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Graph and Hypergraph Coloring, Tel Aviv Univ., Spring 2022 February 21, 2022

Lecture 1

Instructor: Prof. Michael Krivelevich Scribe: Yevgeny Levanzov

1 Introduction and Basic Notions and Definitions

The course will deal with various aspects of graph and hypergraph coloring, presenting the most
important and fundamental results on this subject. We start with some basic definitions.

1.1 Vertex Coloring

Definition 1.1. Let G = (V,E) be a (simple) graph. A function f : V → [k] is called a k-coloring of
G if f(u) ̸= f(v) for every (u, v) ∈ E.

Definition 1.2. A graph G is said to be k-colorable if it has a k-coloring.

Definition 1.3. The chromatic number of a graph G, denoted by χ(G), is the smallest k such that G
is k-colorable.

Remark 1.4. If f : V → [k] is a k-coloring of a graph G, then for every 1 ≤ i ≤ k, the set
Vi = {v ∈ V | f(v) = i} is independent.

An easy consequence of the above remark is that G is k-colorable if and only if there is a partition of
its vertex set V into k independent sets.

Definition 1.5. A graph G is called bipartite if χ(G) ≤ 2.

Theorem 1. A graph G is bipartite if and only if it does not contain an odd cycle.

1.2 Edge Coloring

Definition 1.6. Let G = (V,E) be a graph (or a multigraph). A function f : E → [k] is called a
k-edge-coloring of G if f(e1) ̸= f(e2) for every e1, e2 ∈ E such that e1 ∩ e2 ̸= ∅.
Definition 1.7. A graph G is said to be k-edge-colorable if it has a k-edge-coloring.

Definition 1.8. The chromatic index of a graph G, denoted by χ′(G), is the smallest k such that G is
k-edge-colorable.

Example:

χ′(Kn) =

{
n− 1 , n even

n , n odd
.

Remark 1.9. If f : E → [k] is a k-edge-coloring of a graph G, then for every 1 ≤ i ≤ k, the set
Ei = {e ∈ E | f(e) = i} is a matching.

Going back to the previous example, as the size of the maximum matching in K2n+1 is ν(K2n+1) = n,
we have that χ′(K2n+1) ≥

(
2n+1

2

)
/n = 2n+ 1. (We point out that one can think of an edge-coloring of

Kn as a representation of the pairings of an n-player round-robin tournament (i.e., where every player
plays against all others). Then, for even n, every round (in some paring system) is a matching of size
n/2 and there are n − 1 rounds, while for odd n, we will have an extra round (as in each round one
player is free).)
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2 Coloring Infinite Graphs

Throughout this course we will almost always consider only finite graphs. The main reason/justification
for this is the following theorem of Erdős and De Bruijn.

Theorem 2 (Erdős–De Bruijn ’48). Let k ∈ N and G be an infinite graph. Then, if every finite G0 ⊊ G
is k-colorable then χ(G) ≤ k.

We will see two proofs: for the case where V (G) is countable, and for the general case.

Proof 1. We assume that |V (G)| = ℵ0. We would use the following well-known lemma.

Lemma 2.1 (Kőnig’s Infinity Lemma ’27). Let G be an infinite graph such that V (G) = V0∪̇V1∪̇V2∪̇ . . . ,
where every Vi is finite and non-empty. In addition, for every i ≥ 1 and every v ∈ Vi there exists
u ∈ Vi−1 such that {u, v} ∈ E(G). Then, G contains an infinite ray (v0, v1, v2, . . . ) such that vi ∈ Vi

and {vi, vi+1} ∈ E(G) for all i ≥ 0

Proof. From the assumptions of the lemma we can conclude that for every i ≥ 0 and every v ∈ Vi

there exists a (finite) path (v, ui−1, . . . , u0) such that uj ∈ Vj . Let P be the set of all such paths (i.e.,
for every v ∈ V (G)). As G is infinite, we get that P is infinite. Thus, as V0 is finite, by the infinite
pigeonhole principle, there exists v0 ∈ V0 such that infinitely many paths from P start at v0, and let
us denote them by P0. As P0 is infinite and V1 is finite, there exists v1 ∈ V1 which belongs to infinitely
many paths from P0, and we will denote them by P1. Continuing in this manner, we will get an infinite
ray (v0, v1, v2, . . . ), as required. ■

We can now prove the theorem. As V (G) is countable, we can enumerate its vertices by (v0, v1, v2, . . . ).
We denote Gn = G[{v0, . . . , vn}], and let Cn be the set of all k-colorings of Gn. We now define an
auxiliary graph Γ as follows. We have V (Γ) = V0∪̇V1∪̇V2∪̇ . . . such that Vi = Ci (i.e., every vertex of Vi

corresponds to a k-coloring of Gi). By our assumption that every finite subgraph of G is k-colorable,
we get that Vi is non-empty and it is clearly finite. Note that for i < j and c ∈ Vj , the restriction of c
to Gi is in Vi. Therefore, we will have an edge {c, c′} in Γ for c ∈ Vi and c′ ∈ Vi−1 if c′ is a restriction
of c to Gi−1. Now, as we have mentioned before, every Vi is finite and non-empty, and also it is easy to
see that every v ∈ Vi has a neighbor in Vi−1. Thus, the conditions of Lemma 2.1 are satisfied, and so
we have an infinite ray (c0, c1, . . . ) in Γ. This ray defines a (legal) k-coloring c of G, by c(vn) = cn(vn)
for n ≥ 0, and so G is k-colorable. ■

We now give a general proof for Theorem 2.

Proof 2. Assume for contradiction that G is not k-colorable. Let G be a maximal1 counterexample.
Then:

1. χ(G) > k.

2. For every finite G0 ⊊ G, χ(G0) ≤ k.

3. For every e /∈ E(G) there exists a finite subgraph G(e) ⊊ G such that G(e) + e is not k-colorable
(we note that both vertices of e must be in G(e)).

Claim 2.2. The non-adjacency relation in G is an equivalence relation.

1Here we implicitly use Zorn’s lemma (or, equivalently, the axiom of choice).
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Proof. The reflexivity and the symmetry are obvious (as G is simple and undirected), and so it is left
to prove transitivity. That is, we need to prove that if {u, v}, {v, w} /∈ G then also {u,w} /∈ G. Due to
the maximality of G there exist:

• Finite G1 ⊊ G such that χ(G1 + {u, v}) > k.

• Finite G2 ⊊ G such that χ(G2 + {v, w}) > k.

Let us look on H = G1 ∪G2 ∪ {u, v}. This is a finite graph and let us assume that χ(H) ≤ k. Let c be
a k-coloring of H. We have that c(u) = c(v), as otherwise c will be a legal k-coloring of G1 + {u, v}.
Similarly, we have that c(v) = c(w), as otherwise c will be a legal k-coloring of G2 + {v, w}. Thus,
c(u) = c(w) and so {u,w} /∈ G, and the claim follows. ■

From the claim we get that the non-adjacency relation induces a partition of V (G) into equivalence
classes, every one of which is an independent set. Denote by I the collection of the equivalence classes
(i.e., the quotient set). We denote the vertices of an equivalence class α ∈ I by Vα. As χ(G) > k, clearly
|I| > k. Let us choose k + 1 equivalence classes V1, . . . , Vk+1, and let vi ∈ Vi be their representatives.
We get that all the vertices {v1, . . . , vk+1} are neighbors, and so form a (k + 1)-clique. Thus, we have
that Kk+1 ⊊ G, and as χ(Kk+1) = k + 1 > k, we get a contradiction to assumption (2) on G. ■

From now on we will discuss only finite graphs (unless stated explicitly otherwise).

3 Simple Bounds on the Chromatic Number

1. If G1 ⊂ G2 then χ(G1) ≤ χ(G2).

2. ω(G) ≤ χ(G).
Remark: There is no function f : N → N such that for all G, χ(G) ≤ f(ω(G)).

3. For all G, χ(G) ≥ |V (G)|
α(G) .

Proof: Assume that χ(G) = k. Then there is a partition of V (G) into V1, . . . , Vk such that every
Vi is an independent set. Thus, |Vi| ≤ α(G) for all i. We have that |V (G)| =

∑k
i=1 |Vi| ≤ k ·α(G),

and so k ≥ |V (G)|/α(G).

We also have the following theorem, that connects the chromatic number of a graph and its complement.

Theorem 3 (Nordhaus–Gaddum ’56). For every graph G on n vertices we have

χ(G) + χ(G) ≤ n+ 1.

Moreover, the bound is tight, e.g., for G = Kn.

Proof. The proof will be by induction on n.
Base: n = 1 - trivial.
Step: We assume that the claim is true for graphs on r ≤ n vertices. Let G be a graph on n+1 vertices,
and let v ∈ V (G) be some vertex. We denote G′ = G − {v}. Denote k = χ(G′), ℓ = χ(G′). By the
assumption, k+ ℓ ≤ n+1. We have that χ(G) ≤ χ(G′) + 1 = k+1 and χ(G) ≤ χ(G′) + 1 = ℓ+1. We
now consider two cases. If k+ℓ < n+1 then χ(G)+χ(G) ≤ k+1+ℓ+1 = k+ℓ+2 ≤ n+2, as required.
So it is left to prove the case k+ ℓ = n+1. As |V (G)| = n+1 we have that dG(v) + dG(v) = n. As we
assumed that k + ℓ = n+ 1 we get that dG(v) < k or dG(v) < ℓ. Now, if dG(v) < k then there exists a
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color 1 ≤ i ≤ k such that v has no neighbor colored i (in the k-coloring of G′), and thus we can color
v by color i, which implies that χ(G) = k, and so we get χ(G) + χ(G) ≤ k + ℓ+ 1 = n+ 2. The case
of dG(v) < ℓ is symmetric. ■

Question: What can we say about χ(G) · χ(G′)?
We can see that χ(G) · χ(G′) ≥ n from Theorem 3, and we can also derive it directly. Assume
that χ(G) = k. Then we have α(G) ≥ n/k, and thus ω(G) ≥ n/k and so χ(G) ≥ n/k, and thus
χ(G) · χ(G′) ≥ n.

4 The Gallai–Hasse–Roy–Vitaver Theorem

Theorem 4 (Gallai–Hasse–Roy–Vitaver 1960s). Let G be a graph and D be an orientation of the
edges of G. Then, χ(G) ≤ 1 + ℓ(D) where ℓ(D) is the length of a longest directed path in D (where
the length of a path is its number of edges). Moreover, there exists an orientation D such that
χ(G) = 1 + ℓ(D).

Proof. Let D′ be a maximal (with respect to inclusion) acyclic subgraph (i.e., that has no directed

cycles) of D. Note that V (D′) = V (D) = V (G). If
−−−→
(u, v) ∈ E(D) \ E(D′) it means that it closes

a directed cycle in D′, which implies that there is a directed path from v to u in D′. We define
f : V (G) → [1 + ℓ(D)] as follows: f(v) will have the value of 1 + the length of a longest path in
D′ that ends at v. Let P = (v1, v2, . . . , vt) be a directed path in D′, and let P ′ be some path that
ends at v1. As D′ is acyclic, we have that V (P ) ∩ V (P ′) = {v1}. We have that for all 2 ≤ i ≤ t,
f(v1) < f(vi), as we can append to every path P ′ that ends at v1 the prefix (v2, . . . , vt) of P . We
conclude that the function f is monotonically (strictly) increasing along every path. We will now show
that f is a legal (1 + ℓ(D))-coloring of G. Let (u, v) ∈ E(D). If (u, v) ∈ E(D′) then, as along every
path in D′ the function f is monotonically (strictly) increasing, we have that f(u) ̸= f(v). Otherwise,
if (u, v) /∈ E(D′) then, as we said before, there is a path P from v to u in D′, and thus we again have
f(u) ̸= f(v). Thus, f is a legal (1 + ℓ(D))-coloring, and so χ(G) ≤ 1 + ℓ(D)). It is left to prove that
this is tight. Assume that χ(G) = k, and let (V1, . . . , Vk) be a k-coloring of G. We will orient the edges
of G as follows: for every 1 ≤ i < j ≤ k, if u ∈ Vi, v ∈ Vj and {u, v} ∈ E(G), then we will orient this

edge from v to u (i.e.,
−−−→
(v, u)). Denote this orientation by D′. Now, clearly all paths in D′ have length

at most k − 1, and thus 1 + ℓ(D′) ≤ k = χ(G), which completes the proof. ■

5 Degrees and Coloring

5.1 Coloring and Degeneracy

Definition 5.1. Let G be a graph and let d be a non-negative integer. G is d-degenerate if every
subgraph G0 ⊆ G contains a vertex of degree at most d. Equivalently, G is d-degenerate if and only if
for every V0 ⊆ V (G) we have δ(G[V0]) ≤ d.

We note that it trivially holds that if ∆(G) = d then G is d-degenerate.

Definition 5.2. The degeneracy of a graph G, denoted by degen(G), is the smallest value of d for
which G is d-degenerate.
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Examples:

1. For G = Kn we have degen(G) = n− 1.

2. For G = K4∪̇K3∪̇K2∪̇K1 we have that degen(G) = 3.

3. For G = K1,t (i.e., a star) we have that degen(G) = 1.

As we have mentioned before, degen(G) ≤ ∆(G).

Claim 5.3. A graph G is d-degenerate if and only if there exists an ordering σ = (v1, . . . , vn) of V (G)
such that for every 1 ≤ i ≤ n it holds that vi has at most d neighbors in {v1, . . . , vi−1} (i.e., that appear
before vi in σ).

Proof. (=⇒) : Assume that G is d-degenerate. We will define σ vertex by vertex (inductively), starting
from vn and going backwards. Assume that we have already defined the vertices vi+1, . . . , vn and now
we want to choose vi. Let Vi = V (G) \ {vi+1, . . . , vn}. As G is d-degenerate, G[Vi] contains a vertex
v ∈ Vi of degree at most d (this is also true for Vn = V (G)). We define vi = v. By our construction, vi
will have at most d neighbors among the vertices which precede it in σ (i.e., Vi \ {v}). Continuing in
this manner, we obtain the desired ordering.
(⇐=) : Assume that we have an ordering of the vertices σ = (v1, . . . , vn) as stated in the claim. Let
∅ ̸= V0 ⊆ V (G), and let v ∈ V0 be the last vertex of V0 according to σ. Then, by the definition of σ,
v has at most d neighbors among the vertices which precede it, and thus at most d neighbors in V0.
Therefore, δ(G[V0]) ≤ d, as required. ■

Definition 5.4. If G is a d-degenerate graph and σ is an ordering of V (G) such that every vertex v
has at most d neighbors among the vertices which precede it in σ (exists by Claim 5.3), then σ is called
a d-degenerate ordering (or a degeneracy ordering).

Connection to coloring: Let G be a graph. We color V (G) vertex by vertex.
Question: In which order should we color? Answer: We may try the degeneracy ordering.

5.2 Greedy Coloring

Definition 5.5. Given a graph G and an ordering σ of V (G), the greedy coloring colors G according
to σ as follows: if σ = (v1, . . . , vn), then we color according to σ such that vi gets the least color which
does not appear on its neighbors (we may assume that the colors are represented by positive integers).

Example:

1

2

1

3

4

1

In the example above, we color the graph greedily according to the ordering of the vertices from left
to right. This gives a 4-coloring of the graph, as can be seen in the figure. However, it is easy to check
that the chromatic number of the above graph is 3.
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Remarks:

1. For every graph G there exists an ordering σ of V (G) such that the greedy coloring according to
σ colors G in exactly χ(G) colors. To see this, we assume that χ(G) = k and denote by V1, . . . , Vk

the color classes of a k-coloring of G. Now, if a vertex in Vi for i > 1 has no neighbors in V1 then
we move it to V1; if a vertex in Vi for i > 2 has no neighbors in V2 then we move it to V2, etc.
It is easy to see that after this process we still get a legal coloring, such that every vertex in V2

has a neighbor in V1, every vertex in V3 has neighbors both in V1 and V2, etc. Now we can color
the graph greedily in k colors using the following order: we first color the vertices of V1 (in some
arbitrary order), then we color the vertices of V2 (in some arbitrary order), etc. It is easy to see
that this corresponds to the definition of a greedy coloring.

2. It might be the case that σ was chosen in such a way, that the graph will be colored in much more
colors than χ(G). For example: G = Kn,n−M , where M is a perfect matching. Denoting V (G) =
X∪̇Y with X = {u1, . . . , un} and Y = {v1, . . . , vn}, and taking M = {{ui, vi} | i ∈ [n]}, we have
that {ui, vi} /∈ E(G) for all i. Then we choose the order σ = (u1, v1, u2, v2, . . . , un, vn). It is easy
to see that the result of coloring the vertices greedily according to σ gives col(ui) = col(vi) = i
for all i. Thus, the graph will be colored by n colors using the greedy coloring according to σ,
while its chromatic number is 2.

We will prove next lesson that χ(G) ≤ 1 + ∆(G).
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Graph and Hypergraph Coloring, Tel Aviv Univ., Spring 2022 February 28, 2022

Lecture 2
Instructor: Prof. Michael Krivelevich Scribe: Yevgeny Levanzov

1 Greedy Coloring

We present a more general setup for a greedy coloring. Let G = (V,E) be a graph and V0 ⊆ V . Let
c0 : G[V0] → [k] be a legal coloring of G[V0], and let σ = (v1, . . . , vt) be a permutation of V \ V0. We
shall extend c0 to a legal coloring of G by applying a greedy coloring according to the order given by σ.

We now present several examples of using greedy coloring.

1.1 Interval Graphs

Definition 1.1. Let I = {I1, . . . , In} be a collection of closed intervals in R. We define the interval
graph G = G(I) as follows:

1. The vertex set V consists of the intervals in I.

2. The edge set E is defined as: {Ii, Ij} ∈ E if and only if Ii ∩ Ij ̸= ∅.

Example: Let I = {[1, 4], [2, 5], [3, 6], [4.5, 8]}. Then the graph G(I) is

[1,4]

[2,5]

[3,6]

[4.5,8]

Theorem 1. Let G = G(I) be an interval graph. Then χ(G) = ω(G).

Proof. Let us order the intervals in I in the ascending order according to their left endpoints (if there
are several intervals with the same left endpoint, we will order between them arbitrarily). Denote the
resulting order by σ. Now we will color the vertices of G using the greedy coloring according to σ.
Let us assume that the largest color used by this coloring is k, and let I ∈ I be an interval that got
color k. Denote I = [a, b]. As I got color k in the greedy coloring, there are intervals I1, . . . , Ik−1 in
G that got colors 1, . . . , k − 1, respectively, such that all of them intersect with I (i.e., its neighbors
in G). Hence, by the definition of σ, all the intervals I1, . . . , Ik−1 contain a. Thus, all the intervals
I, I1, . . . , Ik−1 intersect with one another (in a), and so form a k-clique. Therefore, χ(G) ≤ ω(G). The
opposite inequality, χ(G) ≥ ω(G), holds trivially. ■
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1.2 Coloring and Degeneracy

Reminder: A graph G is d-degenerate if for every V0 ⊆ V we have δ(G[V0]) ≤ d. The degeneracy of
G, denoted by degen(G), is the smallest d for which G is d-degenerate.
We proved: G is d-degenerate if and only if there exists an ordering σ = (v1, . . . , vn) of V (G) such
that for every 1 ≤ i ≤ n it holds that vi has at most d neighbors that appear before vi in σ (called a
d-degenerate order).
Obviously, degen(G) ≤ ∆(G).

Theorem 2 (Szekeres-Wilf ’68). For every graph G, it holds that χ(G) ≤ 1 + degen(G).

Proof. Assume that G is d-degenerate, and let σ be a d-degenerate order. We will color G greedily
according to σ. As every v ∈ V (G) has at most d neighbors that precede it in σ, when we get to color
v, there is at least one color from [d+1] that is left for v (i.e., not used by any of its neighbors). Thus,
we will not use more than d+ 1 colors, and so χ(G) ≤ 1 + degen(G). ■

Corollary 3. χ(G) ≤ 1 + ∆(G).

2 Brooks’ Theorem

Question: Is the bound in Corollary 3 tight?
The answer is yes, e.g., Kn, C2n+1.
We note that it is enough to consider only connected graphs, as χ(G) = max{χ(Gi)}, where Gi’s are
the connected components of G.

Remark 2.1. If ∆(G) = 2, then G is a collection of cycles and paths, and thus χ(G) = 3 if G contains
an odd cycle, and otherwise χ(G) = 2.

Theorem 4 (Brooks ’41). Let d ≥ 3 and let G be a connected graph with ∆(G) ≤ d. If Kd+1 ̸⊆ G,
then χ(G) ≤ d.

Proof. (a variant of the proof by Zając ’18) The proof will be by induction on n = |V (G)|.
Base: n ≤ d – G can be colored by ≤ d colors, trivially.
Step: We assume that the claim is true for graphs on < n vertices. Let G be a graph on n vertices. If
there exists v ∈ V (G) such that dG(v) < d, then let us look on G′ = G−{v}. By induction, we can color
every connected component of G′ by at most d colors. We will now color v. As v has dG(v) < d colored
neighbors, at least one of the d colors is left for v, and so we can color v with this color, extending the
coloring of G′ to a legal d-coloring of G. Thus, we can assume that G is d-regular. We first handle the
following special case: G contains a cycle C that is not Hamiltonian and such that there is a vertex
v ∈ V (C) which has no neighbors outside of C. As G is connected, we can find two consecutive vertices
u, v along C such that v has no neighbors outside of C while u has a neighbor w /∈ V (C). By induction,
we can color G[V \ V (C)] with d colors. Denote by c0 such a coloring, and assume, without loss of
generality, that c0(w) = 1. We will now “walk” along C from v to u (i.e., not using the edge between
them), and denote the order of the vertices along this walk by σ. In particular, σ = (v1, . . . , vk) where
|V (C)| = k, v1 = v, vk = u. We will now extend the coloring c0 to a proper coloring of G, by coloring
greedily the vertices of V (C) according to σ. Due to the fact that v = v1 has no neighbors outside of
C, v will get color 1. Now, every vertex vi ̸= v1, vk has a neighbor that appears after it in σ (and thus
at most d− 1 of its neighbors were already colored when we get to color vi), and so we can color vi by
one of the d colors (which was not used on its neighbors). When we get to color vk = u, we observe
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that vk has two neighbors, v, w, that both got color 1. Therefore, we can find a non-used color out of
the d colors in which we can color u.

We now turn to prove the general case. As G is connected, d-regular (d ≥ 3) and G ̸= Kd+1, we
have that the adjacency relationship in G is not transitive. Therefore, there exist v1, v2, v3 ∈ V (G) such
that (v1, v2), (v2, v3) ∈ E(G) but (v1, v3) /∈ E(G). Let P = (v1, v2, v3, . . . , vk) be a maximal path (i.e.,
not contained in a longer path) that starts with v1, v2, v3. From the maximality of P we have that all
neighbors of vk belong to P . We consider two cases:
Case 1: k < n: Let vi be the farthest vertex from vk along P which is a neighbor of vk. Then the cycle
C = (vi, vi+1, . . . , vk, vi) is a non-Hamiltonian cycle in G that contains all the neighbors of vk. Thus,
by the previous (special) case we have addressed, G is d-colorable.
Case 2: k = n: P = (v1, v2, v3, . . . , vn) is a Hamiltonian path. Let vj ̸= v1, v3 be a neighbor of v2 in P
(here we use the assumption that d ≥ 3). We will now color G greedily according to the following order
σ on V (P ) = V (G): σ = (v1, v3, v4, . . . , vj−1, vn, vn−1, . . . , vj , v2). We observe that every vertex x ̸= v2
has a neighbor that appears after it in σ, and so we will be able to color x with one of the d colors.
Moreover, v1, v3 will get the same color 1 (as they are not neighbors). Now, when we get to color v2, we
observe that in spite of the fact that all of its d neighbors were already colored, two of them, namely v1
and v3, got the same color (color 1), and so there is a color that is left for v2 out of the d colors. Thus,
we can color v2, and therefore complete a proper d-coloring of G, implying that χ(G) ≤ d. ■

3 Equitable Coloring

We saw that χ(G) ≤ 1 + ∆(G) for every graph G.
Question: Can we guarantee the existence of “special” colorings in ∆+ 1 colors?

Definition 3.1. Given a graph G, a k-coloring of G with color classes V1, . . . , Vk (where the vertices
in Vi are colored by color i) is called equitable if

∣∣|Vi| − |Vj |
∣∣ ≤ 1 for all 1 ≤ i ̸= j ≤ k.

Question (Erdős ’64): Does every graph G with ∆(G) ≤ r have an equitable (r + 1)-coloring?

Theorem 5 (Hajnal-Szemerédi ’70). For every graph G with ∆(G) ≤ r, there exists an equitable
(r + 1)-coloring.

Definition 3.2. Let k ≥ 2 be an integer. We say that a graph G on n vertices (where k|n) contains a
k-factor if it contains n/k vertex-disjoint copies of Kk.

Corollary 6 (from Theorem 5). Let n, k ≥ 2 be integers such that k|n. If G is a graph on n vertices
with δ(G) ≥ k−1

k n, then G contains a k-factor.

