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Abstract

Referring to the query complexity of property testing, we prove the existence of a rich hierarchy
of corresponding complexity classes. That is, for any relevant function q, we prove the existence of
properties that have testing complexity Θ(q). Such results are proven in three standard domains
often considered in property testing: generic functions, adjacency predicates describing (dense)
graphs, and incidence functions describing bounded-degree graphs. While in two cases the proofs
are quite straightforward, the techniques employed in the case of the dense graph model seem
significantly more involved. Specifically, problems that arise and are treated in the latter case
include (1) the preservation of distances between graph under a blow-up operation, and (2) the
construction of monotone graph properties that have local structure.
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1 Introduction

In the last decade, the area of property testing has attracted much attention (see, e.g., a couple of recent
surveys [R1, R2]). Loosely speaking, property testing typically refers to sub-linear time probabilistic
algorithms for deciding whether a given object has a predetermined property or is far from any object
having this property. Such algorithms, called testers, obtain local views of the object by making
adequate queries; that is, the object is seen as a function and the testers get oracle access to this
function (and thus may be expected to work in time that is sub-linear in the length of the object).

Following most work in the area, we focus on the query complexity of property testing, measured as
a function of the size of the object as well as the desired proximity to satisfying the property (measured
by the proximity parameter). Interestingly, many natural properties can be tested in complexity that
only depends on the proximity parameter; examples include linearity testing [BLR], and testing various
graph properties in two natural models (e.g., [GGR, AFNS] and [GR1, BSS], respectively). On the
other hand, properties for which testing requires essentially maximal query complexity were proved
to exist too; see [GGR] for artificial examples in two models and [BHR, BOT] for natural examples
in other models. In between these two extremes, there exist natural properties for which the query
complexity of testing is logarithmic in the object’s size (e.g., monotonicity [EKK+, GGL+]), a square
root of it (e.g., bipartiteness in the bounded-degree model [GR1, GR2]), and possibly other constant
powers of it (see [FM, PRR]).

1.1 Our main results

One natural question that arises is whether there exist properties of arbitrary query complexity. We
answer this question affirmatively, proving the existence of a rich hierarchy of query complexity classes.
Such hierarchy theorems are easiest to state and prove in the generic case (treated in Section 2): Loosely
speaking, for every sub-linear function q, there exists a property of functions over [n] that is testable
using q(n) queries but is not testable using o(q(n)) queries.

Similar hierarchy theorems are proved also for two standard models of testing graph properties:
the adjacency representation model (of [GGR]) and the incidence representation model (of [GR1]). For
the incidence representation model (a.k.a the bounded-degree graph model), we show (in Section 3)
that, for every sub-linear function q, there exists a property of bounded-degree N -vertex graphs that is
testable using q(N) queries but is not testable using o(q(N)) queries. Furthermore, one such property
corresponds to the set of N -vertex graphs that are 3-colorable and consist of connected components of
size at most q(N).

The bulk of this paper is devoted to hierarchy theorems for the adjacency representation model
(a.k.a the dense graph model), where the complexity is stated as a function of the number of vertices
(rather than as a function of the number of all vertex pairs, which is the representation size). Our
main results for the adjacency matrix model are:

1. For every sub-quadratic function q, there exists a graph property Π that is testable in q queries,
but is not testable in o(q) queries. Furthermore, for “nice” functions q, it is the case that Π is in
P and the tester can be implemented in poly(q)-time. (See Section 4.)

2. For every sub-quadratic function q, there exists a monotone graph property Π that is testable in
O(q) queries, but is not testable in o(q) queries. (See Section 5.)

In Section 6 we address a refined issue that has been ignored above. Specifically, we note that all our
lower bounds refer to two-sided error testers, whereas the upper bounds for testing generic functions
(Section 2) and for testing graphs in the incidence representation model (Section 3) are demonstrated
using one-sided error testers, which only make these separations stronger. In contrast, the foremen-
tioned upper bounds for testing graphs in the adjacency matrix model (presented in Sections 4 and 5)
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use two-sided error testers. In Section 6 we modify the construction of Section 4 in order to obtain
one-sided error testers (while the lower bounds still hold for two-sided error testers). However, the
latter result loses some additional features of the former results; see Section 8 for further discussion.

Conventions. For sake of simplicity, we state all results while referring to query complexity as a
function of a size parameter that is polynomially related to the object’s size (i.e., in the case of generic
Boolean functions the size parameter is the size of the function’s domain, but in the case of graphs the
size parameter is the number of vertices). In other words, we consider a fixed (constant) value of the
proximity parameter, denoted ǫ. In such cases, we sometimes use the term ǫ-testing, which refers to
testing when the proximity parameter is fixed to ǫ. All our lower bounds hold for any sufficiently small
value of the proximity parameter, whereas the upper bounds hide a (polynomial) dependence on (the
reciprocal of) this parameter. In general, bounds that have no dependence on the proximity parameter
refer to some (sufficiently small but) fixed value of this parameter.

A remotely related prior work. In contrast to the foregoing conventions, we mention here a
result that refers to graph properties that are testable in (query) complexity that only depends on
the proximity parameter. This result, due to [AS3], establishes a (very sparse) hierarchy of such
properties. Specifically, [AS3, Thm. 4] asserts that for every function q there exists a function Q and
a graph property that is ǫ-testable in Q(ǫ) queries but is not ǫ-testable in q(ǫ) queries. (We note that
while Q depends only on q, the dependence proved in [AS3, Thm. 4] is quite weak (i.e., Q is larger than
a non-constant number of compositions of q), and thus the hierarchy obtained by setting qi = Qi−1 for
i = 1, 2, ... is very sparse.)

1.2 Our techniques

The proofs of the hierarchy theorems for the generic case (treated in Section 2) and for the incidence
representation graph model (treated in Section 3), are quite straightforward. In contrast, the treatment
of the dense graph model is significantly more involved. We discuss the source of trouble next.

Given that properties of maximal query complexity are known in each of the testing models that we
consider, a natural idea towards proving hierarchy theorems is to construct properties that correspond
to repetitions of the original properties; that is, each object in the new property consists of a suitable
number of objects, each belonging to the original property. Straightforward implementations of this
idea work in the generic case and in the incidence representation graph model, but not in the dense
graph model (treated in Section 4). The point is that a naive repetition of a graph creates a graph
that is not dense.

Nevertheless, replacing straightforward repetition by the graph blow-up operation allows us to obtain
the desired hierarchy theorem (for the dense graph model). Loosely speaking, the graph blow-up
operation replaces each vertex of the original graph by an independent set (of a predetermined size),
and replaces each edge by a complete bipartite graph between the two corresponding independent sets.
Indeed, the graph blow-up operation does seem to fit our needs, but a careful analysis is required for
obtaining the desired result. One source of trouble is that the blow-up operation does not necessarily
preserve distances; indeed the relative distance between the blow-up of G1 and G2 is at most the
relative distance between the original graphs, but the naive assumption that it can not be smaller
is false. In Section 4 we overcome this difficulty by showing that for certain graphs, which we call
dispersed, the blow-up does preserve the original distances (up to a constant factor).1 Thus, we first
reduce the testing of the original property to testing a corresponding property that refers to dispersed

1Subsequent to the initial posting of our work [GKNR], this result was superseded by Pikhurko, who showed that the

distance is actually preserved, up to a constant factor, for any graph [P, Sec. 4].
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graphs. (An n-vertex graph is called dispersed if the neighbor sets of any two vertices differ on at least
Ω(n) elements.)

Using dispersed graphs also helps us in upper bounding the computational complexity of our tester.
In particular, the use of dispersed graphs allows us to recover the canonical labeling of an unlabeled
graph, which is helpful whenever a graph property (viewed as a set of labeled graphs) is obtained by
a closure under isomorphism of some set of labeled graphs (cf. [GGR]). (For details see Section 7.)

When trying to obtain a result for monotone graph properties, we encounter another technical
difficulty. The difficulty is that the testers we wish to construct rely on the existence of local structures
in the graphs that have the property, whereas the standard constructions of hard-to-test monotone
graph properties (cf. [GT]) tend to lack any local structure, since the property should be preserved
under arbitrary edge additions. We demonstrate that the latter conclusion is a bit hasty, by showing
that a local structure can be essentially maintained as long as the edge density does not exceed some
threshold, whereas we can include in the property all graphs that have edge density that exceeds this
threshold. (For details see Section 5.)

A third type of difficulty arises in Section 6, where we seek to construct one-sided error testers.
This requires avoiding the need to test that sets are of (approximately) the same size, which leads us
to use a generalized form of graph blow-up. Specifically, while under the blow-up used so far (i.e., in
Sections 4 and 5) each vertex is replaced by an independent set of the same size, in Section 6 we use a
generalized blow-up in which these independent sets may have different sizes. This requires establishing
yet another distance preservation (under (generalized) blow-up) result.

Remotely related prior work. The graph blow-up operation is well-known in combinatorics, and
was used before also in the context of testing properties of dense graphs (see, e.g., [A, AS1, AS2,
BCL+]). To the best of our knowledge, the aspects of graph blow-up that we study in this work (i.e.,
the preservation of distances and efficient reconstruction of the original graph) were not addressed
before.

1.3 Organization

Sections 2 and 3 present hierarchy theorems for the generic case and for the bounded-degree graph
model, respectively. The bulk of this paper provides hierarchy theorems for graph properties in the
adjacency matrix model. The basic hierarchy theorem regarding this model is presented in Section 4,
whereas in Section 5 we obtain such a theorem for monotone graph properties. In Section 6 we modify
the hierarchy theorem of Section 4 in a different direction, obtaining a result for one-sided error testing
(but losing some additional features of the former theorem).

We mention that our results for graph properties in the adjacency matrix model use the existence
of graph properties that are in P and have maximal query complexity. This result is presented in
Section 7, building on a prior construction of [GGR], which only asserted such properties in NP .

2 Properties of Generic Functions

In the generic function model, the tester is given oracle access to a function over [n], and distance
between such functions is defined as the fraction of (the number of) arguments on which these functions
differ. In addition to the input oracle, the tester is explicitly given two parameters: a size parameter,
denoted n, and a proximity parameter, denoted ǫ.

Definition 1 Let Π =
⋃

n∈N Πn, where Πn contains functions defined over the domain [n]
def
= {1, ..., n}.

A tester for a property Π is a probabilistic oracle machine T that satisfies the following two conditions:
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1. The tester accepts each f ∈ Π with probability at least 2/3; that is, for every n ∈ N and f ∈ Πn

(and every ǫ > 0), it holds that Pr[T f (n, ǫ)=1] ≥ 2/3.

2. Given ǫ > 0 and oracle access to any f that is ǫ-far from Π, the tester rejects with probability
at least 2/3; that is, for every ǫ > 0 and n ∈ N, if f : [n] → {0, 1}∗ is ǫ-far from Πn, then
Pr[T f (n, ǫ) = 0] ≥ 2/3, where g is ǫ-far from Πn if, for every g ∈ Πn, it holds that |{i ∈ [n] :
f(i) 6= g(i)}| > ǫ · n.

We say that the tester has one-sided error if it accepts each f ∈ Π with probability 1; that is, for every
f ∈ Π and every ǫ > 0, it holds that Pr[T f (n, ǫ)=1] = 1.

When ǫ > 0 is fixed, we refer to the residual oracle machine T (·, ǫ) by the term ǫ-tester. We also use
the corresponding term ǫ-testing Π.

Definition 1 does not specify the query complexity of the tester, and indeed an oracle machine that
queries the entire domain of the function qualifies as a tester (with zero error probability...). Needless
to say, we are interested in testers that have significantly lower query complexity. Recall that [GGR]
asserts that in some cases such testers do not exist; that is, there exist properties that require linear
query complexity. Building on this result, we show:

Theorem 2 For every q : N→ N that is onto and at most linear, there exists a property Π of Boolean
functions that is testable (with one-sided error) in q + O(1) queries, but is not testable in o(q) queries
(even when allowing two-sided error).

Actually, here as well as in all other hierarchy theorems, it suffices to require that q has a dense range
in the sense that there exists a constant c such that for every m ∈ N there exists n ∈ N such that
m ≤ q(n) ≤ cm.

Proof of Theorem 2: We start with an arbitrary property Π′ of Boolean functions for which testing
is known to require a linear number of queries (even when allowing two-sided error). The existence
of such properties was first proved in [GGR]. Given Π′ =

⋃
m∈N Π′

m, we define Π =
⋃

n∈N Πn such
that Πn consists of “duplicated versions” of the functions in Π′

q(n). Specifically, for every f ′ ∈ Π′
q(n),

we define f(i) = f ′(i mod q(n)) and add f to Πn, where i mod m is (non-standardly) defined as the
smallest positive integer that is congruent to i modulo m,

The query complexity lower bound for Π follows from the corresponding bound of Π′. Specifically,
approximate membership of f ′ in Π′

m can be tested by emulating the testing of an imaginary function
f : [n] → {0, 1} defined such that m = q(n) and f(i) = f ′(i mod m); that is, testing f ′ w.r.t Π′

m is
performed by testing f w.r.t Πn, while emulating oracle access to f by making corresponding queries
to f ′. Clearly, if f ′ ∈ Π′

m then f ∈ Πn, whereas if f ′ is ǫ-far from Π′
m then f is ⌊n/m⌋·m

n · ǫ-far from Πn.
Assuming without loss of generality that q(n) ≤ n/2, we have ⌊n/m⌋ ·m ≥ n/2. Thus, a o(q(n))-query
oracle machine that distinguishes the case that f ∈ Πn from the case that f is (ǫ/2)-far from Πn, yields
a o(m)-query oracle machine that distinguishes the case that f ′ ∈ Π′

m from the case that f ′ is ǫ-far
from Π′

m. We conclude that an Ω(m) lower bound on ǫ-testing Π′
m implies an Ω(q(n)) lower bound on

(ǫ/2)-testing Πn.
The query complexity upper bound for Π follows by using a straightforward tester that essentially

reconstructs the underlying function and checks whether it is in Π′. Specifically, on input n, ǫ and
access to f : [n] → {0, 1}, we test whether f is a repetition of some function f ′ : [q(n)] → {0, 1} in
Π′

q(n). This is done by conducting the following two steps:

1. Repeat the following basic check O(1/ǫ) times: Uniformly select j ∈ [q(n)] and r ∈ [⌊n/q(n)⌋−1],
and check whether f(r · q(n) + j) = f(j).
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2. Using q(n) queries, construct f ′ : [q(n)] → {0, 1} such that f ′(i)
def
= f(i), and check whether f ′

is in Π′. Note that checking whether f ′ is in Π′ requires no queries, and that the corresponding
computational complexity is ignored here.

Note that this (non-adaptive) oracle machine has query complexity q(n) + O(1/ǫ), and it accepts any
f ∈ Π with probability 1. On the other hand, if f is accepted with probability at least 2/3, then
the reconstructed f ′ must be in Π′ (otherwise Step 2 would have rejected with probability 1) and f
must be ǫ-close to the repetition of this f ′ (otherwise each iteration of Step 1 would have rejected with
probability at least ǫ/2, where we again use q(n) ≤ n/2). Thus, in this case f is ǫ-close to Π, which
establishes the upper bound on the query complexity of testing Π. The theorem follows.

