(G) ≥
(

1 +
5 log2 log2 n

log2 n

)
n

log2 n

]
= o(n−n) .

Since |Sn| = n! = o(nn), we conclude that w.h.p. G ∼ G(n, 1
2 ) is such that

the greedy algorithm uses at most

(1 + o(1))
n

log2 n

colors for any permutation σ of G’s vertices.

5.4.3 Lower bounding χg(G)

Theorem 5.6 W.h.p. in G(n, 1
2 ) all color classes produced by the greedy algorithm

are of size at most log2 n + 2
√

log2 n.

Corollary 5.7 W.h.p. the greedy algorithm, when applied to G(n, 1
2 ), uses

χg(G) ≥ n
log2 n + 2

√
log2 n

colors.
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5. Coloring Random Graphs

Proof (Proof of Theorem 5.6) Denote r1 = log2 n and r2 = 2
√

log2 n. If Ci
gets r1 + r2 vertices, we first put r1 vertices u1, . . . , ur1 into Ci, and then add
another r2 vertices v1, . . . , vr2 . We can assume

u1 < u2 < · · · < ur1 < v1 < · · · < vr2 .

Let us condition on (u1, . . . , ur1). For a given sequence (v1, . . . , vr2), the prob-
ability that v1, . . . , vr2 gets added to {u1, . . . , ur1} is at most

2−r1 · 2−(r1+1) · · · 2−(r1+r2−1)

(each of the vi cannot have any neighbors among the ui and from v1 to vi−1).
We get a total probability of

2−r1·r2−(r2
2 ) .

Altogether there are less than (n)r2 choices of (v1, . . . , vr2). Therefore the
probability that at least r2 vertices get added to {u1, . . . , ur1} is at most

(n)r2 · 2−r1r2−(r2
2 ) ≤ nr2 · 2−r1r2−

r2(r2−1)
2 =

(
n · 2r1 +

r2 − 1
2

)r2

= 2−(
r2
2 ) = 2−(1−o(1))2 log2 n � 1

n
.

Lifting the conditioning on (u1, . . . , ur1), we get

Pr[|Ci| ≥ r1 + r2] = o(1/n)

hence
Pr[∃Ci : |Ci| ≥ r1 + r2] = o(1/n) . �

5.4.4 Chromatic Number of G(n, 1/2)

Theorem 5.8 (Bollobás [Bol88]) Let G ∼ G(n, 1
2 ), then w.h.p.

χ(G) = (1 + o(1))
n

2 log2 n

Proof (Upper bound) We know: the expected number of independent sets
of size k in G(n, 1

2 ) is

f (k, n) =
(

n
k

)
2−(

k
2) .

Let
k∗ = max{k | f (k, n) ≥ 1}

then
k∗ = 2 log2 n− 2 log2 log2 n + Θ(1) .
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5.4. Coloring G(n, 1
2 )

W.h.p. α(G(n, 1
2 )) ≤ k∗ + 1, thus

χ(G(n, 1
2 )) ≥

n
k∗ + 1

=
(1 + o(1))n

2 log2 n
.

�

For the lower bound we need to do some more work.

Janson Inequalities

Setting: Finite ground set Ω. Form a random subset R of Ω as follows: for
all r ∈ Ω, Pr[r ∈ R] = pr independently from each other. (Typical example:
Ω = E(Kn), R = E(G(n, p)) or R = E(Kn) = E(G(n, p)).)

Let I be indexes, and take a family {Ai}i∈I of subsets Ai ⊆ Ω. We want
to find out how many of the Ai’s fall into R, in particular, to estimate the
probability that none of them fall into R.

For each Ai define the corresponding indicator r.v.

Xi =

{
1 Ai ⊆ R ,
0 otherwise .

Then
Pr[Xi = 1] = E[Xi] = ∏

r∈Ai

pr .

Now let X count the number of Ai’s that fall entirely into R:

X = ∑
i∈I

Xi .

Denote
µ = E[X] = ∑

i∈I
E[Xi] = ∑

i∈I
∏

r∈Ai

pr .

