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Abstract. We study the power of four query models in the context
of property testing in general graphs, where our main case study is the
problem of testing k-colorability. Two query types, which have been
studied extensively in the past, are pair queries and neighbor queries.
The former corresponds to asking whether there is an edge between any
particular pair of vertices, and the latter to asking for the ith neighbor
of a particular vertex. We show that while for pair queries, testing k-
colorability requires a number of queries that is a monotone decreasing
function in the average degree d, the query complexity in the case of
neighbor queries remains roughly the same for every density and for
large values of k. We also consider a combined model that allows both
types of queries, and we propose a new, stronger, query model, related
to the field of Group Testing. We give upper and lower bounds on the
query complexity for one-sided error in all the models, where the bounds
are nearly tight for three of the models. In some of the cases our lower
bounds extend to two-sided error algorithms.
The problem of testing k-colorability was previously studied in the con-
texts of dense graphs and of sparse graphs, and in our proofs we unify
approaches from those cases, and also provide some new tools and tech-
niques that may be of independent interest.
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1. Introduction

Property testing [14, 24] deals with the problem of deciding whether a certain
object has a prespecified property P or it is far (i.e., differs significantly) from
any object that has P . Namely, the algorithm should accept objects that have
the property, and should reject objects that are far from having the property
with respect to some predetermined distance measure, where the algorithm is
allowed a small probability of failure. The algorithm is given query access to
the object, and it should make the decision after observing only a small part
of the object. Thus, the main complexity measure studied in the context of
property testing is the query complexity of the algorithm, which is normally
expected to be sublinear in the size of the object, and the question is how this
measure varies as a function of various parameters.

In this work we compare the power of different query types in the context
of testing graph properties of general graphs (i.e., with arbitrary edge densi-
ties). To this end we focus on the problem of testing k-colorability for k ≥ 3,
and study the query complexity of this problem for different query types as a
function of the number of vertices and the average degree of the graph.

1.1. The Distance Measure and Query Types Studied in this Paper.

When defining models for property testing of graphs there are two issues to
consider: the distance measure between graphs (which determines what graphs
should be rejected by the testing algorithm) and the types of queries that the
algorithm is allowed to make. Since we study graphs of varying edge densities
and vertex degrees, we follow [21, 18] and define our distance measure with
respect to the total number of edges in the graph. Namely, if n denotes the
number of graph vertices and d denotes the average degree, then we say that a
graph is ǫ-far from being k-colorable for a given 0 ≤ ǫ ≤ 1, if it is necessary to
remove more than ǫdn edges so as to obtain a k-colorable graph.1

We consider the following types of queries where the first two have been
considered in the past and the third is a new query type we introduce.

◦ Pair queries. These are queries of the form “Is there an edge between the
pair of vertices u and v?”.

◦ Neighbor queries. These are queries of the form: “Who is the ith neighbor
of vertex v?”. If v has less than i neighbors then a special symbol is

1Another well studied distance measure is the fraction of edge modification as a function
of n2. This measure is appropriate for dense graphs (i.e., that satisfy d = Θ(n)). In what can
be viewed as the other extreme, where all vertices have bounded degree dmax (in particular,
dmax = O(1)), distance is measured with respect to dmaxn).
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returned, and no assumption is made about the order of the neighbors of
a vertex. Therefore, every new query reveals a new random neighbor of
a given vertex.

◦ Group queries. We propose a new query type that extends pair queries.
These queries are of the form “Is there at least one edge between a vertex
u and a set of vertices S?”.

The study of group queries is partially motivated by the study of Group Testing
(see, e.g., [10]), where similar queries are allowed. Problems of group testing
can be found in various fields such as Statistics and Biology. As we explain in
more detail below, another motivation for studying group queries is that they
can serve as a tool for obtaining lower bounds when using the other types of
queries, as these queries are essentially stronger than the standard pair and
neighbor queries.

In all cases, we also allow our algorithms to perform degree queries. That
is, the algorithms may ask for the degree of any vertex of their choice.2

In what follows, when we refer to the pair query model (respectively, neigh-

bor query model and group query model), we mean that only pair queries (re-
spectively, neighbor queries and group queries) are allowed, as well as degree
queries. When both pair queries and neighbor queries are allowed, then we
refer to the resulting model as the combined model .

1.2. Related Work on Testing k-Colorability. Testing k-colorability has
previously been studied in the pair query model for the case that the graph
is dense, that is, d = Θ(n). For this case, k-colorability is testable using a
number of queries that is independent of the graph size (and polynomial in k
and 1/ǫ [14, 4]).3

Testing k-colorability has previously been studied in the neighbor query
model for the case that k = 3 and the graph has constant maximum degree
(that is, d = O(1), and furthermore, the maximum degree dmax is O(1) as

2In fact, we shall not need degree queries when using pair queries. Also, allowing degree
queries in conjunction with neighbor queries is only done to simplify the presentation, since
a degree query can be emulated using O(log n) neighbor queries. As for group queries, in our
context it suffices to use approximate degrees, which can be emulated using group queries.
However, in general, in order to get a query model that is as strong as one which allows both
pair queries and neighbor queries, we allow degree queries in conjunction with group queries.

3Interestingly, the earlier work of Rödl and Duke [22] implicitly implies that k-colorability
is testable using a number of queries that is independent of the graph size, but is a tower
function of 1/ǫ.
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well). In this case, Bogdanov et al. [6] proved that is necessary to perform
Ω(n) queries (that is, there is no algorithm with sublinear query complexity).

Testing k-colorability for k = 2 (i.e., testing bipartitness) has previously
been studied for general graphs in the combined model [18] where it was shown
that Θ̃(min{√n, n/d}) (pair and neighbor) queries are both sufficient and nec-
essary. The proof of the lower bound in [18] implies that if only neighbor queries
are allowed then Ω(

√
n) queries are necessary for every value of d, and if only

pair queries are allowed then Ω(n/d) queries are necessary.4

1.3. Our Results. In this work we study the power of the different types
of queries when testing k-colorability of general graphs for a fixed k ≥ 3. In
previous work on testing properties of graphs, the pair query model was studied
in the case of dense graphs, the neighbor query model was studied in the case
of bounded-degree graphs, and for general graphs, the combined model was
considered. Here we are interested in understanding how the query complexity
of the problem behaves as a function of the edge density (and the number of
vertices) when the algorithm is allowed to perform only one type of query, and
whether there is a gain when allowing to combine query types. One motivation
for this investigation is that what types of queries are allowed intuitively corre-
sponds to how the graph is represented. Thus, allowing both pair queries and
neighbor queries (as in the combined model) implicitly assumes that the algo-
rithm has access both to an adjacency matrix representation (supporting pair
queries) and to an incidence lists representation (supporting neighbor queries),
which is not necessarily the case. Our second motivation is simply complex-
ity theoretic: understanding the strength of each query type separately (and
possibly combined) for varying edge densities.

In what follows we say that an algorithm has one-sided error if it always
accepts graphs that are k-colorable, otherwise it has two-sided error . Our
results are stated in terms of the dependence on n and d. In all our upper
bounds the dependence on both k and 1/ǫ is polynomial. In our lower bounds it
is assumed that ǫ is a constant, and unless stated explicitly otherwise (i.e., when
k appears in the exponent of the expression for the complexity), k is viewed as
a constant as well. With a slight abuse of notation, we write f = Õ(g) (and
similarly, f = Ω̃(g)) if f(x) = O(g(x)) · polylog(n) for every x, where n is the
number of vertices.

The bounds we present are for the query complexity in the different mod-

4In earlier work [16, 15] it was shown that if only neighbor queries are allowed and the
distance measure is with respect to dmaxn rather than dn, then Θ̃(

√
n) are both necessary

and sufficient.
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els. The running time of our algorithms may be exponential in the number
of queries, but the focus of this work is only on the query complexity. We
assume for simplicity that the algorithms are given d as input. However, they
actually need only a constant factor estimate of d, and this can be obtained by
performing Õ(

√
n/d) degree queries in expectation [12, 17] (which is negligble

for our algorithms).
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Figure 1.1: A schematic illustration of the query complexity for the different
query types (and one-sided error) on a “log-log” scale. For the sake of simplicity
we ignore logarithmic factors in the bounds and furthermore, for the neighbor
query model we think of k as being large. For the combined model we have
that the lower bound on the query complexity coincides with the group query
model, and the upper bound coincides with the neighbor query model until
d =

√
n and from that point on it coincides with the pair query model.

Theorem 1.1. The following holds for testing k-colorability, k ≥ 3, in the
pair query model:
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Pair Neighbor Group Pair&Neighbor

UB Õ
((

n
d

)2)
O(n) Õ

(
n
d

)
min

{
Õ
((

n
d

)2)
,

O(n)

}

LB Ω
((

n
d

)2)
Ω
(
n1−O(1/k)

)
Ω
(

n
d

)
Ω̃
(

n
d

)

Ω
(
n · d−O(1/k)

)
if k ≥ 6 also for also for

2-sided error 2-sided error

Table 1.1: Results for one-sided error testing of k-colorability (“UB” stands for
“Upper Bounds” and “LB” stands for “Lower Bounds”).

(i) There exists a one-sided error tester that performs Õ
((

n
d

)2)
queries.

(ii) Every one-sided error tester must perform Ω
((

n
d

)2)
queries.

Theorem 1.2. The following holds for testing k-colorability, k ≥ 3, in the
neighbor query model:

(i) There exists a one-sided error tester that performs O(n) queries.

(ii) Every tester must perform Ω̃
(
max

{
n
d
,
√

n
})

queries.

(iii) Every one-sided error tester must perform Ω
(
n

1− 1
⌈(k+1)/2⌉

)
queries.

(iv) Every one-sided error tester for k ≥ 6 must perform Ω
(
n · d− 1

⌈k/2⌉−1

)

queries.

Observe that for one-sided error testers in the neighbor query model, as k
increases, our lower bound approaches our upper bound.

Theorem 1.3. The following holds for testing k-colorability, k ≥ 3, in the
group query model:

(i) There exists a one-sided error tester that performs Õ
(

n
d

)
queries.
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(ii) Every tester must perform Ω
(

n
d

)
queries.

By combining Theorems 1.1, 1.2, 1.3 and the fact that neighbor queries can be
emulated using a poly-logarithmic number of group queries and degree queries
(Claim 2.1), we get the following corollary. The upper bound in the corollary
is simply the minimum between the upper bound in Theorem 1.1 and the
upper bound in Theorem 1.2, and the lower bound is as in Theorem 1.3 (up to
polylogarithmic factors).

Corollary 1.4. The following holds for testing k-colorability, k ≥ 3, in the
combined query model:

(i) There exists a one-sided error tester that performs

min
{
Õ
((

n
d

)2)
, O(n)

}
queries.

(ii) Every tester must perform Ω̃
(

n
d

)
queries.

The results are summarized in Table 1.1 and are illustrated in Figure 1.1.

Discussion of our results and conclusions. We next discuss the main
phenomena we observe in our study of testing k-colorability in the different
query models.