Comment. Needless to say, Boolean functions over [n] may be viewed as n-bit long binary strings.
Thus, Theorem 2 means that, for every sub-linear q, there are properties of binary strings for which
the query complexity of testing is Θ(q). Given this perspective, it is natural to comment that such
properties exist also in P. This comment can be proved by starting with the hard-to-test property
asserted in Theorem 7. Actually, starting with the hard-to-test property asserted in [LNS] (which is in
L), we obtain a hierarchy theorem for testing properties that are in L.

3 Graph Properties in the Bounded-Degree Model

The bounded-degree model refers to a fixed (constant) degree bound, denoted d ≥ 2. An N -vertex
graph G = ([N ], E) (of maximum degree d) is represented in this model by a function g : [N ] × [d] →
{0, 1, ..., N} such that g(v, i) = u ∈ [N ] if u is the ith neighbor of v and g(v, i) = 0 if v has less
than i neighbors. (For simplicity, we assume here that the neighbors of v appear in arbitrary order in

the sequence g(v, 1), ..., g(v,deg(v)), where deg(v)
def
= |{i : g(v, i) 6= 0}|.) Distance between graphs is

measured in terms of their aforementioned representation; that is, as the fraction of (the number of)
different array entries (over dN). Graph properties are properties that are invariant under renaming
of the vertices (i.e., they are actually properties of the underlying unlabeled graphs).

Recall that [BOT] proved that, in this model, testing 3-Colorability requires a linear number of
queries (even when allowing two-sided error). Building on this result, we show:

Theorem 3 In the bounded-degree graph model, for every q : N→ N that is onto and at most linear,
there exists a graph property Π that is testable (with one-sided error) in O(q) queries, but is not testable
in o(q) queries (even when allowing two-sided error). In particular, one such property is the set of N -
vertex graphs of maximum degree d that are 3-colorable and consist of connected components of size at
most q(N).

Proof: Actually, we may start with an arbitrary property Π′ that satisfies the following two conditions:

1. Testing Π′ requires a linear number of queries (even when allowing two-sided error).

2. The property Π′ is downward monotone; that is, if G′ ∈ Π′ then any subgraph of G′ is in Π′. In
particular, the single-vertex graph is in Π′.

Indeed, by [BOT], 3-Colorability is such a property. Given Π′ =
⋃

n∈N Π′
n, we define Π =

⋃
N∈N ΠN

such that ΠN is the set of all N -vertex graphs that consist of connected components that are each in
Π′ and have size at most q(N); that is, each connected component in any G ∈ ΠN is in Π′

n for some
n ≤ q(N) (i.e., n denotes this component’s size).

The query complexity lower bound for Π follows from the corresponding bound of Π′. Specifically,
approximate membership of the n-vertex graph G′ in Π′

n can be tested by setting N such that q(N) = n
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and emulating the testing of the N -vertex graph G obtained by taking t
def
= ⌊N/q(N)⌋ copies of G′ (and

additional N − t · q(N) isolated vertices). Clearly, if G′ ∈ Π′
n then G ∈ ΠN . On the other hand, if G′

is ǫ-far from Π′
n then G is t·n

N · ǫ-far from ΠN (because, by the downward monotonicity of Π′, it suffices
to consider the number of edges that must be omitted from G in order to obtain a graph in ΠN ). As
in the proof of Theorem 2, we may assume that t · n ≥ N/2, and conclude that in the latter case G
is (ǫ/2)-far from ΠN . Thus, a o(q(N))-query oracle machine that distinguishes the case that G ∈ ΠN

from the case that G is (ǫ/2)-far from ΠN , yields a o(n)-query oracle machine that distinguishes the
case that G′ ∈ Π′

n from the case that G′ is ǫ-far from Π′
n. The desired Ω(q(N)) lower bound follows.

The query complexity upper bound for Π is obtained by using a tester that selects at random a
start vertex s in the input N -vertex graph and tests that s resides in a connected component that is in
Π′

n for some n ≤ q(N). Specifically, on input N, ǫ and access to an N -vertex graph G, we repeat the
following test O(1/ǫ) times.

1. Uniformly select a start vertex s, and explore its connected component untill either encountering
q(N) + 1 vertices or discovering that the connected component has at most q(N) vertices.

2. Denoting the number of encountered vertices by n, reject if n > q(N). Similarly reject if the
encountered graph is not in Π′

n.

The query complexity of this oracle machine is O(d · q(N)/ǫ), which is O(q(N)) when both d and ǫ > 0
are constants. Clearly, this oracle machine accepts any G ∈ Π with probability 1. In analyzing its
performance on graphs not in Π, we call a start vertex bad if it resides in a connected component that is
either bigger than q(N) or not in Π′. Note that if G has more than ǫN bad vertices, then the foregoing
tester rejects with probability at least 2/3. Otherwise (i.e., G has fewer than ǫN bad vertices), G is
ǫ-close to Π, because we can omit all edges incident to bad vertices and obtain a graph in Π. The
theorem follows.

Comment. The construction used in the proof of Theorem 3 is slightly different from the one used
in the proof of Theorem 2: In the proof of Theorem 3 each object in ΠN corresponds to a sequence of
(possibly different) objects in Π′

n, whereas in the proof of Theorem 2 each object in ΠN corresponds
to multiple copies of a single object in Π′

n. While Theorem 2 can be proved using a construction that
is analogous to one used in the proof of Theorem 3, the current proof of Theorem 2 provides a better
starting point for the proof of the following Theorem 4.

4 Graph Properties in the Adjacency Matrix Model

In the adjacency matrix model, an N -vertex graph G = ([N ], E) is represented by the Boolean function
g : [N ]× [N ]→ {0, 1} such that g(u, v) = 1 if and only if u and v are adjacent in G (i.e., {u, v} ∈ E).
Distance between graphs is measured in terms of their aforementioned representation; that is, as the
fraction of (the number of) different matrix entries (over N2). In this model, we state complexities in
terms of the number of vertices (i.e., N) rather than in terms of the size of the representation (i.e.,
N2). Again, we focus on graph properties (i.e., properties of labeled graphs that are invariant under
renaming of the vertices).

Recall that [GGR] proved that, in this model, there exist graph properties for which testing requires
a quadratic (in the number of vertices) query complexity (even when allowing two-sided error). It was
further shown that such properties are in NP. Slightly modifying these properties, we show that they
can be placed in P; see Section 7. Building on this result, we show:

Theorem 4 In the adjacency matrix model, for every q : N → N such that N 7→ ⌊
√

q(N)⌋ is onto
and at most linear, there exists a graph property Π that is testable in q queries, but is not testable
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in o(q) queries. (Both the upper and lower bounds refer to two-sided error testers.) Furthermore, if
N 7→ q(N) is computable in poly(log N)-time, then Π is in P, and the tester is relatively efficient in
the sense that its running time is polynomial in the total length of its queries.

We stress that, unlike in the previous results, the positive part of Theorem 4 refers to a two-sided error
tester. This is fair enough, since the negative side also refers to two-sided error testers. Still, one may
seek a stronger separation in which the positive side is established via a one-sided error tester. Such
a separation is presented in Theorem 6 (alas the positive side is established via a tester that is not
relatively efficient).

Outline of the proof of Theorem 4. The basic idea of the proof is to implement the strategy
used in the proof of Theorem 2. The problem, of course, is that we need to obtain graph properties
(rather than properties of generic Boolean functions). Thus, the trivial “blow-up” (of Theorem 2)
that took place on the truth-table (or function) level has to be replaced by a blow-up on the vertex
level. Specifically, starting from a graph property Π′ that requires quadratic query complexity, we
consider the graph property Π consisting of N -vertex graphs that are obtained by a (N/

√
q(N))-factor

blow-up of
√

q(N)-vertex graphs in Π′, where G is a t-factor blow-up of G′ if the vertex set of G can be
partitioned into t-sized sets that correspond to the vertices of G′ such that the edges between these sets
represent the edges of G′; that is, if {i, j} is an edge in G′, then there is a complete bipartite between
the ith set and the jth set, and otherwise there are no edges between this pair of sets. (In particular,
there are no edges inside any set.)

Note that the notion of “graph blow-up” does not offer an easy identification of the underlying
partition; that is, given a graph G that is as a t-factor blow-up of some graph G′, it is not necessary
easy to determine a partition of the vertex set of G (into t-sized sets) such that the edges between
these (t-sized) sets represent the edges of G′. Things may become even harder if G is merely close to
a t-factor blow-up of some graph G′. We resolve these as well as other difficulties by augmenting the
graphs of the starting property Π′.

The proof of Theorem 4 is organized accordingly: In Section 4.1, we construct Π based on Π′ by
first augmenting the graphs and then applying graph blow-up. In Section 4.2 we lower-bound the query
complexity of Π based on the query complexity of Π′, while coping with the non-trivial question of how
does the blow-up operation affect distances between graphs. In Section 4.3 we upper-bound the query
complexity of Π, while using the aforementioned augmentations in order to obtain a tight result (rather
than an upper bound that is off by a polylogarithmic factor).

4.1 The blow-up property Π

Our starting point is any graph property Π′ =
⋃

n∈N Π′
n for which testing requires quadratic query

complexity. Furthermore, we assume that Π′ is in P. Such a graph property is presented in Theorem 7
(see Section 7, which builds on [GGR]).

The notion of graphs that have “substantially different vertex neighborhoods” is central to our
analysis. Specifically, for a real number α > 0, we say that a graph G = (V,E) is α-dispersed if the
neighbor sets of any two vertices differ on at least α · |V | elements (i.e., for every u 6= v ∈ V , the
symmetric difference between the sets {w : {u,w} ∈ E} and {w : {v,w} ∈ E} has size at least α · |V |).
We say that a set of graphs is dispersed if there exists a constant α > 0 such that every graph in the
set is α-dispersed. (Our notion of dispersibility has nothing to do with the notion of dispersers, which
in turn is a weakening of the notion of (randomness) extractors (see, e.g., [S]).)

The augmentation. We first augment the graphs in Π′ such that the resulting graphs are dispersed,
while the augmentation amounts to adding a linear number of vertices. The fact that these resulting
graphs are dispersed will be useful for establishing both the lower and upper bounds. The augmentation
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is performed in two steps. First, setting n′ = 2⌈log2(2n+1)⌉ ∈ [2n + 1, 4n], we augment each graph
G′ = ([n], E′) by n′ − n isolated vertices, yielding an n′-vertex graph H ′ = ([n′], E′) in which every
vertex has degree at most n− 1. Next, we augment each resulting n′-vertex graph H ′ by an n′-vertex
clique and connect the vertices of H ′ and the clique vertices by a bipartite graph that corresponds to a
Hadamard matrix; that is, the ith vertex of H ′ is connected to the jth vertex of the clique if and only
if the inner product modulo 2 of i− 1 and j − 1 (viewed as (log2 n′)-bit long strings) equals 1. Thus,
each n′-vertex graph H ′ yields a 2n′-vertex graph that contains H ′ one one side, a clique on the other
side, and a “Hadamard-based” bipartite graph connecting them (see Figure 1).

We denote the resulting set of (unlabeled) graphs by Π′′ (and sometimes refer to Π′′ as the set of
all labeled graphs obtained from these unlabeled graphs). We show that Π′′ is dispersed and inherits
the fundamental features of Π′.

G’

H’ n’-vertex clique

i

j

Figure 1: The two stage augmentation of Π′. The vertices i and j are connected if and only if the inner
product modulo 2 of the binary representations of i− 1 and j − 1 equals 1.

Claim 4.1 The graph property Π′′ satisfies the following conditions.

1. The set Π′′ is dispersed; that is, the resulting 2n′-vertex graphs have vertex neighborhoods that
differ on at least n ≥ n′/4 vertices.

2. Testing Π′′ requires a quadratic number of queries.

3. The set Π′′ is in P.

Proof: We first show that the resulting 2n′-vertex graphs have vertex neighborhoods that differ on
at least n ≥ n′/4 vertices. Consider the graph obtained by augmenting the n-vertex graph G′, and
let H ′ be the intermediate n′-vertex graph derived from G′. Then, vertices in H ′ neighbor (at most)
n′/2 clique vertices, whereas vertices in the clique neighbor all other n′− 1 clique vertices. Thus, these
types of vertices differ on at least (n′/2) − 1 > n − 1 neighbors. As for any two vertices in H ′, by the
use of the Hadamard bipartite graph, their neighborhood in the clique disagrees on n′/2 > n vertices.
An analogous claim holds with respect to any two vertices of the clique.

Proving that testing Π′′ requires a quadratic number of queries is done by reducing testing Π′ to
testing Π′′; specifically, ǫ-testing membership in Π′

n reduces to ǫ′-testing membership in Π′′
2n′ , where

n′ ≤ 4n and ǫ′ = ǫ/64. The reduction merely emulates an 2n′-vertex graph by making queries to the
corresponding n-vertex graph (while answering some queries (i.e., those that are not confined to the
original graph) according to the construction and without issuing any queries). Note that, since the
original graph occupies an n/2n′ ≥ 1/8 fraction of the augmented graph, the relative distance to the
property is reduced by a factor of at most 64.

Finally, note that the hypothesis that Π′ ∈ P implies that Π′′ is also in P, because it is easy to
distinguish the vertices of the original graph from the vertices added to it, since the clique vertices
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have degree at least n′ − 1 whereas the vertices of G′ have degree at most (n − 1) + (n′/2) < n′ − 1
(and isolated vertices of H ′ have neighbors only in the clique). Once this is done, we can verify that
the original graph is in Π′ (using Π′ ∈ P), and that the additional edges correspond to a Hadamard
matrix. 2

Applying graph blow-up. Next, we apply an (adequate factor) graph blow-up to the augmented
set of graphs Π′′. Actually, for simplicity of notation we assume, without loss of generality, that
Π′ =

⋃
n∈N Π′

n itself is dispersed, and apply graph blow-up to Π′ itself (rather than to Π′′). Given a
desired complexity bound q : N → N, we first set n =

√
q(N), and next apply to each graph in Π′

n

an N/n-factor blow-up, thus obtaining a set of N -vertex graphs denoted ΠN . (Indeed, we assume for
simplicity that both n =

√
q(N) and N/n are integers.) Recall that G is a t-factor blow-up of G′ if the

vertex set of G can be partitioned into t-sized sets, called clouds, such that the edges between these
clouds represent the edges of G′; that is, if {i, j} is an edge in G′, then there is complete bipartite
between the ith cloud and the jth cloud, and otherwise there are no edges between this pair of clouds.
This yields a graph property Π =

⋃
N∈N ΠN .

Let us first show that Π is in P. The proof that the query complexity of testing Π indeed equals
Θ(q) is undertaken in the next two sections.

Claim 4.2 The graph property Π is in P.