Proof. Let us look on the complement graph G of G. We have that ∆(G) ≤ n− 1− k−1
k n = n/k − 1.

By Theorem 5, G has an equitable n
k -coloring. Now, as n/k divides n, all color classes have equal size

of k, and each of them is an independent set in G and thus a clique in G. Therefore, G contains n/k
vertex-disjoint copies of Kk, and so contains a k-factor. ■

Remark 3.3. Can we have Brooks’ theorem analogue for equitable colorings (i.e., equitable ∆-colorings)?
The answer is no, as can be seen in the following example. Let G = Kr,r where r is odd. Clearly,
∆(G) = r. Now, we claim that G does not have an equitable r-coloring. Indeed, as r divides 2r, we
know that every color class must be of size 2. As every color class is an independent set, both vertices
of every color class must belong to one side of the graph. As r is odd, the vertices of each side cannot
be partitioned into pairs, and thus G does not have an equitable r-coloring.
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Proof of Theorem 5. (Kierstead-Kostochka ’08) The proof will be by induction on |E(G)|.
Base: |E(G)| = 0 – the claim is trivial.
Step: We first observe that we can assume that r + 1 divides n = |V (G)|. Indeed, if n = (r + 1)s − p
where 1 ≤ p ≤ r, we will add to G a clique Kp on a new set of vertices (i.e., disjoint from V (G)) and
denote the resulting graph by G′. Observe that ∆(G′) ≤ r. Now, if f is an equitable (r+1)-coloring of
G′, then f colors all the vertices of the clique Kp in different colors, and thus the restriction of f to V (G)
(i.e., f |V (G)) is an equitable (r + 1)-coloring of G. So, from now on we assume that n = (r + 1)s. We
now continue with the inductive step. Let e = (x, y) ∈ E(G) and denote G′ = G− {e}. By induction,
G′ has an equitable (r + 1)-coloring f0 = (V1, . . . , Vr+1). By our assumption, |Vi| = s for every i. We
now put back the edge e. If e ̸⊆ Vi for every 1 ≤ i ≤ r+ 1, then f0 is also an equitable (r+ 1)-coloring
of G. Otherwise, there exists a color class Vi such that e ⊆ Vi. As dG(x) ≤ r and x has a neighbor in Vi,
we conclude that there exists a color class Vj , 1 ≤ i ̸= j ≤ r+1, such that dVj (x) = 0. We move vertex
x to Vj , and get a proper (r+ 1)-coloring which is nearly-equitable: every color class, except of two,
has size exactly s, one class V + has size s + 1 (the large class), and one class V − has size s − 1 (the
small class). Our goal will be to start with a nearly-equitable coloring, and, making simple changes, to
obtain an equitable (r + 1)-coloring. We first introduce some notation. For X ⊆ V (G) and y ∈ V (G),
we denote NX(y) = N(y)∩X and dX(y) = |NX(y)|. If µ is a function on E(G), then for A,B ⊆ V (G),
A∩B = ∅, we denote µ(A,B) =

∑
e∈E(A,B) µ(e), where E(A,B) is the set of edges of G joining A and

B. In addition, if f is a function on V (G) and W ⊆ V (G), then we denote by f |W the restriction of f
to W .

Given a nearly-equitable coloring f = (V1, . . . , Vr+1) of G, we define an auxiliary directed graph
H = H(G, f), as follows: V (H) = {V1, . . . , Vr+1} (i.e., the color classes of f), and

−−−−→
(Vi, Vj) ∈ E(H) if

there exists a vertex v ∈ Vi with dVj (v) = 0 (then moving v to Vj , produces a new proper coloring).
In such a case, we say that v is movable from Vi to Vj . We denote by V − the small color class of f
(|V −| = s − 1), and by V + the large color class of f (|V +| = s + 1). We call a color class W ∈ V (H)
accessible (in H) if there exists a directed path in H from W to V −. Clearly, V − itself is accessible.

Lemma 3.4. If V + is accessible in H, then G has an equitable (r + 1)-coloring.

Proof. By definition, there exists in H a directed path P = (V1, . . . , Vk) where V1 = V + and Vk = V −.
This means that for every 1 ≤ i ≤ k− 1 there exists vi ∈ Vi without a neighbor in Vi+1 (i.e., a movable
vertex). We now move vi to Vi+1 for 1 ≤ i ≤ k−1, and obtain a proper (r+1)-coloring where V1 = V +

lost a vertex, Vk = V − gained a vertex, and rest of the classes maintained their sizes. Therefore, we
have obtained an equitable (r + 1)-coloring. ■

We now introduce some more notation.

A = A(f)− all the accessible color classes in H,

A =
⋃

A− all the vertices in the accessible classes,

B = V (G) \A,
|A| = m+ 1 (i.e., m color classes apart from V −),

q = (r + 1)− (m+ 1) = r −m (B is composed of q color classes).

Let y ∈ B. Since y cannot be moved to any class in A (as otherwise, there would be a path in H
between the color class of y and V −), we conclude that y has at least one neighbor in every W ∈ A.
This implies that

dA(y) ≥ m+ 1 =⇒ dB(y) ≤ r − (m+ 1) = q − 1. (1)
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We can assume that V + ⊆ B, as otherwise we are done (i.e., have an equitable (r + 1)-coloring) by
Lemma 3.4. We observed that V − ∈ A, which implies that m ≥ 0. If m = 0 then A = {V −}, and
thus |E(A,B)| ≤ r|V −| = r(s − 1). On the other hand, by (1), dA(y) ≥ 1 for every y ∈ B, and so
|E(A,B)| ≥ |B| = (r + 1)s − (s − 1) = rs + 1. We got that rs + 1 ≤ |E(A,B)| ≤ r(s − 1), which is a
contradiction. Therefore, we can assume that m > 0, and so |A| ≥ 2 (i.e., A contains additional classes,
apart from V −).

Definition 3.5. A color class V ∈ A is called terminal if every class W ∈ A \ {V } remains accessible
(i.e., V − is reachable from W ) after removing V (i.e., in H − {V }), and otherwise V is non-terminal.

A trivial observation is that V − is non-terminal. If W ∈ A is a non-terminal class, then it partitions
A− {W} into two parts: SW – classes in A− {W} that are still accessible (to V −) after the removal
of W , and TW – rest of the classes in A − {W} (i.e., that are no longer accessible to V −). Note that
TW ̸= ∅. Let us now choose a non-terminal class U ∈ A such that the set A′ := TU ̸= ∅ is minimal. By
the minimality of U we get that every class in A′ = TU is terminal (as if there was a non-terminal class
W ∈ A′, then we would have TW ⊆ TU − {W}, as clearly every class in SU ∪ {U} has a path to V −

not using W ). Let us denote |A′| = t and A′ =
⋃
A′. Then every x ∈ A′ has a neighbor in every class

W ∈ A \ (A′ ∪ {U}) (i.e., x is not movable to any class in A \ (A′ ∪ {U}) = SU ), as otherwise there
would be an edge (in H) from the class of x to W (and so a path to V −). We thus have:

dA(x) ≥ m− t. (2)
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Graph and Hypergraph Coloring, Tel Aviv Univ., Spring 2022 March 7, 2022

Lecture 3
Instructor: Prof. Michael Krivelevich Scribe: Yevgeny Levanzov

1 Equitable Coloring

Reminder: In the last lesson we have started to prove the following theorem on the existence of
equitable (∆ + 1)-colorings.

Theorem 1 (Hajnal-Szemerédi ’70). For every graph G with ∆(G) ≤ r, there exists an equitable
(r + 1)-coloring.

We now continue with the proof of the theorem.

Proof of Theorem 1 (cont.). (Kierstead-Kostochka ’08) Using the notation we have introduced last
time, we recall that by choosing a non-terminal class U ∈ A such that the set A′ := TU ̸= ∅ is minimal,
we get that every class in A′ = TU is terminal. In addition, denoting |A′| = t and A′ =

⋃
A′, we showed

that every x ∈ A′ has a neighbor in every class W ∈ A \ (A′ ∪ {U}), and thus:

dA(x) ≥ m− t. (2)

We call an edge (z, y) ∈ E(G) such that z ∈ W, W ∈ A′, and y ∈ B, a solo edge if NW (y) = {z}. In
this case, z, y are called solo vertices, and also special neighbors of each other. For such z ∈ W ∈ A′,
y ∈ B, let Sz be the set of all special neighbors of z in B, and let Sy be the set of all special neighbors
of y in A′. Now, let y ∈ B. We know that y has a neighbor in every class from A. Denote by m0 the
number of color classes in A having at least 2 neighbors of y. Then we have:

r − dB(y) ≥ dA(y) ≥ m0 · 2 + (m+ 1−m0) · 1 =⇒ m0 ≤ r − (m+ 1 + dB(y)).

Hence there are at least t−m0 color classes in A′ getting exactly one edge from y, implying that

|Sy| ≥ t−m0 ≥ t− r +m+ 1 + dB(y) = t− q + 1 + dB(y). (3)

Lemma 1.1. Assume there exists a color class W ∈ A′ such that no solo vertex in W is movable to a
color class in A \ {W}. Then q + 1 ≤ t, and every vertex y ∈ B is a solo vertex.

Proof. Let S be the set of solo vertices in W , and denote D =W \ S. Recalling that every y ∈ B has
a neighbor in W , we conclude that every vertex in NB(S) has at least one neighbor in W , and every
vertex in B \NB(S) has at least two neighbors in W . It follows that

|E(W,B)| ≥ |NB(S)|+ 2(|B| − |NB(S)|) = 2|B| − |NB(S)|.

Since no vertex in z ∈ S is movable to other color class in A \ {W} (by lemma’s assumption), we have
that dA(z) ≥ m =⇒ dB(z) ≤ r − m = q. Also, by (2), every vertex x ∈ W satisfies dB(x) ≤ t + q.
Hence, |E(W,B)| ≥ 2|B| − q|S| but also |E(W,B)| ≤ q|S|+ (t+ q)|D| = q|W |+ t|D| = qs+ t|D|. This
implies that 2|B| − q|S| ≤ |E(W,B)| ≤ qs+ t|D|. We then have

|E(W,B)| ≥ 2|B| − q|S|
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= 2(qs+ 1)− q|S|
= 2(qs+ 1)− q(|W | − |D|)
= 2(qs+ 1)− q(s− |D|)
= qs+ q|D|+ 2.

Recalling that we also have |E(W,B)| ≤ qs+ t|D|, we derive that qs+ t|D| ≤ qs+ q|D|+ 2, and thus
t ≥ q + 1. Moreover, by (3), for every y ∈ B we have |Sy| ≥ t− q + 1 + dB(y) > 1, and it follows that
y is a solo vertex. ■

Lemma 1.2. There exists a solo vertex z ∈ W ∈ A′ such that either z is movable to a color class in
A \ {W} or z has two non-adjacent special neighbors in B.

Proof. Suppose not. Then, by Lemma 1.1, every vertex in B is solo. Moreover, by the lemma’s
assumption, for every solo vertex z ∈ A′, its special neighbors in B form a clique. Define the following
weight function µ on E(A′, B): for (x, y) ∈ E(A′, B) (x ∈ A′, y ∈ B),

µ(x, y) =

{
q

|Sx| , (x, y) is a solo edge

0 , otherwise
.

For z ∈ A′, we have µ(z,B) = |Sz| · q
|Sz | = q if z is a solo vertex and µ(z,B) = 0 otherwise. Hence,

µ(A′, B) ≤ q|A′| = q · s · t. On the other hand, consider y ∈ B. Let cy = max{|Sz| | z ∈ Sy}, say,
cy = |Sz| for z ∈ Sy. We assume that Sz is a clique, implying dB(y) ≥ cy−1. Also, by (1), dB(y) ≤ q−1,
and so cy ≤ q. Then we have

µ(A′, y) =
∑
z∈Sy

q

|Sz|
≥ |Sy| · q

cy
≥
(3)

(t− q + cy)
q

cy
= (t− q)

q

cy
+ q ≥ (t− q)

cy
cy

+ q = t.

Hence, µ(A′, B) ≥ t|B| = t(qs+ 1) > t · q · s, and so we obtain a contradiction. ■

We are finally ready to prove Theorem 1. The proof will proceed by a double induction, on |E(G)|
and then on q. We define as before:

• A nearly-equitable (r+1)-coloring f , large color class V +, small color class V −, auxiliary digraph
H = H(G, f).

• The families A, A′, etc.

Now, if V + ∈ A, then we are done be Lemma 2.4 (from the previous lecture). This takes care of the
base case q = 0. Otherwise, we apply Lemma 1.2. We set a color class W ∈ A′, a solo vertex z ∈ W ,
and a vertex y1 ∈ Sz such that:

1. z is movable to a color class in A \ {W}.

2. z is not movable but has another neighbor y2 ∈ Sz such that (y1, y2) /∈ E(G).

Define B− = B \ {y1}. Since there are some edges between A and B (by (1)), we can apply induction
to the induced subgraph G[B−]. Notice that |B−| = |B|−1 = qs and ∆(G[B−]) ≤ q−1. By induction,
the graph G[B−] has an equitable coloring g in q colors. Let us also define A+ = A ∪ {y1}. We now
consider two cases.
Case 1: z is movable to X ∈ A \ {W}. Then move z to X, move y1 to W \ {z} (we can do it as y1 is
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a special neighbor of z). We get a nearly-equitable (m+ 1)-coloring φ of G[A+]. Since W ∈ A′(f), W
is terminal in H(G, f), and thus V +(φ) = X ∪ {z} is accessible to V −. Then, by Lemma 2.4 (from the
previous lecture), G[A+] has an equitable (m+1)-coloring φ′. Combining φ′ and g, we get an equitable
(r + 1)-coloring of G.
Case 2: z is not movable to any color class in A. Then z has at least m neighbors in A. Also, as
(z, y1) ∈ E(G) we have that dA+(z) ≥ m+ 1. This in turn implies that dB−(z) ≤ r − (m+ 1) = q − 1.
Hence, there is a color class Y in g such that dY (z) = 0. We move z to Y and y1 to W , and obtain
a nearly-equitable coloring ψ′ of G. Also, observe that y2 is movable to the color class containing y1
in a coloring of A+ (as z was moved from it and (y1, y2) /∈ E(G)). This means that the color class of
y2 becomes accessible to V −. Hence, the parameter q of the new coloring is strictly smaller then the
original q. Hence, the (secondary) induction (on q) applies, and the proof is complete. ■

2 Color-Critical Graphs

Definition 2.1. A graph G is called k-critical if:

1. χ(G) = k.

2. χ(G′) < k for every proper subgraph G′ ⊊ G.

Examples:

1. Kn – n-critical.

2. C2n+1 – 3-critical.

3. The following graph is 4-critical (verify it!):

Question: Why are critical graphs important?

Observation 2.2. If χ(G) ≥ k then G contains a k-critical graph.

2.1 Characterization of k-Critical Graphs

1. k = 1: G = K1.

2. k = 2: G = K2.

3. k = 3: G = C2n+1.

4. k = 4: No simple characterization is known.
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2.2 Basic Properties of Color-Critical Graphs

Proposition 2.3. Let G be a k-critical graph. Then:

1. ∀v ∈ V (G), χ(G−{v}) = k−1. Moreover, in every (k−1)-coloring c of G−{v}, the neighborhood
NG(v) carries all k − 1 colors.

2. ∀e = (u, v) ∈ E(G), χ(G − {e}) = k − 1. Moreover, in every (k − 1)-coloring c of G − {e}, we
have c(u) = c(v).

Proof. Item 1: The first part is trivial. Now, if there is a (k − 1)-coloring c of G − {v} which misses
some color i ∈ [k − 1] on NG(v), we can complete c to a (k − 1)-coloring of G by assigning c(v) = i,
which is a contradiction.
Item 2: The first part is trivial. Now, if there is a (k − 1)-coloring c of G− {e} such that c(u) ̸= c(v),
then c is actually a (k − 1)-coloring of G, which is a contradiction. ■

Corollary 2. Let G be a k-critical graph on n vertices. Then, δ(G) ≥ k − 1, and so |E(G)| ≥ k−1
2 · n.

Remark 2.4. By Brooks’ theorem, if G ̸= Kk, C2n+1 and G is k-critical, then G has a vertex of degree
> k − 1, which implies that |E(G)| > k−1

2 · n.

2.3 Connectivity Properties of Color-Critical Graphs

Proposition 2.5. Let G be a k-critical graph, k ≥ 3. Then G is 2-vertex-connected.

Proof. If κ(G) = 0, then G has more than one connected component. By criticality, each connected
component of G is (k− 1)-colorable. But then χ(G) = max{χ(Gi) |Gi is a conn. comp. of G} ≤ k− 1,
which is a contradiction.

Assume now that κ(G) = 1. Then there is a cut vertex v in G, and we can write: V = V1 ∪ V2,
|V1|, |V2| > 1, V1 ∩ V2 = {v}, and G has no edges between V1 \ {v} and V2 \ {v}. Since G is k-critical,
both subgraphs G[V1] and G[V2] are (k − 1)-colorable. Let c1 be a (k − 1)-coloring of G[V1] and let c2
be a (k− 1)-coloring of G[V2]. By permuting colors if necessary, we can assume that c1(v) = c2(v). But
then, combining c1 and c2 in an obvious way gives a (k− 1)-coloring of G, which is a contradiction. ■

Remark 2.6. We have proved that κ(G) ≥ 2 for every k-critical graph, k ≥ 3. The estimate κ(G) ≥ 2
is tight, as we will see later.

Theorem 3 (Dirac ’53). Let G be a k-critical graph. Then G is (k − 1)-edge-connected.

Proof. Assume, towards a contradiction, that there is a k-critical graph G with κ′(G) ≤ k − 2. Then
there is a subset S ⊆ V (G), S ̸= ∅, V (G) such that |[S, S]| ≤ k−2. Since G is k-critical, both subgraphs
G[S], G[S] are (k− 1)-colorable. Let (U1, . . . , Uk−1) be the color classes of a (k− 1)-coloring c1 of G[S],
and let (W1, . . . ,Wk−1) be the color classes of a (k−1)-coloring c2 of G[S]. Define an auxiliary bipartite
graph Γ with parts A and B, where: A = [k − 1] (color classes in c1), B = [k − 1] (color classes in c2).
The edges of Γ are defined as follows: (i, j) ∈ E(Γ) if and only if G has no edge between Ui and Wj .
If G contains a perfect matching f = {(i, f(i)) | i ∈ [k − 1]}, then we have a (k − 1)-coloring of G with
color classes as follows: U1 ∪Wf(1), U2 ∪Wf(2), . . . , Uk−1 ∪Wf(k−1), contradicting the assumption on
G. Now, if (i, j) /∈ E(Γ) then Ui and Wj are connected by and edge of G. Since |[S, S]| ≤ k − 2 the
graph Γ misses at most k − 2 edges. So Γ is obtained from the complete bipartite graph Kk−1,k−1 by
omitting ≤ k − 2 edges.
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Claim 2.7. Let Γ be obtained from Km,m by omitting ≤ m− 1 edges. Then Γ has a perfect matching.

Proof. Left as an exercise (use Hall/Kőnig). ■

Remark 2.8. The above claim is tight. That is, m− 1 cannot be replaced by m.

Hence Γ has a perfect matching. As we explained before, this implies that χ(G) ≤ k − 1, which is a
contradiction. ■

Remark 2.9. The statement of the theorem is tight for every k-critical graph G with δ(G) = k− 1 (in
this case, κ′(G) ≤ k − 1).

2.4 Hajós Construction

Definition 2.10. Let G1, G2 be graphs with V1 ∩ V2 = ∅. Let e1 = (u1, v1) ∈ E(G1), e2 = (u2, v2) ∈
E(G2). The Hajós sum of G1 and G2 is defined as:

1. Delete edges e1, e2.

2. Identify vertices u1, u2 to a new vertex u12.

3. Add an edge (v1, v2).

Remark 2.11. By deleting u12 and either v1 or v2, we disconnect the Hajós sum of G1 and G2, implying
that the vertex-connectivity of a Hajós sum is at most 2.

Example:

G1 G2
u1

v1 v2

u2

The Hajós sum of G1 and G2 is:

u12

v1 v2

Theorem 4 (Dirac ’53). For every k ≥ 2, the Hajós sum of two k-critical graphs is k-critical.
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Graph and Hypergraph Coloring, Tel Aviv Univ., Spring 2022 March 14, 2022

Lecture 4
Instructor: Prof. Michael Krivelevich Scribe: Yevgeny Levanzov

1 Color-Critical Graphs

Definition 1.1. Given vertex-disjoint graphs G1, G2, the join G1∪G2 is obtained from G1, G2 by adding
all edges between V (G1) and V (G2).

Proposition 1.2. Let G1, G2 be k1, k2-critical graphs, respectively. Then the join G1 ∪G2 is (k1+ k2)-
critical.

Proof. Left as an exercise. ■

1.1 Hajós Construction

Let us recall the definition of the Hajós sum from the previous lecture.

Definition 1.3. Let G1, G2 be graphs with V1 ∩ V2 = ∅. Let e1 = (u1, v1) ∈ E(G1), e2 = (u2, v2) ∈
E(G2). The Hajós sum of G1 and G2 is defined as:

1. Delete edges e1, e2.

2. Identify vertices u1, u2 to a new vertex u12.

3. Add an edge (v1, v2).

Theorem 1 (Dirac ’53). Let G1, G2 be k-critical graphs (k ≥ 2). Let e1 = (u1, v1) ∈ E(G1), e2 =
(u2, v2) ∈ E(G2). Then the Hajós sum G of G1 and G2 is k-critical.

Proof.

1. We claim that χ(G) ≥ k. Suppose not, and let c : V (G) → [k − 1] be a (k − 1)-coloring of G.
Then c restricted to V1 gives a (k − 1)-coloring of G1 \ {e1}. Similarly, c restricted to V2 gives a
(k−1)-coloring of G2\{e2}. But then, due to the criticality of G1, we have c(u1) = c(v1) = c(u12),
and due to the criticality of G2, we have c(u2) = c(v2) = c(u12). We derive that c(v1) = c(v2),
which is a contradiction since (v1, v2) ∈ E(G). We conclude that χ(G) ≥ k. Furthermore, it is
easy to observe that G is k-colorable.

2. We will show that for every e ∈ E(G), χ(G \ {e}) ≤ k − 11 (in fact, χ(G \ {e}) = k − 1). If
e = (v1, v2), we can argue as before. Now, if e ∈ E(G1), then, as G1 is k-critical, there exists a
(k − 1)-coloring c1 of G − {e}. Since e1 ∈ G1 − {e}, we have c1(u1) ̸= c1(v1). Also, since G2 is
k-critical, there exists a (k − 1)-coloring of G2 − {e2}. We can assume that c2(u2) = c1(u1) (by
permuting colors if necessary). We also have c2(u2) = c2(v2). We can now “glue” c1 and c2 into

1This is enough for proving criticality, as both G1 and G2, being k-critical graphs, do not have isolated vertices, and
thus G does not have them either. Therefore, removal of any vertex from G eliminates at least one edge.
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one coloring c in an obvious way (this is possible, as c1(u1) = c2(u2)). Since c1(u1) ̸= c1(v1), but
c1(u1) = c2(u2) = c2(v2), we have c(v1) ̸= c(v2). Hence the edge (v1, v2) is also properly colored
by c.
The case of e ∈ E(G2) is treated similarly.

■

1.2 Universality of Hajós Construction

Definition 1.4. A graph G is k-constructible if one of the following holds:

1. G = Kk.

2. G is the Hajós sum of two k-constructible graphs.

3. If G0 is k-constructible and (u, v) /∈ E(G0) for some u ̸= v ∈ V (G0), then G is obtained from G0

by merging u and v.

Theorem 2 (Hajós ’61). χ(G) ≥ k if and only if G contains a k-constructible subgraph.

Proof. (⇐=) : Assume that G has a k-constructible subgraph G0 ⊆ G. We need to prove: χ(G) ≥ k.
As χ(Kk) = k, we shall prove that operations 2 and 3 preserve χ(G) ≥ k. Let us start with operation 2
(Hajós sum). Let G1, G2 be two k-constructible graphs, and let e1 = (u1, v1) ∈ E(G1), e2 = (u2, v2) ∈
E(G2). Now, let G be the Hajós sum of G1 and G2 (with respect to the edges e1, e2). We assume that
χ(G1) ≥ k and χ(G2) ≥ k, and we need to prove that χ(G) ≥ k. Suppose not, and let c : V (G) → [k−1]
be a (k − 1)-coloring of G. Then c(v1) ̸= c(v2). But then c restricted to V (G1) is a (k − 1)-coloring
of G1 \ {e1}. We then have that c(u1) = c(v1) (as otherwise G1 would be (k − 1)-colorable). Also, c
restricted to V (G2) is a (k−1)-coloring of G2 \{e2}. But then c(u2) = c(v2) (as otherwise G2 would be
(k−1)-colorable). It then follows that c(v1) = c(v2) (as c(u1) = c(u2) = c(u12)), which is contradiction.

We now deal with operation 3. If χ(G) ≤ k − 1, then let c : V (G) → [k − 1] be a (k − 1)-coloring of
G. We can produce a (k − 1)-coloring c0 of G0 as follows:

c0(w) =

{
c(w) , w ̸= u, v

c(uv), w = u or w = v
.

