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Abstract. Referring to the query complexity of property testing, we
prove the existence of a rich hierarchy of corresponding complexity classes.
That is, for any relevant function q, we prove the existence of proper-
ties that have testing complexity Θ(q). Such results are proven in three
standard domains often considered in property testing: generic functions,
adjacency predicates describing (dense) graphs, and incidence functions
describing bounded-degree graphs. While in two cases the proofs are
quite straightforward, the techniques employed in the case of the dense
graph model seem significantly more involved. Specifically, problems that
arise and are treated in the latter case include (1) the preservation of
distances between graph under a blow-up operation, and (2) the con-
struction of monotone graph properties that have local structure.

Keywords: Property Testing, Graph Properties, Monotone Graph Prop-
erties, Graph Blow-up, One-Sided vs Two-Sided Error, Adaptivity vs
Non-adaptivity.

1 Introduction

In the last decade, the area of property testing has attracted much attention (see
the surveys of [F, R], which are already somewhat out-of-date). Loosely speaking,
property testing typically refers to sub-linear time probabilistic algorithms for
deciding whether a given object has a predetermined property or is far from any
object having this property. Such algorithms, called testers, obtain local views of
the object by making adequate queries; that is, the object is seen as a function
and the testers get oracle access to this function (and thus may be expected to
work in time that is sub-linear in the length of the object).

Following most work in the area, we focus on the query complexity of prop-
erty testing, where the query complexity is measured as a function of the size
of the object as well as the desired proximity (parameter). Interestingly, many
natural properties can be tested in complexity that only depends on the prox-
imity parameter; examples include linearity testing [BLR], and testing various
graph properties in two natural models (e.g., [GGR, AFNS] and [GR1, BSS], re-
spectively). On the other hand, properties for which testing requires essentially
maximal query complexity were proved to exist too; see [GGR] for artificial
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examples in two models and [BHR, BOT] for natural examples in other mod-
els. In between these two extremes, there exist natural properties for which the
query complexity of testing is logarithmic (e.g., monotonicity [EKK+, GGL+]),
a square root (e.g., bipartitness in the bounded-degree model [GR1, GR2]), and
possibly other constant powers (see [FM, PRR]).

One natural problem that arises is whether there exist properties of arbitrary
query complexity. We answer this question affirmative, proving the existence of
a rich hierarchy of query complexity classes. Such hierarchy theorems are easiest
to state and prove in the generic case (treated in Section 2): Loosely speaking,
for every sub-linear function q, there exists a property of functions over [n] that
is testable using q(n) queries but is not testable using o(q(n)) queries.

Similar hierarchy theorems are proved also for two standard models of testing
graph properties: the adjacency representation model (of [GGR]) and the inci-
dence representation model (of [GR1]). For the incidence representation model
(a.k.a the bounded-degree graph model), we show (in Section 3) that, for every
sub-linear function q, there exists a property of bounded-degree N -vertex graphs
that is testable using q(N) queries but is not testable using o(q(N)) queries. Fur-
thermore, one such property corresponds to the set of N -vertex graphs that are
3-colorable and consist of connected components of size at most q(N).

The bulk of this paper is devoted to hierarchy theorems for the adjacency rep-
resentation model (a.k.a the dense graph model), where complexity is measured
in terms of the number of vertices rather than the number of all vertex pairs.
Our main results for the adjacency matrix model are:

1. For every sub-quadratic function q, there exists a graph property Π that
is testable in q queries, but is not testable in o(q) queries. Furthermore,
for “nice” functions q, it is the case that Π is in P and the tester can be
implemented in poly(q)-time. (See Section 4.)

2. For every sub-quadratic function q, there exists a monotone graph property
Π that is testable in O(q) queries, but is not testable in o(q) queries. (See
Section 5.)

The adjacency representation model is further studied in Sections 6 and 7.

Organization of this version. Due to space limitations, several proofs have been ei-
ther omitted or trimmed. Full proofs can be found in our technical report [GKNR].

Conventions. For sake of simplicity, we state all results while referring to query
complexity as a function of the input size; that is, we consider a fixed (constant)
value of the proximity parameter, denoted ε. In such cases, we sometimes use
the term ε-testing, which refers to testing when the proximity parameter is fixed
to ε. All our lower bounds hold for any sufficiently small value of the proximity
parameter, whereas the upper bounds hide a (polynomial) dependence on (the
reciprocal of) this parameter. In general, bounds that have no dependence on
the proximity parameter refer to some (sufficiently small but) fixed value of this
parameter.
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A remotely related prior work. In contrast to the foregoing conventions, we men-
tion here a result that refers to graph properties that are testable in (query) com-
plexity that only depends on the proximity parameter. This result, due to [AS],
establishes a (very sparse) hierarchy of such properties. Specifically, [AS, Thm. 4]
asserts that for every function q there exists a function Q and a graph property
that is ε-testable in Q(ε) queries but is not ε-testable in q(ε) queries.1

2 Properties of Generic Functions

In the generic function model, the tester is given oracle access to a function over
[n], and distance between such functions is defined as the fraction of (the number
of) arguments on which these functions differ. In addition to the input oracle,
the tester is explicitly given two parameters: a size parameter, denoted n, and a
proximity parameter, denoted ε.

Definition 1. Let Π =
⋃

n∈N
Πn, where Πn contains functions defined over

the domain [n] def= {1, ..., n}. A tester for a property Π is a probabilistic oracle
machine T that satisfies the following two conditions:

1. The tester accepts each f ∈ Π with probability at least 2/3; that is, for every
n ∈ N and f ∈ Πn (and every ε > 0), it holds that Pr[T f(n, ε)=1] ≥ 2/3.