If the Ai’s are pairwise disjoint, the probabilities are independent and thus

Pr[X = 0] = ∏
i∈I

Pr[Xi = 0] = ∏
i∈I

(
1− ∏

r∈Ai

pr

)
If ∏r∈Ai

pr = o(1), then we can approximate the latter expression by

≤∏
i∈I

exp
(
− ∏

r∈Ai

pr

)
= e−µ ,

the so called Poisson paradigm: if X is a non-negative integer r.v. with E[X] =
µ, then Pr[X = 0] ≈ e−µ. (This is exact for the Poisson distribution.)
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5. Coloring Random Graphs

Usually the Ai’s intersect and therefore some dependencies should be taken
into account. Write i ∼ j if Ai ∩ Aj 6= ∅ (in this case Xi and Xj may be
dependent). Now define

∆ = ∑
i∼j

Pr[(Ai ⊆ R) ∧ (Aj ⊆ R)]

where the summation runs over ordered pairs.

Theorem 5.9 (Janson’s inequality [JŁR00]) With the above notation,

Pr[X = 0] ≤ e−µ+ ∆
2 .

This is essentially useless if ∆ ≥ 2µ, so we have another form.

Theorem 5.10 (Extended/generalized Janson’s inequality) If in addition ∆ ≥
µ, then

Pr[X = 0] ≤ e
−µ2
2∆ .

For proof see, e.g., [AS00, Chapter 8]. Back to colorings:

Proposition 5.11 Let 1 ≤ k ≤ m ≤ n be integers. Let G be a graph on n vertices
in which every m vertices span an independent set of size at least k. Then

χ(G) ≤ n
k
+ m .

Proof Coloring by excavation. Start with G′ := G and i := 1. Proceed in two
phases:

1. As long as |V(G′)| ≥ m: find an independent set Ci in G′ of size
|Ci| = k, color Ci by a new color, put it aside. Update G′ := G′ − Ci
and i := i + 1.

2. Color each of the remaining vertices in a new separate color.

Then phase 1 is repeated at most n/k times and thus uses at most n/k colors.
Phase 2 uses m colors. Altogether we get the claim. �

Let m = n/ log2
2 n. We will prove that w.h.p. every subset of size m of G(n, 1

2 )
spans an independent set of size (1− o(1))2 log2 n.

Lemma 5.12 Let G ∼ G(m, 1
2 ). Write

k∗ = k∗(m) = max
{

k
∣∣∣∣ (m

k

)
2−(

k
2) ≥ 1

}
.

Set k = k∗ − 3, then

Pr[α(G) < k] = exp
{
−Ω

(
m2

k4

)}
.
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5.4. Coloring G(n, 1
2 )

Proof Notice first that

f (k, m) =

(
m
k

)
2−(

k
2) ≥ m3+o(1) ,

since k∗ = 2 log2 m(1− o(1)), k = k∗ − 3, and

f (k1 + 1, m)

f (k1, m)
= m−1+o(1)

for k1 = (1 + o(1))k∗. We will apply the extended Janson inequality. Set
Ω = E(Km) = ([m]

2 ) and let R be the set of non-edges of G(m, 1
2 ). Then

Pr[r ∈ R] = 1
2 for all r ∈ Ω. For a subset S ⊆ [m] with |S| = k, let AS = (S

2)

be the set of (k
2) pairs inside S. Denote

XS =

{
1 AS ⊆ R ,
0 otherwise .

Then XS = 1 iff S is an independent set in G(m, 1
2 ). Let X count the number

of independent sets of size k in G(n, 1
2 ):

X = ∑
S⊆[m]
|S|=k

XS .

Then

Pr[α(G(m, 1
2 )) < k] = Pr[X = 0] .

We have

E[X] = µ = ∑
S⊆[m]
|S|=k

E[XS] =

(
m
k

)
2−(

k
2) ≥ m3+o(1) .

(We cannot hope that the Poisson principle applies here because with prob-
ability 2−m2

, the graph is complete.)