It is easy to see that c0 is a proper (k−1)-coloring of G0, implying χ(G0) ≤ k−1, which is a contradiction.
(=⇒) : Assume that χ(G) ≥ k. We need to prove: there exists a k-constructible subgraph G0 ⊆ G.
Assume not and let G be a maximal2 counterexample. Then:

1. χ(G) ≥ k.

2. G has no k-constructible subgraph.

3. For every e /∈ E(G), the graph G+ {e} contains a k-constructible subgraph Ge.

Claim 1.5. The non-adjacency relation in G is an equivalence relation.
2Here we do not need to apply Zorn’s lemma as the number of vertices of G is finite.
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Proof. The reflexivity and the symmetry are obvious, and so it is left to prove transitivity. That is, we
need to prove that if e1 = (u, v), e2 = (v, w) /∈ G then also (u,w) /∈ G. Assume it is not the case. Then,
due to maximality, G+e1 has a k-constructible subgraph Ge1 , and similarly G+e2 has a k-constructible
subgraph Ge2 . Take vertex-disjoint copies of Ge1 and Ge2 and apply the Hajós sum of Ge1 , Ge2 with
respect to e1 = (v, u), e2 = (v, w). We get a graph G0 containing the edge (u,w). Now, for every
vertex x ̸= v appearing in both Ge1 , Ge2 , we merge the two appearances of x in G0 (i.e., operation 3).
The obtained graph G∗ is a subgraph of G (as we assumed that (u,w) ∈ E(G)). We have that G∗ is
k-constructible (obtained from two k-constructible graphs Ge1 , Ge2 by applying operation 2 once and
operation 3 several (≥ 0) times). Since G∗ ⊆ G, we have a contradiction. ■

Claim 1.6. If the non-adjacency relation in a graph G is an equivalence relation, then G is a complete
r-partite graph for some r ≥ 0.

Proof. Left as an exercise. ■

By Claims 1.5 and 1.6 we have that G is a complete r-partite graph, satisfying χ(G) ≥ k. It follows that
r ≥ k. But then Kk ⊆ G, implying that G has a k-constructible subgraph, which is a contradiction. ■

1.3 Sparse Color-Critical Graphs

Proposition 1.7. For every k ≥ 4, there exists a k-critical graph on n vertices if and only if n = k or
n ≥ k + 2.

Proof. We first prove it for k = 4. The join C2n+1 ∪K1 is a 4-critical graph on 2n+ 2 vertices. This
implies that 4-critical graphs exist for n = 4, 6, 83. Now, if G is a 4-critical graph on n vertices, then
the Hajós sum of G and K4 is a 4-critical graph on n + 3 vertices. Thus the admissible values for the
number of vertices in a 4-critical graph are

{4, 6, 8}+ {3r | r ≥ 0}.

Therefore, for every n = 4 or n ≥ 6 there exists a 4-critical graph on n vertices. Since the join of
a k-critical graph G on n vertices and K1 is a (k + 1)-critical graph on n + 1 vertices, we get that a
k-critical graph on n vertices exists if n = k or n ≥ k + 2.

Now we prove that there is no k-critical graph on k + 1 vertices. Assume to the contrary that G is
a k-critical graph on k + 1 vertices. Since G ̸= Kk+1 there are u ̸= v ∈ V (G) such that (u, v) /∈ E(G).
Now, since G is k-critical, we have that δ(G) ≥ k − 1. But then N(u) = N(v) = V (G) \ {u, v}. By
criticality, G − {u} has a (k − 1)-coloring c : (V (G) − {u}) → [k − 1]. Since N(u) = N(v), we can
extend c to u by assigning c(u) = c(v). This implies that χ(G) ≤ k − 1, which is a contradiction. ■

For every k ≥ 4, and n = k or n ≥ k + 2 let us define

fk(n) = min{|E(G)| : G is k-critical, |V (G)| = n}.

We have that fk(k) =
(
k
2

)
. Also, since δ(G) ≥ k− 1 it follows that fk(n) ≥ k−1

2 n. By Brooks’ theorem,
fk(n) >

k−1
2 n for n ≥ k + 2. Observe that due to Hajós construction, fk(n+ k − 1) ≤ fk(n) +

(
k
2

)
− 1.

Then, using (roughly) Fekete’s (subadditivity) lemma, it follows that fk = limn→∞
fk(n)
n exists.

Conjecture 1.8 (Ore ’67). We have an equality fk(n) = fk(n− k + 1) +
(
k
2

)
− 1.

3In fact, for every even n ≥ 4, but this will be enough for our purposes.
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This would imply

fk =
1

2

(
k − 2

k − 1

)
. (1)

Kostochka and Yancey (2014) proved (1) for every k ≥ 4. In fact, they have proved Ore’s conjecture
for k = 4.

1.4 Dense Color-Critical Graphs

Question (Erdős ’49): For fixed k ≥ 4, does there exist a k-critical graph on n vertices with Θ(n2)
edges?

Theorem 3 (Dirac ’52 for k ≥ 6, Toft ’70 for k = 4, 5). For every fixed k ≥ 4, there exists a constant
c > 0 such that for all sufficiently large n, there exists a k-critical graph G on n vertices with at least
cn2 edges.

Proof. It is easy to see (using Hajós sums, joins, etc.) that it is enough to prove the statement for
k = 4 and a dense sequence of values of n. We present a construction, as follows. Assume that n is
odd. Define a graph G on 4n vertices as follows. Take two disjoint sets of vertices A,B, each of size n,
and put a complete bipartite graph between them. Then add a (disjoint) cycle CA on n vertices and
put a perfect matching between A and CA. Similarly, add a (disjoint) cycle CB on n vertices and put
a perfect matching between B and CB. We observe that:

1. |V (G)| = 4n, |E(G)| > n2.

2. χ(G) ≥ 4. Indeed, if c : V (G) → [3], then one of the parts A,B, say A, contains one color only in
c. Say this color is 3. But then color 3 is forbidden on every vertex of CA, and thus CA is colored
in two colors 1, 2, which is a contradiction.

3. χ(G − {e}) ≤ 3 for every e ∈ E(G). We will not prove it formally, but rather present several
cases. If e = (x, y) is between A and B, then we can color x, y by color 1, rest of the vertices in
A by color 2, and rest of the vertices in B by color 3. One can observe that CA can be colored
by colors 1, 2, 3. Indeed, as there is a (perfect) matching connecting A and CA, we can color the
neighbor of x in CA by color 2, and the rest of the vertices of CA by colors 1, 3, alternatingly.
Similarly, we can color the vertices of CB by colors 1, 2, 3; If e = (x, y) is between A and CA, then
we color the vertices in A by color 1, one vertex in B by color 2 and the rest of the vertices in B
by color 3. One can observe that CB can be colored by colors 1, 2, 3, in the same way as in the
previous case. The same is true for CA, as we can color y by color 1, and the rest of the vertices
of CA by colors 2, 3, alternatingly.

We conclude that G is 4-critical, on 4n vertices, with > n2 edges. ■

1.5 Long Paths (and Cycles) in Color-Critical Graphs

Question: Let G be a k-critical graph on n vertices (k ≥ 4 fixed, n → ∞). Does G contain a long
path (cycle)?
We present a construction of a k-critical graph on n vertices with no paths of length > C(k) log n (for
some constant C = C(k) > 0). The construction is essentially due to Gallai ’63. We assume that k ≥ 4.
Let T be a tree of maximum degree at most k − 1. Let (Ht)t∈V (T ) be a family of k-critical graphs,
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sharing a common vertex x0 and disjoint otherwise. Start with
⋃

t∈V (T )Ht, and for each ordered edge
(t, t′) ∈ E(T ) with t ̸= t′, choose a vertex vtt′ ∈ V (Ht) adjacent to x0 such that if (t, t′), (t, t′′) ∈ E(T )
then vtt′ ̸= vtt′′ . This is possible as ∆(T ) ≤ k − 1, δ(Ht) ≥ k − 1 due to k-criticality of Ht. Now, for
each unordered edge {t, t′} ∈ E(T ) we do the following:

1. Delete edge (x0, vtt′).

2. Delete edge (x0, vt′t).

3. Add an edge (vtt′ , vt′t).

It is easy to see that the so derived graph G can be obtained from disjoint copies of Ht’s using Hajós
sums. Hence, G is k-critical. Now, choose:

1. T to be a (k − 1)-regular tree of depth h ≥ 0.

2. Choose Ht = Kk, for every t ∈ V (T ).

We can observe that the maximum length of a path in G− {x0} is at most 2h · (k− 1). Altogether, G:

1. is a k-critical graph.

2. has ≈ (k − 2)h(k − 1) vertices.

3. has longest path of length ≤ 2h · (k − 1) · 2 = 4h · (k − 1).

Hence G is a graph on n vertices without a path of length 4(k−1)
log(k−2) log n (as log n ≈ log((k−2)h(k−1)) ≥

h log(k − 2)).
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Graph and Hypergraph Coloring, Tel Aviv Univ., Spring 2022 March 21, 2022

Lecture 5
Instructor: Prof. Michael Krivelevich Scribe: Yevgeny Levanzov

1 Color-Critical Graphs

1.1 Long Paths (and Cycles) in Color-Critical Graphs

Theorem 1 (Alon-Krivelevich-Seymour ’00). For every k ≥ 4, in every k-critical graph G on n vertices
there exists a path of length at least log(n−1)

log(k−1) .

Proof. We will use the following property of spanning trees in connected graphs.

Claim 1.1. For every connected graph G and every vertex v0 ∈ V (G) there exists a rooted spanning
tree T with root v0 such that for every e = (u, v) ∈ E(G) \E(T ), one of the vertices u, v is an ancestor
of the other vertex, with respect to v0.

Proof. If we will execute the DFS algorithm on G according to any permutation of the vertices σ, such
that v0 is the first vertex in σ, then the resulting spanning tree will satisfy claim’s conditions. ■

Let G be a k-critical graph. Choose v0 ∈ V (G) arbitrarily, and obtain a spanning tree T as in Claim
1.1 (we note that as G is k-critical, we have that G is connected). Assume that the depth of T is
r. We observe that it suffices to prove that r ≥ log(n−1)

log(k−1) . We will order the vertices of every edge
e = (u, v) ∈ E(T ) such that u is closer to v0 (in T ) than v. For each edge e = (u, v) ∈ E(T ), we define
type(e) to be the distance between e and v0 (i.e., the distance between u and v0). We observe that
type(e) ∈ {0, . . . , r − 1}. As G is k-critical, for every e ∈ E(T ), there exists a (k − 1)-coloring ce of
G − {e} such that ce(v0) = 1. Assume now that e = (u, v) is an edge with type(e) = j, and let P =
(v0, v1, . . . , vj = u) be the path in T between v0 and u. We denote Se = (ce(v1), . . . , ce(vj)) ∈ [k − 1]j .

Claim 1.2. Let e ̸= e′ ∈ E(T ) be edges of T that satisfy type(e) = type(e′). Then we have Se ̸= Se′.

Proof. Assume, towards a contradiction, that Se = Se′ . Denote by w the lowest (i.e., farthest from v0)
common ancestor of u, u′ (where e = (u, v), e′ = (u′, v′)). In addition, we denote by y the first vertex
on the path between w and v (in T ). In particular, if w = u then y = v. We denote by Ty the subtree
of T rooted at y. We define a (k − 1)-coloring c : V (G) → [k − 1] of G, as follows:

c(x) =

{
ce′(x) , x ∈ Ty

ce(x) , x ∈ V (G) \ Ty

.

It is easy to see that c colors properly all edges e ∈ E(G) that satisfy e ⊆ V (Ty) or e ⊆ V (G) \ V (Ty).
Thus, it is left to verify that the edges of G which go between V (Ty) and V (G) \ V (Ty) are colored
properly by c. Let e ∈ E(G) be such an edge. Due to the property of T , one of the vertices of e belongs
to the path between w and v0 in T . But we have assumed that Se = Se′ , and so both colorings ce, ce′ are
identical on the vertices of the path between w and v0. We conclude that c colors the edge e properly.
Thus, c is a (k − 1)-coloring of G, which contradicts the fact that χ(G) = k. ■
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We now complete the proof of the theorem. As Se ̸= Se′ for every e ̸= e′ ∈ E(T ) with type(e) =
type(e′) and Se, Se′ ∈ [k−1]j , T contains at most (k−1)j edges of type j. We recall that |E(T )| = n−1,
and that type(e) ∈ {0, . . . , r − 1}. Thus, we get that

n− 1 ≤
r−1∑
j=0

(k − 1)j < (k − 1)r,

and so r ≥ log(n−1)
log(k−1) . We conclude that G contains a path of length at least log(n−1)

log(k−1) . ■

Remark 1.3. Dirac proved that every 2-connected graph G that contains a path of length t, also contains
a cycle of length at least 2

√
t.

We will prove a weaker version of this claim, as follows.

Claim 1.4. Let G be a 2-connected graph that contains a path of length at least 2s2. Then G contains
a cycle of length at least 2s.

Proof. Let P be a path of length 2s2 in G that connects u and v. As G is 2-connected, there are 2
internally vertex-disjoint paths between u and v (due to Menger’s theorem). If dist(u, v) ≥ s then the
union of the above two paths gives a cycle of length ≥ 2s, as required. Otherwise, there is a path Q
between u and v whose length < s. Let us write the vertices of Q ∩ P in the order of their appearance
on Q (where u is the first vertex of Q). As |Q| < s and |P | ≥ 2s2, there are two consecutive vertices
x, y in the (ordered) list of Q ∩ P such that the distance between them along P is at least 2s2

s = 2s.
We will add to this path between x and y along P the subpath of Q that connects x and y (which is
internally vertex-disjoint from the subpath along P ), obtaining a cycle of length > 2s. ■

Corollary 2. For every k ≥ 3, every k-critical graph G that contains a path of length t, also contains
a cycle of length at least 2

√
t.

Proposition 1.5. Let G be a 2-connected graph that has an odd cycle (i.e., χ(G) ≥ 3), and a cycle of
length t. Then G contains an odd cycle of length at least t/2.

Proof. Let C be a cycle of length t in a graph G, and let A be some odd cycle in G. If t is odd the
we are done. Thus we can assume that C is an even cycle. Now, if V (A) ∩ V (C) = ∅, then, due to
the 2-connectivity of G, there exist two vertex-disjoint paths P1, P2 between A and C in G. Then, in
A ∪ C together with P1, P2, we can find an odd cycle of length at least t/2. Indeed, we can take the
longest path along C between the endpoints of P1, P2 on C (which has length at least t/2), together
with P1, P2, and the path along A between the endpoints of P1, P2 on A which will close an odd cycle
(as A is an odd cycle, one of these paths has an even length and the other has an odd length). The
case where |V (A) ∩ V (C)| = 1 is treated similarly. Thus, we assume that |V (A) ∩ V (C)| ≥ 2. Now, we
divide the edges of A \ C into intervals between the vertices in A ∩ C. As χ(A ∪ C) ≥ 3 and no two
(inner) vertices of distinct intervals are adjacent, there exists at least one interval such that the graph
consisting of it and C is 3-chromatic. It is then easy to see that C together with the above interval
contain an odd cycle whose length is at least t/2. ■

Corollary 3. Let k ≥ 4 be a fixed integer. Then every k-critical graph G contains an odd cycle of
length Ωk(

√
log n).

Theorem 4 (Shapira-Thomas ’11). Let k ≥ 4 be a fixed integer. Then in every k-critical graph G on
n vertices there exists an odd cycle of length Ωk(log n) (in particular, G has circumference Ωk(log n)).
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2 Coloring Planar Graphs

2.1 Euler’s Formula and the 5-Color Theorem

Euler’s formula (1758): Let G = (V,E) be a planar graph with face-set F , that has r connected
components. It holds that

|V | − |E|+ |F | = r + 1.

The most known case of the above formula is when r = 1 (i.e., when G is connected).

Corollary 5. Let G = (V,E) be a simple graph. Then:

1. |E| ≤ 3|V | − 6.

2. If G is triangle-free then |E| ≤ 2|V | − 4.

Proof. 1. Without loss of generality (by adding edges), we can assume that G is connected, and
every face is a cycle of length at least 3. Let us assume that the sizes of the faces are f1, f2, . . . .
Then, by double counting the edges, we get that 2|E| =

∑
i fi ≥ 3|F |. Plugging it into Euler’s

formula, we get that |V | − |E|+ 2
3 |E| ≥ 2 ⇒ |E| ≤ 3|V | − 6.

2. We use the fact that fi ≥ 4 for all i, and do a similar counting.
■

Corollary 6. Every simple planar graph G is 5-degenerate.

Proof. From item 1 of Corollary 5 it follows that |E| ≤ 3|V |−6. Thus, G has a vertex v with d(v) < 6.
This argument is also valid for every induced subgraph of G (as this is a hereditary property). Therefore,
G is 5-degenerate. ■

Corollary 7. Every simple planar graph G is 6-colorable (as every d-degenerate graph is d+1-colorable).

Theorem 8 (Heawood 1890). Every simple planar graph G is 5-colorable.

Proof. The proof proceeds by induction on n = |V (G)|.
Base: n ≤ 5 – the claim is trivial.
Step: Assume that the claim holds for every simple planar graph G with < n vertices. Let G be a
simple planar graph on n vertices. We know that G is 5-degenerate, and let v be a vertex with d(v) ≤ 5.
Denote G′ = G \ {v}. By induction, G′ has a 5-coloring c′ : V (G′) → [5]. If in c′ there is a color i ∈ [5]
that does not appear on the neighbors of v in G, we can extend the coloring c′ to G by assigning
c′(v) = i, obtaining a 5-coloring of G. Thus, we may assume that it is not the case. Then dG(v) = 5,
and all five colors appear on the neighborhood NG(v) of v in G in the coloring c′. Now, consider an
embedding of G in the plane, and assume that the neighbors of v, ordered in the clockwise direction,
are v1, . . . , v5 such that c′(vi) = i for all i ∈ [5]. (This can be achieved by permuting the colors, as we
assumed that all of them appear exactly once.) For 1 ≤ i ̸= j ≤ 5, we denote by Gi,j the subgraph of
G that is spanned by the vertices that are colored by i, j in c′. We observe that if we will swap between
the colors in every connected component of Gi,j , we will (still) obtain a proper 5-coloring of G′. Let
us now look on G1,3. If v1, v3 are not in the same connected component of G1,3, then we will swap the
colors in the component of v1 in G1,3, and get a 5-coloring of G′ such that two neighbors of v (v1, v3) are
colored by color 3, and so we can extend c′ by assigning c′(v) = 1. Thus, we now assume that v1, v3 are
in the same connected component of G1,3. Then, there is a path P1 in G1,3 that connects v1 and v3. As
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V (P1) ⊆ V (G1,3), all the vertices of P1 are either colored by color 1 or by color 3 in c′. Similarly, we can
assume that G2,4 contains a path P2 that connects v2 and v4, such that all the vertices of P2 are either
colored by color 2 or by color 4 in c′. Due to the clockwise ordering of the vi’s and the planarity of G,
we have that v2 resides inside the (simple) closed curve v− v1 −P1 − v3 − v, while v4 resides outside of
it. Thus, by the Jordan curve theorem, P1 and P2 intersect. As G is planar, this intersection must be at
some vertex, which is common to both of them. However, as V (P1) ⊆ V (G1,3) and V (P2) ⊆ V (G2,4),
we have that P1∩P2 = ∅, which is a contradiction. We conclude that c′ can be extended (possibly after
permuting the colors in some Gi,j) to a proper coloring of v, and so χ(G) ≤ 5. ■

2.2 The 4-Color Theorem (4CT)

A brief history:

• 1852 – Francis Guthrie conjectured that every (simple) planar graph (or map) is 4-colorable.

• 1879 – Kempe presented a mistaken proof (which contained many novel and correct ideas, in-
cluding Kempe’s chains).

• 1977 – Appel and Haken presented a proof that χ(G) ≤ 4 for every (simple) planar graph. Their
proof used a massive computer checking, after they managed to reduce the problem to checking
a finite number of graph configurations (around 2000)1.
The 4-color theorem is widely considered to be a major and a fundamental result is graph theory.

Remark 2.1. From item 2 of Corollary 5 it is immediate that every (simple) planar triangle-free graph
is 4-colorable (as it has vertex of degree at most 3, and thus 3-degenerate).
Grötzsch (’59) showed that every (simple) planar triangle-free graph is 3-colorable.

3 Colorings, Density, Minors and Subdivisions

Definition 3.1. Let G be a graph and let e = (u, v) ∈ E(G). The contraction of e is the graph operation
of replacing u, v by a single vertex uv, such that instead of every edge that connects a vertex w ̸= u, v
to a vertex in {u, v} there will be an edge between w and the new vertex uv.

Definition 3.2. Let H,G be graphs. We say that H is a minor of G if H can be obtained from G by
removing vertices and contracting edges. Notation: H ≺ G.

We now give an alternative definition for a minor.

Definition 3.3. Let H = (U,F ), G = (V,E) graphs such that U = {u1, . . . , ur}. If H is a minor of G
then there exist disjoint sets V1, . . . , Vr ⊆ V such that:

1. G[Vi] is connected for all i.

2. If (ui, uj) ∈ F , then G contains an edge between Vi and Vj.

Example: Petersen’s graph:
1A simpler proof, yet using the same ideas and still relying on computers, was published by Robertson, Sanders,

Seymour, and Thomas in 1997.
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u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

Using Definition 3.3 with Vi = {ui, vi} for i ∈ [5], one can easily observe that the Petersen graph
contains a minor of K5.

Notation: η(G) = max{r |Kr ≺ G} – clique contraction number of G.
It is immediate that η(G) ≥ ω(G).
Example: If G is the Petersen graph then η(G) = 5.

Definition 3.4. Let G be a graph and let e = (u, v) ∈ E(G). The subdivision of e is the graph obtained
from G by adding a new vertex w (of degree two) on (u, v) such that w is connected only to u, v.

In general, a subdivision of G is obtained by a series of edge subdivisions.

Definition 3.5. Let H,G be graphs. We say that G contains a subdivision of H (or that H is a
topological minor of G) if a subdivision of H is isomorphic to a subgraph of G.

Question: For which integer values r, Petersen’s graph contains a subdivision of Kr?
Answer: r ≤ 4.

Remark 3.6. We note that if a graph H is a subdivision of a graph G, then H has vertices of degree
∆(G).

We conclude that Petersen’s graph does not contain a subdivision of K5, as its maximum degree is 3.
Question: Why are these notions important?

Theorem 9 (Kuratowski 1930). A graph G is planar if and only if it does not contain a subdivision of
K5 and of K3,3.

Theorem 10 (Wagner 1937). A graph G is planar if and only if it does not contain a minor of K5 and
of K3,3.

3.1 Connection of Minors and Subdivisions to Coloring

Question: Is it true that if χ(G) ≥ k then G contains some given subgraph H?

Theorem 11 (Erdős ’59). For every pair of integers k, g there exists a graph G that contains no cycles
of length ≤ g (i.e., girth(G) > g) and satisfies χ(G) > k.
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However, the following two conjectures were raised.

Conjecture 3.7 (Hadwiger ’43). If χ(G) ≥ k then η(G) ≥ k.

Conjecture 3.8 (Hajós 1940s). If χ(G) ≥ k then G contains a subdivision of Kk.

We note that Hajós’ conjecture is stronger, as existence of a subdivision implies existence of a minor.

Hadwiger’s conjecture – what is known:

• k = 1: trivially true.

• k = 2: trivially true.

• k = 3: true, as any cycle is a subdivision of K3.

• k = 4: was proved by Hadwiger himself in the same paper where he posed the conjecture.
The following stronger result was given by Dirac.

Theorem 12 (Dirac ’52). Let G be a graph with δ(G) = 3. Then G contains a subdivision of K4.
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1 Colorings, Density, Minors and Subdivisions

1.1 Hadwiger and Hajós Conjectures

Theorem 1 (Dirac ’52). Let G be a graph with δ(G) ≥ 3. Then G contains a subdivision of K4.

Proof. We will prove a stronger statement: if G has at most one vertex of degree < 3, then G contains
a subdivision of K4. The proof is by induction on n = |V (G)|.
Base: n = 4 – all degrees are 3, and so G = K4.
Step: Assume that the claim holds for all graphs on < n vertices, and let G be a graph on n vertices.
Assume first that G has a unique vertex x with d(x) < 3. If d(x) < 2, then G′ = G− {x} has at most
one vertex of degree < 3, and so we can apply induction on G′, completing the proof. Now, if d(x) = 2,
then let y, z be the neighbors of x. If (y, z) /∈ E(G), then consider G′ = G−{x}+(y, z). By induction,
G′ has a subdivision of K4. If this subdivision uses edge (y, z), replace it by the path (y, x, z) in G,
getting a subdivision of K4. Now, if (y, z) ∈ E(G), we can assume that d(y) = d(z) = 3. (otherwise,
we can delete x and apply induction). Assume first that y, z have another common neighbor w. If
d(w) > 3, then G′ = G−{x, y, z} has at most one vertex of degree < 3, and so we can apply induction.
Otherwise, if d(w) = 3, then G′ = G − {x, y, z, w} has at most one vertex of degree < 3, and so we
can again apply induction. The only case left (for d(x) = 2) is when y, z do not have another common
neighbor (apart from x). In this case, contract x, y, z (i.e., the edges (x, y), (y, z)) to a vertex x′, and
denote by G′ the graph obtained after the contraction. As G′ has at most one vertex of degree < 3, we
can apply induction and get a subdivision of K4 in G′. We can then turn it into a subdivision of K4 in
G by using vertices x, y, z instead of x′ if needed.