2. Given ε > 0 and oracle access to any f that is ε-far from Π, the tester
rejects with probability at least 2/3; that is, for every ε > 0 and n ∈ N, if
f : [n]→ {0, 1}∗ is ε-far from Πn, then Pr[T f(n, ε)=0] ≥ 2/3.

We say that the tester has one-sided error if it accepts each f ∈ Π with probabil-
ity 1 (i.e., for every f ∈ Π and every ε > 0, it holds that Pr[T f(n, ε)=1] = 1).

Definition 1 does not specify the query complexity of the tester, and indeed an
oracle machine that queries the entire domain of the function qualifies as a tester
(with zero error probability...). Needless to say, we are interested in testers that
have significantly lower query complexity. Recall that [GGR] asserts that in some
cases such testers do not exist; that is, there exist properties that require linear
query complexity. Building on this result, we show:

Theorem 2. For every q : N→ N that is at most linear, there exists a property
Π of Boolean functions that is testable (with one-sided error) in q+O(1) queries,
but is not testable in o(q) queries (even when allowing two-sided error).

We start with an arbitrary property Π ′ of Boolean functions for which test-
ing is known to require a linear number of queries (even when allowing two-
sided error). The existence of such properties was first proved in [GGR]. Given

1 We note that while Q depends only on q, the dependence proved in [AS, Thm. 4]
is quite weak (i.e., Q is lower bounded by a non-constant number of compositions
of q), and thus the hierarchy obtained by setting qi = Qi−1 for i = 1, 2, ... is very
sparse.
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Π ′ =
⋃

m∈N
Π ′

m, we define Π =
⋃

n∈N
Πn such that Πn consists of “duplicated

versions” of the functions in Π ′
q(n). Specifically, for every f ′ ∈ Π ′

q(n), we define
f(i) = f ′(i mod q(n)) and add f to Πn, where i mod m is (non-standardly)
defined as the smallest positive integer that is congruent to i modulo m, The
proof that Π satisfies the conditions of Theorem 2 appears in our technical
report [GKNR].

Comment. Needless to say, Boolean functions over [n] may be viewed as n-bit
long binary strings. Thus, Theorem 2 means that, for every sub-linear q, there
are properties of binary strings for which the query complexity of testing is Θ(q).
Given this perspective, it is natural to comment that such properties exist also in
P . This comment is proved by starting with the hard-to-test property asserted
in Theorem 7 of our technical report [GKNR] (or alternatively with the one
in [LNS], which is in L).

3 Graph Properties in the Bounded-Degree Model

The bounded-degree model refers to a fixed (constant) degree bound, denoted
d ≥ 2. An N -vertex graph G = ([N ], E) (of maximum degree d) is represented in
this model by a function g : [N ]×[d]→ {0, 1, ..., N} such that g(v, i) = u ∈ [N ] if
u is the ith neighbor of v and g(v, i) = 0 if v has less than i neighbors.2 Distance
between graphs is measured in terms of their aforementioned representation; that
is, as the fraction of (the number of) different array entries (over dN). Graph
properties are properties that are invariant under renaming of the vertices (i.e.,
they are actually properties of the underlying unlabeled graphs).

Recall that [BOT] proved that, in this model, testing 3-Colorability requires a
linear number of queries (even when allowing two-sided error). Building on this
result, we show:

Theorem 3. In the bounded-degree graph model, for every q : N → N that is
at most linear, there exists a graph property Π that is testable (with one-sided
error) in O(q) queries, but is not testable in o(q) queries (even when allowing
two-sided error). Furthermore, this property is the set of N -vertex graphs of
maximum degree d that are 3-colorable and consist of connected components of
size at most q(N).

We start with an arbitrary property Π ′ for which testing is known to require
a linear number of queries (even when allowing two-sided error). We further
assume that Π ′ is downward monotone (i.e., if G′ ∈ Π ′ then any subgraph of
G′ is in Π ′). Indeed, by [BOT], 3-Colorability is such a property. Given Π ′ =⋃

n∈N
Π ′

n, we define Π =
⋃

N∈N
ΠN such that each graph in ΠN consists of

connected components that are each in Π ′ and have size at most q(N); that is,
each connected component in any G ∈ ΠN is in Π ′

n for some n ≤ q(N) (i.e.,
n denotes this component’s size). The proof that Π satisfies the conditions of
Theorem 3 appears in our technical report [GKNR].
2 For simplicity, we assume here that the neighbors of v appear in arbitrary order in

the sequence g(v, 1), ..., g(v, deg(v)), where deg(v)
def
= |{i : g(v, i) �= 0}|.
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Comment. The construction used in the proof of Theorem 3 is slightly different
from the one used in the proof of Theorem 2: In the proof of Theorem 3 each
object in ΠN corresponds to a sequence of (possibly different) objects in Π ′

n,
whereas in the proof of Theorem 2 each object in ΠN corresponds to multiples
copies of a single object in Π ′

n. While Theorem 2 can be proved using a con-
struction that is analogous to one used in the proof of Theorem 3, the current
proof of Theorem 2 provides a better starting point for the proof of the following
Theorem 4.

4 Graph Properties in the Adjacency Matrix Model

In the adjacency matrix model, an N -vertex graph G = ([N ], E) is represented
by the Boolean function g : [N ] × [N ] → {0, 1} such that g(u, v) = 1 if and
only if u and v are adjacent in G (i.e., {u, v} ∈ E). Distance between graphs is
measured in terms of their aforementioned representation; that is, as the fraction
of (the number of) different matrix entries (over N2). In this model, we state
complexities in terms of the number of vertices (i.e., N) rather than in terms of
the size of the representation (i.e., N2). Again, we focus on graph properties (i.e.,
properties of labeled graphs that are invariant under renaming of the vertices).