We write S ∼ S′ if 2 ≤ |S ∪ S′| ≤ k− 1 with S, S′ ⊆ [m] and |S| = |S′| = k.
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5. Coloring Random Graphs

Then

∆ = ∑
S∼S′

Pr[(XS = 1) ∧ (XS′ = 1)]

= ∑
S⊆[m]
|S|=k

k−1

∑
i=2

(
k
i

)(
m− k
k− i

)(
1
2

)2(k
2)−(

i
2)

=

(
m
k

) k−1

∑
i=2

(
k
i

)(
m− k
k− i

)(
1
2

)2(k
2)−(

i
2)

=

(
m
k

)(
1
2

)(k
2) k−1

∑
i=2

(
k
i

)(
m− k
k− i

)(
1
2

)(k
2)−(

i
2)

= µ
k−1

∑
i=2

g(i) ,

where

g(i) =
(

k
i

)(
m− k
k− i

)(
1
2

)(k
2)−(

i
2)

.

Informally, looking at the ratio g(i + 1)/g(i) we find that g has a decreasing
and an increasing part. It is easy to see that

k−1

∑
i=2

g(i) ≤ (1 + o(1))(g(2) + g(k− 1)) .

Now

g(2) =
(

k
2

)(
m− k
k− 2

)(
1
2

)(k
2)−1

= (1 + o(1))k2
(

m− k
k− 2

)(
1
2

)(k
2)

= (1 + o(1))k2 (
m−k
k−2 )

(m
k )

(
m
k

)(
1
2

)(k
2)

= (1 + o(1))k2Θ
(

k2

m2

)
µ

= Θ
(

k4

m2 µ

)
.

On the other hand

g(k− 1) =
(

k
k− 1

)(
m− k

1

)(
1
2

)(k
2)−(

k−1
2 )

= k(m− k)2−(k−1) = Õ(1/m) ,

in particular g(2)� g(k− 1).
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5.5. List Coloring of Random Graphs

Altogether

∆ = (1 + o(1))µg(2) = Θ
(

k4

m2 µ2
)

.

Observe that
∆
µ
= Θ

(
k4

m2 µ

)
� 1 ,

hence we can apply the extended Janson inequality. It gives

Pr[α(G(n, 1
2 )) < k] = Pr[X = 0] ≤ exp

(
− µ2

2∆

)
= exp

(
−Θ

(
m2

k4

))
.
�

Let us go back to G(n, 1
2 ).

Proof (Proof of Theorem 5.8, lower bound) Fix V0 ⊆ [n] with |V0| = m.
Then the subgraph G[V0] is distributed exactly G(m, 1

2 ). Hence by Lemma 5.12

Pr[α(G[V0]) < k] = exp
(
−Ω

(
m2

k4

))
.

Applying the union bound, we get that

Pr [∃V0 ⊆ [n], |V0| = m : α(G[V0]) < k] ≤
(

n
m

)
exp

(
−Ω

(
m2

k4

))
≤ 2n exp

(
− cn2

log8
2 n

)
= o(1) .

Therefore w.h.p. G(n, 1
2 ) satisfies the conditions of Proposition 5.11 for m =

n/ log2
2 n and k = k∗(m)− 3, and we get

χ(G(n, 1
2 )) ≤

n
k
+ m =

n
(1 + o(1))2 log2 m

+ m

=
n

(1 + o(1))2 log2 n
+

n
log2

2 n
=

n(1 + o(1))
2 log2 n

. �

5.5 List Coloring of Random Graphs

5.5.1 Combinatorial Background: List Coloring

Introduced independently in [Viz76] and [ERT79].

Recall: G is k-colorable if ∃c : V → {1, . . . , k} such that c(u) 6= c(v) for every
(u, v) ∈ E(G). Note that the list of colors {1, . . . , k} is the same for every
vertex. Generalization:
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5. Coloring Random Graphs

{1, 2} {1, 2}

{1, 3} {1, 3}

{2, 3} {2, 3}

Figure 5.4: K3,3 with lists proving choice number > 2

Definition 5.13 Let S = {S(v) | v ∈ V} be a family of color lists (S(v) ⊆ Z for
all v ∈ V). G = (V, E) is S-choosable if there exists c : V → Z such that

(i) c(v) ∈ S(v) for every vertex v ∈ V, and

(ii) c(u) 6= c(v) for every edge (u, v) ∈ E.