Proof: The proof relies on the hypothesis that Π′ is dispersed, or rather on the fact that each vertex
in each G′ ∈ Π′ has a distinct set of neighbors. This fact allows us to cluster vertices (in a graph
resulting from a blow-up of any such G′) according to their neighbor set. Specifically, given any N -
vertex graph G, we first cluster its vertices according to their neighborhood, and check whether the
number of clusters equals n =

√
q(N). (Note that if G ∈ ΠN , then we obtain exactly n (equal sized)

clusters, which correspond to the n clouds that are formed in the N/n-factor blow-up that yields G.)
Next, we check that each cluster has size N/n and that the edges between these clusters correspond to
the blow-up of some n-vertex graph, denoted G′. Finally, we check whether G′ is in Π′

n, while relying
on the fact that Π′ ∈ P. 2

4.2 Lower-bounding the query complexity of testing Π

In this section we prove that the query complexity of testing Π is Ω(q). The basic idea is reducing
testing Π′ to testing Π; that is, given a graph G′ that we need to test for membership in Π′

n, we test its
N/n-factor blow-up for membership in ΠN , where N is chosen such that n =

√
q(N). This approach

relies on the assumption that the N/n-factor blow-up of any n-vertex graph that is far from Π′
n results

in a graph that is far from ΠN . (Needless to say, the N/n-factor blow-up of any graph in Π′
n results in

a graph that is in ΠN .)
Unfortunately, as shown by Arie Matsliah, the aforementioned assumption does not hold in the

strict sense of the word (i.e., it is not true that the blow-up of any graph that is ǫ-far from Π′ results
in a graph that is ǫ-far from Π).2 However, for our purposes it suffices to prove a relaxed version of the
aforementioned assumption that only asserts that for every ǫ′ > 0 there exists an ǫ > 0 such that the

2Matsliah’s proof refers to two 4-vertex graphs and their 2-factor blow-up. Specifically, let G be a 4-vertex graph that
consists of a triangle and an isolated vertex, and H consists of a matching of size two, denoted {{1, 2}, {3, 4}}. Then,
the (absolute) distance between G and H is 3 edges (because at least two edges must be dropped from the triangle and
one edge added to be incident the isolated vertex). On the other hand, it is not hard to see that the 2-factor blow-ups
of G and H are at distance of at most 10 < 4 · 3 edges. For example, consider an mapping of the eight vertices, denoted
{1′, 1′′, 2′, 2′′, 3′, 3′′, 4′, 4′′}, of the 2-factor blow-up of H to four clouds such that vertex i′ is mapped to cloud i, whereas
vertex 1′′ is mapped to the 1st cloud, vertex 2′′ is mapped to the 4th cloud, vertex 3′′ is mapped to the 2nd cloud, and
vertex 4′′ is mapped to the 3rd cloud. Then, dropping the edges {3′, 4′′}, {3′, 4′}, {3′′, 4′′} and adding 12 − 5 = 7 edges
among the 1st, 2nd and 4th clouds, we obtain a 2-factor blow-up of G.
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blow-up of any graph that is ǫ′-far from Π′ results in a graph that is ǫ-far from Π. Below we prove this
assertion for ǫ = Ω(ǫ′) and rely on the fact that Π′ is dispersed. (We mention that in Appendix B of
our technical report [GKNR], we present a more complicated proof that holds for arbitrary Π′ (which
need not be dispersed), but with ǫ = Ω(ǫ′)2. Our result was superseded by Oleg Pikhurko, who showed
that the distance is actually preserved up to a factor of three [P, Sec. 4].)

Lemma 4.3 There exists a universal constant c > 0 such that the following holds for every n, ǫ′, α and
every pair of (unlabeled) n-vertex graphs, (G′

1, G
′
2). If G′

1 is α-dispersed and ǫ′-far from G′
2, then for

any t the (unlabeled) t-factor blow-up of G′
1 is cα · ǫ′-far from the (unlabeled) t-factor blow-up of G′

2.

Using Lemma 4.3 we infer that if G′ is ǫ′-far from Π′ then its blow-up is Ω(ǫ′)-far from Π. This
inference relies on the fact that Π′ is dispersed (and on Lemma 4.3 when applied to G′

2 = G′ and every
G′

1 ∈ Π′).

Proof of Lemma 4.3: The hypothesis that G′
1 is dispersed is used here in order to argue that the

distance between the blow-ups of G′
1 and G′

2 is approximately maximized when mapping clouds of
the first blown-up graph to clouds of the second blown-up graph (rather than splitting clouds of the
first graph among clouds of the second graph). Note that the non-triviality of the preservation of
distances under blow-up arises merely from the possibility that the cloud-structure is not preserved by
the mapping that witnesses a minimal distance between blown-up graphs.

Let G1 (resp., G2) denote the (unlabeled) t-factor blow-up of G′
1 (resp., G′

2), and consider a bijection
π from the vertices of G1 = ([t · n], E1) to the vertices of G2 = ([t · n], E2) that minimizes the size of
the set (of violations)

{(u, v) ∈ [t · n]2 : {u, v}∈E1 iff {π(u), π(v)} /∈E2}. (1)

Clearly, if π were to map to each cloud of G2 only vertices that belong to a single cloud of G1 (equiv.,
for every u and v that belong to the same cloud of G1 it holds that π(u) and π(v) belong to the same
cloud of G2), then G2 would be ǫ′-far from G1 (since the fraction of violations under such a mapping
equals the fraction of violations in the corresponding mapping of G′

1 to G′
2). The problem, however,

is that it is not clear that π behaves in such a nice manner (and so violations under π do not directly
translate to violations in mappings of G′

1 to G′
2). Still, using the hypothesis that G′

1 is dispersed, we
show that things cannot be extremely bad.

Specifically, we call a cloud of G2 good if at least (t/2) + 1 of its vertices are mapped to it (by
π) from a single cloud of G1, and call it bad otherwise. Letting ǫ denote the fraction of violations in
Eq. (1) (i.e., the size of this set divided by (tn)2), we first show that at least (1 − (3ǫ/α)) · n of the
clouds of G2 are good.

Assume, towards the contradiction, that G2 contains more that (3ǫ/α) · n bad clouds. Considering
any such a (bad) cloud, we observe that it must contain at least t/3 disjoint pairs of vertices that
originate in different clouds of G1 (i.e., for each such pair (v, v′) it holds that π−1(v) and π−1(v′)
belong to different clouds of G1).

3 Recall that the edges in G2 respect the cloud structure of G2 (which
in turn respects the edge relation of G′

2). But vertices that originate in different clouds of G1 differ on
at least α · tn edges in G1. Thus, every pair (v, v′) (in this cloud of G2) such that π−1(v) and π−1(v′)
belong to different clouds of G1 contributes at least α · tn violations to Eq. (1).4 It follows that the set

3This pairing is obtained by first clustering the vertices of the cloud of G2 according to their origin in G1. By the
hypothesis, each cluster has size at most t/2. Next, observe that taking the union of some of these clusters yields a set
containing between t/3 and 2t/3 vertices. Finally, we pair vertices of this set with the remaining vertices. (A better
bound of ⌊t/2⌋ can be obtained by using the fact that a t-vertex graph of minimum degree t/2 contains a Hamiltonian
cycle.)

4For each such pair (v, v′), there exist at least α · tn vertices u such that exactly one of the (unordered) pairs
{π−1(u), π−1(v)} and {π−1(u), π−1(v′)} is an edge in G1. Recalling that for every u, the pair {u, v} is an edge in G2 if
and only if {u, v′} is an edge in G2, it follows that for at least α · tn vertices u either (π−1(u), π−1(v)) or (π−1(u), π−1(v′))
is a violation.
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in Eq. (1) has size greater than
3ǫn

α
· t

3
· αtn = ǫ · (tn)2

in contradiction to our hypothesis regarding π.
Having established that at least (1 − (3ǫ/α)) · n of the clouds of G2 are good and recalling that a

good cloud of G2 contains a strict majority of vertices that originates from a single cloud of G1, we
consider the following bijection π′ from the vertices of G1 to the vertices of G2: For each good cloud g
of G2 that contains a strict majority of vertices from cloud i of G1, we map all vertices of the ith cloud
of G1 to cloud g of G2, and map all other vertices of G1 arbitrarily.

Note that violations under π′ that occur among good clouds of G2 can be charged to violations
that exist under π. Specifically, if there is a violation under π′ between the ith and jth (good) clouds
of G2, then the majority of the vertices in the ith cloud form violations under π with the majority
of the vertices in the jth cloud. Thus, such t2 violations under π′ are charged to the corresponding
ti · tj violations under π, where ti, tj > t/2. It follows that the number of violations under π′ is upper-
bounded by four times the number of violations occuring under π between good clouds of G2 (i.e., at
most 4 · ǫ · (tn)2) plus at most (3ǫ/α) · n · t2n violations created with the remaining (3ǫ/α) · n (bad)
clouds.

The foregoing holds, in particular, for any bijection π′ that maps to each remaining (i.e., bad) cloud
of G2 vertices that originate in a single cloud of G1. This π′, which maps complete clouds of G1 to
clouds of G2, yields a mapping of G′

1 to G′
2 that has at most (4ǫ + (3ǫ/α)) · n2 violations. Recalling

that G′
1 is ǫ′-far from G′

2, we conclude that 4ǫ+(3ǫ/α) > ǫ′, which implies ǫ > αǫ′/7. The claim follows
(since ǫ is the minimal value such that G1 is ǫ-close to G2). 2

Using Lemma 4.3, we are ready to establish the Ω(q) lower bound on the query complexity of testing
Π.

Proposition 4.4 Any tester for Π has query complexity Ω(q).

Proof: Recall that Lemma 4.3 implies that if G′ is ǫ′-far from Π′, then its blow-up is Ω(ǫ′)-far from Π.
Using this fact, we conclude that ǫ′-testing of Π′ reduces to Ω(ǫ′)-testing of Π. Thus, a quadratic lower
bound on the query complexity of ǫ′-testing Π′

n yields an Ω(n2) lower bound on the query complexity of
Ω(ǫ′)-testing ΠN , where n =

√
q(N). Hence, we obtain an Ω(q) lower bound on the query complexity

of testing Π, for some constant value of the proximity parameter. 2

4.3 An optimal tester for property Π

In this section we prove that the query complexity of testing Π is at most q (and that this can be met
by a relatively efficient tester). We start by describing this (alleged) tester.

Algorithm 4.5 On input N and proximity parameter ǫ, and when given oracle access to a graph
G = ([N ], E), the algorithm proceeds as follows:

1. Setting ǫ′
def
= ǫ/3 and computing n←

√
q(N).

2. Finding n representative vertices; that is, vertices that reside in different alleged clouds, which

corresponds to the n vertices of the original graph. This is done by first selecting s
def
= O(log n)

random vertices, hereafter called the signature vertices, which will be used as a basis for clustering

vertices (according to their neighbors in the set of signature vertices). Next, we select s′
def
=

O(ǫ−2 · n log n) random vertices, probe all edges between these new vertices and the signature
vertices, and cluster these s′ vertices accordingly (i.e., two vertices are placed in the same cluster
if and only if they neighbor the same signature vertices). If the number of clusters is different
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from n, then we reject. Furthermore, if the number of vertices that reside in each cluster is
not (1 ± ǫ′) · s′/n, then we also reject. Otherwise, we select (arbitrarily) a vertex from each
cluster, and proceed to the next step, while referring to these n vertices as the representatives of
the corresponding clusters.

3. Note that the signature vertices (selected in Step 2) induce a clustering of all the vertices of G.
Referring to this clustering, we check that the edges between the clusters are consistent with the
edges between the representatives. Specifically, we select uniformly O(1/ǫ) vertex pairs, cluster
the vertices in each pair according to the signature vertices, and check that their edge relation
agrees with that of their corresponding representatives. That is, for each pair (u, v), we first find
the cluster to which each vertex belongs (by making s queries per each vertex), determine the
corresponding representatives, denoted (ru, rv), and check (by two queries) whether {u, v} ∈ E iff
{ru, rv} ∈ E. (Needless to say, if one of the newly selected vertices does not reside in any of the
n existing clusters, then we reject.)

4. Finally, using
(n
2

)
< q(N)/2 queries, we determine the subgraph of G induced by the n represen-

tatives. We accept if and only if this induced subgraph is in Π′.

Note that, for constant value of ǫ, the query complexity is dominated by Step 4, and is thus upper-
bounded by q(N). (In general, the query complexity is o(q(N)/ǫ2) + (q(N)/2) = O(q(N)/ǫ2).) Fur-
thermore, for constant ǫ, the above algorithm can be implemented in time poly(n · log N) = poly(q(N) ·
log N). We comment that the Algorithm 4.5 is adaptive, and that a straightforward non-adaptive

implementation of it has query complexity (that is dominated by)
(s′

2

)
= O(n log n)2 = Õ(q(N)).

Remark 4.6 In fact, a (non-adaptive) tester of query complexity Õ(q(N)) can be obtained by a simpler
algorithm that selects a random set of s′ vertices and accepts if and only if the induced subgraph is ǫ′-
close to being a (s′/n-factor) blow-up of some graph in Π′

n. Specifically, we can cluster these s′ vertices
by using them also in the role of the signature vertices. Furthermore, these vertices (or part of them)
can also be designated for use in Step 3. We note that the analysis of this simpler algorithm does not
rely on the hypothesis that Π′ is dispersed.

We now turn to analyzing the performance of Algorithm 4.5. We note that the proof that this algorithm
accepts, with very high probability, any graph in ΠN relies on the hypothesis that Π′ is dispersed. (In
contrast, the proof that Algorithm 4.5 rejects, with very high probability, any graph that is ǫ-far from
ΠN does not rely on this hypothesis.) Also note that Algorithm 4.5 has a two-sided error probability,
which emerges from the approximations conducted in Step 2.

Proposition 4.7 Algorithm 4.5 constitutes a tester for Π.

Proof: We first show that any graph in ΠN is accepted with very high probability. Suppose that
G ∈ ΠN is a N/n-factor blow-up of G′ ∈ Π′

n. Relying on the fact that Π′ is dispersed we note that,
for every pair of vertices in G′ ∈ Π′

n, with constant probability a random vertex has a different edge
relation to the members of this pair. Therefore, with very high (constant) probability, a random set of
s = O(log n) vertices yields n different neighborhood patterns for the n vertices of G′. It follows that,
with the same high probability, the s signature vertices selected in Step 2 induce n (equal sized) clusters
on the vertices of G, where each cluster contains the cloud of N/n vertices (of G) that replaces a single
vertex of G′. Thus, with very high (constant) probability, the sample of s′ = O(ǫ−2 ·n log n) additional
vertices selected in Step 2 hits each of these clusters (equiv., clouds) and furthermore has (1± ǫ′) · s′/n
hits in each cluster. We conclude that, with very high (constant) probability, Algorithm 4.5 does not
reject G in Step 2. Finally, assuming that Step 2 does not reject (and we did obtain representatives
from each cloud of G), Algorithm 4.5 never rejects G ∈ Π in Steps 3 and 4.
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We now turn to the case that G is ǫ-far from ΠN , where we need to show that G is rejected with
high constant probability (say, with probability 2/3). We will actually prove that if G is accepted with
sufficiently high constant probability (say, with probability 1/3), then it is ǫ-close to ΠN . We call a set
of s vertices good if (when used as the set of signature vertices) it induces a clustering of the vertices of
G such that n of these clusters are each of size (1± 2ǫ′) ·N/n. Note that good s-vertex sets must exist,
because otherwise Algorithm 4.5 rejects in Step 2 with probability at least 1− exp(Ω(ǫ2/n) · s′) > 2/3.