The only case left is when δ(G) ≥ 3. By deleting edges (if needed) from G we can assume that
δ(G) = 3. Let x be a vertex of degree 3, and let u, v, w be its neighbors. If all edges inside {u, v, w} are
present, then we get (together with x) a copy of K4. Hence we can assume, without loss of generality,
that (u, v) /∈ E(G). Then let G′ = G − {x} + {(u, v)}. We observe that G′ has at most one vertex of
degree < 3 (vertex w), and so we can apply induction to G′ and get a subdivision of K4 in G′. Replacing
the edge (u, v) in this subdivision (if exists) by the path (u, x, v), we get a subdivision of K4 in G. ■

Corollary 2. Hadwiger’s conjecture holds for k = 4.

Proof. If χ(G) ≥ 4, then G contains a 4-critical subgraph G′. It holds that δ(G′) ≥ 3, and so we can
apply Theorem 1 to get a subdivision of K4 and hence a minor of K4. ■

Further cases of Hadwiger’s conjecture:

• k = 5: equivalent to the 4-color theorem (Wagner ’37).

• k = 6: equivalent to the 4-color theorem (Robertson, Seymour, Thomas ’93).

• k ≥ 7: open.
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The latest result regarding Hadwiger’s conjecture is the following:

Theorem 3 (Postle ’20). If Kt ̸≺ G then χ(G) = O(t(log log t)6).

1.2 Complete Minors and Average Degree

Possible approach: If χ(G) ≥ k then G contains a k-critical subgraph G′. It holds that δ(G′) ≥ k−1.

Possible statement: Denote d(G) = |E(G)|
|V (G)| . We would like to argue that if d(G) is large, then η(G)

is large.
Kostochka ’82, ’84 and independently Thomason ’84, proved that if d(G) ≥ d then η(G) = Ω

(
d√
log d

)
.

The above bound is optimal, as can be seen by looking at the random graph G(n, 1/2).

Theorem 4 (Kostochka ’82, ’84; Thomason ’84). Let G = (V,E) be a graph satisfying |E(G)|
|V (G)| ≥ d,

where d is a sufficiently large integer. Then G has a complete minor of order ≥ d
10

√
ln d

(and thus
η(G) ≥ d

10
√
ln d

).

Proof. (Alon-Krivelevich-Sudakov ’22) Assume throughout the proof that the parameters d, n =
|V (G)| are large enough.

Lemma 1.1. Let H = (V,E) be a graph on at most n vertices with δ(H) ≥ n/6. Denote t = n√
logn

and

let A1, . . . , At ⊆ V with |Aj | ≤ n

e
√
lnn/3

for all j ∈ [t]. Then there exists a subset B ⊆ V , |B| ≤ 3.1
√
lnn

such that:

1. B dominates all but at most n

e
√
lnn/3

vertices of H (i.e., the number of vertices outside B not
having any neighbor in B is ≤ n

e
√
lnn/3

).

2. B \Aj ̸= ∅ for every j ∈ [t].

3. δ(H[B]) ≥ |B|/10.

Proof. Denote s = 3.1
√
lnn. Choose a set B of s vertices at random with repetitions (i.e., choose s

times a random vertex in V , repetitions are allowed).
Typical properties of B:

1. Let v ∈ V (H). We have

Pr[v is not dominated by B] =

(
1− d(v)

|V |

)s

≤︸︷︷︸
1−x≤e−x

e−s/6 ≤ e−
√
lnn/2.

Hence, B is expected not to dominate ≤ |V |
e
√
lnn/2

≤ n

e
√
lnn/2

vertices. Now, by Markov’s inequality,
with probability tending to 1 we have that B dominates all but ≤ n

e
√
lnn/3

vertices.

2. Pr[B ⊆ Aj ] =
(
|Aj |
|V |

)s
≤

(
6|Aj |
n

)s
≤

(
6

e
√
lnn/3

)s
= o

(
1
n

)
.

Hence, by a union bound over all subsets Aj , we derive that with probability tending to 1 it holds
that B \Aj ̸= ∅ for all j ∈ [t].
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3. Notice that we choose s = O(
√
log n) vertices with repetition from V , with |V | ≥ n/6. Hence

it is unlikely to repeat a vertex. Let the choices for B be v1, . . . , vs (as argued above, we can
assume that they are distinct). Now, conditioning on vi = v, the random variable d(vi, B) (i.e.,
the degree of vi into B) is distributed as Bin(s− 1, d(v)/|V |). Hence, noting that d(v)/|V | ≥ 1/6,
by standard concentration statements (e.g., Chernoff) for binomial random variables, we obtain:

Pr
[
d(vi, B) ≤ s

10

]
≪ 1

s
.

Applying the union bound over all vi’s, we get the desired property of B.

■

We now prove the theorem. Let G = (V,E) be a graph on n vertices and denote d = |E(G)|
|V (G)| . Let G′

be a minor of G such that |E(G′)|
|V (G′)| ≥ d and |V (G′)|+ |E(G′)| is minimal. Let us study the properties of

G′. Assume that an edge e of G′ belongs to exactly t triangles of G′. By contracting e we get a graph
with one vertex and t + 1 edges less than G′. Since G′ is minimal, we derive that t + 1 > d ⇒ t ≥ d.
We conclude that every edge of G′ belongs to ≥ d triangles of G′. Since G′ is minimal, we actually have
|E(G′)|
|V (G′)| = d. Hence G′ has a vertex v of degree d(v) ≤ 2d. Let H be the subgraph of G′ induced by the
neighborhood of v. Then:

1. |V (H)| ≤ 2d.

2. δ(H) ≥ d (as every edge belongs to ≥ d triangles).

Remark 1.2. The above argument, that a graph of average degree ≥ d has a dense minor on at most
2d vertices with minimum degree at least d, is due to Mader.

Since the notion of minors is transitive, finding a complete minor of order t in H means finding a
complete minor of the same order in G. We claim that H contains a (d/3)-connected subgraph H0 with
minimum degree δ(H0) ≥ 2d/3. Indeed, if H is (d/3)-connected, then we can take H0 = H. Otherwise,
there is a partition V (H) = A∪̇B∪̇S such that |S| ≤ d/3, A,B ̸= ∅, and H has no edges between A and
B. Assume, without loss of generality, that |A| ≤ |B|, which implies |A| ≤ d. Since δ(H) ≥ d, every
vertex a ∈ A has ≥ d− |S| ≥ 2d/3 neighbors in A. Therefore, a1 ̸= a2 ∈ A have at least d/3 common
neighbors. Hence the induced subgraph H0 := H[A] has at most 2d vertices, is ≥ (d/3)-connected, and
satisfies δ(H0) ≥ d/3.

Set i = 0, and perform the following iteration t = d/10
√
ln d times. Let Hi = (Vi, Ei) ⊆ H0,

and suppose Ai, . . . , Ai−1 are subsets of Vi of cardinalities |Aj | ≤ 2d

e
√

ln(2d)/3
(where Aj represents the

non-neighbors of the previously constructed connected subset Bj in Vi). We assume – and justify it
later – that Hi is connected and has δ(Hi) > d/3. Then in every shortest path P = (v0, v1, . . . ) in
Hi the neighborhoods of vertices v0, v3, v6, . . . are pairwise-disjoint. Hence P has at most 15 vertices
(since |V (Hi)|/δ(Hi) < 6), implying that the diameter of Hi is at most 14. Applying Lemma 1.1 to Hi

(recalling that |V (Hi)| ≤ 2d), we find a set Bi with |Bi| ≤ 3.1
√

ln(2d) such that Bi dominates all but
≤ 2d

e
√

ln(2d)/3
vertices of Vi, Bi\Aj ̸= ∅ for all j ∈ [i−1], and δ(Hi[Bi]) ≥ |Bi|/10. This implies that Hi[Bi]

has at most 9 connected components. Now, turn Bi into a connected set by connecting its components
sequentially, altogether adding at most 8 ·13 = O(1) vertices to Bi, as we need to add (at most) 8 paths
between the (at most) 9 connected components of Hi[Bi], and each such shortest path has at most
15− 2 = 13 inner vertices. So now Hi[Bi] is connected and has cardinality |Bi| ≤ (3.1 + o(1))

√
ln(2d),

Bi is connected to every previous Bj (as Bi \Aj ̸= ∅), and Bi dominates all but ≤ 2d

e
√

ln(2d)/3
vertices of

Vi. Now we update:
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1. Vi+1 = Vi \Bi.

2. Ai = vertices of Vi+1 that are not dominated by Bi, |Ai| ≤ 2d

e
√

ln(2d)/3
.

3. Aj = Aj ∩ Vi+1, for all j ∈ [i− 1].

Altogether at all t iterations we delete ≤ t · (3.1 + o(1))
√
ln(2d) < d/3 vertices. Hence indeed each Hi

is connected and has δ(Hi) > δ(H0)− d/3 ≥ d/3, as promised. Therefore eventually we find t disjoint
subsets B1, . . . , Bt ⊆ V (H0) such that H[Bi] is connected for every i and H0 has an edge between Bi, Bj

for every i ̸= j. We conclude that η(H0) ≥ t ⇒ η(H) ≥ t ⇒ η(G) ≥ t. ■

1.3 Complete Minors and Independence Number

Recall: for any graph G, it holds that χ(G) ≥ |V (G)|/α(G), where α(G) is the independence number
of G.

Theorem 5 (Duchet-Meyniel ’82). For any graph G, η(G) ≥ |V (G)|
2α(G)−1 .

Proof. Notice that it is enough to prove it for connected graphs. Indeed, if the connected components
of G are C1, . . . , Ct, and |Ci| ≤ η(Ci)(2α(Ci)− 1), i = 1, . . . , t, then trivially we have η(G) ≥ η(Ci) and
α(G) =

∑t
i=1 α(Ci). Hence we have |Ci| ≤ η(G)(2α(Ci)− 1). Summing up, we obtain:

|V (G)| =
t∑

i=1

|Ci| ≤ η(G) · 2
t∑

i=1

α(Ci)− η(G) · t = η(G) · 2α(G)− η(G) · t ≤ η(G)(2α(G)− 1).

Assume now that G is connected. We claim that there exists a connected dominating set1 D and an
independent set I ⊆ D such that |D| ≤ 2|I| − 1. To prove it, take a largest connected set D containing
an independent set I such that |D| ≤ 2|I| − 1 (this is well-defined, as the singleton D = {v} satisfies
the requirements). We claim that D is dominating. If not, then there is a vertex u ∈ V (G) \ D not
dominated by D. Since G is connected, we can take u to be at distance exactly 2 from D. Hence u
has no neighbors in D, but has a neighbor v which in turn has a neighbor in D. But then we can
add {u, v} to D and u to I, in contradiction to the maximality of D. Let now (D, I) be as above,
|I| ≤ α(G), |D| ≤ 2α(G)− 1. Let G′ = G[V (G) \D]. Since D is connected and dominating, it follows
that η(G) ≥ η(G′) + 1. Also, trivially, α(G′) ≤ α(G). Applying induction to G′, we obtain:

|V (G) \D| = |V (G′)| ≤ η(G′)(2α(G′)− 1) ≤ (η(G)− 1)(2α(G)− 1).

As |D| ≤ 2α(G)− 1, summing up, we obtain:

|V (G)| = |V (G) \D|+ |D| ≤ (η(G)− 1)(2α(G)− 1) + (2α(G)− 1) = η(G)(2α(G)− 1).

■

2 Perfect Graphs

Definition 2.1. A graph G is called perfect if χ(H) = ω(H) for every induced subgraph H of G.

Definition 2.2. A property of graphs is called hereditary if it is closed under taking induced subgraphs.
1A set D ⊆ V (G) is dominating in G if ∀v ∈ V (G) \D, v has a neighbor in D.
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We conclude that if P is a hereditary class of graphs, for proving that every G ∈ P is perfect it is enough
to prove that χ(H) = ω(H) for every graph H in P.

Examples of perfect graphs:

1. Complete graphs.

2. Empty graphs.

3. Bipartite graphs: if G is bipartite, then χ(G) = 1 if E(G) = ∅ – then ω(G) = 1, and χ(G) =
ω(G) = 2 otherwise.

4. Complements of bipartite graphs: need to prove: if G is bipartite, then χ(G) = ω((G) (homework
1).
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1 Perfect Graphs1

Examples of perfect graphs:

1. Complete graphs.

2. Empty graphs.

3. Bipartite graphs: if G is bipartite, then χ(G) = 1 if E(G) = ∅ – then ω(G) = 1, and χ(G) =
ω(G) = 2 otherwise.

4. Complements of bipartite graphs: need to prove: if G is bipartite, then χ(G) = ω((G) (homework
1).

5. Interval graphs: vertices – closed finite intervals on the line; edges – (I1, I2) ∈ E(G) ⇔ I1∩I2 ̸= ∅.
We have shown that if G is an interval graph then χ(G) = ω(G).

6. Cographs – graphs without an induced copy of P4, a path on 4 vertices (homework 1).

7. Comparability graphs (see Section 1.1).

8. Chordal graphs (see Section 1.2).

1.1 Comparability Graphs

Definition 1.1. Given an undirected graph G, a transitive orientation D of G is an orientation of the
edges of G satisfying −−−→

(u, v),
−−−→
(v, w) ∈ E(D) ⇒

−−−→
(u,w) ∈ E(D).

A graph G is called a comparability graph if it admits a transitive orientation.

The reason such graphs are called “comparability graphs” is due to the following proposition.

Proposition 1.2. If P is a partial order of a finite set V , then G = G(P ) on vertex set V , defined by
(u, v) ∈ E(G) ⇔ u, v are comparable in P , is a comparability graph.

Proof. Follows from the definition of a partially ordered set (poset). ■

Example: Let G = (A∪B,E) be a bipartite graph. Orienting all edges from A to B gives a transitive
orientation. Thus G is a comparability graph.

Proposition 1.3 (Berge ’60). Comparability graphs are perfect.
1The original title was “A Lesson in Perfection”.
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Proof. Since comparability is hereditary, it suffices to prove that χ(G) = ω(G) for any comparability
graph G. Let G be a comparability graph, and let D be a transitive orientation of G. Let P be
a longest directed path in D. Then the vertices of P induce a clique in G of size |V (P )|, implying
that ω(G) ≥ |V (P )|. By the Gallai–Hasse–Roy–Vitaver theorem (which we saw in the first lecture),
χ(G) ≤ |V (P )|, and so χ(G) ≤ ω(G), and thus χ(G) = ω(G). This implies that G is perfect. ■

Remarks:

1. If G is an interval graph, then G is a comparability graph ((I1, I2) ∈ E(G) if and only if I1∩I2 = ∅,
orient

−−−−→
(I1, I2) if I1 precedes I2 on the real line).

2. The fact that χ(G) = ω(G) for a comparability graph G follows also from Mirsky’s theorem
(1971): for any finite partially ordered set P , the minimal number of antichains covering P is
equal to the maximum length of a chain in P .

1.2 Chordal Graphs

Definition 1.4. A graph G is called chordal (or triangulated) if every cycle in G of length at least 4
has a chord.

1.2.1 Characterization of Chordal Graphs

Definition 1.5. Let G be a graph. Let G1, G2 ⊆ G be induced subgraphs such that:

1. G = G1 ∪G2.

2. G1 ∩G2 = S.

Then we say that G is obtained by pasting G1 and G2 along S.

Proposition 1.6. G is a chordal graph if and only if G can be obtained from complete graphs by a
sequence of pastings along a complete graph.

Proof. (⇐=) : Assume that G1, G2 are chordal, G is obtained by pasting G1, G2 along a complete
graph S. We want to show that G is chordal. Let C be a cycle in G of length ≥ 4. If C ⊆ G1 or
C ⊆ G2, then C has a chord as G1, G2 are chordal. Otherwise, C has a vertex in G1 \G2 and a vertex
in G2 \ G1. Then C has at least 2 non-consecutive vertices residing in S. Since S is a clique, these
vertices are connected by an edge, constituting a chord in C.
(=⇒) : Assume that G is chordal. We show by induction on |V (G)| that G can be obtained as described.
If G is complete then the statement is obvious (which includes the base case of |V (G)| = 1). Assume
then that (a, b) /∈ E(G). Let X ⊆ V (G) \ {a, b} be a minimal (by inclusion) set separating a and b.
Let C be a component of G \X containing a, and define G1 = G[V (C) ∪X], G2 = G[V (G) \ V (C)].
Now, as G1, G2 are induced subgraphs of G, they are chordal (as chordality is hereditary). Moreover,
as G1, G2 are proper subgraphs of G, by the induction hypothesis they are constructible as described.
Obviously, G is obtained from G1, G2 by pasting along S = G[X], and so it suffices to prove that S is
a complete graph. Assume not, and let s, t ∈ X with (s, t) /∈ E(G). Since X is a minimal separating
set, both s and t have neighbors in C. Let P1 be a minimal path connecting s and t within C. Arguing
similarly, we can find a minimal path P2 connecting s and t in G2 with all internal vertices outside of
X. Taking C ′ = P1∪P2, recalling the minimality of P1, P2 and the assumption (s, t) /∈ E(G), we obtain
a chordless cycle of length ≥ 4 – a contradiction. ■
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We now present an alternative characterization of chordal graphs, as follows.

Definition 1.7. A vertex v in a graph G is called simplicial if the neighborhood N(v) of v induces
a clique in G. Given a graph G on n vertices, a simplicial elimination ordering of G is an order
σ = (v1, . . . , vn) on V (G) such that every vertex vi, 1 ≤ i ≤ n, is a simplicial vertex in the induced
subgraph G[{v1, . . . , vi}].

Theorem 1 (Dirac ’61). G is a chordal graph if and only if G has a simplicial elimination ordering.

Proof. We will prove only the easy direction: assuming that G has a simplicial elimination ordering,
we need to show that G is chordal. Let C be a cycle of length at least 4 in G. Let v be the last vertex
of C according to the simplicial elimination ordering. Then the neighbors preceding v in the ordering,
including its two neighbors u,w on the cycle, form a clique. Hence (u,w) is a chord in C.

The proof of the other direction is more challenging. ■

Theorem 2 (Berge ’60). Chordal graphs are perfect.

Proof. Using the first characterization of chordal graphs, it is enough to prove that if a graph G is ob-
tained from chordal (and thus, by induction2, perfect) graphs G1, G2 by pasting along a complete graph
S, then G is perfect. We have χ(G1) = ω(G1), χ(G2) = ω(G2). Since G is obtained through pasting,
every clique in G resides entirely in G1 or entirely in G2, and so we have ω(G) = max{ω(G1), ω(G2)}.
Hence, since chordality is hereditary, it is enough to prove that

χ(G) ≤ max{ω(G1), ω(G2)} = max{χ(G1), χ(G2)}.

Let c1 be an optimal coloring of G1, and let c2 be an optimal coloring of G2. Since S is a clique, both
c1 and c2 color the vertices of S in distinct colors. By renaming colors if necessary, we can ensure that
c1(v) = c2(v) for every v ∈ S. By “gluing” c1 and c2 in a natural way, we obtain a coloring c of G in
max{χ(G1), χ(G2)} = max{ω(G1), ω(G2)} = ω(G) colors. Then χ(G) = ω(G), as required. ■

1.3 Weak Perfect Graph Theorem

We have seen many examples of perfect graphs G where the complement graph G is also perfect
(e.g., complete and empty graphs, bipartite graphs and their complements, interval and comparability
graphs). This is a part of a general phenomenon, formalized by the Weak Perfect Graph Theorem of
Lovász3.

Theorem 3 (Weak Perfect Graph Theorem, Lovász ’72). A graph G is perfect if and only if its com-
plement G is perfect.

Proof.

Lemma 1.8. Let G be a graph. The following are equivalent:

1. G is perfect.

2. For every induced subgraph H of G and every vertex v ∈ V (H), there is an independent set I in
H such that v ∈ I, and I intersects every maximum clique in H4.

2Since complete graphs are perfect, the base of the induction holds.
3Remarkably, the theorem was proven by Lovász when he was only 22 years old.
4In other words, I satisfies ω(H \ I) = ω(H)− 1.
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3. For every induced subgraph H of G, there is an independent set I in H, intersecting every maxi-
mum clique in H.

Proof. (1) =⇒ (2): Let χ(H) = k, and let (V1, . . . , Vk) be an optimal coloring of H. Assume, without
loss of generality, that v ∈ V1. The graph H \ V1 has chromatic number k − 1, and hence, due to
perfection of G, ω(H \ V1) = k − 1. As such, V1 intersects every maximum clique in H.
(2) =⇒ (3): Trivial.
(3) =⇒ (1): Assume that ω(G) = k. Color the graph by iteratively finding an independent set I,
intersecting every maximum clique (as in (3)), coloring I in a fresh color and discarding it. Since the
clique number (of the remaining subgraph) decreases at every iteration due to (3), this procedure colors
G in k colors, implying χ(G) ≤ k = ω(G). Hence χ(G) = ω(G). The same argument can be applied
for any induced subgraph of G. It follows that G is perfect. ■

Definition 1.9. Let G = (V,E) be a graph, and let v ∈ V . Replicating v means:

1. Adding a new vertex v′ to G.

2. Connecting v′ to v.

3. Connecting v′ to every neighbor of v.

Example: Start with G0 = C5 (a non-perfect graph). Let G be obtained by replicating a vertex of C5

(vertex v in the figure). If we now replicate any vertex of degree 2 in G (vertex u in the figure), we
obtain a graph G′ with χ(G′) = 4 > ω(G′) = 3 (note that χ(G) = ω(G) = 3).

u

v

G0 = C5

u

vv′

G

u

vv′

u′

G′

We conclude that the property χ(H) = ω(H) is not preserved by replication (of vertices of H). Hence
the following lemma might appear surprising.

Lemma 1.10 (Replication Lemma). Replicating any vertex of a perfect graph G produces a perfect
graph.

Proof. Let G be a perfect graph and let G′ be obtained by replicating a vertex v in G. We will use
condition (3) of Lemma 1.8. Let H be an induced subgraph of G′. If H contains at most one vertex
from {v, v′}, then H is isomorphic to an induced subgraph of G, and so as G is perfect, by condition (3)
of Lemma 1.8, H has an independent set I, intersecting every maximum clique in H. We now assume
that v, v′ ∈ V (H). Denote H ′ = H \{v′}. Then H ′ ⊆ G is an induced subgraph, and thus, by condition
(2) of Lemma 1.8, it has an independent set I ⊆ V (H ′) with v ∈ I, intersecting every maximum clique
in H ′. It is easy to see that I also intersects every maximum clique in H, as every maximum clique in
H containing v′ contains v as well. We conclude, using condition (3) of Lemma 1.8, that G′ is perfect,
as required. ■
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We now prove the Weak Perfect Graph Theorem. Let G be a perfect graph, and we want to prove
that G is perfect. By condition (3) of Lemma 1.8, it is enough to prove that G has a clique that intersects
every maximum independent set (as perfection is hereditary, this argument also holds for every induced
subgraph of G). We denote α(G) = α, and also denote by k the number of independent sets of size
α in G. Now, for every vertex v ∈ V (G), we denote by αv the number of independent sets of size α
that contain v. We note that

∑
v∈V (G) αv = k · α. We now create a new graph G′ by replicating every

vertex v ∈ V (G) exactly αv − 1 times (where if αv = 0 – we delete v; if αv = 1 – we do not replicate
v). We observe that |V (G′)| =

∑
v∈V (G) αv = k · α, and that α(G′) = α(G) = α. (Indeed, replication

does not increase the independence number, as for every vertex v, at most one of the vertices v, v′ (a
replication of v) can belong to an independent set. Moreover, as every vertex u that is not contained
in a maximum independent set I must have a neighbor in I, so does its replication u′ (and so u′ cannot
be added to I). Finally, it is clear that every independent set of size α in G survives replication.) We
have that χ(G′) ≥ |V (G′)|/α(G′) = k. In fact, we claim that χ(G′) = k. Indeed, we can color G′ by
going over all independent sets I of size |I| = α in G, and color one of the replicated vertices (including
the original ones) of every v ∈ I (that was not yet colored) in the same fresh color. This produces a
proper k-coloring5 of G′, as copies of distinct vertices from an independent set in G are not adjacent
(i.e., form an independent set), and as G has exactly k independent sets of size α. By Lemma 1.10,
G′ is perfect, and thus ω(G′) = k. Let K ′ be a clique of size k in G′. Now, as |K ′ ∩ I| ≤ 1 for every
independent set I in G′, we have that K ′ intersects every color class in the above described k-coloring
of G′. Now, as every color class in the above described k-coloring of G′ is a “replica” of a maximum
independent set in G, by projecting K ′ back to the graph G, we obtain a clique K in G, intersecting
every maximum independent set in G. The same argument holds also for every induced subgraph of G.
Thus, the complement of G satisfies condition (3) of Lemma 1.8, and is thus perfect. ■

Remark: Lovász (1972) also proved the following statement.