Recall that [GGR] proved that, in this model, there exist graph properties for
which testing requires a quadratic (in the number of vertices) query complexity
(even when allowing two-sided error). It was further shown that such properties
are in NP . Slightly modifying these properties, we show that they can be placed
in P ; see Appendix A of our technical report [GKNR]. Building on this result,
we show:

Theorem 4. In the adjacency matrix model, for every q : N → N that is at
most quadratic, there exists a graph property Π that is testable in q queries,
but is not testable in o(q) queries.3 Furthermore, if N �→ q(N) is computable
in poly(log N)-time, then Π is in P, and the tester is relatively efficient in the
sense that its running time is polynomial in the total length of its queries.

We stress that, unlike in the previous results, the positive part of Theorem 4
refers to a two-sided error tester. This is fair enough, since the negative side also
refers to two-sided error testers. Still, one may seek a stronger separation in which
the positive side is established via a one-sided error tester. Such a separation is
presented in Theorem 6 (except that the positive side is established via a tester
that is not relatively efficient).

Outline of the proof of Theorem 4. The basic idea of the proof is to implement the
strategy used in the proof of Theorem 2. The problem, of course, is that we need
to obtain graph properties (rather than properties of generic Boolean functions).
Thus, the trivial “blow-up” (of Theorem 2) that took place on the truth-table (or
function) level has to be replaced by a blow-up on the vertex level. Specifically,

3 Both the upper and lower bounds refer to two-sided error testers.
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starting from a graph property Π ′ that requires quadratic query complexity, we
consider the graph property Π consisting of N -vertex graphs that are obtained
by a (N/

√
q(N))-factor blow-up of

√
q(N)-vertex graphs in Π ′, where G is a

t-factor blow-up of G′ if the vertex set of G can be partitioned into (equal size)
sets that correspond to the vertices of G′ such that the edges between these
sets represent the edges of G′; that is, if {i, j} is an edge in G′, then there is a
complete bipartite between the ith set and the jth set, and otherwise there are
no edges between this pair of sets.4

Note that the notion of “graph blow-up” does not offer an easy identification
of the underlying partition; that is, given a graph G that is as a t-factor blow-up
of some graph G′, it is not necessary easy to determine a t-way partition of the
vertex set of G such that the edges between these sets represent the edges of
G′. Things may become even harder if G is merely close to a t-factor blow-up of
some graph G′. We resolve these as well as other difficulties by augmenting the
graphs of the starting property Π ′.

The proof of Theorem 4 is organized accordingly: In Section 4.1, we construct
Π based on Π ′ by first augmenting the graphs and then applying graph blow-
up. In Section 4.2 we lower-bound the query complexity of Π based on the
query complexity of Π ′, while coping with the non-trivial question of how does
the blow-up operation affect distances between graphs. In Section 4.3 we upper-
bound the query complexity of Π , while using the aforementioned augmentations
in order to obtain a tight result (rather than an upper bound that is off by a
polylogarithmic factor).

4.1 The Blow-Up Property Π

Our starting point is any graph property Π ′ =
⋃

n∈N
Π ′

n for which testing
requires quadratic query complexity. Furthermore, we assume that Π ′ is in P .
Such a graph property is presented in Theorem 7 of our technical report [GKNR]
(which builds on [GGR]).

The notion of graphs that have “vastly different vertex neighborhoods” is
central to our analysis. Specifically, for a real number α > 0, we say that a
graph G = (V, E) is α-dispersed if the neighbor sets of any two vertices differ
on at least α · |V | elements (i.e., for every u �= v ∈ V , the symmetric difference
between the sets {w : {u, w} ∈ E} and {w : {v, w} ∈ E} has size at least α · |V |).
We say that a set of graphs is dispersed if there exists a constant α > 0 such
that every graph in the set is α-dispersed.5

The augmentation. We first augment the graphs in Π ′ such that the vertices in
the resulting graphs are dispersed, while the augmentation amount to adding a
linear number of vertices. The fact that these resulting graphs are dispersed will
be useful for establishing both the lower and upper bounds. The augmentation

4 In particular, there are no edges inside any set.
5 Our notion of dispersibility has nothing to do with the notion of dispersers, which

in turn is a weakening of the notion of (randomness) extractors (see, e.g., [S]).
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is performed in two steps. First, setting n′ = 2�log2(2n+1)� ∈ [2n + 1, 4n], we
augment each graph G′ = ([n], E′) by n′ − n isolated vertices, yielding an n′-
vertex graph H ′ = ([n′], E′) in which every vertex has degree at most n − 1.
Next, we augment each resulting graph H ′ by a clique of n′ vertices and connect
the vertices of H ′ and the clique vertices by a bipartite graph that corresponds
to a Hadamard matrix; that is, the ith vertex of H ′ is connected to the jth

vertex of the clique if and only if the inner product modulo 2 of i− 1 and j − 1
(in (log2 n′)-bit long binary notation) equals 1. We denote the resulting set of
(unlabeled) graphs by Π ′′ (and sometimes refer to Π ′′ as the set of all labeled
graphs obtained from these unlabeled graphs).

We first note that Π ′′ is indeed dispersed (i.e., the resulting 2n′-vertex graphs
have vertex neighborhoods that differ on at least n ≥ n′/4 vertices). Next note
that testing Π ′′ requires a quadratic number of queries, because testing Π ′ can
be reduced to testing Π ′′ (i.e., ε-testing membership in Π ′

n reduces to ε′-testing
membership in Π ′′

2n′ , where n′ ≤ 4n and ε′ = ε/64). Finally, note that Π ′′ is also
in P , because it is easy to distinguish the original graph from the vertices added
to it, since the clique vertices have degree at least n′ − 1 whereas the vertices of
G′ have degree at most (n − 1) + (n′/2) < n′ − 1 (and isolated vertices of H ′

have neighbors only in the clique).6

Applying graph blow-up. Next, we apply an (adequate factor) graph blow-up to
the augmented set of graphs Π ′′. Actually, for simplicity of notation we assume,
without loss of generality, that Π ′ =

⋃
n∈N

Π ′
n itself is dispersed, and apply

graph blow-up to Π ′ itself (rather than to Π ′′). Given a desired complexity
bound q : N→ N, we first set n =

√
q(N), and next apply to each graph in Π ′

n

an N/n-factor blow-up, thus obtaining a set of N -vertex graphs denoted ΠN .
(Indeed, we assume for simplicity that both n =

√
q(N) and N/n are integers.)

