Random Graphs 0366-4767

Michael Krivelevich Fall Semester 2010

Homework 4 Due: Jan. 30, 2011

1. Prove that for any constant c > 0 and integer k, if $G \sim G(n, c/n)$, then **whp** $\chi_g(G) > k$. *Hint.* Expose the edges of G in k + 1 phases, in each phase exposing the edges incident to linearly many vertices. Prove that **whp** after phase i color C_i has linearly many vertices.

2. (a) A graph G is called d-degenerate if every subgraph of G has a vertex of degree at most d. Prove that if G is a d-degenerate graph, then $\chi(G) \leq d+1$.

(b) Prove that for every constant c > 1, if $G \sim G(n, c/n)$, then whp $\chi(G) \leq 20c$.

3. For a graph G = (V, E) denote by G^2 the graph with vertex set V and edge set $F = \{(u, v) : dist_G(u, v) \leq 2\}$. Let $G \sim G(n, n^{-2/3})$. Prove that whp $\chi(G^2) \geq \frac{cn^{2/3}}{\log n}$, where c > 0 is an absolute constant.