Example 5.14 S(v) = {1, . . . , k} for all vertices, S = {S(v) | v ∈ V} gives: G
is S-choosable ⇐⇒ G is k-colorable.

Definition 5.15 G is k-choosable if G is S-choosable for every family S of color
lists satisfying |S(v)| = k for all v ∈ v.

Definition 5.16 The choice number (or list chromatic number) of G, denoted by
ch G or χ`(G), is the least k for which G is k-choosable.

Claim ch(G) ≥ χ(G) for all graphs G.

Proof Let ch(G) = k. Then by definition G is S-choosable from every family
S of color lists satisfying |S(v)| ≥ k ∀v ∈ V. Set S(v) := {1, . . . , k} for all
v ∈ V and S = {S(v) | v ∈ V}. Then G is S-choosable meaning that it is
also k-colorable. �

Claim Let S = {S(v) | v ∈ V} be a family of color lists for a graph G = (V, E).
Assume S(u) ∩ S(v) = ∅ for every pair of vertices u 6= v. Then G is S-choosable.

Proof Any choice function satisfying c(v) ∈ S(v) for all v ∈ V will do. �

Does it happen that ch(G)� χ(G)? Yes, but as we will see, very rarely.

ch(G) can be larger than χ(G):

Example 5.17 Let G = K3,3 with lists as in Figure 5.4. Look at one half of the
bipartition. It cannot be colored with only one color, since no color is available for
all vertices. So one must use at least two colors. But then clearly the colors used for
the two halves must overlap, so there is a monochromatic edge, so the choice number
is at least 3. Hence ch(G) > 2 = χ(G).

The above example can easily be generalized:

Proposition 5.18 Let n = (2k−1
k ). Then ch(Kn,n) > k.
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5.5. List Coloring of Random Graphs

Proof There are exactly n = (2k−1
k ) size k subsets of [2k − 1]. Denote the

sides of G = Kn,n by A and B with |A| = |B| = n. Fix two arbitrary
bijections f and g between the k-subsets of [2k− 1] and the vertices of A and
B (respectively). Form a family S = {S(v) | v ∈ V} by setting S ≡ f on A
and S ≡ g on B. We will prove that G is not S-choosable.

Let c : A ∪ B → [2k − 1] be a choice function satisfying c(v) ∈ S(v) for
v ∈ A ∪ B. Denote

TA = {c(a) | a ∈ A} , TB = {c(b) | b ∈ B} .

Observe that |TA| ≥ k: if |TA| ≤ k− 1, then |[2k− 1] \ TA| ≥ k. Then there is
a k-subset S ⊆ [2k− 1] completely missed by TA (i.e., S∩ TA = ∅). But S is a
color list of some vertex, so S ∩ TA 6= ∅, a contradiction. Similarly, |TB| ≥ k.

But now since TA and TB are both subsets of [2k− 1], we have TA ∩ TB 6= ∅.
Let i ∈ TA ∩ TB and let a ∈ A, b ∈ B be such that c(a) = c(b) = i. But then
(a, b) is a monochromatic edge of Kn,n. �

Conclusion: ch(Kn,n) ≥ ( 1
2 − o(1)) log2 n.

In fact [ERT79] proved that ch(Kn,n) = (1 + o(1)) log2 n (they connected
between choosability of complete bipartite graphs and the so called property
B of hypergraphs).

Furthermore, [Alo00] proved in 2000 the following result:

Theorem 5.19 Let G be a graph of average degree d. Then

ch(G) ≥ ( 1
2 − o(1)) log2 d .

The choice number thus grows with the graph density. This stands in
striking contrast to the usual chromatic number: χ(Kn,n) = 2 but Kn,n is
n-regular.

5.5.2 Choosability in Random Graphs

Theorem 5.20 (J. Kahn, appeared in [Alo93]) Let G ∼ G(n, 1
2 ). Then w.h.p.

ch(G) = (1 + o(1))χ(G) .

The proof is based on the following lemma:

Lemma 5.21 Let k ≤ m ≤ n be positive integers. Let G = (V, E) be a graph on
n vertices, in which every subset of m vertices spans an independent set of size k.
Then

ch(G) ≤ n
k
+ m .
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5. Coloring Random Graphs

(Compare to Proposition 5.11, in which the chromatic number is bounded.)