Recall that G is a t-factor blow-up of G′ if the vertex set of G can be partitioned
into t (equal size) sets, called clouds, such that the edges between these clouds
represent the edges of G′; that is, if {i, j} is an edge in G′, then there is complete
bipartite between the ith cloud and the jth cloud, and otherwise there are no
edges between this pair of clouds. This yields a graph property Π =

⋃
N∈N

ΠN .
Let us first note that Π is in P . This fact follows from the hypothesis that

Π ′ is dispersed: Specifically, given any graph N -vertex graph G, we can cluster
its vertices according to their neighborhood, and check whether the number of
clusters equals n =

√
q(N). (Note that if G ∈ ΠN , then we obtain exactly n

(equal sized) clusters, which correspond to the n clouds that are formed in the
N/n-factor blow-up that yields G.) Next, we check that each cluster has size
N/n and that the edges between these clusters correspond to the blow-up of
some n-vertex G′. Finally, we check whether G′ is in Π ′

n (relying on the fact
that Π ′ ∈ P). Proving that the query complexity of testing Π indeed equals
Θ(q) is undertaken in the next two sections.

6 Once this is done, we can verify that the original graph is in Π (using Π ∈ P), and
that the additional edges correspond to a Hadamard matrix.
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4.2 Lower-Bounding the Query Complexity of Testing Π

In this section we prove that the query complexity of testing Π is Ω(q). The basic
idea is reducing testing Π ′ to testing Π ; that is, given a graph G′ that we need
to test for membership in Π ′

n, we test its N/n-factor blow-up for membership
in ΠN , where N is chosen such that n =

√
q(N). This approach relies on the

assumption that the N/n-factor blow-up of any n-vertex graph that is far from
Π ′

n results in a graph that is far from ΠN . (Needless to say, the N/n-factor
blow-up of any graph in Π ′

n results in a graph that is in ΠN .)
As shown by Arie Matsliah (see Appendix B of our technical report [GKNR]),

the aforementioned assumption does not hold in the strict sense of the word (i.e.,
it is not true that the blow-up of any graph that is ε-far from Π ′ results in a
graph that is ε-far from Π). However, for our purposes it suffices to prove a
relaxed version of the aforementioned assumption that only asserts that for any
ε′ > 0 there exists an ε > 0 such that the blow-up of any graph that is ε′-far
from Π ′ results in a graph that is ε-far from Π . Below we prove this assertion
for ε = Ω(ε′) and rely on the fact that Π ′ is dispersed. In Appendix B of our
technical report [GKNR], we present a more complicated proof that holds for
arbitrary Π ′ (which need not be dispersed), but with ε = Ω(ε′)2.

Claim 4.1. There exists a universal constant c > 0 such that the following holds
for every n, ε′, α and (unlabeled) n-vertex graphs G′

1, G
′
2. If G′

1 is α-dispersed
and ε′-far from G′

2, then for any t the (unlabeled) t-factor blow-up of G′
1 is

cα · ε′-far from the (unlabeled) t-factor blow-up of G′
2.

Using Claim 4.1 we infer that if G′ is ε′-far from Π ′ then its blow-up is Ω(ε′)-far
from Π . This inference relies on the fact that Π ′ is dispersed (and on Claim 4.1
when applied to G′

2 = G′ and every G′
1 ∈ Π ′).

Proof. Let G1 (resp., G2) denote the (unlabeled) t-factor blow-up of G′
1 (resp.,

G′
2), and consider a bijection π of the vertices of G1 = ([t ·n], E1) to the vertices

of G2 = ([t · n], E2) that minimizes the size of the set (of violations)

{(u, v) ∈ [t · n]2 : {u, v} ∈ E1 iff {π(u), π(v)} /∈ E2}. (1)

(Note that Eq. (1) refers to ordered pairs, whereas the distance between graphs
refers to unordered pairs.) Clearly, if π were to map to each cloud of G2 only
vertices that belong to a single cloud of G1 (equiv., for every u, v that belong to
the same cloud of G1 it holds that π(u), π(v) belong to the same cloud of G2),
then G2 would be ε′-far from G1 (since the fraction of violations under such a
mapping equals the fraction of violations in the corresponding mapping of G′

1

to G′
2). The problem, however, is that it is not clear that π behaves in such a

nice manner (and so violations under π do not directly translate to violations
in mappings of G′

1 to G′
2). Still, we show that things cannot be extremely bad.

Specifically, we call a cloud of G2 good if at least (t/2) + 1 of its vertices are
mapped to it (by π) from a single cloud of G1.