Fixing any good s-vertex set S, we call a sequence of n vertices R = (r1, ..., rn) well-representing if
(1) ri resides in the ith aforementioned cluster, (2) the subgraph of G induced by R is in Π′

n, and (3)
when clustering the vertices of G according to S, at most ǫ′ fraction of the vertex pairs of G have an
edge relation that is inconsistent with the corresponding vertices in R. That is, condition (3) requires
that at most ǫ′ fraction of the vertex pairs in G violate the condition by which {u, v} ∈ E if and only if
{ri, rj} ∈ E, where u resides in the ith cluster (w.r.t S) and v resides in the jth cluster. Now, note that
there must exist a good s-vertex set S that has a well-representing n-vertex sequence R = (r1, ..., rn),
because otherwise Algorithm 4.5 rejects with probability at least 2/3. (Specifically, if a ρ fraction
of the s-vertex sets are good (but have no corresponding n-sequence that is well-representing), then
Step 2 rejects with probability at least (1− ρ) · 0.9 and either Step 3 or Step 4 reject with probability
ρ ·min((1 − (1− ǫ′)Ω(1/ǫ)), 1) > 0.9ρ.)

Fixing any good s-vertex set S and any corresponding R = (r1, ..., rn) that is well-representing, we
consider the clustering induced by S, denoted (C1, ...., Cn,X), where X denotes the set of (untypical)
vertices that do not belong to the n first clusters. Recall that, for every i ∈ [n], it holds that ri ∈ Ci

and |Ci| = (1 ± 2ǫ′) · N/n. Furthermore, denoting by i(v) the index of the cluster to which vertex
v ∈ [N ] \X belongs, it holds that the number of pairs {u, v} (from [N ] \X) that violate the condition
{u, v} ∈ E iff {ri(u), ri(v)} ∈ E is at most ǫ′ · (N

2

)
. Now, observe that by modifying at most ǫ′ · (N

2

)
edges

in G we can eliminate all the aforementioned violations, which means that we obtain n sets with edge
relations that fit some graph in Π′

n (indeed the graph obtained as the subgraph of G induced by R,
which was not modified). Recall that these sets are each of size (1± 2ǫ′) ·N/n, and so we may need to
move 2ǫ′N vertices in order to obtain sets of size N/n. This movement may create up to 2ǫ′N · (N − 1)
new violations, which can be eliminated by modifying at most 2ǫ′ · (N

2

)
additional edges in G. Using

ǫ = 3ǫ′, we conclude that G is ǫ-close to ΠN . The proposition follows. 2

Conclusion. We just showed that Algorithm 4.5 satisfies the upper bound requirements of Theo-
rem 4; that is, it is a (relatively efficient) tester for Π and has query complexity O(q). Recalling that
Proposition 4.4 establishes a corresponding Ω(q) lower bound, we complete the proof of Theorem 4.

5 Revisiting the Adjacency Matrix Model: Monotone Properties

In continuation to Section 4, which provides a hierarchy theorem for generic graph properties (in the
adjacency matrix model), we present in this section a hierarchy theorem for monotone graph properties
(in the same model). We say that a graph property Π is monotone if adding edges to any graph that
resides in Π yields a graph that also resides in Π. (That is, we actually refer to upward monotonicity,
and an identical result for downward monotonicity follows by considering the complement graphs.)5

Theorem 5 In the adjacency matrix model, for every q : N → N as in Theorem 4, there exists a
monotone graph property Π that is testable in O(q) queries, but is not testable in o(q) queries.

Note that Theorem 5 refers to two-sided error testing (just like Theorem 4). Theorems 4 and 5 are
incomparable: the former provides graph properties that are in P (and the upper bound is established
via relatively efficient testers), whereas the latter provides graph properties that are monotone.

5We stress that these notions of monotonicity are different from the notion of monotonicity considered in [AS3], where
a graph property Π is called monotone if any subgraph of a graph in Π is also in Π.
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Outline of the proof of Theorem 5. Starting with the proof of Theorem 4, one may want to apply
a monotone closure to the graph property Π (presented in the proof of Theorem 4). (Indeed, this is the
approach used in the proof of [GT, Thm. 1], where a monotone closure of a set of graphs S yields the
set of all graphs that are obtained from any graph G of S by adding any number of edges to G.) Under
suitable tuning of parameters, this allows to retain the proof of the lower bound, but the problem is
that the tester presented for the upper bound fails. The point is that this tester (i.e., Algorithm 4.5)
relies on the structure of graphs obtained via blow-up, whereas this structure is not maintained by the
monotone closure.

One possible solution, which assumes that all graphs in Π have approximately the same edge density,
is to augment the monotone closure of Π with all graphs that have significantly larger edge density,
where the corresponding threshold on the number of edges is denoted T . Intuitively, in this way, we
can afford accepting any graph that has more than T edges, and handle graphs with fewer edges by
relying on the fact that in this case the blow-up structure is essentially maintained (because only few
edges are added).

Unfortunately, implementing this idea is not straightforward: On the one hand, we should set the
threshold high enough so that the lower bound proof still holds, whereas on the other hand such a
setting may destroy the local structure of a constant fraction of the graph’s vertices. The solution to
this problem is to use an underlying property Π′ that supports “error correction” (i.e., allows recovering
the original structure even when a constant fraction of it is destroyed as above).

The proof of Theorem 5 copes with the aforementioned difficulties by a careful implementation
of the stated ideas. In Section 5.1, we construct a monotone property Π by combining the blow-up
operation with monotone (upward) closure and augmenting Π with all sufficiently dense graphs. In
Section 5.2 we lower-bound the query complexity of Π by showing that for graphs of non-excessive
maximal degree the distance to the property analyzed in Section 4.2 is linearly related to the distance
to the monotone property Π. Finally, in Section 5.3, we upper-bound the query complexity of Π by
analyzing the structure of the graphs in Π that are not too dense.

5.1 The monotone property Π

Our starting point is a graph property Π′ =
⋃

n∈N Π′
n for which testing requires quadratic query

complexity. Furthermore, we assume that this property satisfies the additional conditions stated in the
following claim.

Claim 5.1 There exists a graph property Π′ =
⋃

n∈N Π′
n for which testing requires quadratic query

complexity. Furthermore, for every constant δ > 0 and all sufficiently large n, it holds that every graph
G′ = ([n], E′) in Π′

n satisfies the following two (local) conditions:

1. Every vertex has degree (0.5 ± δ) · n; that is, for every v ∈ [n] it holds that {u : {v, u} ∈ E′} has
size at least (0.5 − δ) · n and at most (0.5 + δ) · n.

2. Every two different vertices neighbor at least (0.75− δ) · n vertices; that is, for every v 6= w ∈ [n]
it holds that {u : {v, u} ∈ E′ ∨ {w, u} ∈ E′} has size at least (0.75 − δ) · n.

Moreover, pairs of graphs in Π′
n are related by the following two (global) conditions:

3. Every two non-isomorphic graphs in Π′
n differ on at least 0.4 ·(n

2

)
vertex pairs; that is, if G′

1, G
′
2 ∈

Π′
n are not isomorphic, then G′

1 is 0.4-far from G′
2.

4. Graphs in Π′
n that are isomorphic via a mapping that fixes less than 90% of the vertices differ on

at least 0.01 · (n
2

)
vertex pairs; that is, if G′

1, G
′
2 ∈ Π′

n are isomorphic via π such that |{i ∈ [n] :
π(i) 6= i}| > 0.1n, then G′

1 is 0.01-far from G′
2, where here we consider distance between labeled

graphs (or rather their adjacency matrices).
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In addition, with probability 1− o(1), a random n-vertex graph is 0.4-far from Π′
n.

Note that the graphs in Π′ are 2 · (0.25− 2δ)-dispersed, because |Γ(u) \Γ(v)| = |Γ(u)∪Γ(v)| − |Γ(v)| ≥
(0.75 − δ)n − (0.5 + δ)n = (0.25 − 2δ)n.

Proof of Claim 5.1: The graph property presented in the proof of [GGR, Prop. 10.2.3.1] (see also
Section 7) can be easily modified to satisfy the foregoing conditions. Recall that this property is

obtained by selecting K
def
= exp(Θ(n2)) random graphs and considering the n! isomorphic copies of

each of these graphs. Note that each of the “basic” K graphs satisfies the two local conditions with
probability at least 1−n2 ·exp(−Ω(δ2n)). Omitting the relatively few exceptional graphs (which violate
either of these two conditions), we obtain a property that satisfies both local conditions and maintains
the query-complexity lower bound. (Indeed, the query-complexity lower bound is not harmed, because
it is established by considering the uniform distribution over the set of basic graphs (which hardly
changes).)

Turning to the global conditions, which refer to the pairwise distances between graphs in Π′
n,

we distinguish two cases. In the case that G′
1, G

′
2 ∈ Π′

n are not isomorphic, they arise from two
independently selected basic graphs, and so with probability at least 1− exp(−Ω(n2)) > 1− o(|Π′

n|−2)
these two graphs are 0.4-far from one another. (The hidden constant in the definition of K is small
enough such that |Π′

n| = n!·K is o(exp(n2/2000)), whereas the constant hidden in the Omega expression
is greater than 0.001.) Applying the union bound (over all pairs in Π′

n), this establishes Condition 3.
It is left to consider pairs of graphs as in Condition 4 (i.e., graphs G′

1, G
′
2 ∈ Π′

n such that there
exists an isomorphism π of G′

1 to G′
2 such that π fixes less than 90% of the vertices). Thus, we

consider an arbitrary permutation π (over [n]) that fixes less than 0.9n of the domain (i.e., |{i ∈
[n] : π(i) 6= i}| > 0.1n). Next, we consider an arbitrary set I ⊂ [n] such that |I| = 0.03n and
π(I) = {π(i) : i ∈ I} does not intersect I. For a random n-vertex graph G′ = ([n], E′), with probability
at least 1− exp(−Ω(n2)) > 1− o((n!2 ·K)−1), the sets {(u, v) ∈ I × ([n] \ (I ∪ π(I)) : {u, v} ∈ E′} and
{(u, v) ∈ I × ([n] \ (I ∪ π(I)) : {π(u), π(v)} ∈ E′} differ on at least 0.01n2 entries (since the expected
difference is 0.03n · 0.9n/2 > 0.013n2). Thus, the π-isomorphic copy of G′ is 0.01-far from G′ (where
both are viewed as labeled graphs). Applying the union bound (over all the basic graphs and all choices
of π and I), we establish Condition 4, and the claim follows. 2

The monotone closure and augmentation (yielding Π). In the following description, we set
∆ > 0 to be a sufficiently small constant (e.g., smaller than 0.00001) such that the lower bound

established in Theorem 4 holds for proximity parameter 100∆ (i.e., ∆
def
= ǫ4/100, where ǫ4 is a value of

the proximity parameter for which Theorem 4 holds). Needless to say, Π′ satisfies the four conditions
of Claim 5.1 also when we fix δ to equal ∆. Given a desired complexity bound q : N → N, we set
n =

√
q(N) and define ΠN such that G = ([N ], E) ∈ ΠN if and only if (at least) one of the following

two conditions holds:

(C1) The graph G has at least (0.5 + 2∆) · (N
2

)
edges.

(C2) Each vertex in G has degree at least (0.5−∆)·N and G is an “approximate (monotone) blow-up”
of some graph in Π′

n; that is, there exists a partition of the vertex set of G (i.e., [N ]) into n equal-
sized sets, denoted (V1, ..., Vn), and a graph G′ = ([n], E′) ∈ Π′

n such that for every {i, j} ∈ E′

and every u ∈ Vi and v ∈ Vj either {u, v} ∈ E or the degree of either u or of v in G exceeds
0.52 ·N .

Note that Condition (C2) mandates that each edge {i, j} ∈ E′ is replaced by a complete bipartite graph
over Vi×Vj, with the possible exception of edges that are incident at vertices of degree exceeding 0.52·N
(in G). We stress that Condition (C2) does not require that for {i, j} 6∈ E′ the bipartite graph over
Vi× Vj is empty, but in the case that Condition (C1) does not hold these bipartite graphs will contain
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few edges (because the edges mandated by Condition (C2) leave room for few superfluous edges, when
taking into account the upper bound on the number of edges that is implied by the violation of
Condition (C1)).

Note that the property Π =
⋃

N∈N ΠN is monotone (since Conditions (C1) and (C2) are each
monotone). Also observe that ΠN contains the N/n-factor blow-up of any graph in Π′

n, because any
such blow-up satisfies Condition (C2). (Indeed, such a blow-up does not satisfy Condition (C1), since
each vertex in the blow-up has degree at most (0.5 + ∆) ·N .)

On the constant ∆. Recall that ∆ was fixed to be a small positive constant that is related to the
constant hidden in Theorem 4 (i.e., the lower bound in this theorem should hold when the proximity
parameter is set to any value that does not exceed 100∆). In addition, we will assume that ∆ is smaller
than various specific constants (e.g., in the proof of Claim 5.2 we use ∆ < 0.0001). In general, setting
∆ = 0.000001 satisfies all these conditions. We also note that in our positive result (i.e., the analysis of
the optimal tester) we will assume that the proximity parameter ǫ is significantly smaller than ∆ (e.g.,
ǫ < ∆/1000); this is not really a limitation, because, for any constant ǫ0 > 0, the tester may always
reset its proximity parameter to min(ǫ, ǫ0).

5.2 Lower-bounding the query complexity of testing Π

In this section we prove that the query complexity of testing Π is Ω(q). We shall do this by building
on [GGR, Prop. 10.2.3.1] and Section 4.2. Specifically, combining the approach of Section 4.2 with the
analysis of [GGR, Prop. 10.2.3.1], we consider the following two distributions (D1) and (D2):

(D1) The distribution obtained by applying an N
n -factor blow-up to a random n-vertex graph (i.e., to

a graph selected uniformly among all n-vertex graphs).

(D2) The distribution obtained by applying an N
n -factor blow-up to a graph selected uniformly in Π′

n,
where Π′

n is as asserted in Claim 5.1 (with respect to δ = ∆).

Combining [GGR, Prop. 10.2.3.1] and Lemma 4.3, we claim that, with high probability, a graph selected
according to distribution (D1) is far (i.e., 100∆-far) from the support of distribution (D2), whereas
distinguishing the two distributions requires Ω(q) queries. Specifically, we recall that, with high prob-
ability, a random n-vertex graph (as underlying distribution (D1)) is 0.4-far from any graph in Π′

n.
By Lemma 4.3, the corresponding blow-ups preserve this distance (up to a constant factor), and thus
(with high probability) a graph selected according to distribution (D1) is far from the support of dis-
tribution (D2). We also note that the proof of [GGR, Prop. 10.2.3.1] refers to these two underlying
distributions on n-vertex graphs, and establishes that they are indistinguishable by o(n2) queries. It
follows that the blow-up distributions (i.e., (D1) and (D2)) are indistinguishable by o(q(N)) queries.

Recalling that ΠN contains the support of distribution (D2), it suffices to show here that, with high
probability, a graph selected according to distribution (D1) is far from ΠN (rather than merely far from
the support of (D2)). This claim suffices, because by using it we obtain a distribution that is typically
far from ΠN and yet is indistinguishable by o(q(N)) queries from a distribution on ΠN (indeed (D2)
itself).