Proof Let S = {S(v) | v ∈ V} be a family of color lists satisfying |S(V)| ≥
n/k + m for all v ∈ V. We will prove that G is S-choosable.

We color from lists in two stages. Start with G0 := G and i := 0.

1. As long as there is a color c appearing on the lists of at least m vertices
of Gi: let

U = {v ∈ V | c ∈ S(v)} .

By assumption U spans an independent set I of size k. Color all ver-
tices in I with color c. Delete c from all remaining color lists, and
update Gi+1 := Gi − I and i := i + 1.

2. Denote by G∗ the output of the first stage. Observe that the iteration
of stage 1 was performed at most n/k times. Therefore the length of
the color list of each remaining vertex of G∗ is at least m. On the other
hand each color appears on fewer than m lists of remaining vertices.
Now we assign colors to vertices such that:

(i) each vertex of G∗ gets a color from its current list;

(ii) each color gets assigned to at most one vertex.

Define an auxiliary bipartite graph Γ = (X ∪Y, F) as follows:

X = G∗ , Y =
⋃

v∈V(G∗)

S(v) .

Connect y ∈ Y to v ∈ X by an edge in F if y ∈ S(v). We are looking
for a matching in Γ saturating side X. Observe:

(i) dΓ(v) = |S(v)| ≥ m for all v ∈ X.

(ii) For y ∈ Y, dΓ(y) is the number of appearances of y in the lists of
G∗, i.e., < m.

Then Hall’s condition applies to X, and therefore Γ contains a match-
ing M of size |M| = |X| = |V(G∗)|. Coloring the vertices of G∗ accord-
ing to M produces a valid coloring of G∗ and thus completes a valid
coloring of G. �

Proof (Proof of Theorem 5.20) Set m = n/ log2
2 n and k = k∗(m)− 3 = (1 +

o(1))2 log2 n. We have proved that w.h.p. in G(n, 1
2 ), every m vertices span

an independent set of size k. Then w.h.p. when G ∼ G(n, 1
2 ),

ch(G) ≤ n
k
+ m = (1 + o(1))

n
2 log2 n

.
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5.5. List Coloring of Random Graphs

We have also observed that w.h.p. in G(n, 1
2 ),

χ(G) ≥ (1 + o(1))
n

2 log2 n
.

Hence w.h.p.
ch(G) = (1 + o(1))χ(G) . �

[KSVW03] proved that in G(n, p) with p ≥ n−
1
3+ε for some ε > 0, then w.h.p.

ch(G) = (1 + o(1))χ(G) .

In fact they conjecture that the bound on p is just an artifact of the proof.

Conjecture 5.22 Consider G ∼ G(n, p) for p = p(n). Then w.h.p.

ch(G) = (1 + o(1))χ(G)

where the o(1) term tends to 0 as np→ ∞.
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graph, Combinatorica 1 (1981), no. 1, 1–12.

[Alo93] N. Alon, Restricted colorings of graphs, Surveys in combinatorics
1993 (1993), 1–33.

[Alo00] , Degrees and choice numbers, Random Structures and Al-
gorithms 16 (2000), no. 4, 364–368.

[AS00] N. Alon and J.H. Spencer, The probabilistic method, Wiley-
Interscience, 2000.

[BC78] E.A. Bender and E.R. Canfield, The asymptotic number of labeled
graphs with given degree sequences, Journal of Combinatorial The-
ory, Series A 24 (1978), no. 3, 296–307.

[Bol80] B. Bollobás, A probabilistic proof of an asymptotic formula for the
number of labelled regular graphs, European J. Combin 1 (1980),
no. 4, 311–316.

[Bol88] , The chromatic number of random graphs, Combinatorica 8
(1988), no. 1, 49–55.

[Bol01] , Random graphs, Cambridge Univ Press, 2001.

[dlV79] W. Fernandez de la Vega, Long paths in random graphs, Studia Sci.
Math. Hungar 14 (1979), 335–340.
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[ERT79] P. Erdős, A.L. Rubin, and H. Taylor, Choosability in graphs, Congr.
Numer 26 (1979), 125–157.
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