Letting 2ε denote the fraction of violations in Eq. (1) (i.e., the size of this
set divided by (tn)2), we first show that at least (1 − (6ε/α)) · n of the clouds
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of G2 are good. Assume, towards the contradiction, that G2 contains more that
(6ε/α) ·n clouds that are not good. Considering any such a (non-good) cloud, we
observe that it must contain at least t/3 disjoint pairs of vertices that originate
in different clouds of G1 (i.e., for each such pair (v, v′) it holds that π−1(v) and
π−1(v′) belong to different clouds of G1).7 Recall that the edges in G2 respect
the cloud structure of G2 (which in turn respects the edge relation of G′

2). But
vertices that originate in different clouds of G1 differ on at least α · tn edges in
G1. Thus, every pair (v, v′) (in this cloud of G2) such that π−1(v) and π−1(v′)
belong to different clouds of G1 contributes at least α · tn violations to Eq. (1).8

It follows that the set in Eq. (1) has size greater than

6εn

α
· t

3
· αtn = 2ε · (tn)2

in contradiction to our hypothesis regarding π. Having established that at least
(1 − (6ε/α)) · n of the clouds of G2 are good and recalling that a good cloud of
G2 contains a strict majority of vertices that originates from a single cloud of
G1, we consider the following bijection π′ of the vertices of G1 to the vertices
of G2: For each good cloud g of G2 that contains a strict majority of vertices
from cloud i of G1, we map all vertices of the ith cloud of G1 to cloud g of G2,
and map all other vertices of G1 arbitrarily. The number of violations under
π′ is upper-bounded by four times the number of violations occuring under π
between good clouds of G2 (i.e., at most 4 ·2ε · (tn)2) plus at most (6ε/α) · tn · tn
violations created with the remaining (6ε/α) ·n clouds. This holds, in particular,
for a bijection π′ that maps to each remaining cloud of G2 vertices originating
in a single cloud of G1. This π′, which maps complete clouds of G1 to clouds of
G2, yields a mapping of G′

1 to G′
2 that has at most (8ε + (6ε/α)) · n2 violations.

Recalling that G′
1 is ε′-far from G′

2, we conclude that 8ε + (6ε/α) ≥ 2ε′, and the
claim follows (with c = 1/7). �	

Recall that Claim 4.1 implies that if G′ is ε′-far from Π ′, then its blow-up is
Ω(ε′)-far from Π . Using this fact, we conclude that ε′-testing of Π ′ reduces to
Ω(ε′)-testing of Π . Thus, a quadratic lower bound on the query complexity of ε′-
testing Π ′

n yields an Ω(n2) lower bound on the query complexity of Ω(ε′)-testing
ΠN , where n =

√
q(N). Thus, we obtain an Ω(q) lower bound on the query

complexity of testing Π , for some constant value of the proximity parameter.
7 This pairing is obtained by first clustering the vertices of the cloud of G2 according to

their origin in G1. By the hypothesis, each cluster has size at most t/2. Next, observe
that taking the union of some of these clusters yields a set containing between t/3
and 2t/3 vertices. Finally, we pair vertices of this set with the remaining vertices.
(A better bound of �t/2� can be obtained by using the fact that a t-vertex graph of
minimum degree t/2 contains a Hamiltonian cycle.)

8 For each such pair (v, v′), there exists at least α · tn vertices u such that exactly one
of the (unordered) pairs {π−1(u), π−1(v)} and {π−1(u), π−1(v′)} is an edge in G1.
Recalling that for every u, the pair {u, v} is an edge in G2 if and only if {u, v′} is
an edge in G2, it follows that for at least α · tn vertices u either (π−1(u), π−1(v)) or
(π−1(u), π−1(v′)) is a violation.
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4.3 An Optimal Tester for Property Π

In this section we prove that the query complexity of testing Π is at most q (and
that this can be met by a relatively efficient tester). We start by describing this
(alleged) tester.

Algorithm 4.2. On input N and proximity parameter ε, and when given oracle
access to a graph G = ([N ], E), the algorithm proceeds as follows:

1. Setting ε′ def= ε/3 and computing n←√
q(N).

2. Finding n representative vertices; that is, vertices that reside in different al-
leged clouds, which corresponds to the n vertices of the original graph. This
is done by first selecting s

def= O(log n) random vertices, hereafter called the
signature vertices, which will be used as a basis for clustering vertices (ac-
cording to their neighbors in the set of signature vertices). Next, we select
s′ def= O(ε−2 ·n log n) random vertices, probe all edges between these new ver-
tices and the signature vertices, and cluster these s′ vertices accordingly (i.e.,
two vertices are placed in the same cluster if and only if they neighbor the
same signature vertices). If the number of clusters is different from n, then
we reject. Furthermore, if the number of vertices that reside in each cluster
is not (1± ε′) · s′/n, then we also reject. Otherwise, we select (arbitrarily) a
vertex from each cluster, and proceed to the next step.

3. Note that the signature vertices (selected in Step 2) induce a clustering of
all the vertices of G. Referring to this clustering, we check that the edges be-
tween the clusters are consistent with the edges between the representatives.
Specifically, we select uniformly O(1/ε) vertex pairs, cluster the vertices in
each pair according to the signature vertices, and check that their edge rela-
tion agrees with that of their corresponding representatives. That is, for each
pair (u, v), we first find the cluster to which each vertex belongs (by making
s adequate queries per each vertex), determine the corresponding represen-
tatives, denoted (ru, rv), and check (by two queries) whether {u, v} ∈ E iff
{ru, rv} ∈ E. (Needless to say, if one of the newly selected vertices does not
reside in any of the n existing clusters, then we reject.)

4. Finally, using
(
n
2

)
< q(N)/2 queries, we determine the subgraph of G induced

by the n representatives. We accept if and only if this induced subgraph is in
Π ′.

Note that, for constant value of ε, the query complexity is dominated by Step 4,
and is thus upper-bounded by q(N). Furthermore, in this case, the above al-
gorithm can be implemented in time poly(n · log N) = poly(q(N) · log N). We
comment that the Algorithm 4.2 is adaptive, and that a straightforward non-
adaptive implementation of it has query complexity O(n log n)2 = Õ(q(N)).

Remark 4.3. In fact, a (non-adaptive) tester of query complexity Õ(q(N)) can
be obtained by a simpler algorithm that selects a random set of s′ vertices and
accepts if and only if the induced subgraph is ε′-close to being a (s′/n-factor)
blow-up of some graph in Π ′

n. Specifically, we can cluster these s′ vertices by
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using them also in the role of the signature vertices. Furthermore, these vertices
(or part of them) can also be designated for use in Step 3. We note that the
analysis of this simpler algorithm does not rely on the hypothesis that Π ′ is
dispersed.