Theorem 4 (Lovász ’72). A graph G is perfect if and only if |V (H)| ≤ α(G) · ω(G) for every induced
subgraph H of G.

Clearly, Theorem 4 implies the Weak Perfect Graph Theorem due to the symmetry of the clique and
the independence numbers between a graph and its complement.

1.4 Strong Perfect Graph Theorem

Observe that if a graph G is perfect then G does not contain an induced odd cycle of length at least 5.
By the Weak Perfect Graph Theorem, G also does not contain a complement of an induced odd cycle
of length at least 5. Berge conjectured in 1960 that these conditions are sufficient as well. This has
become a theorem.

Theorem 5 (Strong Perfect Graph Theorem, Chudnovsky, Robertson, Seymour, Thomas ’20066). A
graph G is perfect if and only if neither G nor G contains an induced odd cycle of length ≥ 5.

5Moreover, this coloring is equitable, with all color classes having the same size α.
6The proof was announced in 2002.
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Lecture 8
Instructor: Prof. Michael Krivelevich Scribe: Yevgeny Levanzov

1 List Coloring

1.1 Basic Definitions and Results

Definition 1.1. Given a graph G = (V,E), a list assignment L is an assignment of color lists L(v) ⊆
Z+, v ∈ V to the vertices of G.

Definition 1.2. Given a list assignment L for a graph G, an L-coloring is a function f from the colors⋃
v∈V L(v) to Z+ such that:

1. f(v) ∈ L(v) for every v ∈ V (G).

2. f(u) ̸= f(v) for every e = (u, v) ∈ E(G).

If such a choice exists, then G is said to be L-colorable (or L-choosable).

Definition 1.3. A graph G is k-choosable (or k-list-colorable) if G is L-choosable for every list as-
signment L = (L(v))v∈V (G) such that |L(v)| = k for every v ∈ V (G).

Definition 1.4. The choice number (or list chromatic number) of G, denoted by ch(G) or by χℓ(G),
is the minimum k for which G is k-choosable.

This notion was introduced by Vizing in 1976, and independently by Erdős, Rubin and Taylor (ERT)
in 1979.

Question: Does it happen that ch(G) > χ(G)?
Answer: Yes (but very rarely).

Proposition 1.5. For every graph G, ch(G) ≥ χ(G).

Proof. If G is k-choosable then G is L-colorable for the list assignment L = {L(v) = {1, . . . , k}}v∈V (G).
Thus G is k-colorable and so χ(G) ≤ ch(G). ■

Example: ch(C2n) = 2.

Proof. Let L = (L(v))v∈V (C2n) be a list assignment satisfying |L(v)| = 2 for every v ∈ V (C2n). If the
lists in L are identical, then we deal with the usual coloring and G is L-choosable (as χ(C2n) = 2).
Otherwise, since G = C2n is connected, we can find two adjacent vertices x, y ∈ V (C2n) such that
c0 ∈ L(x) \ L(y). Now, color f(x) = c0, and then color the vertices of C2n moving from x to y. Each
time, when arriving to color z ̸= y, only one neighbor of z has been colored, and thus the list L(z)
contains a color c different from that of the neighbor of z already colored. We can assign f(z) = c.
Finally when arriving at y, since f(x) = c0 and c0 /∈ L(y), we have at most one color from L(y) used
already for its neighbors. We can thus assign the other color to y. ■
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1.2 The Choice Number of Complete Bipartite Graphs

Proposition 1.6. ch(K3,3) > 2 = χ(K3,3).

Proof.

A

(1, 2)

(1, 3)

(2, 3)

B

(1, 2)

(1, 3)

(2, 3)

Let V (K3,3) = A ∪B, and let L = (L(v))v∈A∪B be the list assignment as in the figure above. Let now
f(v) ∈ L(v), v ∈ A ∪ B. Then it is easy to see that |f [A]| = |{f(a) | a ∈ A}| ≥ 2, |f [B]| = |{f(b) | b ∈
B}| ≥ 2 (as no element appears in all three 2-subsets of [3]). Since f [A], f [B] ⊆ [3], we have that f [A]∩
f [B] ̸= ∅. Hence there are a ∈ A and b ∈ B such that f(a) = f(b), thus witnessing a monochromatic
edge e = (a, b) under f . ■

We can generalize this simple example as follows.

Proposition 1.7 (ERT ’79). Let n =
(
2s−1
s

)
for a positive integer s. Then ch(Kn,n) > s.

Proof. Let the sides of Kn,n be A,B, |A| = |B| = n =
(
2s−1
s

)
. We assign to the vertices u ∈ A all

subsets of cardinality s from [2s− 1] as color lists. We do the same for the side B. Let now f be such
that f(v) ∈ L(v) for all v ∈ A ∪ B. Then the set f [A] = {f(a) | a ∈ A} has cardinality at least s (as
otherwise there is a set S ⊆ [2s−1], |S| = s such that S∩f [A] = ∅ — a contradiction). Similarly, the set
f [B] = {f(b) | b ∈ B} has cardinality |f [B]| ≥ s. But then f [A]∩ f [B] ̸= ∅ (since f [A], f [B] ⊆ [2s− 1]).
This implies that there are vertices a ∈ A, b ∈ B for which f(a) = f(b), thus creating a monochromatic
edge e = (a, b) under f . ■

Corollary 1. ch(Kn,n) ≥ (1/2 + o(1)) log2 n
1.

We conclude that we cannot bound ch(G) by any function of χ(G).

Theorem 2 (ERT ’79). ch(Kn,n) ≤ (1 + o(1)) log2 n.

Proof. We will prove: if integers n, d satisfy 2d > 2n then ch(Kn,n) ≤ d. Let the sides of Kn,n be A,B,
|A| = |B| = n, and assume that we are given color lists L = {L(v) | v ∈ A∪B} such that |L(v)| = d for
every v. Denote C =

⋃
v∈A∪B L(v). Partition C = CA ∪ CB at random, by putting every color c ∈ C

into CA independently and with probability 1/2. Our goal is to use colors from CA to color A, and

1Follows from the approximation
(
2k
k

)
= Θ(22k/

√
k).
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colors from CB to color B. If L(a)∩CA ̸= ∅ for all a ∈ A and L(b)∩CB ̸= ∅ for all b ∈ B, then we can
color A,B using separate colors. We have

Pr[L(a) ∩ CA = ∅] = Pr[L(b) ∩ CB = ∅] =
(
1

2

)d

.

Then by the union bound:

Pr[(∃a ∈ A.L(a) ∩ CA = ∅) ∨ (∃b ∈ B.L(b) ∩ CB = ∅)] ≤ 2n ·
(
1

2

)d

< 1.

We conclude that with a positive probability such a split C = CA∪CB exists, and so ch(Kn,n) ≤ d. ■

To summarize,
(1/2 + o(1)) log2 n ≤ ch(Kn,n) ≤ (1 + o(1)) log2 n.

1.2.1 Connection of ch(Kn,n) to Property B

Definition 1.8. A hypergraph H = (V,E) is a collection of subsets of V . If |e| = s, ∀e ∈ E, then H
is called s-uniform.

Definition 1.9. A hypergraph H = (V,E) is 2-colorable, or has Property B2, if there is a partition
V = A∪̇B such that for every e ∈ E, e ∩A ̸= ∅, e ∩B ̸= ∅.

Question: Determine the value of

m(d) = min{|E(H)| : H = (V,E) is a d-uniform hypergraph having no Property B}.

Example: m(2) = 3.

Proposition 1.10 (ERT ’79). For every d ≥ 2, ch(Km(d),m(d)) > d.

Proof. Let H = (V,E) be a d-uniform hypergraph with m(d) edges and without Property B (which
exists by the definition of m(d)). Take a complete bipartite graph Km(d),m(d) with sides A,B satisfying
|A| = |B| = m(d). Now, assign color lists L(v) to all v ∈ V (Km(d),m(d)) as follows: assign distinct
edges of H to distinct vertices of side A as color lists, and do the same for side B. If f is a choice of
colors for all vertices of Km(d),m(d) without a monochromatic edge, then define f [A] = {f(a) | a ∈ A},
f [B] = {f(b) | b ∈ B}. Then, since f does not produce a monochromatic edge, we have f [A]∩f [B] = ∅.
We observe that the sets f [A] and f [B] both form a cover of H, namely, intersect every edge of H (and
these covers are disjoint). But then, by extending f [A] and f [B] arbitrarily to all V (H), that is, adding
each of the remaining vertices in V (H) either to f [A] or to f [B], arbitrarily, we get a valid 2-coloring
of H – a contradiction, as H is assumed not to have Property B. Thus ch(Km(d),m(d)) > d. ■

It is known (and will be discussed later) that

Ω

(
2d ·

√
d

log d

)
≤ m(d) ≤ O(2dd2).

This implies that ch(Kn,n) = (1 + o(1)) log2 n.
2Named after Felix Bernstein, who researched this property in 1908.
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1.3 Degrees and Choosability – Upper Bound

Recall: For a positive integer d, a graph is called d-degenerate if there is an ordering σ = (v1, . . . , vn)
of V (G) (with |V (G)| = n) such that for every 1 ≤ i ≤ n, vertex vi has at most d neighbors preceding
it (such an ordering is called d-degenerate). The degeneracy of G, denoted by degen(G), is the smallest
value d such that G is d-degenerate. Clearly, degen(G) ≤ ∆(G).
We have proven: χ(G) ≤ 1 + degen(G) ≤ 1 + ∆(G).

Proposition 1.11. For every graph G, ch(G) ≤ 1 + degen(G).

Proof. Let d = degen(G), and let σ = (v1, . . . , vn) be a d-degenerate order of G. Let L = {L(v) | v ∈
V (G)} be a list assignment satisfying |L(v)| = d+1 for every v ∈ V (G). We color V (G) from the family
L of lists a vertex by a vertex according to σ. Once arriving at coloring vi, 1 ≤ i ≤ n, out of d+1 colors
in L(vi) at most d have been used on the neighbors of vi preceding it in σ. We can then assign f(vi) to
be a color from L(vi) not used already on the neighbors of vi. This implies that ch(G) ≤ d+ 1. ■

Conclusion: ch(G) ≤ 1 + ∆(G).

1.4 Choosability Version of Brooks’ Theorem

Recall: Let G = (V,E) be a connected graph of maximum degree ∆. Then χ(G) ≤ ∆ unless G is a
clique or an odd cycle (χ(K∆+1) = ∆+ 1,∆(K∆+1) = ∆; χ(C2n+1) = 3,∆(C2n+1) = 2).
Our goal now is to prove the choosability version of Brooks’ theorem: If G is a connected graph with
maximum degree ∆ then ch(G) ≤ ∆, unless G = K∆+1 or G = C2n+1.

Lemma 1.12 (Vizing ’76). Let G = (V,E) be a connected graph, and let L = {L(v) | v ∈ V } be a list
assignment for G satisfying |L(v)| ≥ d(v) for all v ∈ V .

1. If there is y ∈ V such that |L(y)| > d(y), then G is L-choosable.

2. If G is 2-connected and the lists in L are not identical, then G is L-choosable.

Proof. 1. Since G is connected there is an order σ = (v1, . . . , vn) on V such that:

(a) vn = y.

(b) ∀1 ≤ i ≤ n− 1, vi has at least one neighbor following it in σ.

(Such an ordering can be obtained, for example, by executing BFS on G starting from y, and then
putting the vertices into σ in the reverse order of their discovery.)
Now, color G vertex by vertex according to σ. For every 1 ≤ i ≤ n − 1, we have |L(vi)| ≥ d(vi)
and ≤ d(vi) − 1 colors have been used on the neighbors of vi preceding it. Thus there exists a
color for vi. When arriving to color vn = y, we recall that |L(y)| ≥ d(y) + 1, and hence there is a
color available for y as well.

2. We assume that G is 2-connected and not all lists are identical. We can find two vertices x, y ∈ V
such that (x, y) ∈ E and c ∈ L(x) \ L(y). Define now G′ = G− {x}. We also update the lists:

L′(v) =

{
L(v) , (v, x) /∈ E

L(v) \ {c}, (v, x) ∈ E
.
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Since κ(G) ≥ 2 and |V (G′)| = |V (G)|−1 we derive that G′ is connected. We have |L′(v)| ≥ dG′(v)
for every v ∈ V (G′), |L′(y)| ≥ |L(y)| ≥ dG′(y)+1. Now, by Item 1 we have that G′ is L′-choosable.
We can extend a legitimate choice for G′ by assigning color c to x.

■

Definition 1.13. A graph G is degree-choosable if G is L-choosable for every list assignment L =
{L(v) | v ∈ V (G)} satisfying |L(v)| = d(v) for all v ∈ V (G).

Lemma 1.14. Let G be a connected graph. If G contains a non-empty induced subgraph H which is
degree-choosable, then G is degree-choosable.

Proof. We are given a list assignment L = {L(v) | v ∈ V (G)}, |L(v)| = d(v) for all v ∈ V (G). Let
G′ = G \ H. In every connected component C of G′ we have |L(v)| ≥ dC(v) for every v ∈ C and in
addition there is a vertex y ∈ C connected to H (due to connectedness of G), for which |L(y)| > dC(y).
Then C is L-choosable by Lemma 1.12, part 1. Let f be a (proper) choice function for G′. Now, we
update the lists L(v) for v ∈ V (H) in the following natural way:

L′(v) = L(v) \ {f(u) |u /∈ H, (u, v) ∈ E(G)}.

Then, |L′(v)| ≥ dG(v) − dG(v, V (G) \ V (H)) = dH(v). Since we assumed that H is degree-choosable,
we can complete f by choosing colors for the vertices v ∈ V (H) from their lists L′(v). ■

Lemma 1.15 (ERT ’79). Let G be a 2-connected graph which is not complete and is not an odd cycle.
Then G contains an even cycle with at most one chord.

Proof. Since G is 2-connected it necessarily contains a cycle. Assume first that G has a triangle. Let
Q be a largest clique in G (by our assumption, |Q| ≥ 3). Since G is 2-connected and not a clique, there
is a path connecting two vertices of Q and passing outside of Q (i.e., all its edges are outside of Q). Let
P be a shortest path joining two vertices of Q with all its edges being outside of Q. Denote by x, y ∈ Q
the endpoints of P . If P has only two edges, then since Q is maximal, there is a vertex w ∈ Q not
connected to the vertex z ∈ P \Q. Then the 4-cycle xzywx is a cycle of length 4 with one chord. If P
has at least 3 edges, then its internal vertices have no neighbors in Q (as otherwise we could shorten
P ). In this case, we can create an even cycle with at most one chord either by adding the edge (x, y)
to P or by adding the path xwy with w ∈ Q to Q (such w exists as |Q| ≥ 3).

We now assume that G has no K3. Let C be a shortest cycle in G. Then C has no chords, and thus
we can assume that C is odd (as otherwise we are done). Then, since G is 2-connected, G ̸= C, we can
connect two vertices of C by a path outside of C. Then, by combining P with the appropriate part of C,
we can find an even cycle in G. Let C0 be a shortest even cycle in G. If C0 has at most one chord then
we are done. Otherwise, C0 has at least two chords. Then, recalling that G has no K3, and observing
that each chord in C0 creates two odd cycles with the parts of C0, by performing case analysis, we can
show that G contains an even cycle that is shorter than C0, which is a contradiction. ■

Theorem 3 (Borodin ’77; ERT ’79). Let G be a connected graph. Assume that G is not degree-choosable.
Then all blocks3 in G are either complete graphs or odd cycles.

Proof. By Lemma 1.14, it suffices to prove that if some block B of G is not complete and not an
odd cycle, then B is degree-choosable. Since an edge is a complete graph, we can assume that B is
2-connected. Then, by Lemma 1.15, B contains an even cycle with a most one chord. Thus, by Lemma

3A block of a graph is a maximal subgraph that has no cut-vertex.
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1.14, it is enough to require: an even cycle with at most one chord is degree-choosable. Let H be an
even cycle with at most one chord. Let L be a list assignment for v ∈ V (H) with |L(v)| ≥ dH(v) for
all v ∈ V (H). If the lists in L are not identical, then by Lemma 1.12, part 2, we can color H from the
lists. Otherwise, the lists are identical: if H is an even cycle with no chord, then since χ(H) = 2 and
|L(v)| = 2 for all v ∈ V (H), we can color H from L; if H is an even cycle with a chord, then since
∆(H) = 3 and all lists are identical, we have that |L(v)| = 3 for all v ∈ V (H), and so as χ(H) ≤ 3 we
get that H is colorable from the lists in L. ■

A corollary from Theorem 3 is the choosability version of Brooks’ theorem.

Corollary 4 (Vizing ’76; ERT ’79). If G is a connected graph of maximum degree ∆, then ch(G) ≤ ∆,
unless G = K∆+1 or G = C2n+1.

We will see the proof of this corollary in the next lecture.
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Lecture 9
Instructor: Prof. Michael Krivelevich Scribe: Yevgeny Levanzov

1 List Coloring

1.1 Choosability Version of Brooks’ Theorem

In the last lecture we proved the following theorem.

Theorem 1 (Borodin ’77; ERT ’79). Let G be a connected graph. Assume that G is not degree-choosable.
Then all blocks1 in G are either complete graphs or odd cycles.

A corollary from Theorem 1 is the choosability version of Brooks’ theorem.

Corollary 2 (Vizing ’76; ERT ’79). If G is a connected graph of maximum degree ∆, then ch(G) ≤ ∆,
unless G = K∆+1 or G = C2n+1 (∆ = 2)2.

Proof. If G is (∆ − 1)-degenerate, then G is ∆-choosable. Thus we may assume that G contains an
induced subgraph H with δ(H) ≥ ∆. But then H = G and G is a ∆-regular. Assume, towards a
contradiction, that G is not ∆-choosable. Then by Theorem 1 we have that every block of G is either a
complete graph or an odd cycle (in particular, a regular subgraph). Let us look on the block structure
of G (which is a tree). If G contains more than one block, then the cut-vertex v of a leaf block B0 in the
block (tree) structure of G has a larger degree than the rest of the vertices of the block – a contradiction.
We conclude that G contains a single block, which is either a K∆+1 or an odd cycle (∆ = 2). ■

We now present a very recent, short and self-contained proof of Corollary 2.

Proof. (Krivelevich3 ’22) The proof borrows its main idea from the nice argument of Zając for the
classical Brooks’ theorem, which we saw at the beginning of the course. Let G be a connected graph of
maximum degree ∆ ≥ 3 such that G ̸= K∆+1

4, and denote n = |V (G)|. We proceed by induction on
n. When n ≤ ∆, we can choose distinct colors for the vertices from any ∆-uniform list assignment.

For the induction step, suppose n > ∆ and consider a ∆-uniform list assignment L on G. We seek
an L-coloring f . If G has a vertex v with d(v) < ∆, then we can apply the induction hypothesis to
obtain an L-coloring of each component of G− {v}. These colorings together define f on G− {v} and
use at most ∆− 1 colors on the neighbors of v. Thus a color remains available in L(v) to extend f to
an L-coloring of G. Hence we may assume that G is ∆-regular.

Claim 1.1. If (u, v, w) is an induced 3-vertex path such that a color f(u) has been chosen from L(u),
then it is possible to choose f(w) from L(w) so that at most one color from {f(u), f(w)} appears in
L(v).

1A block of a graph is a maximal subgraph that has no cut-vertex.
2Note that this implies Brooks’ theorem, namely, if G is not a K∆+1 and not an odd cycle, then χ(G) ≤ ∆.
3The proof was discovered by M. Krivelevich several days after the current lecture. It was not shown in class and

formally was not part of the course.
4We saw in the last lecture that a (connected) graph of maximum degree 2 is 2-choosable if and only if it is not an

odd cycle.
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Proof. Set f(w) = f(u) if f(u) ∈ L(w), choose f(w) ∈ L(w) arbitrarily if f(u) /∈ L(v), and choose
f(w) ∈ L(w) \ L(v) if f(u) ∈ L(v) \ L(w). We can do this in the last case because L(v) and L(w) are
different but have the same size. ■

We first apply Claim 1.1 in the special case where G has a non-spanning cycle (i.e., not Hamiltonian)
C such that some vertex of C has no neighbor outside C. Since G is connected, we can then find two
consecutive vertices w and v along C such that all neighbors of w lie on C but v has a neighbor u
outside C. By the induction hypothesis, G \ V (C) has an L-coloring f . We will extend f to V (C) to
obtain an L-coloring of G. Using Claim 1.1, we choose f(w) ∈ L(w) so that at most one color from
{f(u), f(w)} appears in L(v).

Index the vertices along C in order as x1, . . . , xr with x1 = w and xr = v. Having chosen f(w) as
above, we next choose colors for x2, . . . , xr in order. For i ≤ r − 1, when we reach xi at least one of its
∆ neighbors is uncolored, and hence a color in its list is available to use as f(xi). When we reach v, we
have used at most one color from L(v) on its neighbors u and w and hence at most ∆− 1 colors on its
∆ neighbors, so again a color in L(v) remains available to use as f(v).

Now consider the general case for G. Since G is connected and not complete, G has P3 as an induced
subgraph, say with vertices u, v, w in order. Let P be a longest path in G starting with u, v, w, say
P = (x1, x2, x3, x4, . . . , xℓ), where (x1, x2, x3) = (u, v, w). By the choice of P , all neighbors of xℓ lie on
P . Let xi be the neighbor of xℓ with smallest index. The cycle (xi, . . . , xℓ, xi) contains all neighbors of
xℓ; if it does not include all the vertices of G, then the preceding special case applies.

Hence we may assume ℓ = n and i = 1. Now, since ∆ ≥ 3, vertex v has a neighbor xj outside {u,w}.
With x3 = w, we choose colors for the vertices in the order u, x3, . . . , xj−1, xn, . . . , xj , v. Every vertex
in this order has a later neighbor, except for v. However, after choosing any f(u) ∈ L(u), Claim 1.1
allows us to pick f(w) from L(w) so that at most one color from {f(u), f(w)} appears in L(v). Hence
for each subsequent vertex, when we reach it we have used at most ∆ − 1 colors from its list on its
neighbors, so a color remains available for it. ■

1.2 Degrees and Choosability – Lower Bound

Alon proved in 2000 that every graph G with minimum degree5 d satisfies ch(G) = Ω(log d).

Remarks:

1. The equivalent of the above claim for regular coloring is (strongly) false. In particular, the
chromatic number cannot be bounded from below by any function of minimum/average degree.
For example, if G = Kn,n then δ(G) = n but χ(G) = 2.

2. The above result allows for a simple algorithm to estimate (very crudely) the choice number of a
graph G, as follows:

(a) Find d := degen(G) (by checking whether G is i-degenerate for i = 0, 1 . . . ). We then know
that ch(G) ≤ 1 + d.

(b) By the definition of degen(G), there is a subgraph H of G with δ(H) ≥ d. This implies that
ch(G) ≥ ch(H) = Ω(log d).

We will prove Alon’s result for the regular case.
5The statement remains true if we consider graphs of average degree d instead, due to the well-known argument that

every graph of average degree d contains a subgraph whose minimum degree is at least d/2.
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Theorem 3. Let G be a d-regular graph. It holds that ch(G) = Ω(log d).

The proof uses the method/concept of graph containers, introduced by Saxton and Thomason ’2015,
and independently by Balogh, Morris and Samotij ’2015. For the case of regular graphs, the basic
approach was discovered earlier by several researchers, most notably by Sapozhenko ’2001.

Lemma 1.2. Let G be a d-regular graph on n vertices, and let ε > 0. Then there is a collection of sets
C = {Ci}i∈I with Ci ⊆ V (G) for all i, such that:

1. |C| ≤
∑

i≤ n
εd

(
n
i

)
.

2. For every Ci ∈ C, |Ci| ≤ n
εd + n

2−ε .

3. For every independent set I ⊆ V (G) there exists C ∈ C such that I ⊆ C.

4. For every C ∈ C it holds that ∆(G[C]) ≤ εd.

Remarks:

1. For G as above it holds that α(G) ≤ n/2, and this is tight (e.g., consider a d-regular bipartite
graph with n/2 vertices on each side).

2. If G is a (d-regular) bipartite graph with n/2 vertices on each side (in particular, G = Kd,d) then
it contains at least 2n/2 independent sets.