◦ While the query complexity in the pair query model and the query com-
plexity in the group query model are monotone decreasing functions of d,
the query complexity in the neighbor query model remains roughly the
same for every value of d (and large values of k).

◦ When comparing the pair query model to the neighbor query model in
more detail we see that the query complexity in the pair query model is
higher than in the neighbor query model for d <

√
n, while once d passes√

n it becomes lower (and continues decreasing). The extreme case is
d = Θ(n), where in the pair query model the query complexity does not
depend on n.5 This coincides with the intuition that neighbor queries are
useful for sparse graphs and pair queries are useful for dense graphs.

5In fact, when d = Θ(n) then many natural properties are testable in the pair query
model using a constant number of queries (see e.g. [14, 1, 2]).
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◦ When comparing the group query model to the other models we observe
that the query complexity in the former model is never higher (up to
poly-logarithmic factors) than in the latter models. This is a general
phenomenon since pair queries are a special case of group queries and
neighbor queries can be emulated using group queries and degree queries
at a poly-logarithmic cost (Claim 2.1).

We also show that for the case of testing k-colorability and a certain
distribution over graphs, the combined model is strictly stronger than
the optimum of the pair query and the neighbor query models.

In our proofs we extend and unify methods from previous works, and present
several new methods. It turns out that procedures for sampling edges are use-
ful in problems of property testing in general graphs, and here we give more
efficient procedures. In the lower bounds section we use directed graphs to rep-
resent the so called ”knowledge graph” of a testing algorithm. The combination
of this representation and balls and bins techniques enables us to prove lower
bounds in this model, and in particular in the problem of testing k-colorability.

1.4. Other Related Work. Czumaj et al. [8] show that for the special case
of graphs with constant degree that have a certain separating (non-expansion)
property, k-colorability (among other properties), is testable using a number of
queries that depends only on 1/ǫ (though possibly exponentially).

Testing triangle-freeness (and more generally, subgraph-freeness) of general
graphs has been studied in the combined model [3]. The main result in [3] is a
lower bound of Ω(n1/3) on the necessary number of queries that holds for every
d < n1−ν(n), where ν(n) = o(1). This stands in contrast to the complexity of
testing triangle-freeness using pair queries when d = Θ(n) where there is no
dependence on n [1].

2. Preliminaries

2.1. Notation and Definitions. Given a graph G = (V, E) on n vertices
and average degree d, we say that G is almost-regular if the maximal degree
is bounded by 10d (the constant 10 here is somewhat arbitrary). Denote by
Γ(v) the set of neighbors of a vertex v. For a set of vertices S, denote by G[S]
the induced subgraph of G on the set S, and by E[S] the set of edges of G[S].
For a subgraph H of G and a vertex v in H , we let ΓH(v) denote the set of
neighbors that v has in H .

Let [k]
def
= {1, . . . , k}. For a coloring ϕ : V → [k] (a k-partition of V ),

we say that an edge (u, v) ∈ E is monochromatic (violating with respect to
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the k-partition), if ϕ(u) = ϕ(v) (both end-points of the edge are in the same
subset of the partition). In our setting, a graph is ǫ-far from being k-colorable
if for any k-coloring of G we have at least ǫnd violating edges. Unless stated
explicitly otherwise, we assume k ≥ 3.

A k-critical graph is a graph that is not (k−1)-colorable, but removal of any
single edge or vertex will give a (k− 1)-colorable graph. Every k-critical graph
has minimal degree (k − 1), and every non-(k − 1)-colorable graph contains a
k-critical graph.

For every execution of a tester, the knowledge graph is the graph formed by
answers to the queries the tester made. The knowledge graph contains both
edges and non-edges (for example, we get a non-edge by a negative answer
to a pair query). Clearly, if a one-sided error algorithm decides that a given
graph is ǫ-far from being k-colorable, the subgraph formed by the edges of its
knowledge graph must contain a (k + 1)-critical graph.

In what follows, whenever we say ”with high probability” we mean with
probability 1 − o(1). When we apply Chernoff bounds we use either Theorem
A.4 or Corollary A.7 from [5].

2.2. Simple emulation of queries. Recall that throughout this work we
allow degree queries in our models. A degree query can clearly be emulated by
a logarithmic number of neighbor queries.

We next prove two simple claims that demonstrate the power of group
queries. In all that follows, when we refer to a random neighbor query we
mean a query concerning a vertex v that returns a uniformly selected neighbor
of v.

Claim 2.1. A pair query can be emulated using a single group query, while a
random neighbor query can be emulated using a logarithmic number of group
queries. Moreover, every sequence of neighbor queries can be emulated by
group queries with a logarithmic overhead.

Proof. Clearly, a pair query is a special case of a group query, where the
set we query for has a single element. Next we show how to emulate a random
neighbor query. For a given vertex v, in order to emulate a random neighbor
query for v we need to show how to find a random neighbor of v. This can be
done in the following manner: Randomly order the vertices of G as the leaves
of a full binary tree. For every internal node y denote by S(y) the set of vertices
that correspond to the leaves of the subtree rooted at y, and denote by C(y)
the two children of y. Now, apply the following procedure, starting from the
root: Given a node y, perform a group query between v and S(y′) for every
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y′ ∈ C(y). If the two queries return negative answers then v has no neighbors.
If exactly one of the queries returns a positive answer, apply the procedure
recursively on the node that returned the positive answer. Otherwise, choose
one of the children randomly and apply the procedure recursively on it. The
procedure ends when it finds a single leaf, and since the vertices were ordered
randomly in the leaves, this procedure gives a random neighbor in a logarithmic
number of queries.

We conclude by observing that every sequence of q neighbor queries can
be emulated by O(q log n) neighbor queries. Indeed, every new neighbor query
asks for a new random neighbor of a given vertex. Given a vertex v, let T (v)
be the set of neighbors of v that were found in previous queries. By performing
a group query on V \ T (v) we can check whether v has a neighbor that was
not found yet, and by applying a recursive procedure as above, we can find a
random neighbor among the vertices in V \ T (v), as needed. �

Next we use a similar idea to show how to find efficiently all the edges of
an induced subgraph using group queries.

Claim 2.2. It is possible to find all the edges of an arbitrary induced subgraph
of order n′ using Õ(n′ + m′) group queries where m′ is the number of edges in
the induced subgraph.

Proof. Let U be a set of vertices of size n′. For every vertex v ∈ U , we find
all its neighbors in U by the following procedure: Order all the vertices of U as
the leaves of a full binary tree. For every internal node y denote by S(y) the
set of vertices corresponding to leaves in the subtree rooted at y. Our aim is to
find all the leaves that correspond to neighbors of v. Starting from the root, if
the node is a leaf, we perform a group query (that is, a pair query) to check if
the corresponding vertex is a neighbor of v. Otherwise, perform a group query
between v and S(y). If the answer is ’false’, return nothing. Otherwise, apply
the same procedure recursively on the two children of y, and return the union
of their results. It is not hard to verify that this procedure returns all the
neighbors of v in U , and for every neighbor we perform a logarithmic number
of group queries to find it. Thus, the total number of queries is Õ(n′ + m′), as
desired. �

3. Upper Bounds

In this section we establish the upper bounds in Theorems 1.1, 1.2, and 1.3.
The section is organized as follows. In the first subsection we show that for
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every almost-regular graph that is far from being k-colorable, a random induced
subgraph of size O

(
n
d

)
is not k-colorable with high probability. In the second

subsection we give efficient procedures for sampling edges almost uniformly in
general graphs, and in the third subsection we give a framework for converting
the bounds from general graphs to almost-regular graphs. In the last subsection
we show how to implement the reduction framework using various query types.

3.1. Almost Regular Graphs. In this subsection we prove the following
theorem.

Theorem 3.1. Let G be an almost-regular graph on n vertices with average
degree d. If G is ǫ-far from being k-colorable for a constant ǫ and k ≥ 3, then a
random induced subgraph of size Θ

(
n
d

)
is not k-colorable with high probability.

The proof of Theorem 3.1 extends arguments presented in [4]. Details follow.

Let G = (V, E) be an almost-regular graph over n vertices with average
degree d (so that the degree of every vertex in the graph is at most 10d). Given
a subset S ⊂ V and a k-coloring ϕ : S → [k] of S, for every v ∈ V \ S let

L(S,ϕ)(v)
def
= [k] \ {1 ≤ i ≤ k : ∃u ∈ S ∩ Γ(v), ϕ(u) = i} .

Note that if S = ∅, then L(S,ϕ)(v) = [k] for every v ∈ V . Observe that if a
legal k-coloring c : V (G) → [k] of G coincides with ϕ on S, then for every
v ∈ V \ S the color of v in c belongs to L(S,ϕ)(v). Hence, L(S,ϕ)(v) is called the
list of feasible colors for v with respect to (S, ϕ). A vertex v ∈ V \ S is called
colorless with respect to (S, ϕ), if L(S,ϕ)(v) = ∅. We denote by U(S,ϕ) the set of
all colorless vertices with respect to (S, ϕ). For every vertex v ∈ V \(S∪U(S,ϕ))
define

δ(S,ϕ)(v)
def
= min

i∈L(S,ϕ)(v)
|{u ∈ Γ(v) \ (S ∪ U(S,ϕ)) : i ∈ L(S,ϕ)(u)}| .

Thus, coloring v by one of the colors from L(S,ϕ)(v) and then adding it to S
results in deleting this color from the lists of feasible colors of at least δ(S,ϕ)(v)
neighbors of v outside S.

Lemma 3.2. For every set S ⊂ V and every k-coloring ϕ of S, the number of
edges that must be removed from G so that it become k-colorable is at most
10d|S ∪ U(S,ϕ)| +

∑
v∈V \(S∪U(S,ϕ))

δ(S,ϕ)(v).
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Proof. For every v ∈ S, color v by ϕ(v). For every v ∈ U(S,ϕ), color v by
an arbitrary color from [k]. For every v ∈ V \ (S ∪ U(S,ϕ)), color v with a color
i ∈ L(S,ϕ)(v) for which δ(S,ϕ)(v) = |{u ∈ Γ(v) \ (S ∪ U(S,ϕ)) : i ∈ L(S,ϕ)(u)}|.

We next upper bound the number of monochromatic edges according to
this coloring. The number of monochromatic edges incident with S ∪ U(S,ϕ) is
at most 10d|S ∪ U(S,ϕ)| (recall that the graph is almost-regular). Every vertex
v ∈ V \ (S ∪ U(S,ϕ)) has exactly δ(S,ϕ)(v) neighbors u ∈ V \ (S ∪ U(S,ϕ)), whose
color list L(S,ϕ)(v) contains the color chosen for v. Therefore, v has at most
δ(S,ϕ)(v) neighbors in V \ (S ∪ U(S,ϕ)) colored with the same color. Hence, the
total number of monochromatic edges is as claimed. �

As an immediate corollary of Lemma 3.2 we get:

Corollary 3.3. If G is an almost-regular graph that is ǫ-far from being k-
colorable, then for any pair (S, ϕ), where S ⊂ V (G), ϕ : S → [k]:

∑

v∈V \(S∪U(S,ϕ))

δ(S,ϕ)(v) > ǫdn − 10d(|S|+ |U(S,ϕ)|) .