We now turn to analyzing the performance of Algorithm 4.2. We note that the
proof that this algorithm accepts, with very high probability, any graph in ΠN

relies on the hypothesis that Π ′ is dispersed.9

We first verify that any graph in ΠN is accepted with very high probability.
Suppose that G ∈ ΠN is a N/n-factor blow-up of G′ ∈ Π ′

n. Relying on the
fact that Π ′ is dispersed we note that, for every pair of vertices in G′ ∈ Π ′

n,
with constant probability a random vertex has a different edge relation to the
members of this pair. Therefore, with very high (constant) probability, a random
set of s = O(log n) vertices yields n different neighborhood patterns for the n
vertices of G′. It follows that, with the same high probability, the s signature
vertices selected in Step 2 induced n (equal sized) clusters on the vertices of
G, where each cluster contains the cloud of N/n vertices (of G) that replaces
a single vertex of G′. Thus, with very high (constant) probability, the sample
of s′ = O(ε−2 · n log n) additional vertices selected in Step 2 hits each of these
clusters (equiv., clouds) and furthermore has (1 ± ε′) · s′/n hits in each cluster.
We conclude that, with very high (constant) probability, Algorithm 4.2 does not
reject G in Step 2. Finally, assuming that Step 2 does not reject (and we did
obtain representatives from each cloud of G), Algorithm 4.2 never rejects G ∈ Π
in Steps 3 and 4.

We now turn to the case that G is ε-far from ΠN , where we need to show that
G is rejected with high constant probability (say, with probability 2/3). We will
actually prove that if G is accepted with sufficiently high constant probability
(say, with probability 1/3), then it is ε-close to ΠN . We call a set of s vertices
good if (when used as the set of signature vertices) it induces a clustering of the
vertices of G such that n of these clusters are each of size (1±2ε′)·N/n. Note that
good s-vertex sets must exist, because otherwise Algorithm 4.2 rejects in Step 2
with probability at least 1 − exp(Ω(ε2/n) · s′) > 2/3. Fixing any good s-vertex
set S, we call a sequence of n vertices R = (r1, ..., rn) well-representing if (1) the
subgraph of G induced by R is in Π ′

n, and (2) at most ε′ fraction of the vertex
pairs of G have edge relation that is inconsistent with the corresponding vertices
in R (i.e., at most ε′ fraction of the vertex pairs in G violate the condition by
which {u, v} ∈ E if and only if {ri, rj} ∈ E, where u resides in the ith cluster
(w.r.t S) and v resides in the jth cluster). Now, note that there must exist a good
s-vertex set S that has a well-representing n-vertex sequence R = (r1, ..., rn),
because otherwise Algorithm 4.2 rejects with probability at least 2/3 (i.e., if a
ρ fraction of the s-vertex sets are good (but have no corresponding n-sequence
that is well-representing), then Step 2 rejects with probability at least (1−ρ)·0.9
and either Step 3 or Step 4 reject with probability ρ ·min((1− (1− ε′)Ω(1/ε)), 1)).

9 In contrast, the proof that Algorithm 4.2 rejects, with very high probability, any
graph that is ε-far from ΠN does not rely on this hypothesis.
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Fixing any good s-vertex set S and any corresponding R = (r1, ..., rn) that is
well-representing,we consider the clustering inducedbyS, denoted (C1, ...., Cn, X),
where X denotes the set of (untypical) vertices that do not belong to the n first clus-
ters. Recall that, for every i ∈ [n], it holds that ri ∈ Ci and |Ci| = (1± 2ε′) ·N/n.
Furthermore, denoting by i(v) the index of the cluster to which vertex v ∈ [N ] \X
belongs, it holds that the number of pairs {u, v} (from [N ] \ X) that violate the
condition {u, v} ∈ E iff {ri(u), ri(v)} ∈ E is at most ε′ · (N

2

)
. Now, observe that by

modifying at most ε′ · (N
2

)
edges in G we can eliminate all the aforementioned vio-

lations, which means that we obtain n sets with edge relations that fit some graph
in Π ′

n (indeed the graph obtained as the subgraph of G induced by R, which was
not modified). Recall that these sets are each of size (1± 2ε′) ·N/n, and so we may
need to move 2ε′N vertices in order to obtain sets of size N/n. This movement may
create up to 2ε′N · (N − 1) new violations, which can be eliminated by modifying
at most 2ε′ · (N

2

)
additional edges in G. Using ε = 3ε′, we conclude that G is ε-close

to ΠN .

5 Revisiting the Adj. Matrix Model: Monotonicity

In continuation to Section 4, which provides a hierarchy theorem for generic
graph properties (in the adjacency matrix model), we present in this section
a hierarchy theorem for monotone graph properties (in the same model). We
say that a graph property Π is monotone if adding edges to any graph that
resides in Π yields a graph that also resides in Π . (That is, we actually refer to
upward monotonicity, and an identical result for downward monotonicity follows
by considering the complement graphs.)10

Theorem 5. In the adjacency matrix model, for every q : N → N that is at
most quadratic, there exists a monotone graph property Π that is testable in
O(q) queries, but is not testable in o(q) queries.

Note that Theorem 5 refers to two-sided error testing (just like Theorem 4).
Theorems 4 and 5 are incomparable: the former provides graph properties that
are in P (and the upper bound is established via relatively efficient testers),
whereas the latter provides graph properties that are monotone.

