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Abstract

In this paper we consider the problem of testing whether a graph is triangle-free, and more
generally, whether it is H-free, for a fixed subgraph H . The algorithm should accept graphs
that are triangle-free and reject graphs that are far from being triangle-free in the sense that a
constant fraction of the edges should be removed in order to obtain a triangle-free graph. The
algorithm is allowed a small probability of error.

This problem has been studied quite extensively in the past, but the focus was on dense
graphs, that is, when d = Θ(n), where d is the average degree in the graph and n is the number
of vertices. Here we study the complexity of the problem in general graphs, that is, for varying
d. In this model a testing algorithm is allowed to ask neighbor queries (i.e., “what is the i-th
neighbor of vertex v”), vertex-pair queries (i.e., “is there an edge between vertices v and u”),
and degree queries (i.e., “what is the degree of vertex v”).

Our main finding is a lower bound of Ω(n1/3) on the necessary number of queries that holds
for every d < n1−ν(n), where ν(n) = o(1). Since when d = Θ(n) the number of queries sufficient
for testing has been known to be independent of n, we observe an abrupt, threshold-like behavior
of the complexity of testing around n. This lower bound holds for testing H-freeness of every
non-bipartite subgraph H .

Additionally, we provide sub-linear upper bounds for testing triangle-freeness that are at
most quadratic in the stated lower bounds, and we describe a transformation from certain
one-sided error lower bounds for testing subgraph-freeness to two-sided error lower bounds.

Finally, in the course of our analysis we show that dense random Cayley graphs behave like
quasi-random graphs in the sense that relatively large subsets of vertices have the “correct”
edge density. The result for subsets of this size cannot be obtained from the known spectral
techniques that only supply such estimates for much larger subsets.
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1 Introduction

Property Testing is the study of the following type of computational tasks. Let P be some predeter-
mined property, where we shall be interested in properties of combinatorial nature. The task is to
distinguish quickly and reliably between input objects possessing property P and input objects that
are “far” from having P , where distance is measured in some appropriately defined quantitative
sense. In order to fulfill this task, the testing algorithm is given query access to a description of the
input object O, adhering to some pre-agreed upon format; the algorithm’s complexity is measured
by the number of queries it asks before reaching a reliable decision. A testing algorithm is expected
to query a sublinear portion of the input; hence, randomness plays an essential role in developing
property testing algorithms. Property testing was defined by Rubinfeld and Sudan [RS96], who
focused on testing algebraic properties. Goldreich, Goldwasser and Ron [GGR98] initiated the
study of combinatorial property testing, and in particular considered testing properties of graphs.
Since then, the field has progressed enormously, with many papers devoted to it, where one of
the main focuses is on testing graph properties. An interested reader is invited to consult the
surveys [Fis01, Ron01] for more details.

In this work we consider the problem of testing subgraph-freeness, and in particular triangle-
freeness, in general graphs. Let n denote the number of vertices in the graph, let d denote the
average degree, and let dmax denote the maximum degree. Given a distance parameter ε > 0, we
would like to design an algorithm that distinguishes with high probability between the case that
the graph contains no triangles and the case in which more than ε · dn edges should be removed
so that no triangles remain. To this end we allow the algorithm query access to the graph. In
particular, for any vertex of its choice, the algorithm may ask for the degree of the vertex, it may
ask to get the i-th neighbor of the vertex for every i ≤ n (if the vertex has less than i neighbors
then a null answer is returned), and it may ask whether there is an edge between any two vertices.1

Subgraph-freeness, and more specifically, triangle-freeness, is one of the most basic problems
studied in property testing. The interest in this problem is both due to the fact that triangle-freeness
is a fundamental and simple graph property, and it is due to the relation between triangle-freeness
and the study of dense sets of integers with no three-term arithmetic progression.

Dense graphs. Most of the focus in previous works was on testing triangle-freeness in dense
graphs, that is, when d = Θ(n). For this class of graphs the most appropriate input graph rep-
resentation is the graph adjacency matrix, and a testing algorithm is allowed to query whether
(u, v) is an edge of an input graph G, where u, v ∈ V (G) (the so called vertex-pair queries). The
authors of [AFKS00] showed that it is possible to test triangle-freeness in dense graphs using a
number of queries that is independent of n, and has a tower-type behavior in 1/ε. Alon [Alo02]
proved that a super-polynomial dependence on 1/ε is necessary for testing subgraph-freeness of all
non-bipartite subgraphs. When the fixed subgraph is bipartite then O(1/ε) queries suffice [Alo02].
It is also observed in [Alo02] (and much earlier, though implicitly, in [RS76]) that the problem of
testing triangle-freeness is intimately related to the famous (and very hard) problem of the existence
of dense sets of integers without a three-term arithmetic progression. Alon’s lower bound, which

1Clearly, a degree query to a vertex v can be implemented by performing at most log n queries concerning the
neighbors of v. Therefore, an algorithm can do without degrees queries and incur at most a logarithmic factor
overhead. For simplicity of the presentation, we allow the algorithm to perform these queries.
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was proved for one-sided error algorithms, was extended in [AS04b] to two-sided error algorithms.
Other related results include [AS04a].