The claim that distribution (D1) is typically far from ΠN is proved by first observing that, with high
probability, a graph selected in distribution (D1) has maximum degree smaller than (0.5+∆) · (N −1).
The proof is concluded by showing that if such a graph (i.e., of the foregoing degree bound) is 100∆-far
from the support of distribution (D2), then it is ∆-far from ΠN .

Claim 5.2 Suppose that G has maximum degree smaller than (0.5+∆) · (N −1) and that G is ∆-close
to ΠN . Then, G is 64∆-close to the support of distribution (D2).
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Proof: Let C (standing for correct) be a graph in ΠN that is closest to G. Then, C has less than
N ·(0.5+∆)(N−1)

2 + ∆ · (N
2

)
= (0.5 + 2∆) · (N

2

)
edges, and thus C must satisfy Condition (C2) in the

definition of ΠN . Let G′ = ([n], E′) and (V1, ..., Vn) be as required in Condition (C2), and let H denote
the set of vertices that have degree greater than 0.52 ·N in C.

G C B

Π

G’

∆

approx. mono.
blow-up perfect 

blow-up

Figure 2: The graph G, its closest correction to Π, denoted C, and the corresponding perfect blow-up
B.

Consider the distance between G and the blow-up of G′, denoted B (standing for blow-up); see
Figure 2. Each vertex in H contributes at most N units to this distance (between G and B), but its
contribution to the distance between G and C is at least 0.52 · N − (0.5 + ∆) · N > N/60 (whereas
the total distance between G and C is at most ∆N2). Thus, the total contribution of vertices in H
(to the distance between G and B) is less than 60∆N2. We stress that this count includes pairs of
vertices that contain at least one element in H, and thus it remains to upper-bound the contribution
of pairs that reside entirely within [N ] \H. We upper-bound the contribution of vertices in [N ] \H
(to the distance between G and B) by the sum of (1) their contribution to the distance between G and
C (which is obviously upper-bounded by ∆N2), and (2) their contribution to the distance between C
and B.

In analyzing (2), we note that a pair (u, v) ∈ ([N ]\H)2 that is connected in B must also be connected
in C, and so (2) counts the number of pairs (u, v) ∈ ([N ] \H)2 that are connected in C but not in B.
Furthermore, the value of (2) equals the difference between the number of edges of the subgraph of B
induced by [N ] \H and the subgraph of C induced by [N ] \H. Recall that the average vertex degree
of vertices in the graph C is at most (0.5 + ∆) ·N + ∆N = (0.5 + 2∆) ·N , whereas in B vertices have
degree at least (0.5−∆) ·N . If these averages were holding for the subgraphs induced by [N ]\H, then
we could have upper bounded the value of (2) by ((0.5 + 2∆) ·N − (0.5−∆) ·N) · (N − |H|) < 3∆N2.
Actually, as we shall see next, the gap between these averages may only increase when we move to the
subgraphs induced by [N ] \ H. Specifically, the number of edges with at least one endpoint in H is
larger in C than it is in B, because the number of edges incident at any vertex of H is greater than
0.52 ·N in C (by definition of H) and at most (0.5 + ∆) · N in B (by B’s degree bound). Thus, the
difference in the average degree between the subgraphs (of C and B) induced by [N ] \ H is at most
(0.5 + 2∆) ·N − (0.5 −∆) ·N = 3∆N , and so the value of (2) is at most 3∆N2.

It follows that the total contribution (to both (1) and (2)) of vertices in [N ] \H is at most 4∆N2.
Hence, G is 64∆-close to B, and the claim follows (because B is in the support of (D2)). 2

Proposition 5.3 Any tester for Π has query complexity Ω(q).

Proof: The claim follows by combing all facts stated above. Recall that, by [GGR, Prop. 10.2.3.1],
distinguishing the distributions (D1) and (D2) requires Ω(q) queries. On the other hand, by [GGR,
Prop. 10.2.3.1] and Lemma 4.3, with high probability, a graph selected according to distribution (D1)
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is 100∆-far from the support of distribution (D2). With high probability, such a (random) graph has
maximum degree smaller than (0.5 + ∆)(N − 1), and so by Claim 5.2 it is (100∆/64)-far from ΠN .
Recalling that distribution (D2) resides on ΠN , it follows that any tester for Π must distinguish the
distributions (D1) and (D2), and the proposition follows. 2

5.3 An optimal tester for property Π

In this section we prove that the query complexity of testing Π is O(q). Before describing the (alleged)
tester, we analyze the structure of graphs that satisfy Condition (C2) but do not satisfy Condition (C1).
Denoting this set by Ξ =

⋃
N∈N ΞN , recall that ΞN contains N -vertex graphs that are in ΠN and have

average degree below (0.5 + 2∆) ·N . Since these graphs have minimum degree at least (0.5 −∆) ·N ,
they may contain relatively few vertices of degree exceeding 0.52 ·N (i.e., the number of such vertices
is at most O(∆N)). We call such vertices (i.e., of degree exceeding 0.52 ·N) heavy. As we show next,
the fact that almost all vertices in G ∈ ΞN are not heavy implies that the edges among these non-
heavy vertices (in any G) essentially determine a unique graph G′ ∈ Π′

n such that G is an approximate
blow-up of G′. Moreover, this determines a unique partition of the non-heavy vertices of G to clouds
that correspond to the vertices of G′. That is:

Lemma 5.4 Let G = ([N ], E) ∈ ΞN and H denote the set of heavy vertices of G (i.e., vertices having
degree that exceeds 0.52 · N). Then, up to a reordering of the indices in [n], there exists a unique
partition of [N ] \H into n sets, denoted V ′

1 , ..., V ′
n, and a unique graph G′′ = ({i ∈ [n] : V ′

i 6= ∅}, E′′)
such that the following conditions hold:

1. G′′ is an induced subgraph of some graph in Π′
n (i.e., there exists G′ = ([n], E′) ∈ Π′

n such that
{i, j} ∈ E′′ if and only if V ′

i 6= ∅, V ′
j 6= ∅ and {i, j} ∈ E′).

2. For every {i, j} ∈ E′′ and every u ∈ V ′
i and v ∈ V ′

j it holds that {u, v} ∈ E.

3. Vertices in the same V ′
i differ on at most 0.05N of their neighborhoods, whereas vertices that

reside in different V ′
i differ on at least 0.45N neighbors.

4. Each V ′
i has size at most N/n, and at most 0.01n sets (i.e., V ′

i ’s) are empty.

Furthermore, the claim holds even if G has minimum degree that is only above (0.5 − 2∆) ·N (rather
than above (0.5 −∆) ·N) and its average degree is smaller than (0.5 + 3∆) · N (rather than smaller
than (0.5 + 2∆) ·N).

Proof: We shall focus on the main claim, and the furthermore part will follow by observing that the
argument is actually insensitive to the value of ∆ (as long as the latter is small enough). We first note
that |H| < 150∆N , because |H| · 0.52N + (N − |H|) · (0.5 −∆)N < (0.5 + 2∆)N2.

The mere existence of a partition (V ′
1 , ..., V ′

n) and of a graph G′′ that satisfies the foregoing four
conditions follows from the fact that G satisfies Condition (C2). Specifically, let (V1, ..., Vn) and G′

be as guaranteed by Condition (C2), and let V ′
i

def
= Vi \ H for every i ∈ [n]. Then, (V ′

1 , ..., V ′
n) and

the subgraph of G′ that is induced by {i ∈ [n] : V ′
i 6= ∅} satisfy all the foregoing conditions. In

particular, vertices in [N ] \H have neighbors (in [N ] \H) as mandated by G′, and may have at most
0.52N − ((0.5 − ∆)N − |H|) < 0.02N + 151∆N < 0.021N additional neighbors. Thus, vertices in
the same Vi \H may differ on at most 2 · 0.021N + |H| < 0.05N of their neighbors, whereas vertices
that reside in different Vi \ H’s must differ on at least (0.5 − 4∆) · N − (2 · 0.021N + |H|) > 0.45N
neighbors. Clearly, each V ′

i has size at most N/n. Using |H| < 150∆N yet again, we conclude that at
most |H|/(N/n) < 150∆ · n < 0.01n sets V ′

i are empty (since each empty V ′
i contains N/n elements of

H).
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Having established the existence of suitable objects, we now turn to establish their uniqueness;
that is, we shall establish the uniqueness of both the partition of [N ] \H and the graph G′′, up to a
reordering of the index set [n].

We start by considering an arbitrary n-way partition of [N ] \H that satisfies the four conditions
of the claim. Referring to the foregoing partition (V1, ..., Vn), we show that two vertices u, v ∈ [N ] \H
can be placed in the same set of this n-wise partition (of [N ] \ H) if and only if they reside in the
same set Vi. This follows by the “clustering” condition asserted in Item 3 (since vertices in the same
Vi \H may differ on at most 0.05N of their neighbors, whereas vertices that reside in different Vi \H’s
must differ on at least 0.45N neighbors). Thus, the partition of [N ] \ H is uniquely determined, up
to a reordering of the index set [n]. Let us denote this partition by (V ′

1 , ..., V ′
n); indeed, the sequence

(V ′
1 , ..., V ′

n) is a permutation of the sequence (V1 \ H, ..., Vn \ H), and here we arbitrarily fix such a
permutation (ordering of [n]).

Note that so far we have only used the condition in Item 3, and this allowed us to uniquely determine
the sequence (V ′

1 , ..., V ′
n) (up to reordering of [n]). Using the other conditions (i.e., those in Items 2

and 4), we show that this sequence uniquely determines the subgraph G′′, which is an induced subgraph
of some G′ ∈ Π′

n.
Recall that, by Item 2, any unconnected pair of vertices (u, v) ∈ V ′

i × V ′
j mandates that the pair

(i, j) cannot be connected in G′. Since there are at most (0.5 + 2∆) · (N
2

)
edges in G and at most

|H| · N pairs that intersect H, we conclude that the number of unconnected pairs in
⋃

i6=j V ′
i × V ′

j

is at least (0.5 − 2∆) · N2 − |H| · N −∑
i |V ′

i |2 > (0.5 − 153∆) · N2, because |V ′
i | ≤ N/n by Item 4

(and n = ω(1)). Using Item 4 again, this forces at least (0.5 − 153∆) · n2 unconnected pairs in G′.
Recalling that G′ ∈ Π′

n has average degree at most (0.5+∆) ·n, this leaves us with slackness of at most
154∆ · n2 vertex pairs. Thus, any two graphs in Π′

n that satisfy Item 2, must be 154∆-close. Recalling
that non-isomorphic graphs in Π′

n are 0.4-far apart, this determines G′ up to isomorphism. Actually,
referring to the last condition in Claim 5.1, we conclude that G′ is determined up to an isomorphism
that fixes more than 90% of the vertices (because otherwise these graphs are 0.01-far). We shall show
next that this (90%-fixing isomorphism) uniquely determines G′′.

Suppose towards the contradiction that there exist two different graphs G′′
1 and G′′

2 that satisfy the
conditions of the claim, and let i be a vertex in G′′

1 that is mapped by the isomorphism to j 6= i in
G′′

2 . As we show next, this situation induces conflicting requirements on the neighbors of vertices in
V ′

i and V ′
j ; that is, it requires too many shared neighbors (when compared to the shared neighbors

of i and j in G′). Specifically, by applying Item 2 to G′′
1 , the neighbors of each vertex in V ′

i should
contain all vertices in V ′

k such that k is connected to i in G′′
1 . Similarly, by applying Item 2 to G′′

2 , the
neighbors of each vertex in V ′

j should contain all vertices in V ′
k such that k is connected to j in G′′

2 .
However, since the isomorphism fixes more than 90% of the vertices, it must be the case that for 90%
of k ∈ [n] it holds that i is connected to k in G′′

1 iff j is connected to k in G′′
2 . It follows that each pair

of vertices in V ′
i × V ′

j must share more than ((0.5−O(∆)) · n− 0.1n) · (N/n)− |H| > 0.3N neighbors,
which contradicts the postulate (regarding G′ which implies) that each such pair can share at most
(2 · (0.5 + ∆) · n− (0.75 −∆) · n) · (N/n) + |H| < 0.3N neighbors. The claim follows. 2

Testing the property Π. Having established Lemma 5.4, we are now ready to present the (alleged)
tester for Π. Intuitively, the tester first checks whether the input graph satisfies Condition (C1), and
if the input is found to be Ω(ǫ)-far from satisfying Condition (C1) then it is tested for Condition (C2).
Indeed, the core of this tester refers to the latter part (i.e., testing Ξ), and is obtained by suitable
adaptations of Algorithm 4.5. In particular, since we cannot expect to identify representatives from
all clouds (i.e., some sets V ′

i in Lemma 5.4 may be too small or even empty), we settle for obtaining
representatives from at least a 1 − Ω(ǫ) fraction of the identifiable clouds (which leads to using, as a
basis, the simplified version of Algorithm 4.5 that is discussed in Remark 4.6).
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Algorithm 5.5 On input N and proximity parameter ǫ, and when given oracle access to a graph

G = ([N ], E), the algorithm proceeds as follows, after setting ǫ′
def
= ǫ/10 and n

def
=

√
q(N):

1. Estimating the edge density of G. Using a sample of O(ǫ−2) vertex pairs, we estimate the edge
density of G and accept if this estimate exceeds 0.5+ 2∆− 2ǫ′. We proceed to the next steps only
if the edge density of G is estimated to be less than 0.5 + 2∆− 2ǫ′, in which case we may assume
that the edge density of G is actually less than 0.5 + 2∆ − ǫ′.

2. Estimating the minimum degree of G. Using a sample of Õ(ǫ−2) vertices, we estimate the min-
imum degree in G; that is, we pick O(ǫ−1) vertices and estimate their degrees using an auxil-
iary sample of Õ(ǫ−2) vertices. If we find a vertex that we estimate to have degree less than
(0.5 − ∆ − ǫ′) · N , then we reject. We proceed to the next steps only if we failed to find such
a vertex, in which case we may assume that all but at most ǫ′N vertices have degree exceeding
(0.5 −∆− 2ǫ′) ·N .

3. Finding representative vertices. We start by selecting a sample, denoted S, of s
def
= O(ǫ−2n)

random vertices, and estimating their individual degrees in G by their individual degrees in the
subgraph induced by S. We let S′ ⊆ S denote the set of vertices for which the estimated degree is
less than (0.52 − ǫ′) ·N . We proceed only if |S′| > 0.99s, and otherwise we halt and reject.

Next, we cluster the vertices in S′ as follows. Probing all
(|S′|

2

)
possible edges between these

vertices, we cluster these vertices such that each cluster contains vertices having neighbor sets
that differ on at most 0.06s vertices in S′. Specifically, we associate to each vertex an |S′|-
dimensional Boolean vector that indicates whether or not it neighbors each of the vertices in S′,
and consider the metric defined by Hamming distance between these vectors. Scanning the vertices
of S′, we put the current vertex in an existing cluster if it is 0.06-close to the center of this cluster,
and open a new cluster with the current vertex as its center otherwise (i.e., if the current vertex
cannot be fit to any existing cluster).