Outline of the proof of Theorem 5. Starting with the proof of Theorem 4, one
may want to apply a monotone closure to the graph property Π (presented in
the proof of Theorem 4).11 Under suitable tuning of parameters, this allows to
retain the proof of the lower bound, but the problem is that the tester presented
for the upper bound fails. The point is that this tester relies on the structure
of graphs obtained via blow-up, whereas this structure is not maintained by

10 We stress that these notions of monotonicity are different from the notion of mono-
tonicity considered in [AS], where a graph property Π is called monotone if any
subgraph of a graph in Π is also in Π .

11 Indeed, this is the approach used in the proof of [GT, Thm. 1].
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the monotone closure. One possible solution, which assumes that all graphs in
Π have approximately the same number of edges, is to augment the monotone
closure of Π with all graphs that have significantly more edges, where the cor-
responding threshold (on the number of edges) is denoted T . Intuitively, this
way, we can afford accepting any graph that has more than T edges, and handle
graphs with fewer edges by relying on the fact that in this case the blow-up
structure is essentially maintained (because only few edges are added). Unfortu-
nately, implementing this idea is not straightforward: On one hand, we should
set the threshold high enough so that the lower bound proof still holds, whereas
on the other hand such a setting may destroy the local structure of a constant
fraction of the graph’s vertices. The solution to this problem is to use an under-
lying property Π ′ that supports “error correction” (i.e., allows recovering the
original structure even when a constant fraction of it is destroyed as above).
(The actual proof of Theorem 5 is given in our technical report [GKNR].)

6 Revisiting the Adj. Matrix Model: One-Sided Error

In continuation to Section 4, which provides a hierarchy theorem for two-sided
error testing of graph properties (in the adjacency matrix model), we present in
this section a hierarchy theorem that refers to one-sided error testing. Actually,
the lower bounds will hold also with respect to two-sided error, but the upper
bounds will be established using a tester of one-sided error.

Theorem 6. In the adjacency matrix model, for every q : N → N that is at
most quadratic, there exists a graph property Π that is testable with one-sided
error in O(q) queries, but is not testable in o(q) queries even when allowing
two-sided error. Furthermore, Π is in P.

Theorems 4 and 6 are incomparable: in the former the upper bound is estab-
lished via relatively efficient testers (of two-sided error), whereas in the latter the
upper bound is established via one-sided error testers (which are not relatively
efficient). (Unlike Theorem 5, both Theorems 4 and 6 do not provide monotone
properties.)

Outline of the proof of Theorem 6. Starting with the proof of Theorem 4, we
observe that the source of the two-sided error of the tester is in the need to
approximate set sizes. This is unavoidable when considering graph properties
that are blow-ups of some other graph properties, where blow-up is defined by
replacing vertices of the original graph by equal-size clouds. The natural solution
is to consider a generalized notion of blow-up in which each vertex is replaced
by a (non-empty) cloud of arbitrary size. That is, G is a (generalized) blow-up
of G′ = ([n], E′) if the vertex set of G can be partitioned into n non-empty sets
(of arbitrary sizes) that correspond to the n vertices of G′ such that the edges
between these sets represent the edges of G′; that is, if {i, j} is an edge in G′

(i.e., {i, j} ∈ E′), then there is a complete bipartite between the ith set and the
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jth set, and otherwise (i.e., {i, j} �∈ E′) there are no edges between this pair of
sets.

The actual proof of Theorem 6 is given in our technical report [GKNR]. Among
other things, this proof copes with the non-trivial question of how does the gen-
eralized (rather than the standard) blow-up operation affect distances between
graphs.

7 Concluding Comments

Theorems 4, 5 and 6 (and their proofs) raise several natural open problems,
listed next. We stress that all questions refer to the adjacency matrix graph
model considered in Sections 4–6.

1. Preservation of distance between graphs under blow-up: Recall that the proof
of Theorem 4 relies on the preservation of distances between graphs under
the blow-up operation. The partial results (regarding this matter) obtained
in this work suffice for the proof of Theorem 4, but the problem seems natural
and of independent interest.

Recall that Claim 4.1 asserts that in some cases the distance between two
unlabeled graphs is preserved up to a constant factor by any blow-up (i.e.,
“linear preservation”), whereas Theorem 8 of our technical report [GKNR]
asserts a quadratic preservation for any pair of graphs. Also recall that it
is not true that the distance between any two unlabeled graphs is perfectly
preserved by any blow-up (see beginning of Appendix B in our technical
report [GKNR]).

In earlier versions of this work we raised the natural question of whether
the distance between any two unlabeled graphs is preserved up to a constant
factor by any blow-up. This question has been recently resolved by Oleg
Pikhurko, who showed that the distance is indeed preserved up to a factor of
three [P, Sec. 4]. Note that Arie Matsliah’s counterexample to perfect preser-
vation (presented in Appendix B of our technical report [GKNR]) shows that
the said constant factor cannot be smaller than 6/5. Indeed, determining the
true constant factor remains an open problem.

2. Combining the features of all three hierarchy theorems: Theorems 4, 5 and 6
provide incomparable hierarchy theorems, each having an additional feature
that the others lack. Specifically, Theorem 4 refers to properties in P (and
testing, in the positive part, is relatively efficient), Theorem 5 refers to mono-
tone properties, and Theorem 6 provides one-sided testing (in the positive
part). Is it possible to have a single hierarchy theorem that enjoys all three
additional feature? Intermediate goals include the following:

(a) Hierarchy of monotone graph properties in P : Recall that Theorem 4 is
proved by using non-monotone graph properties (which are in P), while
Theorem 5 refers to monotone graph properties that are not likely to be
in P . Can one combine the good aspects of both results?
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(b) Hard-to-test monotone graph property in P : Indeed, before addressing
Problem 2a, one should ask whether a result analogous to Theorem 7
of our technical report [GKNR] holds for a monotone graph property?
Recall that [GT, Thm. 1] provides a monotone graph property in NP
that is hard-to-test.