Given a pair (S, ϕ), a vertex v ∈ V \(S∪U(S,ϕ)) is called restricting if δ(S,ϕ)(v) ≥
ǫd/2. We denote by W(S,ϕ) the set of all restricting vertices.

Lemma 3.4. If G is an almost-regular graph that is ǫ-far from being k-
colorable, then for every pair (S, ϕ), where S ⊂ V (G), ϕ : S → [k], we have:

|U(S,ϕ) ∪ W(S,ϕ)| > ǫn/20 − |S|.

Proof. By Corollary 3.3,

ǫdn − 10d(|S| + |U(S,ϕ)|) <
∑

v∈V \(S∪U(S,ϕ))

δ(S,ϕ)(v)

≤ 10d|W(S,ϕ)| +
∑

v∈V \(S∪U(S,ϕ)∪W(S,ϕ))

δ(S,ϕ)(v)

< 10d|W(S,ϕ)| +
n · ǫd

2
.

This implies that |S| + |U(S,ϕ)| + |W(S,ϕ)| ≥ ǫn/20. As U(S,ϕ) and W(S,ϕ) are
disjoint, the lemma follows. �
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Constructing an auxiliary k-ary tree. Consider an almost-regular graph
G (with n vertices and average degree d), that is ǫ-far from being k-colorable.
While choosing random vertices r1, · · · , rs we construct an auxiliary k-ary tree
T . To distinguish between the vertices of G and those of T we call the latter
nodes . In the course of the construction, each internal node of T is labeled
by a vertex of G (among the random vertices r1, · · · , rs). Each leaf is either
labeled by a special symbol #, in which case it is called a terminal node, or it
is unlabeled (and may later become an internal node). Different internal nodes
in the tree may be labeled by the same vertex in G. However, on each path
from the root to a leaf the sequences of labels are distinct. The edges of T are
labeled by integers from [k] (colors). We start the construction of T from an
unlabeled single node, the root of T (which is initially also a leaf).

Let y be a node of T , and consider the path from the root of T to y. Let the
nodes on the path be z0, z1, . . . , zℓ = y (where z0 is the root). For 0 ≤ j ≤ ℓ−1,
let the label of zj be vj, and let the label of the edge between zj and zj+1 be ij .
We denote the set {v0, . . . , vℓ−1} by Sy, and the coloring of Sy induced by the
labels of the edges, by ϕy. That is, ϕy(vj) = ij . The labeling of the nodes and
edges of T will have the following property: if a node y in T is labeled by a
vertex v in G and v has a neighbor in Sy whose color according to ϕy is i, then
the child of y along the edge labeled by i, is labeled by # (i.e., it is a terminal
node). This label indicates the fact that given (Sy, ϕy), color i is infeasible for
v.

We think of selecting the vertices r1, · · · , rs in s rounds. Suppose that j−1
vertices r1, . . . , rj−1 have already been selected, and we select (uniformly at
random) a vertex rj . For each node y that is currently a leaf of T , if y is
labeled by #, we do nothing for this leaf. (This is the reason such a node y
is called a terminal node; nothing will ever grow out of this node.) Assume
now that y is unlabeled. Define the pair (Sy, ϕy) as described above. For the
pair (Sy, ϕy), we let Uy be a shorthand for U(Sy ,ϕy) (the colorless vertices with
respect to (Sy, ϕy)) and we let Wy be a shorthand for W(Sy ,ϕy) (the restricting
vertices with respect to (Sy, ϕy)).

Round j is called successful for the node y, if the random vertex rj satisfies
rj ∈ Uy ∪ Wy. If round j is indeed successful for y, then we do the following.
We label y by rj , create k children of y and label the corresponding edges by
1, · · · , k. If color i is infeasible for rj given (Sy, ϕy) (that is, i /∈ L(Sy ,ϕy)), then
we label the child of y along the edge with label i by #. Otherwise we leave
this child (which is currently a leaf) unlabeled. Note that if rj ∈ Uy, then none
of the colors from [k] is feasible for rj , and thus all the children of y will be
labeled by #. If round j is not successful for y, then y remains an unlabeled
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leaf. This completes the description of the process of constructing T . Next, we
state some properties of T .

The first claim follows directly from the definition of the labeling procedure.

Claim 3.5. If a leaf z∗ of T is labeled by #, then ϕz∗ is not a proper k-coloring
of Sz∗ .

Lemma 3.6. If after round j all leaves of the tree T are terminal nodes, then
the subgraph G[{r1, · · · , rj}] is not k-colorable.

Proof. Note that by the construction of the tree, each internal node of T
is labeled by a vertex in {r1, · · · , rj} (and each leaf is either labeled by # or is
unlabeled). Let c : {r1, · · · , rj} → [k] be a k-coloring of {r1, · · · , rj}. In order
to show that c induces some monochromatic edges in the induced subgraph of
G on {r1, · · · , rj}, we start with the root z0 of T and traverse T guided by c as
follows: while at node y of T , labeled by v(y) ∈ {r1, · · · , rj}, we move from y
to its child along the edge of T labeled by c(v(y)). Once we reach a terminal
node z∗ of T , we have that Sz∗ ⊆ {r1, · · · , rj} and ϕz∗ coincides with c on
Sz∗ . As z∗ is a terminal node, it follows from Claim 3.5 that c is not a proper
k-coloring of Sz∗ . �

Claim 3.7. The depth of T is bounded from above by 2kn
ǫd

+ 1.

Proof. Let z∗ be a leaf of T . Recall that if the label of a node y of T
belongs to Uy, then all children of y in T are labeled by # and are terminal
nodes. Therefore, for each node y on the path from the root of T to z∗, but
possibly the node immediately preceding z∗, the label of y belongs to Wy.
Since each vertex in Wy is restricting with respect to (Sy, ϕy), coloring y in any
feasible color (in L(Sy ,ϕy)) decreases the total size of the lists of feasible colors
for all vertices of G by at least ǫd/2. Therefore, each time when on the path
from the root of T to z∗ we leave a node y, whose label belongs to Wy, the
total length of the list of feasible colors decreases by at least ǫd/2. As initially
all k colors are feasible for all vertices, we start with lists of feasible colors of
total size nk. Thus, we cannot make more than nk/(ǫd/2) + 1 = 2nk

ǫd
+ 1 steps

down from the root of T to z∗. This implies that the depth of T is at most
2nk
ǫd

+ 1. �
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Lemma 3.8. For a graph G with average degree d ≥ 120k/ǫ2, if G is ǫ-far from
being k-colorable, then with high probability, after s = Θ

(
k log kn

ǫ2d

)
rounds, all

leaves of T are terminal nodes.

Proof. Let T ′ denote the complete k-ary tree of depth 2kn
ǫd

+ 1. Since every
internal node of T has k children and (by Claim 3.7) T has depth at most
2kn
ǫd

+ 1, it is a subgraph of T ′. In particular, the number of leaves in T ′, is

upper bounded by k
2kn
ǫd

+1. We shall prove that with high probability over the
choice of R = {r1, . . . , rs}, for every leaf z∗ of T ′, either z∗ or one of its ancestors
in T ′ becomes a terminal node during the construction of T . This is equivalent
to the statement in the lemma.

Consider any fixed choice of a leaf z∗ in T ′, and let z0, . . . , zℓ−1, zℓ = z∗ be
the path from the root of T ′ to z∗. For each 1 ≤ j ≤ s, when rj is selected,
some prefix z0, . . . , zt−1 of this path has been labeled (in T ) by a subset of
vertices Szt ⊆ {r1, . . . , rj−1} (if the prefix is empty, then zt = z0 and Szt = ∅),
and zt is currently a leaf in T . Suppose that zt is not labeled by #. Let Uzt be a
shorthand for U(Szt ,ϕzt)

and let Wzt be a shorthand for W(Szt ,ϕzt)
. By Lemma 3.4,

|Uzt ∪Wzt| > ǫn/20− |Szt| = ǫn/20− t, and by Claim 3.7, t ≤ 2kn
ǫd

+ 1. By the
premise of the lemma, d > 120k/ǫ2, and so |Uzt ∪Wzt| > ǫn/40. Therefore, the
probability that rj ∈ Uzt ∪Wzt , so that the round is successful for zt, is at least
ǫ/40.

For each 1 ≤ j ≤ s we define a Bernoulli random variable Xj(z
∗). The value

of Xj(z
∗) is 1 if and only if one of the following holds: (1) When rj is selected,

some node zt on the path from the root of T ′ to z∗ is already labeled #; or (2)
When selecting rj, the deepest unlabeled node on the path (currently a leaf) is
zt and rj ∈ Uzt ∪ Wzt . By the discussion above, Pr[Xj(z

∗) = 1] > ǫ/40 (where
if the first condition holds, then we actually have that Pr[Xj(z

∗) = 1] = 1). We
are interested in upper bounding the probability that

∑s
j=1 Xj(z

∗) ≤ 2nk
ǫd

when

s = ck ln kn
ǫ2d

for a sufficiently large constant c. While these random variables are
not independent, the probability that Xj(s

∗) = 1 is at least ǫ/40 conditioned on
every setting of X1(s

∗), . . . , Xj−1(s
∗). Therefore, the probability of this event

is upper bounded by the probability that for s independent Bernoulli random
variables Y1, . . . , Ys such that Pr[Yj = 1] = ǫ/40, we get that

∑s
j=1 Yj ≤ 2nk

ǫd
.

For s > 160k lnkn
ǫ2d

, this is less than half the expected value of
∑s

j=1 Yj. Therefore,
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by a multiplicative Chernoff bound,

Pr

[
s∑

j=1

Yj ≤
2nk

ǫd

]
< exp

(
−1

8
· ǫ

40
· s
)

= exp

(
− c

320
· k ln kn

ǫd

)

= k− c
320

· kn
ǫd .

By setting c to be a sufficiently large constant, if we now take a union bound
over all k

2kn
ǫd

+1 leaves of T ′, the probability that for some leaf it, neither it, or
any of its ancestors is a terminal node, is o(1), as claimed. �

Proof of Theorem 3.1. The theorem follows by combining Lemma 3.6
with Lemma 3.8. �

3.2. Sampling edges revisited. The problem of sampling edges plays a
significant role in the context of property testing in general graphs, and in
particular in this work. It is very easy to sample an edge using O

(
n
d

)
pair

queries, by randomly selecting pairs of vertices until we get an edge. However,
we need a more efficient way, and thus we relax our requirements. Given a
parameter 0 < δ < 1/4, we would like to select each edge, apart from a set
of edges of size at most δdn, with probability between c1

dn
and c2

dn
, for some

fixed constants c1 and c2. The procedure may fail to output an edge, and we
bound the failure probability by O

(
1
n2

)
. Since one can trivially sample edges

uniformly by checking all the degrees of the vertices in advance using n degree
queries, we may assume that such an edge-sampling procedure is called less
than n times by any testing algorithm. Therefore, the probability that during
the algorithm’s execution the procedure will fail to return an edge in any one
of its calls is o(1). We say that such a procedure samples edges δ-uniformly .
If δ is a small constant, then we shall say that the procedure samples edges
almost-uniformly . For t > 1, we shall say that a (multi-)set of edges e1, . . . , et

is selected δ-uniformly if for every 1 ≤ j ≤ t, the edge ej is selected δ-uniformly
(conditioned on any choice of e1, . . . , ej−1).

