Random Graphs 0366-4767 Michael Krivelevich Fall Semester 2010

> Homework 1 Due: Nov. 21, 2010

1. Let $\tilde{G} = (G_i)_{i=0}^{\binom{n}{2}}$ be a random graph process. Prove that **whp** in \tilde{G} the first triangle appears before the graph becomes connected.

2. Let $\epsilon > 0$ be a constant. Prove that **whp** the random graph G(n,m) with $m = (1 + \epsilon)n$ is not planar.

3. Let *H* be a graph with a cycle. Prove that there exists a constant a = a(H) > 0 such that $t(n, H) \ge n^{1+a}$ for all sufficiently large *n*, where t(n, H) is the Turán number of *H*, which is the maximum number of edges in an *H*-free graph on *n* vertices.

4. Prove that **whp** in G(n, 0.5),

$$\omega(G), \alpha(G) = (1 + o(1))2\log_2 n$$

5. Prove that whp in G(n, 0.5), $h(G) = O(n/\sqrt{\log n})$, where h(G) is the Hadwiger number of G.

6. A subdivision of a graph H is obtained by replacing the edges of H by internally disjoint paths of positive lengths. Hajós conjectured (thus strengthening Hadwiger's conjecture) that if G is k-chromatic, then G contains a subdivision of the complete graph K_k . What can you say about Hajos' conjecture when applied to the random graph G(n, 0.5)?