Bounded-Degree graphs. In the other extreme, an input graph is assumed to have its maximum
degree bounded by an absolute constant dmax = O(1). In such a case, the input graph is usually
represented by an array of incidence lists of all of its vertices (of length at most dmax each);
accordingly, a testing algorithm queries the i-th neighbor of a vertex v, where 1 ≤ i ≤ dmax (the
so called neighbor queries). As was observed in [GR02], in this case O(1/ε) queries suffice for
testing triangle-freeness. More generally, O(dτ/ε) queries suffice for testing H-freeness in graphs
with maximum degree O(d), where τ is the diameter of H.

General graphs. In this work we study the complexity of testing triangle-freeness of graphs that
lie between the two extremes. Namely, we would like to understand the dependence of the query
complexity on the average degree d, and we do not want to necessarily assume that dmax = O(d).
In the latter aspect we follow the work [PR02] on testing the diameter of sparse, but unbounded-
degree, graphs, and in both aspects we follow the work [KKR04] on testing bipartiteness of general
graphs. In particular, as in [KKR04] we allow queries of both types – vertex-pair queries and
neighbor queries, as well as degree queries (i.e., the algorithm may query the degree of any vertex).
Note that the fact that the graph has varying degrees makes the task of testing triangle-freeness
significantly harder. Consider for example sparse graphs, that is, graphs with average degree
d = O(1). As we mentioned before, when dmax = O(1), O(1/ε) queries suffice for testing triangle-
freeness. However, our work shows that when dmax = Θ(n) and d = O(1), the number of queries
required for testing triangle-freeness is Ω(

√
n).

Our contributions. The main contributions of this paper, on a qualitative level, are as follows:

• We discover a threshold-type behavior in testing triangle-freeness: whenever d = O(n1−ν(n)),
where ν(n) is a function that satisfies ν(n) = o(1), the number of queries that are necessary to
test triangle-freeness is Ω(n1/3), while, as discussed above, for d = Θ(n) the query complexity
is a function of ε only. This is in sharp contrast with the results of [KKR04], where a smooth
behavior of the complexity of testing bipartiteness as a function of d was described;

• We provide a transformation from lower bounds for testing triangle-freeness using one-sided
error algorithms to those for two-sided error algorithms; though the suggested transformation
is stated and proved for triangles and carries some technical restrictions, it is general enough
to capture a variety of lower bounds of this sort;

• We give quantitative lower and upper bounds for testing triangle-freeness in general graphs;

• We show that the edge distribution in random Cayley graphs is close to that of truly random
graphs of the same edge density. This is proven by direct combinatorial and probabilistic
arguments, without relying on the eigenvalue machinery, which is incapable of proving such
results for subsets that are too small. Although we need this result for property testing purposes,
we feel it is of enough independent interest to be stated here.
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1.1 A lower bound and a sharp threshold

Our main result is:

Theorem 1 There is a lower bound of Ω(n1/3) for testing triangle-freeness in general graphs. The
lower bound holds for algorithms that are allowed two-sided error, and for every d that is upper
bounded by O(n1−ν(n)) where ν(n) = log log log n+4

log log n . For some values of d the lower bound reaches

Ω(n1/2).

Theorem 1 is actually the union of three lower bounds (whose one-sided error versions are stated in
Lemmas 1, 2 and 6), which are applied to different values of d. The exact expression for the lower
bound is

Ω
(

max
{√

n/d, min{d, n/d}, min {
√

d, n2/3/d1/3} · n−o(1)
})

(1)

For a schematic illustration see Figure 1.
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Figure 1: A schematic illustration of our lower and upper bounds. The x-axis represents the average
degree d and the y-axis represents the bounds. For the sake of simplicity we ignore logarithmic
factors in the bounds. Notice that the lower bound lies entirely above the horizontal line at height
n1/3, and the upper bound lies entirely below the horizontal line at height n6/7.