In [18] it was shown how to sample an edge δ-uniformly using O
(√

n
δ

)

neighbor and degree queries. Here we present two algorithms that use neighbor
and degree queries and sample edges δ-uniformly. The first one uses Õ

(√
n
δd

)

queries (thus improving on the result in [18] when d is large), while the second
one samples t edges using Õ

(
n
δd

+ t
)

queries. We note that we shall not actually
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use the first procedure (for sampling single edges), but we include it since it
may be useful in other contexts.

Lemma 3.9. There exists a procedure that samples an edge δ-uniformly and
such that the expected number of (random) neighbor and degree queries that
it performs is O

(√
n
δd

log n
)
.

Proof. We say that a vertex has high degree if its degree is at least c
√

nd,

where c =
√

1
2δ

. The number of high degree vertices is at most nd
c
√

nd
=

√
nd
c

.

We say that an edge is bad if both of its end-points have high degree. It follows
that the number of bad edges is at most nd

2c2
= δnd.

We repeat the following step until an edge is selected. Choose a vertex v ran-

domly, and check its degree, denote it by d(v). With probability min{d(v),c
√

dn}
c
√

dn

select a random edge incident to v, output it, and terminate. (With probability

1− min{d(v),c
√

dn}
c
√

dn
continue.) For every edge e = (u, v), the probability pe that e

is picked at a certain step is

pe =
1

cn
√

dn

(
min{d(v), c

√
dn}

d(v)
+

min{d(u), c
√

dn}
d(u)

)
.

Therefore, every edge e satisfies pe ≤ 2
cn

√
dn

, and every non-bad edge satisfies

pe ≥ 1
cn

√
dn

. Since the steps are independent, conditioned on a step outputting
an edge, for all but at most δdn edges, the probability that any particular edge
is output is Θ

(
1
dn

)
. as required.

It remains to show that the procedure terminates (and outputs an edge)
after an expected number of O

(√
n
δd

)
steps. To this end we have

∑

v : d(v)≤c
√

dn

d(v) ≥ nd

(
1

2
− δ

)
.

As δ < 1/4, the probability that the procedure terminates in a certain step is
at least:

1

n
·
∑

v : d(v)≤c
√

dn d(v)

c
√

dn
≥ 1

n
· nd

4c
√

dn
= Ω

(√
δd

n

)
.

Thus the probability that the number of steps exceeds α
√

n
δd

is O
(

1
n2

)
for

α = O(log n), and the claim follows. �
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Lemma 3.10. There exists a procedure that given as input an integer t and
δ > 0, performs O

(
n log n

δd
+ t
)

degree queries and (random) neighbor queries
and outputs t edges, where with high probability the t edges are selected δ-
uniformly.

Proof. The procedure works in two phases. In the first phase it selects,
uniformly, independently and at random (with replacement), s = Θ

(
n log n

δd

)

vertices. Let S denote the multi-set of vertices selected. The procedure queries
the degree of each vertex u in S, and computes d(S) =

∑
u∈S d(u) (since S is

a multiset, if a vertex u appears r times in the multi-set, then it contributes
r · d(u) to d(S)). In the second phase the procedure repeats the following t
times:

1. Select a vertex u in S with probability d(u)/d(S).

2. Select a random neighbor v of u.

3. Select a random edge e incident to v, and output e.

Thus, the total number of queries performed is O
(

n log n
δd

+ t
)

as required. We
next prove that with high probability over the choice of S, each edge selected
in the second phase is δ-uniformly distributed.

For any vertex v, let dS(v) denote the number of neighbors that v has in
S (once again, including repetitions), so that the expected value of dS(v) is
s
n
· d(v). By a multiplicative Chernoff bound, for each fixed vertex v such that

d(v) ≥ δd, we have that (for an appropriate constant in the Θ(·) notation for
s) with probability at least 1 − n−2,

(3.11)
1

2
· s

n
· d(v) ≤ dS(v) ≤ 2 · s

n
· d(v) .

Similarly, for each fixed vertex v such that d(v) < δd, with probability at least
1 − n−2,

(3.12) dS(v) ≤ 2 · s

n
· 2δd .

By taking a union bound over all vertices, we get that with probability at
least 1 − 1/n over the choice of S, Equation (3.11) holds for every v such that
d(v) ≥ δd, and Equation (3.12) holds for every v such that d(v) < δd. We shall
say in such a case that S is degree-representative.

Observe that the total number of edges incident to vertices with degree less
than δd is at most δdn, and indeed, such edges might be selected with very
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small probability. We next show that if S is degree-representative, then for
every edge e = (v, w) such that d(v) ≥ δd and d(w) ≥ δd, the probability that
e is selected in any particular step of the second phase is Θ

(
1
dn

)
. Let us denote

this event by E(v,w), and for any vertex y, let Ey denote the event that y is
selected in the second substep of an edge selection step (i.e., when selecting a
random neighbor of a selected vertex u ∈ S). For any vertex y,

Pr[Ey] =
∑

u∈Γ(y)∩S

d(u)

d(S)
· 1

d(u)
=

dS(y)

d(S)
.

Using the premise that S is degree-representative, and the fact that d(S) =∑
u∈S d(u) =

∑
y dS(y),

Pr[E(v,w)] =
1

d(v)
· Pr[Ev] +

1

d(w)
· Pr[Ew]

=
1

d(v)
· dS(v)

d(S)
+

1

d(w)
· dS(w)

d(S)

≤ 1

d(v)
· 2(s/n)d(v)

d(S)
+

1

d(w)
· 2(s/n)d(w)

d(S)

=
4(s/n)∑

y:d(y)≥δd dS(y) +
∑

y:d(y)<δd dS(y)

≤ 4(s/n)∑
y:d(y)≥δd(1/2)(s/n)d(y)

≤ Θ

(
1

dn

)
.

Similarly,

Pr[E(v,w)] ≥ 1

d(v)
· (1/2)(s/n)d(v)

d(S)
+

1

d(w)
· (1/2)(s/n)d(w)

d(S)

=
s/n∑

y:d(y)≥δd dS(y) +
∑

y:d(y)<δd dS(y)

≥ s/n∑
y:d(y)≥δd 2(s/n)d(y) +

∑
y:d(y)<δd 4(s/n)δd

= Θ

(
1

dn

)
,

and the lemma follows. �
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3.3. A reduction from the general case. We now describe a reduction
from general graphs to almost-regular graphs. It was proved in [18] that for
every graph G with average degree d it is possible to construct (using a prob-
abilistic procedure) a graph G′ that is almost-d-regular and has several addi-
tional properties that are useful in the context of testing bipartiteness. Here
we extend the result to the problem of testing k-colorability. In what follows
we refer to almost-uniform sampling of vertices, where this notion of sampling
of vertices is analogous to the one defined for edges in Subsection 3.2.

Lemma 3.13. For every graph G on n vertices and average degree d =
Ω(log n), and for every k ≥ 3, we can construct randomly a graph G′ that
has the following properties with high probability:

(i) G′ has at most 2n vertices, the same number of edges as G, and maximal
degree d′ < 2d.

(ii) If G is k-colorable then G′ is also k-colorable.

(iii) If G is ǫ-far from being k-colorable then G′ is ǫ′-far being from being
k-colorable for ǫ′ = Θ(ǫ).

(iv) It is possible to sample an induced subgraph of size Õ(n
d
) in G′ where

the vertices of the subgraph are selected δ-uniformly for δ = Ω(ǫ), using
either Õ( n

ǫd
) group queries or Õ((n

d
)2) pair queries on G.

Proof: Every vertex v of G is transformed into ⌈deg(v)/d⌉ vertices in G′.
Denote by X(v) the vertices in G′ related to a vertex v ∈ V (G). The vertices
in X(v) are denoted by Xi(v), 1 ≤ i ≤ ⌈deg(v)/d⌉. Thus, n′ = |V (G′)| ≤∑

v∈G⌈deg(v)/d⌉ ≤ 2n. The edges of G′ are determined as follows: an edge
(u, v) ∈ E(G) chooses independently uniformly at random a vertex from X(v)
and a vertex from X(u). In G′ there will be an edge between these two randomly
chosen vertices. Clearly, |E(G′)| = |E(G)| = (nd)/2. The required properties
of G′ follow from the claims below.

Claim 3.14. For d = Ω(log n), the maximum degree d′ of G′ constructed above
is at most 2d with probability 1 − o(1).

The proof of Claim 3.14 can be found as Lemma 7 in [18].
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Claim 3.15. For a graph G with d > 17k4/ǫ the following holds: If G is ǫ-far
from being k-colorable, then with probability 1 − o(1), G′ is ǫ′-far from being
k-colorable for ǫ′ = ǫ

16k3 .

Proof. Consider a fixed k-partition P ′ = (V ′
1 , · · · , V ′

k) of the vertices in G′.
The partition P ′ induces a partition of X(v) for every v. Let us denote by
Xα(v) the largest subset of X(v) induced by P ′, breaking ties arbitrarily. For
a graph T and U ⊂ V (T ), denote by E(U) the set of edges in the subgraph
of T induced by U . Consider a partition P = (V1, . . . , Vk) of the vertices of G
induced by P ′ in the following way. For v ∈ V (G), if Xα(v) ⊂ V ′

i for 1 ≤ i ≤ k,
then v ∈ Vi. Since G is ǫ-far from being k-colorable, for at least one of the
subsets V1, · · · , Vk, the induced subgraph contains at least 1

k
ǫdn edges. Without

loss of generality assume that |E(V1)| ≥ 1
k
ǫdn. Let H ′ be a subgraph of G′,

defined as follows. The vertices of H ′ are
⋃

v∈V1
Xα(v), and the edges of H ′ are

the edges of G′, induced by V (H ′). Thus, V (H ′) ⊂ V ′
1 and E(H ′) ⊂ E(V ′

1).
We next show the following for c > 1 (using our lower-bound assumption

on d):

(3.16) Pr[|E(H ′)| ≤ (1/4k3)ǫdn] < k−c·n′

Once we establish Inequality (3.16), by taking the union bound over all
possible partitions P ′ of the vertices of G′ we get that for every partition
P ′ = (V ′

1 , · · · , V ′
k) of the vertices of G′, the number of violating edges in G′

(with respect to P ′), is at least (1/4k3)ǫdn with probability 1 − o(1). Recall
that n′ ≤ 2n and d′ ≤ 2d with probability 1 − o(1). Thus, for every partition
of the vertices of G′, the number of violating edges is at least (ǫ/16k3) · n′ · d′

with probability 1 − o(1), as required.