If the number of clusters, denoted n′, is greater than n, then we reject. Otherwise, we select at
random a representative from each cluster, and denote by ri the representative of the ith cluster.

4. Determining an adequate subgraph of a graph in Π′
n. Let R = {ri : i ∈ [n′]} and let GR denote

the subgraph of G induced by R (i.e., by the set of representatives selected above). We try to
determine a graph G′ ∈ Π′

n such that the subgraph of G′ induced by [n′], denoted G′′ = ([n′], E′′),
is consistent with GR in the sense that if {i, j} ∈ E′′ then {ri, rj} ∈ E (equiv., the pair (ri, rj)
is connected by an edge in GR). If either such a graph G′ does not exist or G′′ is not uniquely
determined, then we halt and reject.

5. Testing the induced clustering of the vertices of G. The set R suggests a clustering of the vertices
of G according to their neighbors in the set R. Specifically, for any vertex v ∈ [N ] of degree at
most 0.52 ·N , we let ι(v) = i if v is 0.06-close to the representative ri and is 0.4-far from all other
representatives. Otherwise (i.e., if no such i exists), then ι(v) = ⊥. Referring to this clustering
(i.e., the clustering according to ι), we check whether it is indeed adequate (both with respect to
size and fitting G′′) by taking a sample of t = O(ǫ−2n log(1/ǫ)) vertices.

In the following sub-steps, the degrees of individual vertices in the latter sample are estimated by
taking an additional sample of O(ǫ−2 log t) vertices for each vertex.

(a) We check that all but at most an ǫ′ fraction of the vertices that have degree at most 0.52 ·N
are uniquely clustered and that each of these vertices resides in a cluster that has size at
most (1 + ǫ′)N/n. That is, using an auxiliary sample of O(ǫ−2n log(1/ǫ)) vertices, we check
that for each such vertex v that is estimated to have degree at most (0.52 − ǫ′) ·N , it holds
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that ι(v) ∈ [n′], and that at least a 1 − ǫ′ fraction of these vertices are clustered so that for
every i ∈ [n′] at most (1+ ǫ′)/n fraction of the vertices v satisfy ι(v) = i. We reject if either
such an unclusterable vertex v is found or some cluster is too big.

(b) We check that the edges between the clusters are consistent with the edges between the cor-
responding vertices of G′′. Specifically, we select uniformly O(1/ǫ) vertex pairs, cluster the
vertices in each pair according to ι, and check that their edge relation agrees with that of
their corresponding representatives in the sense that each vertex pair must be connected if
the corresponding pair of ι-indices is connected in G′′. That is, for each pair (u, v), we first
estimate the degree of each vertex and proceed only if both estimates are below (0.52− ǫ′) ·N .
Next, we find the cluster to which each vertex belongs, and reject if {ι(u), ι(v)} ∈ E′′ holds
but {u, v} 6∈ E.

(The condition in Step 5b may be interpreted as not rejecting if either ι(u) = ⊥ or ι(v) = ⊥; but
we can also reject in this case, as in Step 5a.)

We accept if and only if none of the foregoing checks led to rejection.

The query complexity of Algorithm 5.5 is domianted by Steps 3 and 5, which use
(|S′|

2

)
= O(ǫ−2n)2 =

O(ǫ−4q(N)) and (t + O(1/ǫ)) · (n′ + O(ǫ−2 log t)) = O(ǫ−4n2 log2(1/ǫ)) queries, respectively. We now
turn to analyzing the performance of Algorithm 5.5.

Proposition 5.6 Algorithm 5.5 constitutes a tester for Π.

Proof: We first verify that any graph in ΠN is accepted with very high probability. Note first that if
G ∈ ΠN satisfies Condition (C1), then Step 1 accepts with very high probability. The same holds if G
has average degree at least (0.5+2∆− ǫ′)N . Thus, we focus on the case that G ∈ ΞN , and furthermore
assume that G has average degree less than (0.5 + 2∆ − ǫ′)N . Needless to say, Step 2 is unlikely to
reject G (because G has minimum degree at least (0.5 −∆)N).

Regarding the sample S taken in Step 3, with very high probability, the degree of each sample vertex
in G is approximated up-to a relative term of ±ǫ′ by this vertex’s degree in the subgraph induced by
S. The same holds with respect to the number of neighbors that each such vertex has in any n fixed
sets, where we care about the sets Vi associated with G ∈ ΞN . Letting H, (V ′

1 , ..., V ′
n) and G′′ be as in

Lemma 5.4, we note that with high probability the sample S′ taken in Step 3 is clustered accordingly
(i.e., the ith cluster consists of V ′

i ∩ S′, where here we consider a possible reordering of the sequence of
clusters). (Here we allow also empty clusters in order to obtain a sequence of n clusters.) Furthermore,
the subgraph G′′ fits the induced graph GR in the sense that G′′ satisfies the condition in Step 4 (i.e.,
if {i, j} is an edge in G′′ then {ri, rj} ∈ E). Moreover, with high probability, G′′ passes the checks in
Step 5b (because the auxiliary samples taken in Step 5 are also clustered according to the Vi’s). Thus,
Steps 3 and 5 are unlikely to reject G (because, with probability at least 1−ǫ, the ith cluster is assigned
a (N−1 · |V ′

i | ± ǫ′)/n fraction of the vertices sampled in Step 3 and in Step 5).
To show that Step 4 is also unlikely to reject G, we need to show that, with high probability,

the graph G′′ is the only adequate graph that fits the set R. The latter is proved by considering an
(imaginary) set I selected at random such that I includes a single uniformly distributed element from
each set Vi. Observe that, with high probability (i.e., probability at least 1 − exp(−Ω(n))) over the
choice of I, the N/n-factor blow-up of the subgraph GI is approximately in ΞN , and so applying (the
furthermore part of) Lemma 5.4 to this blow-up of GI guarantees the uniqueness of G′′ (with respect
to GI).

6 That is, G′′ is the only n′-vertex graph that is an induced subgraph of some graph in Π′
n and

fits GI (i.e., if {i, j} is an edge in G′′ then either the corresponding edge is in GI or at least one of its
endpoints is in H). We now consider R as being derived from I by replacing each vertex in Vi ∩H by

6Here we use (0.5 − ∆ − ǫ)N > (0.5 − 2∆)N , which follows from the hypothesis ǫ ≤ ∆.
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a uniformly chosen vertex in V ′
i = Vi \H, and note that this replacement may only increase the set of

constraints involved in the “fitting condition” (i.e., if some graph did not fit GI , then it will also not
fit the corresponding GR).7 It follows that G′′ is the only graph that fits GR, and so Step 4 is unlikely
to reject G. We conclude that G is unlikely to be rejected by any step, and thus it is accepted (with
high probability).

We now turn to the case that G is ǫ-far from Π, where we need to show that G is rejected with, say,
probability 2/3. We will actually prove that if G is accepted with probability 1/3, then it is ǫ-close to
ΠN . We may assume that G has average degree below (0.5+2∆−ǫ)N , since otherwise the claim follows
easily. Thus, with high probability, the graph G is not accepted by Step 1, and so we may use the fact
that G is accepted by virtue of not violating the subsequent checks (of Steps 2–5). In particular, by
virtue of Step 2, we may assume that at most ǫ′N vertices of G have degree below (0.5 −∆ − 2ǫ′)N ,
which means that we can meet the degree lower bound (of Ξ) by adding at most 3ǫ′N2 edges. Let S′,
r1, ..., rn′ and G′′ be as determined in Steps 3 and 4. (Indeed, here we use the fact that G′′ is uniquely
determined by S, and that the same holds with respect to the distribution of r1, ..., rn′ .) Then, by
virtue of Step 5, we obtain a clustering of at least (1− ǫ′)N vertices that approximately fits the graph
G′′ in the sense that they reside in clusters that have each size at most (1 + 2ǫ′)N/n and the number

of missing edges between these clusters is at most ǫ′N2. By moving m
def
= 3ǫ′N vertices and adding at

most mN + ǫ′N2 edges, we obtain a partition of the vertices into n equal sized sets that perfectly fit
G′′, and it follows that G is (3 + 4) · ǫ′-close to ΞN . 2

Conclusion. We just showed that Algorithm 5.5 satisfies the upper bound requirements of Theo-
rem 5; that is, it is a tester for Π and has query complexity O(q). Recalling that Proposition 5.3
establishes a corresponding Ω(q) lower bound, we complete the proof of Theorem 5.

6 Revisiting the Adjacency Matrix Model: One-Sided Error

In continuation to Section 4, which provides a hierarchy theorem for two-sided error testing of graph
properties (in the adjacency matrix model), we present in this section a hierarchy theorem that refers
to one-sided error testing. Actually, the lower bounds will hold also with respect to two-sided error,
but the upper bounds will be established using a tester with one-sided error.

Theorem 6 In the adjacency matrix model, for every q : N→ N as in Theorem 4, there exists a graph
property Π that is testable with one-sided error in O(q) queries, but is not testable in o(q) queries even
when allowing two-sided error. Furthermore, Π is in P.

Theorems 4 and 6 are incomparable: in the former the upper bound is established via relatively efficient
testers (of two-sided error), whereas in the latter the upper bound is established via one-sided error
testers (which are not relatively efficient). (Unlike Theorem 5, both Theorems 4 and 6 do not provide
monotone properties.)

Outline of the proof of Theorem 6. Starting with the proof of Theorem 4, we observe that the
source of the two-sided error of the tester is in the need to approximate set sizes. This is unavoidable
when considering graph properties that are blow-ups of some other graph properties, where blow-up
is defined by replacing vertices of the original graph by equal-size clouds. The natural solution is to
consider a generalized notion of blow-up in which each vertex is replaced by a (non-empty) cloud of
arbitrary size. That is, G is a (generalized) blow-up of G′ = ([n], E′) if the vertex set of G can be

7The key observation is that all constraints that refer to a vertex in H (present in I) are trivially satisfied. Thus, it
does not matter which vertices are used to replace those in H , and it does not matter if we just omit these vertices (as
in case that Vi \ H = ∅).
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partitioned into n non-empty sets (of arbitrary sizes) that correspond to the n vertices of G′ such that
the edges between these sets represent the edges of G′; that is, if {i, j} is an edge in G′ (i.e., {i, j} ∈ E′),
then there is a complete bipartite between the ith set and the jth set, and otherwise (i.e., {i, j} 6∈ E′)
there are no edges between this pair of sets.

The proof of Theorem 6 builds on the proof of Theorem 4 (while deviating from it in some places).
In Section 6.1, we construct Π based on Π′ by applying the generalized graph blow-up operation. In
Section 6.2 we lower-bound the query complexity of Π based on the query complexity of Π′, while
coping with the non-trivial question of how does the generalized (rather than the standard) blow-up
operation affect distances between graphs. In Section 6.3 we upper-bound the query complexity of Π
with respect to one-sided error testers.

6.1 The (generalized) blow-up property Π

Our starting point is any graph property Π′ =
⋃

n∈N Π′
n for which testing requires quadratic query

complexity. Actually, we start with a graph property Π′ for which distinguishing a random n-vertex
graph from a graph uniformly distributed in Π′

n requires Ω(n2) queries (cf. Section 7, which builds
on [GGR]). Furthermore, we assume that Π′ is in P (as in Section 4.1).

Given a desired complexity bound q : N→ N, we first set n =
√

q(N), and define ΠN as the set of
all N -vertex graphs that are (generalized) blow-ups of graphs in Π′

n; that is, the N -vertex graph G is
in ΠN if and only if G is a (generalized) blow-up of some graph in Π′

n.
We note that, as in Section 4, if Π′ ∈ P (and each vertex in each graph in Π′ has distinct neighbor

set), then Π ∈ P. We comment that the latter implication relies on the fact that the definition of
(generalized) blow-up requires that each vertex (of the original graph) is replaced by a non-empty
cloud. For further discussion see Remark 6.5.

6.2 Lower-bounding the query complexity of testing Π

In this section we prove that the query complexity of testing Π is Ω(q). As in Section 4.2, the basic
idea is reducing testing Π′ to testing Π; that is, given a graph G′ that we need to test for membership
in Π′

n, we test its N/n-factor blow-up for membership in ΠN , where N is chosen such that n =
√

q(N).
(Needless to say, the N/n-factor blow-up of any graph in Π′

n results in a graph that is in ΠN .) Note that
we still use the “balanced” blow-up operation in our reduction, although ΠN contains any generalized
blow-up (of any graph in Π′

n). Indeed, this reduction relies on the assumption that the N/n-factor
blow-up of any n-vertex graph that is far from Π′

n results in a graph that is far from ΠN (and not only
from graphs obtained from Π′

n by a “balanced” blow-up).
Recall that in Section 4.2 we proved that for every ǫ′ > 0 there exists an ǫ > 0 such that the N/n-

factor blow-up of any graph that is ǫ′-far from Π′
n is ǫ-far from the N/n-factor blow-up of any graph in

Π′
n. Here we show that, in the relevant (for us) case, the former graph is ǫ-far from ΠN (i.e., far from

any generalized blow-up of any graph in Π′
n). Specifically, since the lower bound regarding testing Π′

refers to distinguishing a random n-vertex graph from a graph that is uniformly distributed in Π′
n, it

suffices to consider the case that G′ is random. In particular, in this case, with high probability G′ is
dispersed.

Lemma 6.1 There exists a universal constant c > 0 such that the following holds for every n, ǫ′, α and
(unlabeled) n-vertex graphs G′

1, G
′
2. If G′

2 is α-dispersed and ǫ′-far from G′
1, then for any t and every

tn-vertex graph that is obtained by a generalized blow-up of G′
1 is cα2 · ǫ′-far from the t-factor blow-up

of G′
2.

Using Lemma 6.1 we conclude that if G′ is α-dispersed and ǫ′-far from Π′, then its generalized blow-up
is Ω(ǫ′)-far from Π. Specifically, applying Lemma 6.1 to G′

2 = G′ and every G′
1 ∈ Π′, we conclude
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that with high probability the N/n-factor blow-up of a random n-vertex graph G′ is Ω(ǫ′)-far from Π
(because such a random graph is likely to be dispersed and ǫ′-far from Π′).

We comment that the use of a balanced blow-up on one of the original graphs (in Lemma 6.1) is
essential to the validity of the “approximate distance preservation” claim (of Lemma 6.1). In contrast,
note that the generalized blow-ups of an n-vertex clique and an n-vertex independent set may be
relatively close to one another. Similarly, the dispersity condition is also essential (e.g., a balanced
blow-up of an n-vertex independent set is relatively close to some generalized blow-up of an n-vertex
clique).

Proof of Lemma 6.1: By Lemma 4.3, for a suitable constant c1, it holds that the t-factor blow-up
of G′

1 is c1α · ǫ′-far from the t-factor blow-up of G′
2, denoted G2. Let G1 be an arbitrary (generalized)

blow-up of G′
1 (see Figure 3). We need to prove that G1 is cα2 · ǫ′-far from G2. We consider two cases

regarding the amount of imbalance in the blow-up underlying G1, where G1 is called a δ-imbalanced
blow-up of G′

1 if the variation distance between the relative densities of the various clouds in G1 and
the uniform sequence of densities is at most δ (i.e.,

∑n
i=1 |ρi − (1/n)| ≤ 2δ, where ρi is the relative size

of the ith cloud in G1). (Indeed, 0-imbalance corresponds to the case of a t-factor blow-up (of G′
1), and

any generalized blow-up of G′
1 is 1-imbalanced.)