(c) One-sided versus two-sided error testers: Recall that the positive part of
Theorem 6 refers to testing with one-sided error, but these testers are not
relatively efficient. In contrast, the positive part of Theorem 4 provides
relatively efficient testers, but these testers have two-sided error. Can
one combine the good aspects of both results?

Acknowledgments

We are grateful to Ronitt Rubinfeld for asking about the existence of hierarchy
theorems for the adjacency matrix model. Ronitt raised this question during a
discussion that took place at the Dagstuhl 2008 workshop on sub-linear algo-
rithms. We are also grateful to Arie Matsliah and Yoav Tzur for helpful dis-
cussions. In particular, we thank Arie Matsliah for providing us with a proof
that the blow-up operation does not preserve distances in a perfect manner.
Oded Goldreich was partially supported by the Israel Science Foundation (grant
No. 1041/08). Michael Krivelevich was partially supported by a USA-Israel BSF
Grant, by a grant from the Israel Science Foundation, and by Pazy Memorial
Award.

References

[ABI] Alon, N., Babai, L., Itai, A.: A fast and Simple Randomized Algorithm for
the Maximal Independent Set Problem. J. of Algorithms 7, 567–583 (1986)

[AFKS] Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient Testing of
Large Graphs. Combinatorica 20, 451–476 (2000)

[AFNS] Alon, N., Fischer, E., Newman, I., Shapira, A.: A Combinatorial Charac-
terization of the Testable Graph Properties: It’s All About Regularity. In:
38th STOC, pp. 251–260 (2006)

[AGHP] Alon, N., Goldreich, O., Hastad, J., Peralta, R.: Simple constructions of
almost k-wise independent random variables. Journal of Random structures
and Algorithms 3(3), 289–304 (1992)

[AS] Alon, N., Shapira, A.: Every Monotone Graph Property is Testable. SIAM
Journal on Computing 38, 505–522 (2008)

[BSS] Benjamini, I., Schramm, O., Shapira, A.: Every Minor-Closed Property of
Sparse Graphs is Testable. In: 40th STOC, pp. 393–402 (2008)

[BLR] Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applica-
tions to Numerical Problems. JCSS 47(3), 549–595 (1993)

[BHR] Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: 3CNF Properties Are Hard
to Test. SIAM Journal on Computing 35(1), 1–21 (2005)

[BOT] Bogdanov, A., Obata, K., Trevisan, L.: A lower bound for testing 3-
colorability in bounded-degree graphs. In: 43rd FOCS, pp. 93–102 (2002)



Hierarchy Theorems for Property Testing 519

[EKK+] Ergun, F., Kannan, S., Kumar, S.R., Rubinfeld, R., Viswanathan, M.: Spot-
checkers. JCSS 60(3), 717–751 (2000)

[F] Fischer, E.: The art of uninformed decisions: A primer to property testing.
Bulletin of the European Association for Theoretical Computer Science 75,
97–126 (2001)

[FM] Fischer, E., Matsliah, A.: Testing Graph Isomorphism. In: 17th SODA, pp.
299–308 (2006)

[GGL+] Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.:
Testing Monotonicity. Combinatorica 20(3), 301–337 (2000)

[GGR] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection
to learning and approximation. Journal of the ACM, 653–750 (July 1998)

[GKNR] Goldreich, O., Krivelevich, M., Newman, I., Rozenberg, E.: Hierarchy The-
orems for Property Testing. ECCC, TR08-097 (2008)

[GR1] Goldreich, O., Ron, D.: Property Testing in Bounded Degree Graphs. Al-
gorithmica 32(2), 302–343 (2002)

[GR2] Goldreich, O., Ron, D.: A Sublinear Bipartitness Tester for Bounded Degree
Graphs. Combinatorica 19(3), 335–373 (1999)

[GT] Goldreich, O., Trevisan, L.: Three theorems regarding testing graph prop-
erties. Random Structures and Algorithms 23(1), 23–57 (2003)

[LNS] Lachish, O., Newman, I., Shapira, A.: Space Complexity vs. Query Com-
plexity. Computational Complexity 17, 70–93 (2008)

[NN] Naor, J., Naor, M.: Small-bias Probability Spaces: Efficient Constructions
and Applications. SIAM J. on Computing 22, 838–856 (1993)

[PRR] Parnas, M., Ron, D., Rubinfeld, R.: Testing Membership in Parenthesis
Laguages. Random Structures and Algorithms 22(1), 98–138 (2003)

[P] Pikhurko, O.: An Analytic Approach to Stability (2009),
http://arxiv.org/abs/0812.0214

[R] Ron, D.: Property testing. In: Rajasekaran, S., Pardalos, P.M., Reif, J.H.,
Rolim, J.D.P. (eds.) Handbook on Randomization, vol. II, pp. 597–649
(2001)

[RS] Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with ap-
plications to program testing. SIAM Journal on Computing 25(2), 252–271
(1996)

[S] Shaltiel, R.: Recent Developments in Explicit Constructions of Extractors.
In: Current Trends in Theoretical Computer Science: The Challenge of
the New Century. Algorithms and Complexity, vol. 1, pp. 67–95. World
scientific, Singapore (2004); Preliminary version in Bulletin of the EATCS,
vol. 77, pp. 67–95 (2002)

http://arxiv.org/abs/0812.0214

	Hierarchy Theorems for Property Testing
	Introduction
	Properties of Generic Functions
	Graph Properties in the Bounded-Degree Model
	Graph Properties in the Adjacency Matrix Model
	The Blow-Up Property 
	Lower-Bounding the Query Complexity of Testing 
	An Optimal Tester for Property 

	Revisiting the Adj. Matrix Model: Monotonicity
	Revisiting the Adj. Matrix Model: One-Sided Error
	Concluding Comments
	Bibliography



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