Proof of Lemma 1.2. Let S ⊆ V (G) be an independent set. Set T = ∅ and perform the following
process: as long as there is a vertex v ∈ S \ T such that |N(v) \N(T )| ≥ εd, we update T := T + {v}.
Clearly, this process terminates after at most n

εd steps with |T | ≤ n
εd . In addition, we have:

1. T ⊆ S.

2. Since S is an independent set, S ∩N(T ) = ∅.

3. Every vertex v ∈ S \ T has at least (1− ε)d neighbors in N(T ).

(We call such a set T a fingerprint.)
We now define

B = B(T ) = {v ∈ V (G) \ (T ∪N(T )) | d(v,N(T )) ≥ (1− ε)d}.
Note that B is determined by T alone. Now we define C = T ∪B – a container in the collection. Since
|T | ≤ n

εd , we will have at most
∑

i≤ n
εd

(
n
i

)
sets/containers C. By the definition of B and since for every

v ∈ S \ T , d(v,N(T )) ≥ (1 − ε)d, it follows that v ∈ B. This implies that S ⊆ (T (S) ∪ B(T )) = C.
In addition, for every v ∈ T , d(v, C) = 0, and for every v ∈ (C \ T ) = B, d(v, C) ≤ εd, and so
∆(G[C]) ≤ εd. It is left to estimate from above |C|, merely, |B|. We have B ⊆ V (G) \N(T ), and so

|B| ≤ n− |N(T )|. (1)

Also, every vertex in B sends ≥ (1− ε)d edges to N(T ). Since G is d-regular, we have |B| · (1− ε)d ≤
|N(T )| · d, and so

|B| ≤ |N(T )|
1− ε

. (2)

Now, multiplying inequality (1) by 1
2−ε , inequality (2) by 1−ε

2−ε , and adding them up we get

|B| ≤ n

2− ε
.

Thus we have |C| = |T |+ |B| ≤ n
εd + n

2−ε , completing the proof. ■
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Theorem 4. Let d ≥ k ≥ 2 be integers satisfying:(
ed

ln d

) ln d
d

·k2

< e[1−(
1
2
+ 1

ln d)
k

k−1 ]
k

. (3)

Let G be a d-regular graph. Then ch(G) > k.

We observe that (3) is satisfied if d > C2kk4 for some large enough constant C > 0.

Proof. Let us fix a palette K = {1, . . . , k2}. Now, choose lists {L(v) | v ∈ V (G)} uniformly at random,
where L(v) is a random k-subset of K. We need to prove: with positive probability the choice of lists
creates a list assignment L = {L(v)}v∈V (G) such that G is not L-choosable. Given a family of lists, let f
be a choice function. We denote Si = f−1(i) = {v ∈ V (G) | f(v) = i}. We have k2 disjoint independent
sets such that for every v ∈ V (G) there exists 1 ≤ i ≤ k2 such that v ∈ Si, i ∈ L(v). We will use
containers in place of independent sets (to make smaller the number of choices in the union bound), as
follows. Set ε = 1/ ln d, and apply Lemma 1.2 to get a family C of containers of size at most

|C| ≤
∑
i≤ n

εd

(
n

i

)
≤

∑
i≤n ln d

d

(
n

i

)
≤︸︷︷︸∑k

i=0 (
n
i)≤(

en
k )

k

(
ed

ln d

)n ln d
d

.

It suffices to show that with positive probability for any choice of k2 containers C1, . . . , Ck2 ∈ C there
is a vertex v such that v /∈

⋃
i∈L(v)Ci. We start by fixing a choice of k2 containers. By the above

estimate, there number of choices for k2 containers is at most
(

ed
ln d

)n ln d
d

·k2 . Given a family of containers
{Ci}i∈[k2], define, for v ∈ V (G), kv = |{i | v ∈ Ci}|. Then

∑
v∈V (G) kv =

∑k2

i=1 |Ci|. Recall that for
every i,

|Ci| ≤
n

εd
+

n

2− ε
=

n ln d

d
+

n

2− 1/ ln d
≤ n

2
(1 + 1/ ln d).

So
∑

v∈V (G) kv ≤ nk2

2 (1 + 1/ ln d). Denote k = 1
n

∑
v kv ≤ k2

2 (1 + 1/ ln d). Now, for a given v ∈ V (G)
the probability that the list L(v) of v satisfies v /∈

⋃
i∈L(v)Ci is(

k2−kv
k

)(
k2

k

) ≥ g(kv),

where the function g(z) is defined by

g(z) =

(
k2 − k − z

k2 − k

)k

=

(
1− z

k2 − k

)k

,

for 0 ≤ z ≤ k2 − k, and g(z) = 0 otherwise. Hence, due to independent choices of the lists L(v), the
probability that the choice of colors does not fail for a given choice of containers is at most∏

v∈V (G)

(1− g(kv)) ≤ e−
∑

v g(kv).

Now, since g(z) is a convex function, by Jensen’s inequality we get that

e−
∑

v g(kv) ≤ e−ng(k).
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In addition, since g(z) is a non-increasing function and k ≤ k2
(
1
2 + 1

ln d

)
, it follows that

g(k) ≥

(
1−

k2
(
1
2 + 1

ln d

)
k2 − k

)k

=

(
1−

(
1

2
+

1

ln d

)
k

k − 1

)k

.

Hence, the above probability is at most e−n(1−( 1
2
+ 1

ln d)
k

k−1)
k

. By a union bound, if(
ed

ln d

)n ln d
d

·k2

· e−n(1−( 1
2
+ 1

ln d)
k

k−1)
k

< 1,

then there is a choice of lists L = {L(v)}v∈V (G) failing all choices of containers. It follows that if (3)
(i.e., the assumption of the theorem) holds then ch(G) > k. In order to solve (3) (directly) for k, we
need to solve

exp

[
(1 + o(1))

ln2 d

d
· k2
]
< exp [2−k(1 + o(1))] =⇒ (1+o(1))

ln2 d

d
·k2 < 2−k(1+o(1)) =⇒ 2kk2 <

d

ln2 d
.

So, if d > C2kk4 for some large enough constant C > 0 then the above holds, and ch(G) > k. ■

Corollary 5. If G is any d-regular graph then ch(G) ≥ (1− o(1)) log2 d.

Finally, Theorem 3 follows directly from Corollary 5.

1.3 Choosability in Planar Graphs

Theorem 6 (Thomassen ’94). Every planar graph is 5-choosable.

Proof. Clearly, we can add edges to a planar graph G (while preserving planarity) so that:

1. The outer face of G is bounded by a cycle.

2. Every inner face of G is a triangle.

We will prove a stronger statement. Let G be a planar graph as above, and let L = {L(v)}v∈V (G) be a
list assignment such that:

1. For some two consecutive vertices u, v along the enclosing cycle of the boundary,
|L(u)| = |L(v)| = 1 and L(u) ̸= L(v).

2. |L(w)| = 3 for other (from u, v) vertices on the enclosing cycle.

3. |L(x)| = 5 for all vertices inside the enclosing cycle.

Then G is L-choosable.
The proof is by induction on |V (G)|.
Base: |V (G)| = 3 (and so the graph is K3 with vertices u, v, w). In this case we can write: L(u) =
{c1}, L(v) = {c2}, c1 ̸= c2, |L(w)| = 3. By choosing c ∈ L(w) \ {c1, c2} we get a proper L-choosing.
Step: Assume that the external cycle is (v1, . . . , vp). In this case |L(v1)| = 1, |L(vp)| = 1, L(v1) ̸= L(vp),
|L(vi)| = 3 for i ̸= 1, p.
Case 1: G has a chord with respect to the external cycle: (vi, vj) ∈ E(G), 1 ≤ i ≤ j − 2 ≤ p− 2. First,
color the subgraph of G bounded (geometrically) by the chord (vi, vj) and the part of the external cycle
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containing v1, vp. This can be done by induction. Let f be the corresponding choice function. We now
update: L(vi) = {f(vi)}, L(vj) = {f(vj)}, L(vi) ̸= L(vj). Now, apply induction on to the second half
of the graph.
Case 2: The external cycle in G has no chord. Let us look at a neighbor of v2 other than v1, v3. Since
the external cycle in G does not have chords, all neighbors u1, . . . , um of v2 are inside the external cycle.
Since every internal face is a triangle, we have a path u1u2 . . . um such that (v1, u1), (v3, um) ∈ E(G).
Let L(v1) = {c1}. Since v2 ̸= v1, vp, we have |L(v2)| = 3. Choose colors c2, c3 ∈ L(v2) \ {c1}. Now,
update L(ui) := L(ui) \ {c2, c3} for every i ∈ [m]. Then, |L(ui)| ≥ 3 for every i ∈ [m]. Consider now
the graph G− {v2}. This is a planar graph with an external cycle C ′ = (v1, u1, . . . , um, v3, . . . , vp, v1),
along which two vertices v1 and vp satisfy |L(v1)| = |L(vp)| = 1, L(v1) ̸= L(vp), and |L(w)| ≥ 3 for the
remaining external vertices. Then, by induction, G − {v2} is choosable from the lists. Denote by c′

the color chosen for v3. Now we complete this choice by choosing a color c ∈ {c2, c3} \ {c′} for v2. We
conclude that G is choosable from the lists. ■

We note that Theorem 6 is tight: Voigt (’93) gave an example of a non-4-choosable planar graph.
The best (smallest) construction of a non-4-choosable planar graph is due to Maryam Mirzakhani6

(’96) and has 63 vertices. Here we present a construction of a non-4-choosable planar graph due to Shai
Gutner7 (’96). Let W be the following planar graph:

Now, take 12 vertex-disjoint copies of W , identify vertices u in each of the 12 copies, do the same for v,
and finally add edge (u, v). The obtained graph G is clearly still planar and has 7 · 12+2 = 86 vertices.

Now, take the set S = {7, 8, 9, 10} and label each of the 12 copies of W by a distinct pair (a, b),
where a ̸= b ∈ S. Put S = {7, 8, 9, 10} for the lists of vertices u, v (which are shared by all the copies).
For the copy labeled by (a, b), use a, b where they appear in the figure of W above, to form the lists of
the vertices of this copy.

6She came up with this construction at the age of 19, later becoming a renowned mathematician, and the first woman
to win the prestigious Fields Medal. Sadly, she died of cancer at the young age of 40.

7He came up with this construction while still being a high school student.
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We claim that G is not choosable from the lists defined above. Suppose the contrary, and let f be
a choice of colors from the lists of V (G). Assume f(u) = a ̸= b = f(v), and consider the copy of W
labeled by (a, b). Now, the colors left for vertex w in this copy are just {1, 2}. If f(w) = 1 then the
colors left for the vertices of the triangle {x1, x2, x3} are just {3, 4}, and thus f creates a monochromatic
edge inside {x1, x2, x3}, which is a contradiction. Now, If f(w) = 2 then the colors left for the vertices
of the triangle {y1, y2, y3} are just {5, 6}, and thus f creates a monochromatic edge inside {y1, y2, y3},
which is again a contradiction. We conclude that G is not choosable8 from the lists, and so ch(G) > 4.

8Note that G is 3-colorable.
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Lecture 10
Instructor: Prof. Michael Krivelevich Scribe: Yevgeny Levanzov

1 Coloring Random Graphs

1.1 Basic Definitions and Notation

Binomial random graph – G(n, p):
The vertex set of a graph G ∼ G(n, p) is V (G) = {1, . . . , n} = [n], and for all 1 ≤ i < j ≤ n,
Pr[(i, j) ∈ E(G)] = p = p(n), independently.
Equivalently, given G = ([n], E), PrG(n,p)[G] = p|E|(1− p)(

n
2)−|E|.

We note that G(n, p) is a product probability space.
Case p = 1

2 : For all G = ([n], E), PrG′∼G(n,p)[G = G′] = 2−(
n
2) (i.e., uniform distribution).

Erdős–Rényi random graph1 – G(n,m):
The sample space of the distribution G(n,m) is

Ω = {G = ([n], E) | |E| = m}.

For every G ∈ Ω, Pr[G] = 1
|Ω| =

1((n
2

)
m

) (i.e., uniform distribution).

We have G(n, p) ≈ G(n,m) if m ≈
(
n
2

)
p.

Remark: The above is not exactly true. For example, if A = “G has exactly m edges”, then

Pr
G∼G(n,m)

[A] = 1,

but

Pr
G∼G(n,p)

[A] = Pr

[
Bin

((
n

2

)
, p

)
= m

]
= Θ

 1√(
n
2

)
p

 .2

Asymptotic assumptions and notation:

1. The number of vertices n → ∞.

2. A graph property Pn is a collection of graphs with vertex-set [n]. Then P = {Pn}n∈N is a sequence
of graph properties.

1This random graph model was introduced in 1959 by Paul Erdős and Alfréd Rényi in their seminal paper. The
binomial random graph model was introduced contemporaneously and independently by Edgar Gilbert. Historically, both
of these models are called (somewhat inaccurately) the Erdős–Rényi model.

2That is, roughly one over the standard deviation.

53



Definition 1.1. A graph property P = {Pn}n∈N holds with high probability3 (whp) in G(n, p) if

lim
n→∞

Pr[G ∼ G(n, p) has Pn] = 1.

Example: G ∼ G(n, 1
2111) is Hamiltonian whp.

Estimates on binomial coefficients:

1. For every integer 1 ≤ k ≤ n,

(n
k

)k
≤

(
n

k

)
≤

k∑
i=0

(
n

i

)
≤

(en
k

)k
.

2.
(
2n
n

)
= Θ(4n/

√
n) (follows from Stirling’s approximation).

Markov’s inequality:
Let X be a non-negative random variable such that E[X] exists. Then for every a > 0,

Pr[X ≥ a] ≤ E[X]

a
.

Therefore if a ≫ E[X] then Pr[X ≥ a] = o(1).

Questions: Given G ∼ G(n, 1/2) (or G(n, p = p(n)) in general), χ(G) is a random variable.

1. What is its typical behavior?

2. Algorithmic aspects — developing an efficient (i.e., polynomial-time) algorithm for coloring G
with as few colors as possible (i.e., the number of colors should be close to a whp upper bound
on χ(G)).

1.2 Lower Bounding the Chromatic Number of a Random Graph

Recall: For every graph G, χ(G) ≥ |V (G)|/α(G).
Therefore, it is enough to get a typical upper bound on α(G) for G ∼ G(n, 1/2). We define for integer
1 ≤ k ≤ n,

f(k) = f(k, n) =

(
n

k

)(
1

2

)(k2)
.

Explanation: Let X be the random variable that counts the number of independent sets of size k in
G ∼ G(n, 1/2). Decompose X =

∑
S⊆[n], |S|=k XS , where XS is the indicator random variable defined

by

XS =

{
1, G[S] is independent
0, otherwise

.

3Another common term is asymptotically almost surely (a.a.s.).
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By the linearity of expectation,

E[X] = E

 ∑
|S|=k

XS

 =
∑
|S|=k

E[XS ] =
∑
|S|=k

Pr[G[S] is independent] =
(
n

k

)(
1

2

)(k2)
= f(k, n).

Therefore, f(n, k) = the expected number of independent sets of cardinality k.
Define k0 = max{k | f(k, n) ≥ 1} (note that k0 is well-defined). We now estimate k0:

f(n, k) ≈ 1 =⇒
(
n

k

)(
1

2

)(k2)
≈ 1 =⇒

(cn
k

)k
(
1

2

)k(k−1)/2

≈ 1 =⇒ cn

k

(
1

2

)(k−1)/2

≈ 1.

Solving the above equation gives

k0 = 2 log2 n− 2 log2 log2 n+O(1) = (2− o(1)) log2 n.

Thus we expect α(G) ≈ k0. We have

f(k − 1)

f(k)
=

(
n

k−1

)
2−(

k−1
2 )(

n
k

)
2−(

k
2)

=
k

n− k + 1
· 2k−1 ≈︸︷︷︸

k≈k0

k

n
· n2+o(1) = k · n1+o(1). (1)

Now, if k = k0 + 1 then, by definition, f(k) < 1, and thus for k = k0 + 2 by (1) we have that f(k) =
O(n−1). Therefore, by Markov’s inequality, it holds that for G ∼ G(n, 1/2) whp
α(G) < k0 + 2 =⇒ α(G) ≤ k0 + 1. Therefore whp

χ(G) ≥ n

k0 + 1
=

n

(2− o(1)) log2 n
.

1.3 Upper Bounding the Chromatic Number of a Random Graph

1.3.1 Coloring by Excavation

Lemma 1.2. Let n ≥ m ≥ k be integers, and let G be a graph on n vertices satisfying: for every
V0 ⊆ V (G), |V0| = m it holds that V0 spans an independent set of size k. Then χ(G) ≤ n/k +m.

Proof. Start with G0 := G, and for as long as |V (G0)| ≥ m, find an independent set I of cardinality
|I| = k, color it by a fresh color, and discard: G0 = G0 − I. Once |V (G0)| < m — color the remaining
vertices in fresh separate colors.
The total number of colors needed: stage 1 – repeated ≤ n/k times and so uses ≤ n/k colors; stage 2 –
|V (G0)| < m and so uses < m further colors. Therefore, the total number of colors is ≤ n/k +m. ■

For a fixed V0 ⊆ [n], |V0| = m, we have that G[V0] ∼ G(m, 1/2).
Goal: to find m = m(n), k = k(n) such that

Pr[α(G(m, 1/2)) < k] ≪ 1(
n
m

) .
Then, by the union bound,

Pr[∃V0 ⊆ [n]. (|V0| = m) ∧ (α(G[V0]) < k)] ≤
(
n

m

)
· Pr[α(G(m, 1/2)) < k] = o(1).

Hence our goal is to find m = m(n), k = k(n) such that for G ∼ G(m, 1/2) we will have an exponentially
small bound on Pr[α(G) < k].
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1.3.2 Janson’s Inequality4

General setting:
Ω – a finite ground set, {Ai}i∈I – subsets of Ω. Generate a random subset R ⊆ Ω by Pr[r ∈ R] = pr,
for all r ∈ Ω, independently.
Goal: to estimate from above

Pr[none of Ai falls into R].

Example: Ω =
(
[n]
2

)
= E(Kn), Pr[e ∈ R] = p for all e ∈ E(Kn). Now, for every S ⊆ [n], |S| = 3, AS =

the set of three edges inside S. We consider the collection {AS}|S|=3. The event “No AS is fully inside
R” is equivalent to the event “K3 ̸⊆ G”.

Returning back to the general setting, for every i ∈ I, we define the indicator

Xi =

{
1, Ai ⊆ R

0, otherwise
.

Let X =
∑

i∈I Xi – number of subsets Ai, i ∈ I, fully inside R. It holds trivially that

Pr[none of Ai falls into R] = Pr[X = 0].

We would like to compute E[X]. Denote

µ = E[X] = E

[∑
i∈I

Xi

]
=

∑
i∈I

∏
r∈Ai

pr.

Poisson paradigm:
Under certain assumptions5 we would (like to) have that

Pr[X = 0] = e−µ.

If all Ai, i ∈ I, are disjoint:

Pr[X = 0] = Pr[none of Ai is in R] =
∏
i∈I

(1− Π
r∈Ai

pr).

Frequently we have
∏

r∈Ai
pr = o(1), and so

1−
∏
r∈Ai

pr ≈ e
−

∏
r∈Ai

pr ,

and so

Pr[X = 0] ≈ exp

−
∑
i∈I

∏
r∈Ai

pr

 = e−µ.

Taking correlation into account:
For i ̸= j ∈ I, write i ∼ j if Ai ∩Aj ̸= ∅. Now define

∆ :=
∑
i∼j

ord. pairs

Pr[(Ai ⊆ R) ∧ (Aj ⊆ R)] =
∑
i∼j

ord. pairs

Pr[Xi = Xj = 1].

4Appeared in Janson, Łuczak, Ruciński ’90.
5These assumptions would imply that X is distributed approximately according to Pois(µ).
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Janson’s inequality states that under the above assumptions

Pr[X = 0] ≤ e−µ+∆/2.

Generalized/extended Janson’s inequality:
Assuming in addition that µ ≤ ∆, we have

Pr[X = 0] ≤ e−µ2/(2∆).

Going back to our setup:
For k ≤ m ≤ n, G ∼ G(m, 1/2), we are interested in estimating Pr[α(G) < k]. Let Ω =

(
[m]
2

)
– set of

all pairs of vertices. For every e ⊆ [m], Pr[e ∈ R] = 1/2, where R is the set of non-edges of Ω. Define a
family {AS}, AS ⊆ Ω as follows: for every S ⊆ [m], |S| = k, AS = set of pairs inside S. We have

Pr[no AS falls inside R] = Pr[α(G) < k].

Define now random variables as follows: for every S ⊆ [m], |S| = k, define indicator XS by

XS =

{
1, S is an indep. set
0, otherwise

.

Let X =
∑

S⊆[m]
|S|=k

XS be a random variable counting the number of independent sets of cardinality k in

G(m, 1/2). Our goal is to estimate Pr[X = 0]. Using previous notation,

µ = E[X] =

(
m

k

)
2−(

k
2) = f(k,m).

Now, we have that

∆ =
∑

S,S′⊆[m]
|S|=|S′|=k

2≤|S∩S′|≤k−1

Pr[XS = XS′ = 1]

=

(
m

k

)(
1

2

)(k2)
︸ ︷︷ ︸

choosing S,
requiring XS=1

·
k−1∑
j=2

(
k

j

)
︸︷︷︸
S∩S′

(
m− k

k − j

)
︸ ︷︷ ︸

S′−S

(
1

2

)(k2)−(j2)

=

(
m

k

)2(1

2

)2(k2)

︸ ︷︷ ︸
=µ2

·
k−1∑
j=2

(
k
j

)(
m−k
k−j

)(
m
k

) · 2(
j
2)︸ ︷︷ ︸

:=uj

= µ2 ·
k−1∑
j=2

uj ,

where uj =
(kj)(

m−k
k−j )

(mk )
· 2(

j
2). We need to estimate from above the sum

∑k−1
j=2 uj .

Our goal is to show that for G ∼ G(n, 1/2) whp χ(G) ≤ n
2 log2 n

· (1 + o(1)). We now set our
parameters. Let m =

⌈
n

log22 n

⌉
. Recall that k0 = max{k | f(k,m) ≥ 1}. Now, set k = k0 − 3. Recalling
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the ratio f(k−1,m)
f(k,m) around k0, we have f(k0,m) ≥ 1 =⇒ f(k,m) ≥ m3−o(1). Thus, µ ≥ m3+o(1). Let us

now estimate u2 and uk−1.

u2 =

(
k
2

)(
m−k
k−2

)(
m
k

) · 21 ≤
(
k
2

)(
m
k−2

)(
m
k

) · 2 =︸︷︷︸
k≪m

O

(
k2 · k2

m2

)
= O(k4/m2),

and

uk−1 =

(
k

k−1

)(
m−k
1

)(
m
k

) · 2(
k−1
2 ) ≤ km(

m
k

)
2−(

k
2)+k−1

=
km

µ · 2k−1
=︸︷︷︸

k≈2 log2 m·(1−o(1))

km

µ ·m2−o(1)
=

k

µ ·m1−o(1)
=︸︷︷︸

µ≥m3+o(1)

o(1/m2).

Tedious but standard computation (do at home!) shows that in fact

k−1∑
j=2

uj = O(max{u2, uk−1}).

We have shown that u2 = O(k4/m2), uk−1 = o(1/m2). It follows that ∆ = µ2 ·O(u2) = µ2 ·O(k4/m2).
By extended6 Janson’s inequality, Pr[X = 0] = e−µ2/(2∆). Plugging in m =

⌈
n

log22 n

⌉
, k = k0(m) − 3 =

2 log2m · (1− o(1)) = 2 log2 n · (1− o(1)), we get that

Pr[X = 0] ≤ e−cm2/k4

for some constant c > 0. Hence,

Pr[∃V0 ⊆ [n]. (|V0| = m) ∧ (α(G[V0]) < k)] ≤
(
n

m

)
· e−cm2/k4 ≤ 2n · e−cn2/ log8 n = o(1).

Hence whp in G ∼ G(n, 1/2) the assumptions of Lemma 1.2 hold with m =
⌈

n
log22 n

⌉
, k = k0 − 3 =

2 log2 n · (1− o(1)), and we conclude that whp in G ∼ G(n, 1/2) it holds that

χ(G) ≤ n/k +m =
(1 + o(1))n

2 log2 n
+O

(
n

log2 n

)
= (1 + o(1)) · n

2 log2 n
.

We have thus proven:

Theorem 1 (Bollobás ’88). For G ∼ G(n, 1/2) whp it holds that χ(G) = (1 + o(1)) · n
2 log2 n

.

1.4 The Choice Number of a Random Graph

Questions: Given G ∼ G(n, 1/2) (or G(n, p = p(n)) in general), what is the typical behavior (or value)
of ch(G)?
We know that always ch(G) ≥ χ(G), and thus whp in G ∼ G(n, 1/2) it holds that

ch(G) ≥ (1 + o(1)) · n

2 log2 n
.

We show that this bound is typically tight, by proving a lemma analogous to Lemma 1.2 (excavation
lemma).

6As µ ≥ m3−o(1), and a more careful (yet simple) calculation shows that in fact ∆ = µ2 · Θ(k4/m2), it follows that
µ ≤ ∆ and so indeed we can apply the extended inequality.
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Lemma 1.3. Let n ≥ m ≥ k be integers and let G be a graph on n vertices satisfying: for every
V0 ⊆ V (G), |V0| = m it holds that α(G[V0]) ≥ k. Then ch(G) ≤ n/k +m.

The main argument in the proof is due to Jeff Kahn (appears in Alon ’93).