Recall that when d = Θ(n) then testing can be performed using a number of queries that is
independent of n [AFKS00]. Thus we observe a sharp transition between our lower bound of Ω(n1/3)
that holds until d = n1−ν(n) (recall that ν(n) = o(1)), and the query complexity at d = Θ(n),
which does not depend on n. The abrupt change of testing complexity around linear density
can be partially explained by the fact that the celebrated Regularity Lemma of Szemerédi (whose
relevance to testing triangle-freeness has been first indicated in [RS76] and was made explicit in
[AFKS00]) starts yielding meaningful results for graphs whose number of edges is almost quadratic
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in the number of vertices. The exact behavior of the complexity of testing triangle-freeness when
n1−ν(n) ≤ d ≤ n remains open.

Remark. Using techniques that were previously applied in [Alo02] it is possible to extend The-
orem 1 to testing subgraph-freeness for other non-bipartite subgraphs and to show that for any
fixed non-bipartite graph H there is a constant a = a(H) > 0 such that an algorithm for testing
H-freeness in graphs on n vertices with average degree d ≤ n1−o(1) has to ask at least na queries.
This lower bound holds for two-sided error algorithms, using both vertex-pair and neighbor queries.
We wish to note that the difference between the complexity of testing subgraph-freeness of bipartite
and non-bipartite subgraphs is caused by the difference in the behavior of their Turán numbers
– they are subquadratic for the former and quadratic for the latter. A more detailed discussion
can be found in [Alo02]. The technical details of the aforementioned general statement concerning
testing H-freeness and its proof are quite cumbersome, while the threshold-type behavior of the
query complexity as a function of average degree d is observed already for the case when H is a
triangle. Therefore we prefer to concentrate on the basic case of testing triangle-freeness.

1.2 Upper bounds

We show that for every graph density, there exists an algorithm for testing triangle-freeness whose
query complexity is sublinear in n. Furthermore, the upper bound is always at most quadratic in
the corresponding lower bound (up to a factor of log n).

Theorem 2 There is an upper bound of Õ(n6/7) for testing triangle-freeness in general graphs for
every value of d. The upper bound can go down to Õ(n1/2) for some values of d. In all cases, up
to logarithmic factors, the upper bound is at most quadratic in the lower bound that holds for that
density. If dmax = O(d) then the upper bound is O(n4/5) for all values of d.

The exact expression for our upper bound is Õ
(

min
{√

nd/ε3/2, (n4/3/d2/3)/ε2
})

, where in the

case that dmax = O(d), the first term is replaced by d/ε. For a schematic illustration, see Figure 1.

1.2.1 Tight results.

There are two cases in which our lower and upper bounds essentially match. The first case is graphs
in which dmax = O(d) and d ≤ √

n. For this case the complexity is Θ(d) (for constant ε). The
second case is general sparse graphs, that is, graphs for which d = Θ(1). For these graphs the
complexity is Θ̃(

√
n).

1.3 Our techniques

Behrend Graphs and Cayley graphs. In the proof of our third lower bound (Lemma 6), we
build on graphs that are known as Behrend graphs, which were previously used in the context of
testing triangle-freeness in [Alo02]. Here we prove that random Behrend graphs have a certain
property that we can exploit in order to obtain our lower bound. Behrend graphs are variants of
the well studied Cayley graphs, and our proof concerning properties of random Behrend graphs
extends to Cayley graphs.
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Specifically, we show that for dense random Cayley graphs the edge density in relatively large
induced subgraphs is close to the edge density of the whole graph. It was previously shown [AR94]
that random Cayley graphs are expanders and hence have the property that the density of every
induced subgraph on sufficiently many vertices is very close to the density of the graph. However,
the known techniques for proving this property are based on estimating the second eigenvalue of the
graph’s adjacency matrix, and do not supply any informative bounds for sets of vertices that are
much smaller than the number of vertices divided by the square root of the degree. Our results for
Cayley graphs apply both for Cayley graphs over Abelian and non-Abelian groups, while Behrend
graphs were considered only in an Abelian setting. Our techniques are somewhat reminiscent of
those of [AO95, Gre05].

A reduction from one-sided error lower bounds to two-sided error lower bounds. We
obtain our two main lower bounds by first establishing lower bounds that hold for one-sided error
algorithms. We then prove a transformation from one-sided error lower bounds to two-sided error
lower bounds that holds under certain assumptions, and apply it to obtain our two-sided error lower
bounds. This transformation may be of use in future lower bound proofs for subgraph freeness. We
note that in [AS04b] a transformation was given in the case of dense graphs, but it is not applicable
in general.