G’1

1G

blow-up blow-up

G’2

2G

balanced
blow-up

generalized balanced

Figure 3: G′
1, G′

2, and their blow-ups.

Case 1: G1 is a δ-imbalanced blow-up of G′
1, where δ = c1αǫ′/3. In this case G1 is (c1α · ǫ′ − 2δ)-far

from G2, because G1 is 2δ-close to a t-factor blow-up of G′
1 (whereas the t-factor blow-up of G′

1

is c1α · ǫ′-far from G2).

Note that, by the choice of δ, it holds that c1α · ǫ′ − 2δ = δ.

Case 2: G1 is not a δ-imbalanced blow-up of G′
1. In this case, using the fact that G2 is a t-factor blow-

up of an α-dispersed graph, we prove that G1 is far from G2.

Let ρi denote the relative size of the ith cloud in G1, and I = {i ∈ [n] : ρi > 1/n} denote the
set of clouds that are larger than in the uniform case. Then,

∑
i∈I ρi > (|I|/n) + δ. We consider

the most edge-fitting bijection π from the vertices of G2 to the vertices of G1, and lower-bound
the number of vertex pairs that do not preserve the edge relation (i.e., pairs (u, v) such that
{u, v} ∈ E2 iff {π(u), π(v)} 6∈ E1). Observe that, for each i ∈ I, the ith cloud of G1 must contain
at least (ρi − (1/n)) ·N/2 pairs of vertices such that each pair consists of vertices that reside in
different clouds of G2 (because this cloud of G1 contains at most N/n vertices that reside in the
same cloud of G2).

8 Each such pair contributes at least α · N units to the (absolute) distance
between G1 and G2 (because these vertices must have the same neighbors in G1 whereas their
neighborhoods in G2 must have a disagreement rate of at least α). Thus, we lower-bound this

8The lower bound on the number of pairs follows from the following claim: For b ≤ t, if an urn contains t balls such

that at most b balls have the same color, then the urn must contain at least (t− b)/2 disjoint pairs of mixed-colored balls.
The claim is proved by induction on t. In the induction step (assuming b < t), we take an arbitrary pair of balls with
different colors, and are left with t − 2 balls (and at most b have the same color).
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(absolute) distance by
∑

i∈I

(ρi − (1/n))N

2
· αN >

δ · α
2
·N2

and it follows that G1 is (δα/2)-far from G2.

The claim follows by setting c = c1/6 and noting that min(δ, δα/2) = c1α
2ǫ′/6. 2

Proposition 6.2 Any tester for Π has query complexity Ω(q).

Proof: Recall that Lemma 6.1 implies that if G′ is dispersed and ǫ′-far from Π′, then its (balanced)
blow-up is Ω(ǫ′)-far from Π. Since a random n-vertex graph G′ is very likely to be dispersed, we infer
that the distance of the (balanced) blow-up of G′ from Π is linearly related to the distance of G′ from
Π′. Using this fact, we conclude that distinguishing graphs that are uniformly distributed in Π′

n from
random n-vertex graphs reduces to testing membership in ΠN , where n =

√
q(N). Specifically, if

G′ ∈ Π′
n then its (balanced) blow-up is in ΠN , whereas if G′ is ǫ-far from Π′

n (as is likely to be the
case when it is a random n-vertex graph) then its (balanced) blow-up is Ω(ǫ)-far from ΠN . Thus, a
quadratic lower bound on the query complexity of the distinguishing task regarding Π′ implies an Ω(q)
lower bound on the query complexity of testing Π, for some constant value of the proximity parameter.
2

6.3 An optimal tester for property Π

In this section we prove that the query complexity of testing Π is at most O(q) and that this can
be met by a one-sided error tester. In fact, essentially, we will use a straightforward tester, which
selects uniformly a sample of O(

√
q) vertices and accepts if and only if the induced subgraph is a

(generalized) blow-up of some graph in Π′. Actually, since some clouds of the tested graph may not be
represented in the sample, we shall use a relaxed version of (generalized) blow-up that allows empty
clouds. Equivalently, we shall check whether the induced subgraph is a (generalized) blow-up of an
induced subgraph of some graph in Π′.

Algorithm 6.3 On input N and proximity parameter ǫ, and when given oracle access to a graph
G = ([N ], E), the algorithm proceeds as follows:

1. The algorithm sets ǫ′
def
= ǫ/3 and computes n←

√
q(N).

2. The algorithm selects uniformly a set of O(n/ǫ) vertices, denoted S, and inspects the subgraph of
G induced by S; that is, for every u, v ∈ S, the algorithm checks whether {u, v} ∈ E.

3. The algorithm accepts G if and only if the subgraph viewed in Step 2 is a generalized blow-up of
some induced subgraph of some graph in Π′

n.

We stress that Step 3 does not require the subgraph viewed in Step 2 to be a generalized blow-up of
some graph G′ ∈ Π′

n, but rather allows the former graph to be a generalized blow-up of any induced
subgraph of such G′. In other words, Step 3 refers to the following relaxation of the notion of a
generalized blow-up: the graph G is a relaxed blow-up of G′ if the vertex set of G can be partitioned
into sets (of arbitrary sizes) that correspond to vertices of G′ such that the edges between these sets
represent the edges of G′. We stress that some of these sets may be empty (and, needless to say, in
such a case no edges are incident at these empty sets).

The query complexity of Algorithm 6.3 is
(O(n/ǫ)

2

)
= O(q(N)/ǫ2). Note that this algorithm may not

be relatively efficient, since we do not know of an efficient implementation of Step 3 (even if Π′ ∈ P; see
Remark 6.5). Clearly, Algorithm 6.3 accepts any graph in Π with probability 1, because being a relaxed
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blow-up of any graph G′ is hereditary (i.e., if G is a relaxed blow-up of G′, then any induced subgraph
of G is a relaxed blow-up of G′). It is left to show that Algorithm 6.3 rejects with probability 2/3 any
graph that is ǫ-far from Π.

Let G be an arbitrary N -vertex graph that is ǫ-far from ΠN , and let us consider the sample S as
being drawn in 2n iterations such that at each iteration O(1/ǫ) random vertices are selected. We denote

by Si the sample taken in iteration i, and by Gi the subgraph of G that is induced by S(i) def
=

⋃
j∈[i] Sj .

We refer to the clustering of the vertices of Gi according to their neighbor sets such that two vertices
are in the same cluster if and only if they have exactly the same set of neighbors. We shall show (see
the following Claim 6.4) that in each iteration, with high constant probability, either the number of
clusters increases or we obtain a subgraph that is not a relaxed blow-up of any graph in Π′

n. It follows
that, with overwhelmingly high probability, after 2n iterations we obtain a subgraph that is not a
relaxed blow-up of any graph in Π′

n.

Claim 6.4 Let G be an arbitrary N -vertex graph that is ǫ-far from ΠN , and GS′ be the subgraph of G
induced by S′. Let m denote the number of clusters in GS′ and suppose that m ≤ n. Further suppose
that GS′ is a relaxed blow-up of some graph in Π′

n. Then, for a randomly selected pair of vertices
u, v ∈ [N ], with probability Ω(ǫ), the number of clusters in the subgraph induced by S′∪{u, v} is greater
than m.

Note that if GS′ is not a relaxed blow-up of any graph in Π′
n, then neither is the subgraph induced by

S′ ∪ {u, v}. On the other hand, by Claim 6.4, if GS′ is a relaxed blow-up of some graph in Π′
n and we

augment S′ with O(1/ǫ) random vertices, then, with probability at least 2/3, the number of clusters
in the resulting induced subgraph is greater than m. Finally, note that if the number of clusters in a
graph (e.g., GS) is greater than n, then this graph cannot be a relaxed blow-up of any n-vertex graph
(e.g., any graph in Π′

n). It follows that, with overwhelmingly high probability, the induced subgraph
GS is not a relaxed blow-up of any graph in Π′

n.

Proof of Claim 6.4: By the hypothesis regarding GS′ , there exists G′ ∈ Π′
n such that GS′ is a relaxed

blow-up of G′. We consider a partition of the vertex set of GS′ to clouds that correspond to vertices
of G′ and denote by Cv the cloud that corresponds to vertex v. Clearly, the vertices in each cloud
must belong to the same cluster, because otherwise the (relaxed) blow-up condition is violated. Thus,
the clouds are a refinement of the partition of the vertex set of GS′ into clusters. On the other hand,
without loss of generality, all the vertices of each cluster may belong to a single cloud, because if Cv

and Cw are clouds of the same cluster then we can move vertices of Cw to Cv while maintaining clouds
that correspond to vertices of G′. We conclude that, without loss of generality, the collection of m
clusters equals the collection of non-empty clouds of GS′ , which correspond to an induced subgraph of
G′, denoted G′′ = (V ′′, E′′). Without loss of generality, we assume that V ′′ = [m].

We now consider a clustering of the vertices of the entire graph G according to their neighbors
in the set S′; that is, we cluster the vertices of G according to their S′-neighborhood, where the S′-

neighborhood of v equals ΓS′(v)
def
= {w∈S′ : {v,w}∈E}. Note that some of these clusters extend the

foregoing Cv’s, whereas the other clusters, called new, contain vertices that have S′-neighborhood that
are different from the S′-neighborhoods of all vertices in S′. If the number of vertices that are placed
in new clusters exceeds ǫN/4, then such a vertex is selected with probability at least ǫ/4 and the claim
follows immediately. Otherwise, we consider an m-way partition, denoted (V1, ..., Vm), of the vertices
that have the same S′-neighborhood as some vertices of S′ such that

Vi = {v : (∀u∈Ci) ΓS′(v) = ΓS′(u)}.

By the hypothesis that G is ǫ-far from ΠN and
∣∣∣
⋃

i∈[m] Vi

∣∣∣ ≥ (1 − (ǫ/4)) ·N (and n/N < ǫ/4), it must

be the case that (ǫ/2) ·N2 vertex pairs in
⋃

i,j∈[m] Vi×Vj have edge relations that are inconsistent with
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G′′ (i.e., for such a pair (u, v) ∈ Vi × Vj it holds that {u, v} ∈ E iff {i, j} 6∈ E′′).9 Hence, these pairs
have edge relations that are inconsistent with the edges between the corresponding Ci’s (because the
vertices in

⋃
i,j∈[m] Ci×Cj have edge relations that are consistent with G′′). Thus, with probability at

least ǫ/2, for a random pair of vertices {u, v} the edge relation between u and v does not fit the edge
relation between Ci and Cj , where i and j are the designated clouds of u and v (i.e., u ∈ Vi and v ∈ Vj).
It follows that the {u} ∪ Ci (and {v} ∪ Cj) must be split when clustering the vertex set S′ ∪ {u, v}
according to the neighborhoods in S′ ∪ {u, v}. Thus, the claim follows also in this case. 2

Remark 6.5 Recall that the property Π was obtained by a generalized blow-up of Π′, whereas Step 3
in Algorithm 6.3 refers to relaxed blow-ups of Π′. Denoting the set of relaxed blow-ups of Π′ by Π̂, we
note that Π′ ∈ P implies Π̂ ∈ NP, but it is not clear whether Π̂ ∈ P even when Π′ ∈ P. In fact, for
some Π′ ∈ P, deciding membership in the corresponding Π̂ is NP-complete.10

Conclusion. We just showed that Algorithm 6.3 satisfies the upper bound requirements of Theo-
rem 6; that is, it is a one-sided error tester for Π and has query complexity O(q). Recalling that
Proposition 6.2 establishes a corresponding Ω(q) lower bound (also for two-sided testing), we complete
the proof of Theorem 6.

7 Hard-to-test Graph Properties in P

In this section we strengthen the hardness results of [GGR] that refer to the existence of properties that
are hard to test (i.e., properties of N -vertex graphs for which any tester must make Ω(N2) queries).
These properties were shown to be in NP. Here we modify the constructions in order to obtain such
properties in P. The aforementioned results refer both to the model of generic functions and to the
model of testing graph properties in the adjacency matrix model (a.k.a dense model).

Let us first comment on the reasons that the original properties were only known to be in NP
(rather than in P).11 In the first case (i.e., the case of generic functions), the reason is the complexity
of recognizing possible outputs of an adequate pseudorandom generator (which becomes easy when
given an adequate seed as an NP-witness). In the second case (i.e., the case of graph properties),
an additional reason stems from the fact that “closure under isomorphism” is applied to the basic
construction, and so the problem of recognizing graphs that are isomorphic to graphs in a particular
set arises (and becomes easy when given an adequate isomorphism as an NP-witness). Below, we shall
avoid the use of NP-witnesses by augmenting the basic construction in adequate ways.

We comment that the additional monotone closure used in [GT, Sec. 3] (in order to obtain monotone
graph properties) introduces additional difficulties, which we were not able to resolve (and thus the

9Otherwise, we can obtain an m-way partition that is consistent with G′′ by changing the edge relation of at most
ǫN2 vertex pairs (i.e., at most (ǫ/2) · N2 vertex pairs in

⋃
i,j∈[m]

Vi × Vj and at most all pairs with one element not

in
⋃

i∈[m]
Vi). Similarly, we can obtain an n-way partition that is consistent with G′ (by creating n − m new singleton

clusters and using n − m < ǫN/4). This violates the hypothesis that G is ǫ-far from ΠN .
10For any NP witness relation R, we show how to reduce membership in SR

def
= {x : ∃w (x, w)∈R} to testing whether a

constructed graph is an induced subgraph (or a relaxed blow-up) of some graph in an adequate set Π′. We use the graphs
in Π′ to encode pairs in R, and use the constructed graph to encode an input x that we need to check for membership
in SR. Each graph in Π′

n will correspond to a pair (x, w) ∈ {0, 1}n+m such that the graph will consist of (1) a clique
of 2(n + m) vertices, (2) a sequence of n + m pairs of vertices such that the ith pair is connected iff the ith bit in xw
equals 1, and (3) edges connecting the ith vertex in Part (2) to the i first vertices of the clique. On input x ∈ {0, 1}n,
we construct a (2(n + m) + 2n)-vertex graph Gx essentially as above, except that we do not include the m last pairs of
Part (2). (Indeed, given x, we cannot construct the corresponding m pairs, since we don’t know w.) Note that Gx is an
induced subgraph (or a relaxed blow-up) of some graph in Π′

n if and only if x ∈ SR.
11The current description is intended for readers who have some recall of the aforementioned result. A self-contained

description follows.
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graph properties that we obtain in this section are not monotone). Furthermore, our techniques seem
incompatible with monotonicity. The result we prove is stated next.

Theorem 7 There exists a graph property in P for which, in the adjacency matrix model, every tester
must query a constant fraction of the representation of the graph (even when invoked with constant
proximity parameter).

Background: the GGR construction and two difficulties. The graph property for which a
quadratic query complexity lower bound is proved in [GGR, Prop. 10.2.3.2] is defined in two steps.

1. First, it is shown that certain sample spaces yield a collection of Boolean functions (i.e., a property
of Boolean functions) that is hard to test (i.e., any tester must inspect at least a constant fraction
of the function’s values).