Proof of Inequality (3.16): Consider an edge e = (u, v) ∈ E(G), and let
ϕ(e) = (Xi(v), Xj(u)) be its corresponding edge in E(G′). For e ∈ E(V1),
Pr[ϕ(e) ∈ E(H ′)] ≥ (1/k) · (1/k) = 1/k2. Thus,

Exp[|E(H ′)|] ≥ 1

k2
|E(V1)|.

As |E(H ′)| is a sum of |E(V1)| independent Bernoulli random variables, each
with expectation at least 1/k2, it follows from Chernoff bounds that

Pr[|E(H ′)| < (1/4k3)ǫdn] < e−ǫdn/16k3

Thus, for d ≥ 16k4/ǫ we have

Pr[|E(H ′)| ≤ (1/4k3)ǫdn] < k−cn

for c > 1, and the claim is proved. �
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Claim 3.17. With high probability, an induced subgraph of G′ on t almost-
uniformly selected vertices contains Õ( t2d

n
) edges.

Proof. Let S ⊆ V be a (multi-)set of size t selected δ-uniformly. For every

edge e = (u, v) of G′, the probability that both u and v fall into S is O
(

t2

n2

)
.

By the linearity of expectation, the expected total number of edges in such an

induced subgraph is O
(

ndt2

n2

)
= O

(
t2d
n

)
. The desired bound follows by the

Markov inequality. �

Claim 3.18. It is possible to sample an induced subgraph of size Õ(n
d
) in G′

whose vertices are selected δ-uniformly for δ = Ω(ǫ), using either Õ( n
ǫd

) group

queries or Õ((n
d
)2) pair queries on G.

Proof. In order to query an induced subgraph as specified in the claim we
first need to select Õ(n

d
) random vertices δ-uniformly and then to find all the

edges between them. By Claim 3.17, such an induced subgraph contains Õ(n
d
)

edges with high probability. As every vertex in G has a number of copies that is
proportional to its degree, selecting a vertex in G′ δ-uniformly reduces to select-
ing an edge in G δ-uniformly. We can sample an edge uniformly using O

(
n
d

)

pair queries, and by Lemma 3.10 we can sample δ-uniformly Õ(n
d
) random

edges using Õ( n
δd

) random neighbor queries and degree queries. By Claim 2.1,
random neighbor queries can be emulated by group queries. Therefore, for the
first step it suffices to perform either Õ( n

ǫd
) group queries and degree queries

or Õ((n
d
)2) pair queries.

For the second step, in the pair query model we just query all the relevant
pairs in the original graph. For every pair of connected vertices in G we choose
randomly which of their copies are connected in G′, and according to the an-
swers recover the induced subgraph in G′. Similarly, in the group query model
we first use degree queries on all the vertices. By Claim 2.2, it is possible to
recover the induced subgraph using Õ(n

d
) group queries. The only modification

is that we need to decide, before we start the step, for every pair of relevant
vertices in G, which of their copies are connected (in the case that they are
actually connected in G). Then, according to these decisions, we emulate the
group queries on G′ by group queries on G. This completes the proof. �

(Claim 3.18 and Lemma 3.13)
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3.4. Establishing the upper bounds. In this subsection we show how to
use the reduction (Lemma 3.13) to establish bounds for the pair query model
and the group query model. In the neighbor query model we give an upper
bound using a different (and simpler) approach.

Proof of Item 1 in Theorem 1.2. Our algorithm has two steps : In the
first step, we perform a degree query on every vertex of the graph. Using this
information, we can now choose a random edge with a single query (just choose
a vertex with probability proportional to its degree, and choose a random edge
incident to this vertex). In the second step sample n ln k

2ǫ
+ 1

ǫ
edges uniformly

and independently. If the graph is k-colorable then trivially every subgraph
will be k-colorable. On the other hand, if the graph is ǫ-far from being k-
colorable, then every fixed k-partition has at least ǫdn violating edges. As the
total number of edges is nd

2
, the probability that none of the violating edges

was selected is at most

(1 − 2ǫ)
n ln k

2ǫ
+ 1

ǫ < e−2 · e−n ln k <
1

3
k−n .

Using the union bound, with probability at least 2/3 every partition will have
a violating edge in the sample, and thus the sample will not be k-colorable. �

Proof of Item 1 in Theorem 1.1 and Item 1 in Theorem 1.3. Consider
first the case that d = o(log n). For this case, in the pair query model just query
all the pairs of vertices in the graph. In the group query model use the tester
of the neighbor query model, emulating neighbor queries using group queries
(Claim 2.1). Otherwise (d = Ω(log n)), given a graph G, let G′ be the graph
obtained by Lemma 3.13. By Lemma 3.13, It is possible to sample an induced
subgraph of size Õ(n

d
) in G′ where the vertices of the subgraph are selected

δ-uniformly, using either Õ( n
δd

) group queries or Õ((n
d
)2) pair queries on G. By

Theorem 3.1, in order to test k-colorability it suffices to uniformly sample an
induced subgraph of size Õ(n

d
) in G′. While Theorem 3.1 is stated for uniform

sampling, it also holds for δ-uniform sampling when δ = ǫ/c for a sufficiently
large constant c. This can be verified by observing that the only place where
the distribution on selected vertices plays a role in the proof of Theorem 3.1 is
in the proof of Lemma 3.8. This proof relies on lower bounding the probability
of hitting various sets vertices having size Ω(ǫn), and hence holds also when
sampling δ-uniformly for δ = ǫ/c and a sufficiently large constant c.

4. Lower Bounds

In this section we prove the lower bounds in Theorems 1.1, 1.2, and 1.3. In the
first subsection we give several building blocks used in the lower bounds. In
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particular we describe a probabilistic construction of a graph that is far from
being k-colorable yet every induced subgraph of linear size is 3-colorable. In
the second subsection we establish the lower bounds in the various models.

4.1. The Building Blocks.

4.1.1. A Probabilistic Construction. We first would like to generate a
sparse graph that is far from being k-colorable, yet every induced subgraph of
linear size is 3-colorable. We show that a graph from the distribution G(n, p)
satisfies these conditions with high probability for an appropriate choice of p.
In the proof we follow ideas of Erdős (see [11]).

Lemma 4.1. For every constant value of k ≥ 3 there exist constants
α(k), c(k) > 0 such that the following properties hold with high probability

for a random graph H selected according to the distribution G(n, p = c(k)
n

).

• H has Θ(n) edges.

• H is Θ(1)-far from being k-colorable.

• Every induced subgraph of H on α(k)n vertices is 3-colorable.

Proof. Consider a graph H selected according to the distribution G(n, p =
8k3/n). We show that with high probability, H satisfies all the items in
Lemma 4.1.

The number of edges in H is binomially distributed with parameters
(

n
2

)

and p. Using Chernoff type bounds, for any δ > 0 and large enough n, with
probability 1− o(1), the graph contains (4± 2δ)k3n edges, and this proves the
first item.

Next, we show that H is far from being k-colorable with probability 1−o(1).
Consider a k-partition P = (V1, . . . , Vk) of the n vertices. The number of pairs
of vertices with both end-points in the same subset Vi is

∑k
i=1

(|Vi|
2

)
. By the

convexity of the function
(

x
2

)
, this number is at least k

(n
k
2

)
. Therefore, the

expected number of violating edges with respect to the partition P is at least
k
(n

k
2

)
·8k3/n = 4k2n(1−o(1)). By the Chernoff bound, the probability that the

number of violating edges is less than 2k2n (roughly half the expected value)
is upper bounded by exp(−Ω((k3/n) · (n2/k))) = exp(−Ω(k2n)) ≪ k−n. By
taking the union bound over all possible partitions (whose number is upper
bounded by kn), we get that with probability 1 − o(1), for every partition of
the n vertices, the number of violating edges in H is at least 2k2n and the
graph is 1

(2+δ)k
-far from being k-colorable.
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To prove the third item, we show that with probability 1 − o(1), for α =
α(k) < 1

552k9 , every subset of vertices of H of size αn is 3-colorable. Recall that
a k-critical graph is a k-colorable graph with the property that every proper
subgraph is (k − 1)-colorable. Note that for a subset of vertices S ⊂ V (H),
if the subgraph, H [S], induced by S is not 3-colorable, then it must contain a
4-critical subgraph, and every such graph has minimum degree at least 3. This
implies that there is S ′ ⊆ S such that |E(H [S ′])| ≥ 3|S ′|/2. The probability
that there exists a set S ⊂ V (H) of size s ≤ αn−1 such that |E(H [S])| ≥ 3s/2
is upper bounded by

(4.2)

αn−1∑

s=4

(
n

s

)( (s
2

)

3s/2

)
(8k3/n)3s/2 .

Consider a single term in the sum:

(
n

s

)( (s
2

)

3s/2

)
(8k3/n)3s/2 ≤

(ne

s

)s

·
((es

3

)3/2
)s(

83/2k9/2

n3/2

)s

≤
(

54k9/2s1/2

n1/2

)s

.

Observe that if 4 ≤ s ≤ √
n then the last term is O

((
1√
n

)4
)

= o(1/n) and

if
√

n ≤ s ≤ αn, then the last term is bounded by c
√

n for some constant
c < 1. Therefore in both cases the last term is o( 1

n
), and hence the total sum in

Equation (4.2) is o(1). We conclude that with high probability every induced
subgraph of size αn is 3-colorable. �

4.1.2. Increasing the degree. The construction in Lemma 4.1 gives a
graph with constant average degree. We next consider two ways of obtain-
ing graphs with larger degrees.

Given a graph G′ over n′ vertices and m′ edges, a d-blowup of G′ is a graph
G obtained in the following manner. Every vertex v′ of G′ is transformed into
a cluster of d vertices in G. Thus the number of vertices in G is n = n′d. Every
edge of G′ is transformed into d2 edges in G that form a complete bipartite
graph between the corresponding clusters, and hence the number of edges in G
is m = m′d2. In this the next subsection we shall use blowups to build graphs
on n vertices and average degree Θ(d) that have similar properties to sparse
graphs on Θ(n

d
) vertices. Clearly, if G′ is k-colorable, then so is G. Moreover:
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Claim 4.3. If G′ is ǫ-far from being k-colorable then G is also ǫ-far from being
k-colorable.

Proof. We call a k-coloring ϕ a cluster coloring if every two vertices from
the same cluster have the same color. Clearly, every cluster coloring of G has at
least ǫdn violating edges, and thus it remains to show that there is an optimal
coloring (with respect to the number of violating edges) which is a cluster
coloring.