1.4 Subsequent work

In [Gug06] and [Ras06] our lower bound and upper bound, respectively, were improved somewhat
for particular ranges of d. Specifically, Gugelmann [Gug06] slighly modifies one of our constructions,
and obtains a lower bound of Ω(min{(nd)1/3, n/d}), instead of our lower bound of Ω(min{d, n/d}).
Given our additional lower bound of Ω(

√
n/d), this improves on our result for d that ranges between

Ω(n1/5) and O(n1/2).

In terms of upper bounds, Rast [Ras06] describes an algorithm that combines ideas from our
algorithms in a non-trivial manner, and obtains an algorithm whose query complexity (in terms of
its dependence on n and d) is O

(
max

{
(nd)4/9, n2/3/d1/3

})
. This improves on our result for d that

ranges between Ω(n2/5) and O(n4/5).

1.5 Paper organization

After giving some preliminary definitions in Section 2, we proceed to lower bounds in Sections 3, 4, 5.
In particular, Section 5 describes Behrend graphs and proves a result on the edge density of random
Behrend graphs, whose more general version (applicable to random Cayley graphs of Abelian
groups) is discussed in Section 8. Section 6 describes a reduction from lower bounds for two-sided
testers to those for one-sided testers. Section 7 contains upper bounds for testing triangle-freeness.
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2 Preliminaries

Let G = (V,E) be an undirected graph with n vertices labeled 1, . . . , n, and let d denote the average
degree in G, where we assume that d = Ω(1).2 For each vertex v ∈ V let deg(v) denote the degree
of vertex v. The edges incident to v (and their end-points, the neighbors of v), are labeled from 1
to deg(v). Note that each edge has two, possibly different, labels, one with respect to each of its
end-points. For a graph G and a subset of vertices U ⊆ V , we refer to the edges in the subgraph
of G that is induced by U as the edges spanned by U in G.

A graph G is said to be triangle-free if for every three vertices u, v, w in G, at least one of the
three vertex-pairs (u, v), (v, w), or (w, u) is not an edge in G. A graph G is ε-far from (being)
triangle-free if it is necessary to remove more than εdn edges from G in order to obtain a triangle-
free graph. We note that since the number of edges in the graph is (dn)/2, the standard definition
of ε-far would be that more than (εdn)/2 edges should be removed so that the graph becomes
triangle-free. In order to simplify the presentation we slightly modify the definition.

A testing algorithm for triangle-freeness is required to accept with probability at least 2/3 every
graph that is triangle-free and to reject with probability at least 2/3 every graph that is ε-far from
being triangle-free, where ε is a given distance parameter. If the algorithm always accepts triangle-
free graphs then it has one-sided error , otherwise it has two-sided error . In order to perform this
task the testing algorithm is allowed the following types of queries:

• Degree queries: for any vertex u of its choice, the algorithm can obtain deg(u).

• Neighbor queries: for any vertex u and index 1 ≤ i ≤ deg(u), the algorithm may obtain the
i-th neighbor of vertex u.

• Vertex-pair queries: for any pair of vertices (u, v), the algorithm can query whether there is an
edge between u and v in G.

3 A Lower Bound of Ω
(√

n/d
)

In this section we establish our first, and simplest lower bound.

Lemma 1 Every algorithm for testing triangle-freeness must perform Ω(
√

n/d) queries. This lower
bound holds for two-sided error algorithms as well.

Proof: In order to prove a two-sided error lower bound of Ω(q) queries for testing triangle-freeness,
it suffices to describe two families of graphs for which the following two conditions hold. (1) The
graphs in the first family are all triangle-free, while the graphs in the second family are all Θ(1)-far
from being triangle-free. (2) Any algorithm that distinguishes with constant probability between a
graph selected uniformly in one family, and a graph selected uniformly in the second family, must
perform Ω(q) queries.

2Our results can be extended to the case that d = o(1) (that is, very sparse graphs). However, for the sake of
simplicity, and since we believe that the very sparse case is of less interest, we assume that d = Ω(1).
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In particular, consider the following two families of graphs over n vertices and with average
degree d. Each family is determined by a single graph, and consists of all possible n! labelings of
the vertices of the graph. Hence it suffices to describe the two graphs (one per family). In one graph
there is a complete bipartite graph between two sets of vertices, each of size

√
nd/2. In the other

graph there is a clique of size
√

nd. (We ignore rounding issues here.) In addition, in both graphs
the remaining vertices are isolated. The first graph is clearly triangle-free and it is not hard to
verify that the second graph is Θ(1)-far from being triangle-free. However, in order to distinguish
between the two graphs (or more precisely, in order to distinguish between graphs that are selected
uniformly from each of the two families), the algorithm must obtain a vertex in the complete
bipartite subgraph / clique. To this end the algorithm must perform Ω(n/

√
nd) = Ω(

√
n/d)

queries.