On the one hand, the sample space is relatively sparse (and thus a random function is far from
any function in the resulting collection), but on the other hand it enjoys a strong pseudorandom
feature (and so its projection on any constant fraction of the coordinates looks random). Thus, the
functions in the class (which must be accepted with high probability) look random to any tester
that inspect only a small constant fraction of the function’s values, whereas random functions
are far from the class (and should be rejected with high probability). This yields a contradiction
to the existence of a tester that inspect only a small constant fraction of the function’s values.

2. Next, the domain of the functions is associated with the set of unordered pairs of elements in [N ],
and the collection of functions is “closed” under graph isomorphism (i.e., if a certain function on([N ]

2

)
is in the collection, then so is any function obtained from it by a relabeling of the elements

of [N ]).

The closure operation makes this collection correspond to a graph property (since it is now
preserved under isomorphism). The parameters are such that the resulting collection (although
likely to be N ! times bigger than the original one) is still sparse enough (and so a random graph
is far from it). On the other hand, the indistinguishability feature is maintained.

The two difficulties discussed above correspond to these two steps. Firstly, while the (support of the)
sample space used in the proof of [GGR, Prop. 10.2.3.2] is in NP , it is not clear whether it is in P.
Secondly, while NP-witnesses can be provided to prove that a given graph is isomorphic to a graph
obtained in Step 1, it is not clear how to efficiently verify such a claim without an NP-witness.

Resolving the two difficulties (overview). The first difficulty is resolved by using an adequate
pseudorandom generator for which membership in the corresponding sample space can be decided in
polynomial time. Specifically, we shall use an adequate Ω(n)-wise independence generator of n-bit long
sequences rather than using a quite generic small-biased sample space as done in the proof of [GGR,
Prop. 10.2.3.2]. (We mention that an alternative construction may be based on a specific small-biased
generator; specifically, on the first small-biased generator of [AGHP] (i.e., the one based on LFSR
sequences).)

The second difficulty is resolved by augmenting the graphs (constructed in Step 1) in a way that
makes the original graph easy to recover from any relabeling of the resulting graph. Thus, applying
Step 2 to these augmented graphs yields a class of graphs that is easy to recognize (by first recovering
the original graph and then checking whether it corresponds to a string in the sample space).

The actual construction. For every N , we start by considering an efficiently constructible d-wise

independent sample space over n-bit long strings, where n
def
=

(N
2

)
and d

def
= Ω(n). Specifically, for
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some constant δ > 0, we use an explicitly constructible linear code mapping 0.01n-bit long strings to
n-bit strings such that every δn positions in a generic codeword are linearly independent (see [ABI]).
Such a code is constructed by constructing a party-check matrix that spans a 0.99n-dimensional vector
space (called the “dual code”) in which each vector has Hamming weight at least δn. We will use the
parity-check matrix of the (primary) code in order to check membership in this code.

For each sequence s = (s1, ..., sn) ∈ {0, 1}n, we define a graph Gs = ([N ], Es) by letting {i, j} ∈ Es

if and only if the (i, j)th bit of s equals 1, where we consider any fixed (efficiently computable) order
of the elements in {(i, j) : 1 ≤ i < j ≤ N}. We call the graph Gs good if s is in the aforementioned
sample space, and call it bad otherwise. We refer to each such graph as basic; that is, the set of basic
graphs includes all good and bad graphs (and indeed includes all N -vertex graphs). We highlight
the fact that the set of good graphs is recognizable in polynomial-time, because the support of the
aforementioned sample space is recognizable in polynomial-time (and the set of all N -vertex graphs is
in 1-1 correspondence to the set of all n-bit strings).

Gs
(2N+1)-vertex clique

i

1
1

i

2

2

Figure 4: From Gs to G′
s.

Note that the set of good graphs is not likely to be closed under isomorphism, and thus this collection
does not constitute a graph property. Following [GGR], we wish to consider the “closure” of the set of
good graphs under isomorphism, but before applying this operation we augment the graphs in a way
that makes it easy to reconstruct their original labeling. Specifically, for each graph Gs = ([N ], Es),
we consider the augmented graph G′

s = ([3N + 1], E′
s) obtained by adding a clique of size 2N + 1 to

Gs and connecting the ith vertex of Gs to the first i vertices in the clique; that is,

E′
s = Es ∪ {{u, v} : u, v ∈ {N + 1, ..., 3N + 1}} ∪ {{i,N + j} : i ∈ [N ] ∧ j ∈ [i]}. (2)

(See Figure 4.) Now, we consider the set of final graphs obtained by “closing” the set of augmented
graphs under isomorphism. That is, for every s in the sample space (equiv., an augmented graph G′

s

obtained from a good graph Gs) and every permutation π over [3N + 1], we consider the final graph
G′

s,π = ([3N + 1], Es,π) that is defined so that {π(u), π(v)} ∈ Es,π iff {u, v} ∈ E′
s. By construction, the

set of final graphs is closed under isomorphism, and so this collection does constitute a graph property.
Furthermore, as is shown next, the augmentation guarantees that the set of final graphs is in P.

To test whether a graph G = ([3N+1], E) is in the set of final graphs, we first attempt to reconstruct
the corresponding basic graph. We use the fact that given a final graph it is easy to determine which
vertex belongs to the basic graph (since these vertices have degree at most (N − 1) + N = 2N − 1,
whereas each clique vertex has degree at least 2N). Next, we determine the label of each vertex
in the basic graphs by counting the number of its neighbors in the clique. (Needless to say, if this
reconstruction fails, then G is not a final graph and we just reject it.) Finally, we check whether the
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resulting basic graph belongs to the set of good graphs (and whether the rest of the graph indeed fits
the augmentation procedure).

Showing that the final graphs are hard to test. Our aim is to show that the property of
being a final (3N + 1)-vertex graph cannot be tested using o(N2) queries. We shall prove this claim
by presenting two distributions on (3N + 1)-vertex graphs such that a tester of final graphs must
distinguish these two distributions whereas no machine that makes o(N2) queries can distinguish these
two distributions. The first distribution is confined to final graphs, whereas with high probability graphs
in the second distribution are 0.01-far from any final graph. Specifically, the first distribution, denoted
GN , is obtained by uniformly selecting a good N -vertex graph and augmenting it to an (3N +1)-graph
(as done above). The second distribution, denoted RN , is obtained by uniformly selecting a N -vertex
graph and augmenting it to a (3N + 1)-graph (again, as done above, except that here we apply this
augmentation to all graphs). Throughout the rest of the argument, we associate the two distributions
with random graphs drawn from them. We shall first show that, with high probability, RN is 0.01-far
from the set of final graphs.

Claim 7.1 The probability that RN is 0.01-close to some final (3N + 1)-vertex graph is o(1).

Proof: The key observation is that the set of final graphs is very sparse. Specifically, each good graph

gives rise to at most (3N + 1)! final graphs, whereas the number of good graphs is 20.01n = 20.01·(N

2 ).

Thus, the number of final graphs is at most 2(0.01+o(1))·(N

2 ). Each such graph is 0.01-close to at most

2H2(0.01)·(3N+1
2 ) ≪ 20.1·(3N+1

2 ) ≪ 2(0.9+o(1))·(N

2 ) graphs, where H2 denotes the binary entropy function
(and H(0.01) < 0.1). Thus (for all sufficiently large N), the total number of graphs that are 0.01-close

to the set of final graphs is smaller than 20.92·(N

2 ). Since RN is uniformly distributed on a set of 2(
N

2 )

graphs, the claim follows. 2

Next, we show that o(N2) queries do not allow distinguishing RN from GN .

Claim 7.2 Let M be a probabilistic oracle machine that makes at most d = δn ≈ δN2/2 queries.
Then, Pr[MRN (N) = 1] = Pr[MGN (N) = 1].

Proof: Since both distributions are obtained by applying the same fixed augmentation to some pre-
liminary distributions, it suffices to consider queries to the preliminary distributions. Specifically, let
us denote by G′

N the uniform distribution over good N -vertex graphs, and let R′
N denote the uniform

distribution over all N -vertex graphs. Indeed, GN (resp., RN ) is obtained by applying the (fixed)
augmentation of Eq. (2) to G′

N (resp., R′
N ), and each query to GN (resp., RN ) can be answered either

by using a constant value or by making a single query to the corresponding G′
N (resp., R′

N ). Thus, it
suffices to show that a machine that makes at most d queries cannot distinguish R′

N from G′
N .

We identify
(N

2

)
-bit long strings with N -vertex graphs (obtained as in the first stage of the con-

struction). Recall that G′
N denotes a graph uniformly selected among all graphs in the sample space;

that is, it corresponds to a d-wise independent sequence of length n =
(N

2

)
. So the claim reduces to

asserting that using d queries one cannot distinguish between a d-wise independent sequence and a
uniformly distributed sequence, which follows easily from the definition of d-wise independent sample
spaces (since in such cases adaptive queries offer no advantage). 2

Conclusion. Theorem 7 follows by combining Claims 7.1 and 7.2 (with the fact that the set of final
graphs is in P).
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8 Concluding Comments

Figure 5 provides a bird’s eye view of the various hierarchy theorems proved in this work, where bd-
graphs denote bounded-degree graphs. The third column specifies the type of error made by the tester
that establishes the upper bound; recall that in all cases the lower bound refers to two-sided error
testers. The fourth column specifies the computational complexity of the tester as a function of its
query complexity (e.g., poly-time means running time that is polynomial in the total length of the
queries made by the tester); this bound is stated explicitly only in Theorem 4 (but is easily verified
in all other cases). The monotone graph properties are listed in the fifth column as monotone in the
direction shown in the main text; we mention that monotonicity in the opposite direction can be shown
too (see comment below). The weaker features of the results are indicated by italic (or by ‘–’).

property’s tester’s tester’s property’s
domain error complexity monotonicity

Thm 2 generic one-sided log-space –

Thm 3 bd-graphs one-sided in NP downwards

Thm 4 dense graph two-sided poly-time –

Thm 5 dense graph two-sided in PNP upwards

Thm 6 dense graph one-sided in NP –

Figure 5: All hierarchy theorems at a glance

Reversing the direction of monotonicity. As stated above, the direction of monotonicity of
graph properties can be reversed while preserving the query complexity of testing. Three simple ways
of obtaining this effect are discussed next.

1. The simplest method, which is only applicable to the dense graph model, consists of considering
the complement graphs. That is, for a graph property Π, we consider the graph property Πc =
{Gc : G ∈ Π}, where for G = ([N ], E) it holds that Gc = ([N ], {{u, v} : {u, v} 6∈ E).

2. An alternative method, which is only applicable to the bounded-degree graph model, consists
of considering a set of graphs with a maximum number of edges, which means that upwards
monotonicity holds vacuously (i.e., for a degree bound d, we consider a set of d-regular graphs).
But we need to make sure that this set of graphs yields a property that maintains the complexity
of the original one. Specifically, starting with 3-Colorability, we consider the set of 3-colorable
d-regular graphs (with an even number of vertices). To see that this property is hard to test
consider a transformation of arbitrary graphs of maximum degree d into d-regular graphs that
(approximately) preserves the distance from 3-Colorability. For example, consider taking two
copies of the original graph and connecting the two copies of each vertex v of degree dv by d− dv

gadgets, where each gadget consists of the complete bipartite graph Kd,d with one edge omitted
(so that the free endpoints can be used for connecting).

3. A third method consists of considering, for an arbitrary fixed ǫ0 > 0, the property of being ǫ0-far
from the original property. That is, for a property Π and ǫ0 > 0, we consider the property
farǫ0(Π) that consists of all objects that are ǫ0-far from Π. This notion is applicable to all
models, and it holds that Π ⊆ farǫ0(farǫ0(Π)) (but equality does not necessarily hold). Thus, a
lower bound for ǫ0-testing Π does imply a corresponding lower bound for (ǫ0-testing) farǫ0(Π).
However, the converse does not necessarily hold, and the effect of this transformation calls for
further study.
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Some open problems. An immediate gap, conspicuous in Figure 5, arises from the fact that The-
orem 3 refers to graph properties that are unlikely to be in P (and so they are unlikely to admit a
relatively efficient tester). In fact, we do not know of a graph property in P that has maximal testing
complexity in the bounded-degree model.

Many more natural open problems arise in the dense graph model. In particular, Theorems 4, 5
and 6 (and their proofs) raise several natural open problems, listed next. We stress that all questions
refer to the adjacency matrix graph model considered in Sections 4–6 (and Section 7).

1. Combining the features of all three hierarchy theorems: Theorems 4, 5 and 6 provide incomparable
hierarchy theorems, each having an additional feature that the others lack. Specifically, Theorem 4
refers to properties in P (and testing, in the positive part, is relatively efficient), Theorem 5 refers
to monotone properties, and Theorem 6 provides one-sided testing (in the positive part). Is it
possible to have a single hierarchy theorem that enjoys all three additional feature? Intermediate
goals include the following:

(a) Hierarchy of monotone graph properties in P: Recall that Theorem 4 is proved by using
non-monotone graph properties (which are in P), while Theorem 5 refers to monotone graph
properties that are not likely to be in P. Can one combine the good aspects of both results?

(b) Hard-to-test monotone graph property in P: Indeed, before addressing Problem 1a, one
should ask whether a result analogous to Theorem 7 holds for a monotone graph property.
Recall that [GT, Thm. 1] provides a monotone graph property in NP that is hard-to-test.

(c) One-sided versus two-sided error testers: Recall that the positive part of Theorem 6 refers
to testing with one-sided error, but these testers are not relatively efficient. In contrast,
the positive part of Theorem 4 provides relatively efficient testers, but these testers have
two-sided error. Can one combine the good aspects of both results?

2. Determining the exact effect of the blow-up operation on the distance between graphs: Recall that
the proof of Theorem 4 relies on the preservation of distances between graphs under the blow-up
operation. While the partial results obtained in this work (regarding this matter) suffice for the
proof of Theorem 4, the problem seems natural and of independent interest.

Recall that Lemma 4.3 asserts that in some cases the distance between two unlabeled graphs is
preserved up to a constant factor by any blow-up (i.e., “linear preservation”), whereas Theorem 8
of our technical report [GKNR] asserts a quadratic preservation for any pair of graphs. Also recall
that it is not true that the distance between any two unlabeled graphs is perfectly preserved by
any blow-up (see Footnote 2).

In earlier versions of this work we raised the natural question of whether the distance between
any two unlabeled graphs is preserved up to a constant factor by any blow-up. This question has
been recently resolved by Oleg Pikhurko, who showed that the distance is indeed preserved up to a
constant factor, specifically a factor of three [P, Sec. 4]. Note that Arie Matsliah’s counterexample
to perfect preservation (presented in Footnote 2) shows that the said constant factor cannot be
smaller than 6/5. Indeed, determining the true constant factor remains an open problem.

Subsequent work on graph blow-up. The blow-up operation plays a key role in a recent work of
Fischer and Rozenberg [FR], which develops a technique for obtaining testers (in the dense graph model)
that act independently of the size of the input graph. A recent work of Avigad and Goldreich [AG]
studies the complexity of testing (generalized) graph blow-ups.
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