To this end, consider any optimal coloring ϕ′, and let u1, u2 vertices from the
same cluster such that ϕ′(u1) 6= ϕ′(u2). Denote by b1, b2 the number of violating
edges incident to u1, u2 respectively. Without loss of generality assume that
b1 ≤ b2, then we can assign u2 the color of u1 without increasing the total
number of violating edges. Applying this to all clusters we obtain an optimal
coloring that is also a cluster coloring, and the claim follows. �

We next prove a variant of Claim 4.3 that uses a different type of blowups.
We take a fixed graph H , and blow it up where between every two incident
clusters we have a graph with a certain expansion property. We show that if
H is not k-colorable then the obtained graph is far from being k-colorable. In
particular, we have the following, where for two (disjoint) subsets of vertices A
and B, we use e(A, B) to denote the number of edges with one endpoint in A
and one endpoint in B.

Claim 4.4. Let k ≥ 3 be a constant and let H = (V, E) be a fixed graph that is
not k-colorable. Let G be a graph with n|H| vertices, obtained by transforming
each vertex v in H to a cluster U(v) of n vertices. Suppose that for every
(u, v) ∈ E(H), the pair U(u), U(v) is transformed into a d-regular bipartite
graph with the following property. There exists a constant c(k) > 0 such that
for every A ⊆ U(u), B ⊆ U(v) of size n/k each, we have e(A, B) ≥ c(k) · nd.
Then G is Θ(1)-far from being k-colorable.

Proof. Fix a k-coloring of G, and identify with each cluster U(v) a color
i such that at least n/k of the vertices in U(v) are colored by i, breaking
ties arbitrarily. We get a k-coloring of H , and since H is not k-colorable, we
conclude that there is an edge (u, v) ∈ E(H) and a color i such that at least
n/k vertices from U(u) are colored i and at least n/k vertices from U(v) are
colored i. By the expansion property, there are at least c(k) · nd violating
edges. Since there are Θ(nd) edges in G, we get that G is Θ(1)-far from being
k-colorable. �
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4.1.3. Regular bipartite graphs. In what follows we describe some prop-
erties of (random) d-regular bipartite graphs. We denote by Dn,d the set of all
d-regular bipartite graphs with two independent sets, V1 and V2 of size n each.

Lemma 4.5. Let F = (V1 ∪ V2, E) be a graph sampled uniformly from Dn,d,
where d = ω(1) and d < 0.9n, and let α be some positive constant. Then with
high probability, for every two sets X ⊆ V1 and Y ⊆ V2 where |X| = |Y | = αn,
we have e(X, Y ) ≥ 1/2 · |X||Y |d/n.

Proof. Consider first the binomial random bipartite graph G(n, n, d/n) de-
fined as follows. There are two sets |V1| = |V2| = n, and for every a ∈ V1, b ∈ V2,
there is an edge from a to b with probability d/n. Let J reg be the event where
the obtained graph is d-regular, and let Jexp be the event that there is a pair
of sets X ⊂ V1, Y ⊂ V2 where |X| = |Y | = αn and e(X, Y ) < 1/2 · |X||Y |d/n.

Observe that the obtained random graph conditioned on J reg becomes a
random bipartite d-regular graph from Dn,d. We will argue that Pr[Jexp] =
o(Pr[J reg]), and then we conclude that almost all graphs from Dn,d satisfy the
assertion of the lemma.

Observe first that by applying Chernoff’s inequality together with the union
bound, we get that Pr[Jexp] ≤ 22n · e−βdn for some constant β > 0, as there
are at most 22n ways to choose X, Y , and then the number of edges between
X and Y is binomially distributed with probability d/n.

In order to estimate the probability of J reg, we denote by J reg
i , i ∈ {1, 2}, the

event where all vertices in Vi have degree exactly d. Clearly J reg = J reg
1 ∩ J reg

2

and Pr[J reg
1 ] = Pr[J reg

2 ]. Also, we have that Pr[Bin(n, d/n) = d] ≥ c2√
d

for

some constant c2, assuming that d = ω(1) and d ≤ 0.9n (see e.g. [7, Chapter
1.2]). Finally, by a result of Ordentlich and Roth [20], the events J reg

1 , J reg
2 are

positively correlated. Thus we have

Pr[J reg] ≥ Pr[J reg
1 ] · Pr[J reg

2 ] ≥
(

c2√
d

)2n

.

We conclude that Pr[Jexp] = o(Pr[J reg]), as claimed. �

The next lemma deals with the probability of a certain event occurring
when a d-regular bipartite graph (V1 ∪ V2, E) is selected randomly from Dn,d

conditioned on it containing a given subgraph. It will be convenient to consider
vertex-labeled graphs. That is, V1 = {v1

1, . . . , v
n
1} and V2 = {v1

2, . . . , v
n
2}.
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Lemma 4.6. Let H = (V H
1 ∪ V H

2 , E(H)) be a fixed bipartite subgraph with
bounded degree d, where V H

1 ⊆ V1 and V H
2 ⊆ V2. We denote by Ext(H) the

subset of graphs (V1∪V2, E) in Dn,d that contain H as a subgraph. The following
holds for any v ∈ V1 ∪ V2 and any u, w /∈ ΓH(v) such that degH(w) = 0. The
probability over a uniformly selected graph F ∈ Ext(H) that (v, u) ∈ E(F ) is
upper bounded by the probability that (v, w) ∈ E(F ).

We note that the lemma holds more generally for the case that degH(u) ≥
degH(w). However, we apply it only to the case that degH(w) = 0, and the
proof of this case is slightly simpler.

Proof. First observe that the claim holds trivially if degH(u) = 0 since
in this case, the probability that (v, u) ∈ E(F ) equals the probability that
(v, w) ∈ E(F ). We thus assume from this point on that degH(u) ≥ 1. The
claim also holds trivially if degH(v) = d, so we may assume that degH(v) < d.

Assume without loss of generality that v ∈ V1 and u, w ∈ V2. Let Extv,u(H)
denote the subset of graphs in Ext(H) in which there is an edge between v and
u (recall that this edge does not belong to H), and similarly define Extv,w(H).
We would like to show that |Extv,u(H)| ≤ |Extv,w(H)|. We first note that
there are graphs that belong to both sets (in case that degH(v) ≤ d − 2), and
we continue by considering the sets that result from removing those graphs in
the intersection. We denote the resulting sets by Extw

v,u(H) and Extu
v,w(H),

respectively.
We next define an auxiliary bipartite graph whose two sides correspond to

Extw
v,u(H) and Extu

v,w(H), respectively. We put an (auxiliary) edge between

F ∈ Extw
v,u(H) and F̃ ∈ Extu

v,w(H), if F̃ can be obtained from F by switching

between v and some x ∈ ΓF (w)\ΓF (u). That is, F and F̃ are the same, except
that in F we have the edges (v, u) and (x, w) (that do not appear in F̃ ), while
in F̃ we have the edges (v, w) and (x, u) (that do not appear in F ).

Suppose we partition the graphs on each side of the auxiliary bipartite
graph into subsets according to the size of |ΓF (u) ∩ ΓF (w)| (which ranges be-
tween 0 and d − 1). Then there are edges only between graphs in which this
intersection has the same size (and is in fact equivalent). Since the degree
of each F ∈ Extw

v,u(H) equals d − |ΓF (u) ∩ ΓF (w)|, while the degree of each
F ∈ Extu

v,w(H) is at most d − |ΓF (u) ∩ ΓF (w)| (in fact, is strictly smaller),
we get that |Extu

v,w(H)| ≥ |Extw
v,u(H)|, so that |Extv,w(H)| ≥ |Extv,u(H)|, as

claimed. �

4.2. Lower Bounds for Group Queries. In this section we prove lower
bounds for the group query model, and since we have proved that the group
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query model is essentially at least as strong as the combined model (see
Claim 2.1), our results apply also to the latter model.

We start with a simple consequence of the construction of Lemma 4.1 to
get a one-sided error lower bound, and then use a more complex argument to
get a two-sided error bound.

Corollary 4.7. Every one-sided error algorithm for testing k-colorability,
k ≥ 3, must perform Ω

(
n
d

)
group queries.

Proof. Every one-sided error algorithm must accept whenever the subgraph
it has queried is k-colorable. Take a graph over Θ(n

d
) vertices that is obtained

as described in Lemma 4.1, and blow it up by factor d. By Claim 4.3, with high
probability the obtained graph is Θ(1)-far from being k-colorable. Moreover,
every induced subgraph of size α · n

d
is k-colorable, where α is an absolute

constant as in Lemma 4.1, and thus in order to find a (k +1)-critical subgraph
we need to get at least α · n

d
positive answers. Every query returns at most

one positive answer, and therefore we need to perform at least that number
of queries in order to obtain evidence that the graph is not k-colorable. The
corollary follows. �

Next we build on a reduction from [6] to get a lower bound of Ω
(

n
d

)
for

two-sided error algorithms in the group query model. The lower bound in [6]
is for the case k = 3, and therefore we start with a reduction for general k.

Lemma 4.8. For any n and constant k ≥ 4 there exists a constant degree graph
G′ on O(n) vertices with a set S ⊆ V (G′) of size n such that the following holds.
For every graph F on n vertices with constant maximum and average degrees,
if we replace G′[S] by an induced copy of F (while keeping all edges between
S and V (G′) \ S), and we denote the resulting graph by G′′, then we have:

• If F is 3-colorable then G′′ is k-colorable.

• If F is Θ(1)-far from being 3-colorable then G′′ is Θ(1)-far from being k-
colorable

Proof. We show that a graph G′ chosen from a certain distribution satisfies
the properties with high probability, and it will follow that such a graph exists.
Consider first a random graph H0 from the following distribution of graphs on
(k − 3)n vertices. The vertices are partitioned into k − 3 sets U1, U2, . . . , Uk−3

of equal size. Every two vertices from different clusters are connected by an
edge independently with probability p = ck log k

n
for some constant c, and every
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cluster forms an independent set of size n. Clearly, every graph from such a
distribution is (k − 3)-colorable. We will show that with high probability it
is Θ(1)-far from being (k − 4)-colorable. First, with high probability such a
graph has at most ck4n edges. Consider a coloring χ of the vertices of H0 with
k − 4 colors. Denote by ni, 1 ≤ i ≤ k − 4, the number of vertices that are
colored i. Let yi = max {ni − n, 0} and observe that

∑k−4
i=1 yi ≥ n. Call a pair

of vertices dangerous with respect to χ if they are from different clusters but
have the same color in χ. For every color class with n + yi vertices, there are
at least n · yi dangerous pairs. Hence, the total number of dangerous pairs
is at least n2. Therefore, by Chernoff-type bounds for every fixed coloring,
the probability that there are less than n/(4k) violating edges is bounded by
e−Θ(pn2) = o(k−(k−3)n) for sufficiently large n. Using the union bound, we
get that almost always a graph from this distribution is Θ(1)-far from being
(k − 4)-colorable.