Proof. Assume we are given a list assignment L = (L(v))v∈V (G) satisfying |L(v)| ≥ n/k +m for every
v. We need to prove: there is a choice f(v) ∈ L(v), v ∈ V (G) such that f(u) ̸= f(v) for every edge
e ∈ E(G). We proceed as follows. Set G0 = G. Assume that there exists a color c appearing in at
least m lists L(v), v ∈ V (G0). Let V0 = {v ∈ V (G0) | c ∈ L(v)}. By the assumption, |V0| ≥ m. By the
lemma’s assumption, V0 contains an independent set I = Ic of cardinality k. We then color all vertices
v ∈ I by color c, discard I by updating G0 = G0 − I, and delete color c from all lists of the remaining
vertices. Now, when this process stops:

1. Every color c appears in lists of < m vertices of G0.

2. We have repeated the deletion phase ≤ n/k times, each time deleting ≤ 1 color from every list.

It follows that |L(v)| ≥ n/k +m − n/k = m for every v. We now define an auxiliary bipartite graph
Γ = (A∪B,E), as follows. We let A = V (G0), B =

⋃
v∈V (G0)

L(v), and (v, c) ∈ E if and only if c ∈ L(v)
(where the L(v)’s are the updated lists). We are looking for a matching M in Γ saturating side A. The
existence of such M means that we can choose colors c ∈ L(v) for any v ∈ V (G0) (according to M)
such that:

1. Each vertex gets a color.

2. Each color is chosen at most once.

Since dΓ(v) ≥ m for every v ∈ A and dΓ(c) ≤ m for every c ∈ B, the graph Γ is easily seen7 to have a
required matching. This completes the proof of the lemma. ■

Recall that we have proven that for: m =
⌈

n
log22 n

⌉
, k = k0(m) − 3 = 2 log2 n · (1 − o(1)), whp every

m vertices of G ∼ G(n, 1/2) span an independent set of cardinality k. Hence by the Lemma 1.3, whp
ch(G) ≤ n/k +m = (1 + o(1)) · n

2 log2 n
. Since we have also argued that whp

χ(G) ≥ n

k0(n) + 1
= (1 + o(1)) · n

2 log2 n
,

we conclude that:

Theorem 2 (Kahn). For G ∼ G(n, 1/2) whp it holds that ch(G) = (1+o(1))χ(G) = (1+o(1)) · n
2 log2 n

.

7Taking ∅ ̸= S ⊆ A, we must have |S| ≤ |N(S)|, as otherwise there would be a vertex c ∈ N(S) of degree > m. The
claim then follows from Hall’s theorem.
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Graph and Hypergraph Coloring, Tel Aviv Univ., Spring 2022 May 23, 2022

Lecture 11
Instructor: Prof. Michael Krivelevich Scribe: Yevgeny Levanzov

1 Coloring Random Graphs

In the last lecture we have proved:

Theorem 1 (Bollobás ’88). For G ∼ G(n, 1/2) whp it holds that χ(G) = (1 + o(1)) · n
2 log2 n

.

The proof of the upper bound used the notion of coloring by excavation: each time find a large inde-
pendent set, color it in a fresh color, discard it, and proceed.

Question: Is there an efficient algorithm for coloring G ∼ G(n, 1/2) typically in relatively few colors
(i.e., close to the upper bound on χ(G))?

1.1 An Algorithm for Coloring a Random Graph

Greedy coloring:
Recall: Given a graph G = (V,E), |V | = n, and a permutation σ = (v1, . . . , vn) on V , we color the
vertices in order of σ, by choosing a color for vi to be the smallest color available, namely, the smallest
color not taken by its previously colored neighbors.

Setup: Given G ∼ G(n, 1/2), fix σ = e to be the identity permutation on [n]. Define

χg(G) := number of colors used by the greedy algorithm when running according to σ.

Note that χg(G) is a random variable. We would like to analyze its behavior.

Theorem 2 (Grimmett-McDiarmid ’75). For G ∼ G(n, 1/2) whp it holds that χg(G) ≤ (1+o(1))· n
log2 n

.

Recalling that whp χ(G) = (1 + o(1)) · n
2 log2 n

, it follows from Theorem 2 that whp χg(G)
χ(G) ≤ 2 + o(1).

Proof. Set k =
⌈

n
log2 n−3 log2 log2 n

⌉
. We will prove: for G ∼ G(n, 1/2) whp χg(G) ≤ k. Let f be the

coloring produced by the greedy algorithm. If f uses > k colors: denote by Ai, 1 ≤ i ≤ n, the event
“Vertex i is the first to get color k + 1”. We have

Pr[χg(G) > k] = Pr

[
n⋃

i=1

Ai

]
=

n∑
i=1

Pr[Ai].

We will estimate for every i ∈ [n], Pr[Ai] = o(1/n), and then the theorem will follow. If Ai happens,
then by the time we arrive to color vertex i, all k colors have been used in [i− 1] and vertex i has some
neighbor in every color class. Fix a non-trivial partition P of [i − 1] into k parts: P = (C1, . . . , Ck).
Denote by BP the event: “f produces the partition P on [i− 1]”. Then:

Pr[Ai |BP ] =
k∏

j=1

(
1−

(
1

2

)|Cj |
)

≤︸︷︷︸
convexity

(
1−

(
1

2

) i−1
k

)k
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≤

(
1−

(
1

2

)n
k

)k

≤︸︷︷︸
1−x≤e−x

e−(
1
2)

n
k ·k

= exp

{
−
(
1

2

)log2 n−3 log2 log2 n

· n

log2 n
· (1 + o(1))

}
= e−(1+o(1))·log22 n = o(1/n).

Therefore, by the law of total probability, we have:

Pr[Ai] =
∑

P = non-trivial
partition of [i−1]

Pr[BP ] · Pr[Ai |BP ] = o(1/n) ·
∑
P

Pr[BP ] = o(1/n).

This completes the proof of the theorem. ■

We now show a complementary lower bound for χg(G).

Theorem 3 (Grimmett-McDiarmid ’75). For G ∼ G(n, 1/2) whp it holds that every color class pro-
duced by the greedy algorithm has size ≤ log2 n+ 2(log2 n)

1/2.

Proof. If some color class Ci, i ∈ [n], produced by the greedy algorithm, has cardinality ≥ log2 n +
2(log2 n)

1/2, then there are sets A,B ⊆ Ci, |A| = t1, |B| = t2, where t1 = log2 n and t2 = 2(log2 n)
1/2,

A ∩ B = ∅, and A < B (namely, every vertex from A precedes every vertex from B). Denote by M i
A

the event: “A is the set of first t1 vertices colored by color i”. Then, for B ⊆ [n], |B| = t2, A < B, we
have

Pr[B ⊆ Ci |M i
A] ≤

t2−1∏
j=0

(
1

2

)t1

︸ ︷︷ ︸
next vertex
in B has

no edges to A

·
(
1

2

)j

︸ ︷︷ ︸
next vertex
in B has no

edges to prior
vertices from B

=

(
1

2

)t1·t2+(t22 )
.

Hence,

Pr[exists such B |M i
A] ≤

(
n

t2

)(
1

2

)t1·t2+(t22 )
≤ nt2

(
1

2

)t1·t2 (1

2

)(t22 )
= nt2 · 1

nt2
·
(
1

2

)(t22 )
=

(
1

2

)(t22 )
=

(
1

2

)(1−o(1))·2 log2 n
= n−2+o(1).

Therefore,

Pr[|Ci| ≥ t1 + t2] =
∑

A⊆[n],
|A|=t1

Pr[M i
A] ·

∑
B⊆[n],
|B|=t2,
A<B

Pr[B ⊆ Ci |M i
A] = o(1/n) ·

∑
A

Pr[M i
A] = o(1/n).

Hence, by the union bound over all ≤ n color classes, we have that

Pr[exists color class Ci, |Ci| ≥ t1 + t2] ≤ n · o(1/n) = o(1).

■
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Conclusion: For G ∼ G(n, 1/2) whp it holds that χg(G) = (1 + o(1)) · n
log2 n

and χ(G) = (1 + o(1)) ·
n

2 log2 n
. Thus whp χg(G)

χ(G) = 2 + o(1).

Remark 1.1. The greedy algorithm is also robust: whp in G(n, 1/2), for any permutation σ on [n] the
greedy algorithm uses at most (1 + o(1)) · n

log2 n
colors.

Open problem: Given G ∼ G(n, 1/2), does there exist a polynomial-time algorithm finding typically
an independent set of cardinality (1 + ε) · log2 n for some constant ε > 0?

1.2 Hadwiger’s and Hajós’ Conjecture for Random Graphs

Reminder: A graph H = ({u1, . . . , ut}, F ) is contained in a graph G = (V,E) as a minor if there exist
disjoint sets V1, . . . , Vt ⊆ V such that

1. G[Vi] is connected for every i ∈ [t].

2. (ui, uj) ∈ F =⇒ G contains an edge between Vi and Vj .

Notation: H ≺ G.

Let η(G) = max{t |Kt ≺ G}.

Hadwiger’s conjecture ’43: For every graph G, η(G) ≥ χ(G).

Question: Given G ∼ G(n, 1/2), what are the typical values of η(G), χ(G)?

Recall: whp χ(G) = Θ
(

n
logn

)
. Also, Kostochka and independently Thomason (’80s) showed that if G

is a graph that has average degree d then η(G) = Ω
(

d√
log d

)
.

For G ∼ G(n, 1/2): |E(G)| ∼ Bin
((

n
2

)
, 1/2

)
, and thus1 whp |E(G)| = (1 + o(1)) · n2

4 . It follows from

Kostochka-Thomason that whp η(G) = Ω
(

n√
logn

)
. Therefore whp in G(n, 1/2) we have η(G) ≫ χ(G).

Reminder: A graph G = (V,E) has a subdivision of Kk if there is a vertex set V0 ⊆ V, |V0| = k, and a
collection of

(
k
2

)
internally disjoint paths (of length ≥ 1) connecting all pairs from V0.

Hajós’ conjecture 1940s: For every graph G, if χ(G) = k then G contains a subdivision of Kk.

Proposition 1.2. Let G be a graph on n vertices containing a subdivision of Kk. Then there is a set
V0 ⊆ V (G), |V0| = k such that e(V0) ≥

(
k
2

)
− (n− k).

Proof. Let V0 be the branch vertices of a subdivision of Kk in G. All
(
k
2

)
pairs of vertices (from V0)

are connected by internally disjoint paths in G. Out of these
(
k
2

)
paths, at most n − k have a vertex

outside V0. The rest should be connected by paths lying entirely in V0, each having at least one edge
(in fact, exactly one edge) inside V0. Thus, e(V0) ≥

(
k
2

)
− (n− k). ■

Let now G ∼ G(n, 1/2), and set k = ⌈3
√
n⌉. For a given subset V0 ⊆ V (G), |V0| = k, we have eG(V0) ∼

Bin
((

k
2

)
, 1/2

)
and thus E[eG(V0)] = (1+ o(1)) · k24 = (1+ o(1)) · 9n4 . By applying Chernoff-type bounds

on the tails of the binomial random variables, we derive: for G ∼ G(n, 1/2) whp it holds that for every
V0 ⊆ V (G), |V0| = k, we have e(V0) = (1+o(1))· 9n4 . Also,

(
k
2

)
−(n−k) = (1+o(1))· 9n2 −n = (1+o(1))· 7n2 .

1Follows from Chernoff-Hoeffding bounds.
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Hence, using Proposition 1.2, we conclude:

Theorem 4 (Erdős-Fajtlowicz ’77). For G ∼ G(n, 1/2) whp it holds that G has no subdivision of size
≥ 3

√
n.

Recalling that whp in G ∼ G(n, 1/2) we have χ(G) = Θ
(

n
log2 n

)
, it follows that Hajós’ conjecture fails

miserably for a typical random graph.

1.3 Coloring Locally-Sparse Graphs

Question: Let H = {H1, . . . ,Hm} be a family of graphs. Suppose a graph G has no copy of any
Hi ∈ H. What can be said about χ(G)?

Proposition 1.3. Let T be a tree with k edges, and let G be a graph satisfying χ(G) > k. Then G
contains a copy of T .

The proposition follows from the fact that G contains a (k+ 1)-critical subgraph G0, and it holds that
δ(G0) ≥ k. By a well-known argument, every graph with minimum degree ≥ k contains a copy of every
tree with k edges.

Definition 1.4. Given a graph G, the girth of G, denoted by girth(G), is the length of a shortest cycle
in G. If G is a forest, i.e., has no cycles, then we define girth(G) = ∞.

Theorem 5 (Erdős ’59). Let k, ℓ be positive integers. Then there exists a graph G with: girth(G) > ℓ
and χ(G) > k.

Proof. Consider G ∼ G(n, p), where p = p(n) is chosen as follows: set a constant 0 < α < 1/ℓ and
then set p(n) = n−1+α. Now, let X be a random variable counting the number of cycles of length ≤ ℓ
in G. Decompose: X = X3+ · · ·+Xℓ, where Xi is the number of cycles of length i in G. We have, due
to the linearity of expectation,

E[X] = E

[
ℓ∑

i=3

Xi

]
=

ℓ∑
i=3

E[Xi].

For a given i,

E[Xi] =
n(n− 1) · · · (n− i+ 1)

2i︸ ︷︷ ︸
number of i-cycles in Kn

(2i – choice of start. vertex and dir.)

· pi < (np)i.

Thus

E[X] <

ℓ∑
i=3

(np)i =

ℓ∑
i=3

nαi = O(nαℓ) = o(n).

By using Markov’s inequality, we derive:

Pr[X > n/2] = on(1) =⇒ Pr[X ≤ n/2] = 1− on(1).

Let t =
⌈
3 lnn
p

⌉
. Then

Pr[α(G) ≥ t] ≤
(
n

t

)
︸︷︷︸

choose a set
V0,|V0|=t

· (1− p)(
t
2)︸ ︷︷ ︸

require e(V0)=0

< nte−p(t2)
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=
[
ne−p(t−1)/2

]t
=
[
ne−(1−o(1)) 3

2
lnn
]t

=
[
n−1/2+o(1)

]t
= o(1).

It follows that whp α(G) < t. Hence, for every large enough n, there is a graph G on n vertices such
that:

1. X(G) ≤ n/2 (i.e., the number of cycles of length ≤ ℓ is at most n/2).

2. α(G) ≤ t.

Take G as above, and delete one arbitrary vertex from every cycle of length ≤ ℓ. We get a graph G0,
satisfying:

1. |V (G0)| ≥ n/2.

2. girth(G0) > ℓ.

3. α(G0) ≤ α(G) ≤ t.

We conclude that
χ(G0) ≥

|V (G0)|
t

≥ n/2

⌈3n1−α lnn⌉
≥ nα/2 > k.

■

1.3.1 Explicit Constructions of Graphs with High Chromatic Number and without Short Cycles

Zykov’s construction (1949):
We want to construct a sequence {Gk} of K3-free graphs such that χ(Gk) = k. Assume that G1 =
K1 and that we have already constructed {G1, . . . , Gk}. Our goal is to construct Gk+1. Take an
independent set X, |X| =

∏k
i=1 |V (Gi)|. Each x ∈ X is associated with, and connected to, a k-tuple

(v1, . . . , vk), vi ∈ V (Gi).

Theorem 6 (Zykov ’49). Gk is k-chromatic and K3-free.

Proof. The proof proceeds by induction on k. The induction base is trivial. For the induction step,
we first observe that χ(Gk+1) ≤ 1 + χ(Gk), as we just add an independent set X. Thus, by induction
hypothesis, we have χ(Gk+1) ≤ k + 1. We will now show that χ(Gk+1) ≥ k + 1. Assume the contrary,
and let f be a proper k-coloring of Gk+1. Since χ(Gi) = i (by induction hypothesis), f uses at least
i distinct colors on V (Gi), 1 ≤ i ≤ k. Then there is a k-tuple (v1, . . . , vk), vi ∈ V (Gi), such that f
uses distinct colors on v1, . . . , vk. Let x ∈ X be connected to v1, . . . , vk. Then f(x) = f(vi) for some
1 ≤ i ≤ k — a contradiction.

We now show that Gk+1 is K3-free. If {x, y, z} is a triangle, then since X is an independent set,
we have |X ∩ {x, y, z}| ≤ 1. Also, every x ∈ X has exactly one neighbor in each Gi. Since G1, . . . , Gk

are not connected by edges, there is 1 ≤ i ≤ k such that x, y, z ∈ V (Gi), but then K3 ⊆ Gi — a
contradiction. ■

Mycielski’s construction (1955):
Given a graph G with V (G) = {v1, . . . , vn}, define the Mycielskian M(G) of G as follows:

1. Add an independent set U = {u1, . . . , un}.
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2. For every i ∈ [n], connect ui to all neighbors of vi in G.

3. Add another vertex w, and connect w to all of U .

Example: Grötzsch graph = M(C5):

Theorem 7 (Mycielski ’55). Let G be a k-chromatic K3-free graph. Then M(G) is (k + 1)-chromatic
and K3-free.

Proof. We first show that χ(M(G)) ≤ 1 + χ(G). If g : V (G) → [k] is a k-coloring of G, then the
following is clearly a (k + 1)-coloring of M(G):

g(vi) = f(vi), 1 ≤ i ≤ n;

g(ui) = f(vi), 1 ≤ i ≤ n;

g(w) = k + 1.

We now show that χ(M(G)) ≥ k + 1. Assume the contrary, and let f : V (M(G)) → [k] be a proper
k-coloring of M(G). We can assume, without loss of generality, that f(w) = k. It follows that f(ui) ̸= k
for every i. Let A = {vi ∈ V (G) | f(vi) = k}. We can assume that A ̸= ∅ as otherwise f colors G
in k − 1 colors — contradicting χ(G) = k. Also, we can clearly assume that A is an independent set.
Define a new coloring g : V (G) → [k − 1] as follows:

g(vi) =

{
f(ui), vi ∈ A

f(vi), v ∈ V (G) \A
.

It is easy to see that g is a proper (k − 1)-coloring of G — a contradiction.
We now show that M(G) is K3-free. Assume the contrary, and let {x, y, z} be a K3 ⊆ M(G). Then

{x, y, z}∩ {w} = ∅, and |{x, y, z}∩U | ≤ 1. As G is K3-free, we may assume, without loss of generality,
that x = ui for some i ∈ [n]. Then y, z ∈ V (G) and so (vi, y), (vi, z), (y, z) ∈ E(G), which implies that
K3 ⊆ G — a contradiction. ■

Remark 1.5. If G has n vertices and m edges, then M(G) has 2n+ 1 vertices and 3m+ n edges.
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Blanche Descartes2 (1947, 1955):
We start with an odd cycle G3. In order to construct the graph Gk+1 from Gk we proceed as follows.
Take an independent set X, |X| = k(|V (Gk)| − 1) + 1. Then take

( |X|
|V (Gk)|

)
disjoint copies of Gk. For

every choice of a subset Y ⊆ X of cardinality |Y | = |V (Gk)|, connect Y by a perfect matching to its
own copy of Gk.

Theorem 8 (Blanche Descartes ’47, ’55). If G3 has length ≥ 7, then Gk is a k-chromatic graph with
girth(Gk) ≥ 6.

Proof. The proof proceeds by induction on k. The induction base is trivial. For the induction step,
we first observe that χ(Gk+1) ≤ 1 + χ(Gk), as we just add an independent set X. Thus, by induction
hypothesis, we have χ(Gk+1) ≤ k + 1. We will now show that χ(Gk+1) ≥ k + 1. Assume the contrary,
and let f be a proper k-coloring of Gk+1. By the pigeonhole principle, there is a monochromatic subset
Y ⊆ X of size |V (Gk)|. Assume that f(v) = j for every v ∈ Y . Now, denote by GY

k the copy of Gk

associated to Y , i.e., the copy of Gk to which Y is connected by a matching. It follows that no vertex
of GY

k is colored by color j, and thus χ(GY
k ) ≤ k − 1 — contradicting χ(Gk) = k.

We now show that girth(Gk+1) ≥ 6. Assume the contrary, and let C be a cycle of length ≤ 5 in
Gk+1. We must have a vertex x ∈ C ∩ X (as by induction hypothesis, girth(Gk) ≥ 6, and there are
no edges between the copies of Gk). Let y, z be the neighbors of x along C. By the construction, y, z
belong to different copies of Gk. Assume, without loss of generality, that y ∈ G1

k, z ∈ G2
k. Since y, z

have only one neighbor in X (follows from the construction) and there are no edges between G1
k and G2

k,
there exist y′ ̸= y ∈ C ∩G1

k, z
′ ̸= z ∈ C ∩G2

k. As (y′, z′) /∈ E(Gk+1), we get that C \ {x, y, z, y′, z′} ≠ ∅,
and so |C| ≥ 6. ■

2A collaborative pseudonym that was used by the British mathematicians R. Leonard Brooks, Arthur Harold Stone,
Cedric Smith, and William T. Tutte. The four met in 1935 as undergraduate students at Trinity College, Cambridge.
The pseudonym originated by combining the initials of their names to form BLAC. It was extended to BLAnChe, while
the surname Descartes was chosen as a play on the common phrase “carte blanche”.
The construction shown here is attributed to Tutte.
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Graph and Hypergraph Coloring, Tel Aviv Univ., Spring 2022 May 30, 2022

Lecture 12
Instructor: Prof. Michael Krivelevich Scribe: Yevgeny Levanzov

1 Hypergraph Coloring

Definition 1.1. A hypergraph H is an ordered pair H = (V,E), where V is a set of vertices and E is
a family of subsets of V ; the elements of E are called edges. If |e| = r for every e ∈ E then H is called
r-uniform. If |e| ≤ r for every e ∈ E then we say that H has rank r.

Example: A 2-uniform hypergraph is a graph.

Definition 1.2. Let H = (V,E) be a hypergraph. A function f : V → [k] is called a k-coloring of H if
no edge e ∈ E of H is monochromatic under f , that is, there are u, v ∈ e such that f(u) ̸= f(v).
A hypergraph is k-colorable if it admits a k-coloring.

1.1 Property B

Definition 1.3. A hypergraph H is said to have Property B1 if H is 2-colorable.

Extremal problem: Define

m(n) = min{|E(H)| : H = (V,E) is a n-uniform hypergraph having no Property B}.

Example: m(2) = 3 — H = K3.
It holds that m(3) ≤ 7, as can be seen by the Fano plane (which is a projective plane2 of order 2), where
the lines correspond to hyperedges:

The Fano plane is also a Steiner triple system on 7 vertices. It can be easily verified that the above
hypergraph is not 2-colorable (as the only way for a set of size 3 to intersect all edges is to contain the
3 vertices of some line/edge). In fact, it holds that m(3) = 7.
Our goal is to understand the asymptotic behavior of m(n) when n → ∞.

1Named after Felix Bernstein, who researched this property in 1908.
2A projective plane consists of lines and points such that through every pair of points there is exactly one line, and

every two lines intersect in exactly one point. A projective plane has order n if it has n2 + n+ 1 lines, n2 + n+ 1 points,
n+ 1 points on each line, and n+ 1 lines through each point.
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1.2 A Lower Bound for m(n)

Proposition 1.4 (Erdős ’63). It holds that m(n) ≥ 2n−1.

Proof. Let H = (V,E) be an n-uniform hypergraph with < 2n−1 edges. We need to prove that H
is 2-colorable. Color V in red/blue at random: for every v ∈ V , Pr[v is red] = Pr[v is blue] = 1/2,
independently. For every e ∈ E, denote by Ae the event “e is monochromatic under the random
coloring”. It holds that

Pr[Ae] = 2︸︷︷︸
choose
color

· 2−n︸︷︷︸
require all n

vertices of e are
of chosen color

= 2−n+1.

Then, by the union bound,

Pr

[⋃
e∈E

Ae

]
≤

∑
e∈E

Pr[Ae] = |E| · 2−n+1 < 2n−1 · 2−n+1 = 1.

We conclude that there is a coloring in red/blue without any monochromatic edge. ■

Theorem 1 (Cherkashin, Kozik3 ’15). If there exists p ∈ [0, 1] such that

k(1− p)n + k2p < 1, (1)

then m(n) > 2n−1k.