We next establish that with high probability H0 is close to a graph with
degrees bounded by a constant (which is still Θ(1)-far from being (k − 4)-
colorable). Let t = ne−np. Let A be a subset of t vertices in H0. Observe
that ∑

v∈A

dH0(v) = 2eH0(A) + eH0(A, V \ A),

where eH0(A) is the number of edges of H0 within A and eH0(A, V \ A) is
the number of edges of H0 with one endpoint in A and another outside A.
Hence if

∑
v∈A dH0(v) ≥ 10(k − 3)np · t, we get that eH0(A) > (k − 3)npt or

eH0(A, V \ A) > 8(k − 3)npt. The probability of the former can be bounded
using the union bound by

(
(k − 3)n

t

)
·
( (

t
2

)

(k − 3)npt

)
· p(k−3)npt

≤
(

e(k − 3)n

t
·
(

et

2(k − 3)n

)(k−3)np
)t

= o(1) .

The probability of the latter is bounded by
(

n(k − 3)

t

)(
t(n(k − 3) − t)

8n(k − 3)pt

)
p8n(k−3)pt ≤

(
en(k − 3)e8n(k−3)p

t · 88n(k−3)p

)t

=

(
3k enp

(e

8

)8(k−3)np
)t

= o(1) .

Assume none of the above two events holds for any subset of t vertices in
H0, and choose A to be a subset of t vertices of largest degrees in H0, breaking
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ties arbitrarily. Then
∑

v∈A dH0(v) ≤ 10(k− 3)np · t ≤ nk−Θ(k2). It follows also
that the vertex degrees outside A are all at most 10(k − 3)np in H0. Delete all
edges of H0 touching A and denote the obtained graph by H ; the number of
deleted edges is at most nk−Θ(k2). Then H is (1) (k−3)-colorable, (2) Θ(1)-far
from being (k − 4)-colorable and (3) both its maximum degree and its average
degree are Θ(1).

We now define a graph G′ over O(n) vertices, and a subset S ⊂ V (G′) of
size n as required in the lemma (recall that the claim in the lemma is about
replacing G′[S] by an induced copy of a graph F ). G′ consists of a copy of H ,
and the set S, which is an independent set disjoint of V (H), where the edges
between V (H) and S are defined as follows. Let c1 = c1(k) be a constant that
will be set subsequently. Every pair of vertices v1 ∈ V (H) and v2 ∈ S are
connected with probability c2

n
for a constant c2, where c2 is selected so that the

following holds with high probability: For every choice of subsets X ⊂ V (H)
and Y ⊂ S such that both have size n/c1, there are at least c3n edges between
X and Y for some constant c3. Assume from this point on that this is in fact
true. By applying essentially the same argument used to bound the degrees of
vertices in H , it is possible to remove a very small number of edges between
V (H) and S so as to ensure that all degrees are upper bounded by a constant
(while still maintaining that there are Ω(n) edges between every pair X and Y
as defined above).

For any fixed choice of a graph F over n vertices (with constant maximum
and average degrees), let G′′ be the graph that results from replacing G′[S]
with F . Since H is (k− 3)-colorable, if F is 3-colorable then G′′ is k-colorable,
as required. We thus turn to the case that F is ǫ-far from being 3-colorable for
ǫ = Θ(1). For an illustration of the cases considered in the argument presented
next, see Figure 4.1.

Consider any coloring χ of V (G′′) with k colors, and let C1, . . . , Ck be
the corresponding color classes. Recall that H is ǫ′-far from being (k − 4)-
colorable, for ǫ′ = Θ(1). Denote Ci ∩ V (H) by CH

i and Ci ∩ V (F ) by CF
i . Let

rH be the ratio between the maximum degree in H and the average degree,
and define rF analogously. Recall that both rH and rF are constants. Let
ǫ′′ = 1

2k max{rH ,rF } min{ǫ, ǫ′}, and suppose that there exists a color class Ci such

that |CH
i | ≥ ǫ′′n and |CF

i | ≥ ǫ′′n. In such a case, by the foregoing discussion,
setting c1 = 1/ǫ′′, there are Ω(n) edges between CH

i and CF
i , and so there is a

constant fraction of violating edges with respect to the coloring χ.
Otherwise, for each Ci, let C ′

i be the larger between CH
i and CF

i , and
observe that |⋃i(Ci \ C ′

i)| ≤ 1
2max{rH ,rF } min{ǫ, ǫ′}n. First consider the case

that V (F ) contains at most 3 subsets C ′
i1
, C ′

i2
, C ′

i3
(and hence it contains
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(B)(A)

...

(C)

⋃
j /∈{i1,i2,i3}

(Cj \ C′
j)

H H

H

C′
i2

C′
i3

C′
i1

C′
i2

C′
ik−4

CG
i C′

i1

CH
i

F F

F

Figure 4.1: An illustration for the different cases of the argument showing that
G′′ is Ω(1)-far from k-colorable in the proof of Lemma 4.8. In Case (A) there
exists a color class Ci such that |CH

i | ≥ ǫ′′n and |CF
i | ≥ ǫ′′n. In Case (B) there

are at most three large subsets C ′
i1
, C ′

i2
, C ′

i3
in V (F ). In Case (C) there are more

than three such subsets, and so there are at most k − 4 subsets C ′
i1
, . . . , C ′

ik−4

in V (H).

⋃
i/∈{i1,i2,i3}(Ci\C ′

i)). We claim that since F is ǫ-far from 3-colorable, there must

be Ω(n) violating edges with respect to χ. To verify this consider any three-way
partition (V1, V2, V3) of V (F ) such that C ′

ij
⊆ Vj for j ∈ {1, 2, 3}. Since F is ǫ-

far from 3-colorable there are at least ǫdF n violating edges with respect to this
partition, where dF is the average degree in F . However, the number of edges
incident to vertices in

⋃
i/∈{i1,i2,i3}(Ci \C ′

i) is at most 1
2rF ǫdF

maxn = 1
2
ǫdF n, where

dF
max is the maximum degree in F . Therefore, there are at least 1

2
ǫdF n = Ω(n)

violating edges between pairs of vertices that belong to the same C ′
ij
.

Finally, if V (F ) contains more than 3 such subsets, then V (H) must contain
at most k − 4 such subsets. Since H is ǫ′-far from being (k − 4)-colorable, in
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this case too there must be a constant fraction of violating edges with respect
to χ. �

Using Lemma 4.8, we can now prove the lower bound on group queries:

Proof of Item 2 in Theorem 1.3. We first prove the bound for k = 3,
and in the end of the proof we explain how to adjust it to other values of k.
The authors of [6] show that there exist two distributions of b-regular graphs
(for a constant b) over ñ vertices with the following properties. All graphs in

the support of the first distribution, denoted D̃3col, are 3-colorable, and with
high probability over the choice of a graph according to the second distribution,
denoted D̃3col-far, the graph is Θ(1)-far from being 3-colorable. However, the
distributions are statistically indistinguishable by a tester that performs o(ñ)
neighbor queries.

We first observe that the distributions D̃3col and D̃3col-far are also statisti-
cally indistinguishable by any tester that performs o(ñ) group queries. Assume,
in contradiction, that there exists a tester that performs q(ñ) = o(ñ) groups
queries and distinguishes with high constant probability between a graph se-
lected randomly according to D̃3col and a graph selected randomly according

to D̃3col-far. But then, since the graphs considered are b-regular, where b is a
constant, it is possible to answer each group query by performing b neighbor
queries, and thus to distinguish between the two distributions by performing
b·q(ñ) = o(ñ) neighbor queries. From this point on, when we discuss testers, we
mean testers that perform group queries (and possibly degree queries, though
these are not useful since the graphs are regular).

We next define two distributions, D3col, D3col-far that are created by
d-blowups of the graphs in the supports of the original distributions
D̃3col, D̃3col-far, respectively. Given a graph G̃ on ñ vertices, let G denote

the d-blowup of G̃. Clearly, all graphs in the support of D3col are 3-colorable,

while by Claim 4.3, for every graph G in the support of D̃3col-far that is Θ(1)-

far from being 3-colorable, we also have that G̃ (in the support of D3col-far) is
Θ(1)-far from being 3-colorable. Suppose that there exists a tester T that per-
forms o(n/d) group queries when given access to a graph with average degree d.
In particular, this tester distinguishes (with high success probability) between a
random graph selected according to D3col-far and a random graph selected ac-
cording to D3col by performing o(n/d) = o(ñ) group queries to the graph. We

define the following tester T̃ that distinguishes between a random graph from
D̃3col and a random graph from D̃3col-far by performing o(ñ) group queries.
By the definition of a d-blowup, every group query to G can be emulated using
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a single group query to G̃. Thus, T̃ is simply defined by (virtually) running T
on G, answering each group query it asks by performing a corresponding query
to G̃, and outputting the answer that T outputs.

Turning to the case that k > 3, we can adjust the proof as follows. We
replace the distributions D̃3col and D̃3col-far by two new distributions D̃k-col
and D̃k-col-far. Every graph F from the distributions D̃3col and D̃3col-far
(which is a regular graph) is replaced by a graph G′′ given by Lemma 4.8.
The new graph has O(ñ) vertices and degrees bounded by a constant. If the

graph G′′ is generated based on a graph from D̃3col (i.e., according to the

induced distribution D̃k-col), then it is k-colorable and otherwise it is Θ(1)-far
from being k-colorable (with high probability). We may assume that the tester
knows in advance all the edges in G′′ except the edges in the induced copy of F .
Since the graph G′′ is fixed (except for the induced copy of F ), the only way to
separate between the two resulting distributions is through the induced copy
of F . Finally, we use a d-blowup (again, we can assume that the tester knows
in advance the clusters partition). Following the same argument as for the case
of k = 3, we get a lower bound of Ω

(
n
d

)
for every value of k, as required. �

4.3. Lower Bounds for Neighbor Queries. Our lower bound proof for
neighbor queries will use directed orientations of undirected graphs. For a
fixed orientation O, the indegree of a vertex v is the number of edges that are
directed into v. We start with two simple claims.

Claim 4.9. Let H be a graph over n vertices with average degree d, and
consider any orientation of H . Then there exists a vertex with indegree at
least ⌈d/2⌉.

Proof. The total number of edges is the sum of the indegrees taken over all
vertices in the graph. If all the vertices have indegree less than ⌈d/2⌉ then the
total number of edges is less than nd

2
which contradicts the assumption. �

Claim 4.10. Let H be a K4-free graph that is not k-colorable for k ≥ 6, and
let O be an orientation of H . The set of vertices with indegree at least ⌈k

2
⌉− 1

with respect to O induces a non-3-colorable graph.

Proof. Denote the set of vertices with indegree at least ⌈k/2⌉−1 by C and
the complement of C by U . In U every vertex has indegree at most ⌈k/2⌉ − 2.
Suppose that H [U ] is not (k−3)-colorable. Then H [U ] must contain a (k−2)-
critical subgraph. Since that subgraph doesn’t contain a copy of K4, by Brooks’
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Theorem (see e.g., [25, Thm. 5.1.22]), it has average degree more than k − 3.
By Claim 4.9, such a subgraph must contain a vertex with indegree more than
⌈(k − 3)/2⌉; the latter quantity is at least ⌈k/2⌉ − 1, and we have reached
a contradiction. If H [C] is 3-colorable, we get that the whole graph can be
colored with k colors. This contradicts the premise of the lemma (that H is
not k-colorable), and thus the proof is completed. �

We first prove a two-sided error bound that follows immediately from previous
results.

Proof of Item 2 in Theorem 1.2. As the group query model is at least
as strong as the neighbor query model (Claim 2.1), by Theorem 1.3 we get
a lower bound of Ω

(
n
d

)
queries. In [18] it was proved that every tester for k-

colorability (possibly with two-sided error) that performs only neighbor queries
requires Ω(

√
n) queries. The claim follows. �

Next we prove a uniform bound valid for every value of d.

Proof of Item 3 in Theorem 1.2. Let H be a fixed (k +1)-critical graph
that is not Kk+1, where we assume that H is known to the tester. (In the course
of the proof we shall make several such assumptions that can only make the
task of the tester easier.) Based on H , we construct a graph G while interacting
with the tester. Initially, the graph G contains a cluster of n′ = n

|H| vertices for
each vertex in H , where the tester knows for each vertex in G to which cluster
it belongs. We say that two clusters are incident , if the corresponding vertices
in H are neighbors. In the course of the execution of the tester we construct a
random regular bipartite graph between every two incident clusters, and when
the execution of the tester ends, we complete every incident pair of clusters to
a (random) d-regular bipartite graph.

Recall that the tester has to find evidence that the graph is not k-colorable.
Observe first that the tester knows the degrees of all vertices, and so we may
focus only on the neighbor queries it makes. Suppose that it makes a neighbor
query from a vertex v in a cluster U1. We may assume that the tester can
request a neighbor from an incident cluster of its choice. (Recall that in each
cluster there are Θ(n) vertices.) Suppose that the tester requests a neighbor
from U2. In order to answer the query, we consider all graphs in Dn′,d that agree
with the current knowledge graph between the clusters U1, U2, and return as an
answer a vertex in U2 that is selected at random according to the distribution
induced on the neighbors of v conditioned on this knowledge graph. At the
end of the execution of the tester we choose randomly and uniformly for every
pair of clusters a d-regular bipartite graph from Dn′,d that is consistent with
the final knowledge graph.
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By the definition of the above process, for every tester, between each pair of
incident clusters we have a random d-regular bipartite graph. By Lemma 4.5
and Claim 4.4, we get that with high probability, the obtained graph is Θ(1)-far
from being k-colorable.

We also claim that as long as the tester performs o(n) queries, the probabil-
ity that a query is answered by a vertex that already belongs to the knowledge
graph is upper bounded by O(1/n′). To this end, we apply Lemma 4.6. Con-
sider a request for a neighbor of v ∈ U1 that belongs to U2. By the lemma, for
every fixed vertex u ∈ U2 and any vertex w that is an isolated vertex in the
knowledge graph, the probability of getting u as an answer is upper bounded
by the probability of getting w as an answer. Since there are o(n′) non-isolated
vertices, we get that the probability to get any fixed vertex is bounded by, say,
2/n′.

In order to complete the proof, we show that with high probability, the
tester does not reveal a non k-colorable graph throughout its execution.

During the execution of the tester, we represent the knowledge graph as a
directed graph, where if the tester performs a neighbor query from a vertex v
and the answer is u, then we orient the edge from v to u. As every minimal
evidence is a (k + 1)-critical graph that is not a clique, by Brooks’ Theorem
(see e.g., [25, Thm. 5.1.22]) it has average degree more than k. By Claim 4.9
it has at least one vertex with indegree at least ⌈(k + 1)/2⌉.

We now wish to prove that in order to find a single vertex in the graph
with such indegree, the tester needs to perform many queries. Every neighbor
query return as an answer each particular vertex with probability at most 2/n′.
Therefore, the probability that after r queries, some vertex was selected more
than ⌈(k + 1)/2⌉ times is at most

(
r

⌈(k + 1)/2⌉

)
·
(

2

n′

)⌈(k+1)/2⌉
≤
(

2r

n′

)⌈(k+1)/2⌉
.

Applying the union bound, if r = O(n1− 1
⌈(k+1)/2 ), then with high probability

no vertex is selected more than ⌈(k + 1)/2⌉ times, and so the bound on the
number of needed queries follows.

Proof of Item 4 in Theorem 1.2. By Lemma 4.1 there exists a graph
over Θ(n

d
) vertices that is Θ(1)-far from being k-colorable, yet every induced

subgraph of size αn
d

(for some constant α > 0) is 3-colorable (in particular,
the graph does not contain K4 as a subgraph). Let G be a d-blowup of such a
graph. By Claim 4.3, G is also K4-free and Θ(1)-far from being k-colorable.
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As in the proof of Item 3 in the theorem, during the execution of the tester,
we represent the knowledge graph as a directed graph, where if the tester
performs a neighbor query from a vertex v and the answer is u, then we orient
the edge from v to u. Denote the directed knowledge graph by H . If H can
serve as evidence that the graph G is not k-colorable, then H contains a (k+1)-
critical subgraph. By Claim 4.10, the set of vertices in H with indegree at least
⌈k/2⌉ − 1 induces a subgraph that is not 3-colorable, and therefore by the
properties of the construction, this subgraph has vertices with indegree at least
⌈k/2⌉ − 1 from Θ(n

d
) distinct clusters.

We next lower bound the number of queries required in order to find a
single vertex with indegree at least ⌈k/2⌉− 1. Suppose that the tester makes a
neighbor query from a vertex u that belongs to a cluster U1, and obtains as an
answer a vertex from a cluster U2. If the tester makes o(n) queries, for all but
o(n/d) of the clusters, it gets at most d/c answers within the cluster (for some
constant c). For each such cluster, the probability of getting any particular
vertex as an answer in a certain query is at most c/d. Therefore, among r
queries that return neighbors in a certain cluster, the probability of getting the
same vertex as an answer ⌈k/2⌉ − 1 times is bounded by

d ·
(

r

⌈k/2⌉ − 1

)
·
( c

d

)⌈k/2⌉−1

≤ d ·
(cr

d

)⌈k/2⌉−1

.

It follows that with high probability, Ω
(
d1− 1

⌈k/2⌉−1

)
neighbor queries are needed

to find a vertex with degree ⌈k/2⌉ − 1 that belongs to a certain cluster. Re-
call that the tester has to find such vertices from Θ(n

d
) distinct clusters, and

therefore every one-sided error tester must perform

Θ
(n

d

)
· Ω
(
d1− 1

⌈k/2⌉−1

)
= Ω

(
n · d− 1

⌈k/2⌉−1

)

queries. The theorem follows.

4.4. On the power of the combined model. Let T be the distribution
of the d-blowups of graphs given by Lemma 4.1. We shall use the notation
G ∈ T to mean a graph G selected according to the distribution T. Observe
that with high probability over the choice of G ∈ T, the average degree in G
is Θ(d). We have seen that for this distribution, there exist lower bounds for

the pair query and neighbor query models of Ω
((

n
d

)2)
and Ω

(
n · d− 1

⌈k/2⌉−1

)

(if k ≥ 6) respectively. Here we describe a one-sided error algorithm in the
combined model that uses Õ( n√

d
) queries for this distribution. This shows
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that the combined model is stronger than the optimum of the pair query and
neighbor query models for the problem of k-colorability.

Proposition 4.11. There exists an algorithm such that, given a graph G ∈ T,
reveals a non k-colorable subgraph using Õ( n√

d
) queries in the combined model

with high probability (the probability is taken both over the choice of the
graphs and the success probability of the algorithm).

Proof sketch. Let G ∈ T and let W be a set of vertices in G. For a
vertex v with a non-empty neighborhood we can create an identifier I(v) by
taking O(

√
d log n) random neighbors. By the Birthday Paradox, with high

probability every two vertices v1, v2 ∈ W from the same cluster will have a
common element in their identifiers.

Given two vertices u and v, we can also check if they have the same set of
neighbors in the following way. We query O(log n) random neighbors from u,
and perform a pair query for every such neighbor to v. We then query O(log n)
random neighbors of v, and perform a pair query for every such neighbor to
v. If u and v are not in the same cluster (and their clusters have distinct
sets of neighbors), then with high probability we find a vertex r connected
only to one of them. We call this procedure the explicit test. Note that this
procedure cannot distinguish between the case where two vertices are from
the same cluster, and the case where they belong to distinct clusters but have
the same set of neighbors. However, this is immaterial to the argument, and
distinguishing between the two cases is not necessary (and is impossible).

Our algorithm works as follows. We first take a sample S of size O
(

n log n
d

)

vertices from G. By the known bounds of the Coupon Collector’s Problem
(see [19, Thm. 3.8]), with high probability we have a vertex from every cluster
in the graph. We then build an identifier for every vertex in S. For every pair of
vertices that have a common neighbor in their identifiers, we apply the explicit
test. For every vertex there are O(log2 n) clusters of vertices within distance
at most 2 from it. Therefore, with high probability we apply the explicit test
O(log3 n) times for every vertex from S, and the total number of queries in this
step is Õ( n√

d
). After this step we can group the vertices of S to clusters. Let

S ′ ⊆ S be a set of vertices with a single vertex from every cluster.
In the second step we want to check which clusters are connected. This

step follows similar lines as before. For every vertex u ∈ S ′ we take a random
sample R(u) of size O(log n). We again create identifiers for every vertex in
R(u), and by comparing their identifiers to those we create in the previous
step, we can identify the cluster of every vertex in R(u) using Õ( n√

d
) pair and
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neighbor queries.

In the third step we can recover the underlying clusters graph G′, since
we know a vertex from every cluster, and the clusters adjacent for every such
vertex. In order to get a one-sided error algorithm, we can now use pair queries
in order to verify that indeed G′ is a subgraph of G. This step takes Õ(n

d
)

queries, and so with high probability we find evidence that G is not k-colorable,
as claimed. �

5. Concluding Remarks and Open Questions

Our upper and lower bounds are nearly tight for the problem of one-sided error
testing of k-colorability in the pair query model and in the neighbor query model
(for large enough k). In the group query model our bounds are tight even for
two-sided error testers. It seems plausible that the correct lower bounds for
the two-sided case in the pair query model and in the neighbor query model

are Ω
((

n
d

)2)
and Ω(n), respectively.

The exact power of the combined model for testing k-colorability is still
not known. It seems that for the problem of testing bipartiteness, the group
query model is strictly stronger than the combined model, as one can sample an
induced sparse subgraph more efficiently using this query. On the other hand,
we provided a distribution for which the combined model is strictly stronger
than the optimum of the pair and neighbor models. It would be interesting to
give tight bounds for the problem of testing k-colorability in this model.

Finally, the exact query complexity of various models is still not determined
for many problems, including problems that have already been studied in the
combined model. For example, it may be interesting to determine the query
complexity of testing bipartiteness in the pair query model.
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