Proof. Let H = (V,E) be an n-uniform hypergraph with m = 2n−1k edges. We need to prove, assuming
(1), that H is 2-colorable. For each vertex v ∈ V , assign a label xv, uniformly chosen from [0, 1]. With
probability 1, all xv’s are distinct. Given the labels {xv}v∈V , we order the vertices in V in the increasing
order of their labels, thus creating a (random) permutation σ of V . Given σ, we (try to) 2-color V as
follows. Go vertex-by-vertex according to σ, color v in blue unless forced otherwise, namely, unless v
is the last (by σ) vertex of some edge e ∈ E, all of whose other vertices have been colored blue. In this
case, v is colored red. We will prove, assuming (1), that the above algorithm succeeds with positive
probability. Observe that the algorithm cannot color an entire edge e ∈ E in blue, but might color some
edge entirely in red. If an edge f ∈ E gets colored red eventually, then every vertex v ∈ f , including the
first vertex by σ, is the last vertex of some other edge e ∈ E. So in particular there are edges e ̸= f ∈ E
such that e ∩ f = {v} is the last vertex of e and the first vertex of f . Let us call such an ordered pair
(e, f) as above a conflicting pair. We conclude that if there are no conflicting pairs then the algorithm
succeeds. We now estimate the probability of getting a conflicting pair. We divide [0, 1] = L ∪M ∪ R
(left, middle, right), where L = [0, (1− p)/2),M = [(1− p)/2, (1+ p)/2), R = [(1+ p)/2, 1]. Let us first
estimate the probability of having a conflicting pair (e, f) such that e ∩ f = {v} and xv ∈ L ∪ R. If
xv ∈ L, then the entire edge e should fall into L (i.e., the labels of all its vertices are in L); if xv ∈ R,
then the entire edge f should fall into R. For a given e ∈ E, Pr[∀u ∈ e. xu ∈ L] =

(
1−p
2

)n
. Similarly,

for a given f ∈ E, Pr[∀u ∈ f. xu ∈ R] =
(
1−p
2

)n
. Hence, the probability of having a conflicting pair

(e, f) with e ∩ f = {v}, and xv ∈ L or xv ∈ R is at most

2m

(
1− p

2

)n

≤ 2n−1k · (1− p)n

2n−1
= k(1− p)n.

3They provided a much simpler proof to a previous result of Radhakrishnan-Srinivasan ’00.
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Now we estimate the probability of having a conflicting pair (e, f) with e∩f = {v} and xv ∈ M . We have
Pr[xv ∈ M ] = |M | = p. Now, given that v has label xv ∈ M , Pr[v is the last vertex of e |xv] = xn−1

v

and Pr[v is the first vertex of f |xv] = (1− xv)
n−1. Therefore,

Pr[(e, f) is a conflicting pair |xv] = xn−1
v · (1− xv)

n−1 = (xv(1− xv))
n−1 ≤

(
1

4

)n−1

.

Hence,

Pr[(e, f) is a conflicting pair with e ∩ f = {v} and xv ∈ M ] ≤ p

(
1

4

)n−1

.

The number of ordered pairs (e, f) with |e ∩ f | = 1 is at most m2, hence

Pr[exists a conflicting pair of this type] ≤ m2 · p
(
1

2

)2n−2

= (2n−1k)2 · p
(
1

2

)2n−2

= k2p.

Hence, Pr[exists a conflicting pair] ≤ k(1−p)n+k2p. We assumed (in (1)) that k(1−p)n+k2p < 1 and
thus Pr[no conflicting pair] > 0. We conclude that with positive probability the algorithm succeeds in
2-coloring of H. ■

Corollary 2. It holds that m(n) = Ω
(
2n ·

√
n

logn

)
.

Proof. We use the inequality 1 − x ≤ e−x and get that k(1 − p)n + k2p ≤ ke−pn + k2p. Let f(p) =

ke−pn+k2p. Optimizing, we set p∗ = ln(n/k)
n . Then f(p∗) = k2

n (1+ln(k/n)). Now, choosing k = c
√

n
lnn ,

where c > 0 is some constant, we get that f(p∗) < 1, and so (1) is satisfied (for large enough n). Hence
m(n) = Ω

(
2n ·

√
n

logn

)
. ■

1.3 An Upper Bound for m(n)

Theorem 3 (Erdős ’64). It holds that m(n) = O(2nn2).

Proof. Let V be a set of vertices of size |V | = v, where the value of v = v(n) will be chosen later.
Generate m subsets e1, . . . , em ⊆ V , each of size n, uniformly at random from V , with repetitions.
Define now H = (V,E), where E = {e1, . . . , em} (possibly with multiple edges). We will prove: for
a “good” choice of m = m(n), the random hypergraph H is non-2-colorable with positive probability.
This would imply that m(n) ≤ m. Let us fix a coloring χ of V , namely, a partition V = A ∪ B, |A| =
a, |B| = b, a + b = v. We estimate the probability that χ is a 2-coloring of H. For a random n-subset
ei ⊆ V ,

Pr[ei is monochromatic under χ] =

(
a
n

)
+
(
b
n

)(
v
n

) ≥︸︷︷︸
convexity

2
(
v/2
n

)(
v
n

) =: p.

Hence,
Pr[none of ei, i ∈ [m], is monochromatic under χ] = (1− p)m.
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The number of potential 2-colorings of V is ≤ 2v. Hence, by the union bound, if 2v · (1 − p)m < 1,
then with positive probability the hypergraph H = (V, {e1, . . . , em}) is not 2-colorable. Observe that
2v · (1 − p)m ≤ 2ve−pm, and so we need to solve 2ve−pm < 1. Choose m =

⌈
v ln 2
p

⌉
, then there is an

n-uniform hypergraph with m edges which is not 2-colorable. We have

p =
2
(
v/2
n

)(
v
n

) = 21−n ·
n−1∏
i=0

v − 2i

v − i
.

If we assume that v ≫ n3/2, then we can estimate:

21−n ·
n−1∏
i=0

v − 2i

v − i
= 21−n ·

n−1∏
i=0

(1− i/v +O(i2/v2))

≤ 21−n ·
n−1∏
i=0

e−i/v+O(i2/v2)

= 21−ne−n2/2v(1 + o(1)).

Choose now v = cn2, where c > 0 is some constant. Then we get that there exists an n-uniform
hypergraph H with ≤ c2nn2 edges which is not 2-colorable. Hence m(n) = O(2nn2). ■

Remark 1.5. Recalling the lower bound argument, we observe that if v = Θ(n2), and e, f ⊆ V are
random n-subsets of V , then Pr[|e∩ f | = 1] is bounded away from 0 (hence the expected number of such
pairs is Θ(m2)).

1.4 Applying the Lovász Local Lemma4

Theorem 4 (Lovász Local Lemma (LLL), symmetric case; Erdős, Lovász ’75). Let A1, . . . , Am be events
in an arbitrary probability space. Suppose that each event Ai is (mutually5) independent of all other
events Aj but at most d of them. Suppose further that Pr[Ai] ≤ p, 1 ≤ i ≤ m. If ep(d+ 1) ≤ 1, then

Pr

[
m∧
i=1

Ai

]
> 0.

Proof. See books on the probabilistic method (e.g., Alon-Spencer, The Probabilistic Method). ■

Corollary 5 (Erdős, Lovász ’75). Let H = (V,E) be a hypergraph. Assume that every edge e ∈ E has
at least k vertices and intersects at most d other edges. If e · 1

2k−1 (d+ 1) ≤ 1, then H is 2-colorable.

Proof. Color V at random: Pr[v is red] = Pr[v is blue] = 1/2, independently. For every f ∈ E, let
Af be the event “f is monochromatic”. We have Pr[Af ] = 2 · 2−|f | ≤ 21−k. In addition, each Af is
(mutually) independent of {Af ′ | f ∩ f ′ = ∅}, and the number of edges outside of the above set is ≤ d

by our assumption. Hence by the LLL, if e · 1
2k−1 (d+1) ≤ 1, then Pr

[∧
f∈E Af

]
> 0. This implies that

H is 2-colorable. ■
4Appeared in Erdős, Lovász ’75.
5A set of events A1, . . . , An is mutually independent if every event is independent of any intersection of the other

events and their complements. In particular, for every I ⊆ [n], Pr[
∧

i∈I Ai] =
∏

i∈I Pr[Ai].
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Corollary 6. Let H = (V,E) be an n-uniform hypergraph of maximum degree ∆. If e · 1
2n−1 · n∆ ≤ 1,

then H is 2-colorable.

Proof. Apply Corollary 5 with k = n and d = n∆ (as each edge intersects at most n∆ other edges). ■

2 Edge Coloring

2.1 Basic Definitions

Definition 2.1. Let G = (V,E) be a multigraph. A function f : E → [k] is called a k-edge-coloring of
G if f(e) ̸= f(e′) for every e, e′ ∈ E such that e ∩ e′ ̸= ∅.

Definition 2.2. A multigraph G is said to be k-edge-colorable if it has a k-edge-coloring.

Definition 2.3. The chromatic index of a multigraph G, denoted by χ′(G), is the smallest k such that
G is k-edge-colorable.

Remark 2.4. 1. If f : E(G) → [k] is a k-edge-coloring of a graph G, then each color class f−1(i) =
{e ∈ E(G) | f(e) = i} is a matching. Thus, a k-edge-coloring of G is a partition of E(G) into k
matchings.

2. Observe that a k-edge-coloring of a graph G is a k-vertex-coloring of the line graph6 L(G). Thus,
χ′(G) = χ(L(G)).

2.2 Trivial Bounds on the Chromatic Index

Claim 2.5. For every graph G it holds that χ′(G) ≥ ∆(G).

The above claim is analogous to the claim that χ(L(G)) ≥ ω(L(G)) (as ω(L(G)) ≥ ∆(G)).

Proof. If f is a legal edge-coloring of G, then for every v ∈ V (G), the d(v) edges containing v are all
colored in distinct colors by f , and thus f uses at least d(v) colors. ■

Claim 2.6. For every graph G it holds that χ′(G) ≥ |E(G)|
ν(G) , where ν(G) is the matching number of G

(i.e., the size of a maximum matching in G).

The analogous claim for vertex-coloring is that χ(G) ≥ |V (G)|/α(G).

Proof. Let f : E(G) → [k] be a valid k-edge-coloring of G. Then each color class Ei = f−1(i) = {e ∈
E(G) | f(e) = i} forms a matching in G, implying |Ei| ≤ ν(G). Since E(G) = E1∪̇ . . . ∪̇Ek, we obtain
|E(G)| =

∑k
i=1 |Ei| ≤ kν(G), and so k ≥ |E(G)|/ν(G). ■

Claim 2.7. For every graph G it holds that χ′(G) ≤ 2∆(G)− 1.

Proof. Let us look at the line graph L(G). For an edge e = (u, v) ∈ E(G), we have that e intersects
≤ (d(u)− 1) + (d(v)− 1) other edges. Thus ∆(L(G)) ≤ 2(∆(G)− 1) = 2∆(G)− 2. By the trivial form
of Brooks’ theorem, we have that χ(L(G)) ≤ ∆(L(G)) + 1 ≤ 2∆(G)− 1, and thus χ′(G) = χ(L(G)) ≤
2∆(G)− 1. ■

6The line graph of a graph G is the graph whose vertices are the edges of G, and two vertices are adjacent if their
corresponding edges in G intersect.
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Conclusion: ∆(G) ≤ χ′(G) ≤ 2∆(G)− 1.
In particular, unlike in vertex-coloring, here we have an easy 2-approximation for the chromatic index.

Example: We want to compute χ′(Kn).

Case 1: χ′(K2n) = 2n− 1.
Proof: We have χ′(K2n) ≥ ∆(K2n) = 2n−1. For the upper bound, we can think of an edge-coloring of
K2n as a representation of the pairings of a 2n-player round-robin tournament (i.e., where every player
plays against all others). Then, every round (in some paring system) is a matching of size n and there
are 2n− 1 rounds.
Geometric proof of the upper bound:
Put a regular (2n − 1)-gon on the plane, plus an apex vertex above its center. Now, form a matching
by taking any edge e of the base (2n−1)-gon, plus n−2 diagonals of the polygon parallel to it. Finally,
add the edge connecting the apex to the unique vertex of the polygon not covered by the previously
chosen edges (see figure below for illustration). Rotating the picture 2n − 1 times, we get a cover of
E(K2n) by 2n− 1 matchings.

Case 2: χ′(K2n−1) = 2n− 1.

Proof: K2n−1 has
(
2n−1

2

)
edges and satisfies ν(K2n−1) = n − 1. Thus χ′(K2n−1) ≥ (2n−1

2 )
n−1 =

(2n−1)(2n−2)
2(n−1) = 2n − 1. For the upper bound, taking the geometric argument for χ′(K2n) ≤ 2n − 1

and chopping off the apex provides an edge coloring of K2n−1 in 2n − 1 colors. Alternatively, consid-
ering the argument with a round-robin tournament, having an odd number of players implies that in
each round one player is free, and thus we will have an extra round, that is, 2n− 2+1 = 2n− 1 rounds
in total, each of which is a matching.

2.3 Edge Coloring of Bipartite Graphs

Theorem 7 (Frobenius marriage theorem). Let G = (A ∪ B,E) be a d-regular bipartite multigraph,
d > 0. Then G has a perfect matching.

This a simple consequence of Hall’s theorem.

Theorem 8 (Kőnig ’1916). If G is a bipartite graph, then χ′(G) = ∆(G).
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Graph and Hypergraph Coloring, Tel Aviv Univ., Spring 2022 June 6, 2022

Lecture 13
Instructor: Prof. Michael Krivelevich Scribe: Yevgeny Levanzov

1 Edge Coloring

1.1 Edge Coloring of Bipartite Graphs

Theorem 1 (Frobenius marriage theorem). Let G = (A ∪ B,E) be a d-regular bipartite multigraph,
d > 0. Then G has a perfect matching.

This a simple consequence of Hall’s theorem.

Theorem 2 (Kőnig ’1916). If G = (A ∪B,E) is a bipartite multigraph, then χ′(G) = ∆(G).

Proof. First, make a given bipartite graph into a bipartite graph with equally-sized parts by adding
isolated vertices if necessary. Let now G = (A ∪ B,E) be a bipartite multigraph of ∆(G) = ∆ and
with |A| = |B|. For as long as there are vertices a ∈ A, b ∈ B such that d(a), d(b) < ∆, add an edge
(a, b) (possibly in addition to already existing edges between a and b). We end up with a ∆-regular
multigraph G′ ⊇ G. We can obviously assume ∆ > 0. By Theorem 1, G′ contains a perfect matching
M1. We color M1 by color 1, update G′ := G′ −M1, and repeat. After ∆ steps the graph G′ empties,
meaning

⋃∆
i=1Mi = E(G′). Hence χ′(G′) ≤ ∆ and so χ′(G) ≤ χ′(G′) ≤ ∆. Since trivially χ′(G) ≥ ∆,

we conclude that χ′(G) = ∆. ■

1.2 Vizing’s Theorem and its Extensions

Vizing ’64, ’65 and Gupta ’66 proved: for a (loopless) multigraph G it holds that χ′(G) ≤ ∆(G)+µ(G),
where µ(x, y) is the multiplicity of an edge (x, y) in G, and µ(G) = maxx ̸=y∈V (G) µ(x, y). For simple
graphs, we have µ(G) ≤ 1, implying

χ′(G) ≤ ∆(G) + 1.

Recalling the trivial lower bound χ′(G) ≥ ∆(G), we derive that for every simple graph G, χ′(G) ∈
{∆(G),∆(G)+1}1. Simple graphs G with χ′(G) = ∆(G) are Class 1 and2 those with χ′(G) = ∆(G)+1
are Class 2.

Example: G = K2n =⇒ χ′(G) = 2n−1 = ∆(G) — Class 1, G = K2n−1 =⇒ χ′(G) = 2n−1 = ∆(G)+1
— Class 2.

Ore ’68 proved: χ′(G) ≤ maxv∈V (G) d(v) + µ(v) ≤ ∆(G) + µ(G), where µ(v) = maxu∈NG(v) µ(u, v)
3.

Ore ’67 also proved:

χ′(G) ≤ max

{
∆(G), max

(x,y,z)∈P

d(x) + d(y) + d(z)

2

}
,

1This stands in striking contrast to the chromatic number of a graph, for which we do not have a good approximation,
and where bounds on χ(G) are not directly related to the degrees of G.

2Given a graph G, it is NP-hard to decide whether it belongs to Class 1 of Class 2.
3Obviously, we can assume that G does not contain isolated vertices, and thus µ(v) is well-defined.
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where P is the set of ordered triples of distinct vertices forming a path of length 2 in G.
We can derive from this immediately:

Theorem 3 (Shannon ’49). Let G be a multigraph of maximum degree ∆. Then χ′(G) ≤ 3∆
2 .

Shannon’s bound is tight, as can be seen in the following example:
Example: “Fat” triangle: a multigraph G with vertices u, v, w, where each pair is connected by exactly
k edges (see figure below). We have |E(G)| = 3k, and every pair of edges is intersecting, implying that
χ′(G) = 3k. Finally, observe that G is 2k-regular, and thus χ′(G) = 3k = 3

2∆(G).

We will prove the following theorem, generalizing4 both theorems of Ore:

Theorem 4 (Andersen ’77; Goldberg ’77, ’84). Let G be a loopless multigraph. Then

χ′(G) ≤ max

{
∆(G), max

(x,y,z)∈P

⌊d(x) + µ(x, y) + µ(y, z) + d(z)

2

⌋}
, (1)

where P is the set of ordered triples of distinct vertices forming a path of length 2 in G.

Theorem 4 will follow in turn from the following theorem:

Theorem 5. Let q be an integer, and let G be a loopless multigraph with an edge (y, w). Assume that
χ′(G − (y, w)) ≤ q. If d(y), d(w) ≤ q, and d(x) + µ(x, y) + µ(y, z) + d(z) ≤ 2q + 1 for every pair of
distinct neighbors x, z of y, then χ′(G) ≤ q.

We start by showing that Theorem 5 implies Theorem 4.

Proof (Theorem 5 ⇒ Theorem 4). The proof is by induction on |E(G)|.
Base: |E(G)| = 0 – trivial.
Step: Let (y, w) ∈ E(G). Denote G′ = G− (y, w). Denote by q the right-hand side of (1), namely:

q = max

{
∆(G), max

(x,y,z)∈P

⌊d(x) + µ(x, y) + µ(y, z) + d(z)

2

⌋}
.

This bound applies trivially also to G′. Hence, by induction, χ′(G′) ≤ q. Also, d(y), d(w) ≤ ∆(G) ≤ q.
If x, z are distinct neighbors of y, then by the definition of q,⌊d(x) + µ(x, y) + µ(y, z) + d(z)

2

⌋
≤ q.

Thus d(x) + µ(x, y) + µ(y, z) + d(z) ≤ 2q+1. Hence Theorem 5 applies, and we derive that χ′(G) ≤ q,
as required. ■

4Indeed, as d(x) + µ(x, y) ≤ d(x) + µ(x) and d(y) + µ(y, z) ≤ d(y) + µ(y), the bound in (1) is at most the one in the
first theorem of Ore. In addition, as µ(x, y) + µ(y, z) ≤ d(y), we also get that the bound in (1) is at most the one in the
second theorem of Ore.
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Proof of Theorem 5. (Kostochka ’14) Let G′ = G− (y, w), where (y, w) is one edge out of possibly
several edges connecting y and w. Let φ be a q-edge-coloring of G′. For every v ∈ V (G), define the
set O(v) ⊆ [q] to be the set of colors missing at the edges incident to v at coloring φ. If w is the only
neighbor of y then O(w) ⊆ O(y). Since we have deleted (y, w), we have at most q − 1 edges touching
w (as dG(w) ≤ q, by the assumption of the theorem), implying O(w) ̸= ∅. Let then c ∈ O(w) ∩ O(y).
Then we can extend φ to G by coloring (y, w) in color c, thus obtaining a q-edge-coloring of G. Hence
we may assume that |NG(y)| ≥ 2. If for some v ∈ NG(y) we have φ((y, v)) ∈ O(w), then we can obtain
a new q-coloring of G − (y, v) by shifting color φ((y, v)) to (y, w). More generally, a color fan with
respect to φ is a sequence (v0, v1, . . . , vk) of neighbors of y such that

1. v0 = w.

2. φ((y, vi)) ∈ O(vi−1), i = 1, . . . , k.

For every color fan we can shift colors as before an get a q-coloring of G − (y, vk). If then there is a
color c ∈ O(y) ∩O(vk), then, after the shift, we can use c to color (y, vk), thus completing a q-coloring
of G. Hence we can assume that O(z)∩O(y) = ∅ for every neighbor z of y reachable by some color fan.
Let X be the set of neighbors of y reachable by color fans. Trivially, w ∈ X, and we can assume5 that
X − {w} ≠ ∅, implying |X| ≥ 2. We now define an auxiliary directed graph H as follows:

1. V (H) = X.

2. For every edge (y, v) ∈ E(G′) such that φ((y, v)) ∈ O(u), where u, v ∈ X, we put a directed edge
−−−→
(u, v) in H.

Thus, a color fan in G with respect to φ is a directed path from w in H. Suppose that χ′(G) > q.

Claim 1.1. The sets O(v) are disjoint for v ∈ X ∪ {y}.

Let now derive Theorem 5 from Claim 1.1. If the sets O(v), v ∈ X are disjoint then for (y, v) ∈ E(G′),
the color φ((y, v)) belongs to at most one list O(u). Thus every edge (y, v) constitutes at most one edge
entering v in H. Counting the edges of H by their heads, we get

|E(H)| =
∑
v∈X

d−H(v) ≤
∑
v∈X

µ(y, v)− 1,

where we subtract 1 from the sum because the edge (y, w) is not in G′. We now count by tails. For
every v ∈ X, every color in O(v) appears as a color of some edge (y, z) at y (otherwise, by shifting
along a color fan, we can use this color to color edge (y, v), thus obtaining a q-coloring of G). Hence
every such color causes a directed edge in H leaving v. Hence d+H(v) = |O(v)| = q − dG′(v). Adjusting
by 1 again due to (y, w) being deleted, we have

|E(H)| =
∑
v∈X

d+H(v) ≥ 1 +
∑
v∈X

(q − dG(v)).

Comparing the two estimates on |E(H)|, we derive

−1 +
∑
v∈X

µ(y, v) ≥ 1 +
∑
v∈X

(q − dG(v)),

5Indeed, as there is a color c ∈ O(w), if c does not appear on any edge (y, v), then we could color (y, w) by c. Hence,
φ((y, v)) = c for some v, implying that v is reachable by a color fan, and so v ∈ X.
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or ∑
v∈X

(dG(v) + µ(y, v)) ≥ q|X|+ 2. (2)

By the theorem’s assumption, the largest two terms in the above sum are ≤ 2q + 1 together, and so
every other term is ≤ q. It follows that the left-hand side of (2) is ≤ 2q + 1 + (|X| − 2)q = q|X| + 1,
thus getting a contradiction. This yields χ′(G) ≤ q.

It is left to prove Claim 1.1.

Proof of Claim 1.1. We have already argued that O(y) ∩ O(z) = ∅ for every z ∈ X. Let z ∈ X. If
O(z) = ∅, there is nothing to prove about it. Let then β ∈ O(z), α ∈ O(y) (O(y) ̸= ∅ as dG′(y) < q).
We have that α ̸= β. Then α is present at z. Let now P be the longest6 α/β-path starting from z. Let
u be the last vertex of P . We claim that u = y. If not, let Q be the directed path from w to z in H
(exists as z ∈ X and thus there is a color fan starting at w and reaching z). We can flip colors α and
β along P , getting a (new) q-coloring of G′. If u /∈ V (Q), then by flipping colors along P , we release
color α for z, and then use it to color (y, z); If u ∈ V (Q), then O(u) ∩ O(y) = ∅, and we can release
color α for u, and then color edge (y, u) in α, thus completing a q-coloring of G. Let now z, z′ ∈ X with
O(z) ∩O(z′) ̸= ∅. Take β ∈ O(z) ∩O(z′), then α ̸= β. Let now P, P ′ be α/β-paths leading from z, z′,
respectively, to y, as described/argued before. But then at the first meeting vertex7 of paths P and P ′

there are two edges of the same color — a contradiction, as φ is a proper edge-coloring. ■

This completes the proof of the theorem. ■

Let us now switch to simple graphs.

Definition 1.2. A (simple) graph G is called critical if

1. χ′(G) = ∆(G) + 1.

2. χ′(G′) ≤ ∆(G) for every G′ ⊊ G.

Clearly, every graph G from Class 2 contains a critical subgraph.

Corollary 6. Let G be a critical graph, and let y ∈ V (G). Then y has at least two neighbors x, z such
that d(x) = d(z) = ∆(G).

Proof. Since G is critical, χ′(G− (y, w)) = ∆(G) for any edge (y, w) ∈ E(G). But χ′(G) = ∆(G) + 1,
meaning Theorem 5 does not apply with q = ∆(G). Hence, as d(y), d(w) ≤ q = ∆(G), we have
that d(x) + µ(x, y) + µ(y, z) + d(z) > 2q + 1 for some two distinct neighbors x, z of y. Hence, as
µ(x, y) = µ(y, z) = 1 (as G is simple), we have d(x) + d(z) ≥ 2q + 2 − 2 = 2q. This implies that
d(x) = d(z) = ∆(G). ■

Corollary 7. Let G be a simple graph of maximum degree ∆. If the set V∆ of vertices of degree ∆
spans only a matching (possibly empty), then χ′(G) = ∆.

Proof. Assume the contrary. Let G′ be a critical subgraph of G. Take y to be a vertex of degree ∆
in G′ (there exists such a vertex, as otherwise χ′(G′) ≤ ∆). Then by Corollary 6, y has two neighbors
x, z ∈ V∆ — a contradiction. ■

Corollary 8. Let G be a simple graph with a unique vertex of maximum degree. Then G is Class 1,
i.e., χ′(G) = ∆(G).

6Note that this is well-defined.
7If the first meeting vertex is y, the claim follows from the fact that α ∈ O(y).
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