4 A Lower Bound of Ω (min{d, n/d})

Our next lower bound improves on the lower bound in Section 3 when d > n1/3.

Lemma 2 Every one-sided error algorithm for testing triangle-freeness must perform
Ω(min{d, n/d}) queries. This lower bound holds even when dmax = O(d).

The lower bound in Lemma 2 is extended to two-sided error algorithms in Section 6.

We prove Lemma 2 by describing a distribution on graphs such that the following holds: On
one hand almost all of the support of the distribution is on graphs that are far from triangle-free.
On the other hand, every algorithm that uses neighbor and/or vertex-pair queries, must perform
Ω(min{d, n/d}) queries before it views a triangle (with sufficiently high constant probability). Since
we currently focus on testing algorithms that have one-sided error, this implies a lower bound on
the query complexity of such algorithms.

We start by considering the case that d = c · √n for a particular constant c < 1. We later
discuss how to deal with the case that d > c · √n and with the case that d < c · √n.

4.1 Definition of the lower-bound distribution

The graphs we consider below are d-regular for d = Θ(
√

n), but may have multiple edges. At the
end of this section we discuss how to remove the multiple edges. Let D∆ be a distribution over
graphs with n vertices and degree d = 2

3

√
n/3 that is defined as follows. A graph is generated by

first partitioning the vertices into equal-size subsets of size n′ = n/3 denoted V1, V2, V3. Next,
between each pair of subsets, d′ = d/2 =

√
n′/3 random perfect matching are selected. In all that

follows we assume that n′ is sufficiently large (n′ > 100 suffices).

Lemma 3 With probability 1− o(1), a graph chosen uniformly according to the distribution D∆ is
Ω(1)-far from being triangle-free.

Proof: We shall show that with high probability over the choice of a graph according to D∆, there
are at least γ · nd edge-disjoint triangles in the graph, for some constant γ.
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Let the vertices in each set V`, ` ∈ {1, 2, 3}, be denoted v`,1, . . . , v`,n′ . For each pair of vertices

v`,i ∈ V`, v`′,j ∈ V`′ where ` 6= `′, let α`,`′

i,j be a 0/1 random variable that is 1 if there is an edge
between v`,i and v`,j and is 0 otherwise. Then

Pr
[
α`,`′

i,j = 1
]

= 1 −
(

1 − 1

n′

)d′

(2)

and so

Pr
[
α`,`′

i,j = 1
]
≤ d′

n′ (3)

and

Pr
[
α`,`′

i,j = 1
]
≥ d′

n′ −
(

d′

2

)
· 1

(n′)2
≥ d′

n′ −
1

18n′ =
d′

n′ ·
(

1 − 1

18d′

)
(4)

Next consider any choice of three vertices v1,i ∈ V1, v2,j ∈ V2 and v3,k ∈ V3. Let ∆i,j,k denote the
0/1 random variable that is 1 if and only if there is a triangle between the three vertices. Since the
choice of the matchings between V1 and V2 is independent of the choice of the matchings between
V2 and V3 and the choice of the matching between V1 and V3,

Pr[∆i,j,k = 1] ≤
(

d′

n′

)3

(5)

and

Pr[∆i,j,k = 1] ≥
(

d′ − 1/18

n′

)3

=

(
d′

n′

)3

·
(

1 − 1

18d′

)3

(6)

Let βi,j,k denote a 0/1 random variable that is 1 if and only if there is a triangle different from
(v1,i, v2,j , v3,k) that includes one of the edges (v1,i, v2,j) or (v1,i, v3,k) or (v2,j, v3,k). That is, there is a
triangle of the form (v1,i′ , v2,j, v3,k), where i′ 6= i, or (v1,i, v2,j′ , v3,k) where j′ 6= j, or (v1,i, v2,j , v3,k′)
where k′ 6= k. Since the probability of having an edge (v`,r, v`′,s) conditioned on having the edge

(v`,r, v`′,s′), for any choice of s′ 6= s, is at most 1 −
(
1 − 1

n′

)d′−1
,

Pr[∆i,j,k = 1 & βi,j,k = 1] = Pr[∆i,j,k = 1] · Pr[βi,j,k = 1 | ∆i,j,k = 1] (7)

≤
(

d′

n′

)3

· 3 · (n′ − 1) ·
(

d′ − 1

n′

)2

≤
(

d′

n′

)3

· 3(d′ − 1)2

n′ (8)

It follows that

Pr[∆i,j,k = 1 & βi,j,k = 0]

= Pr[∆i,j,k = 1] − Pr[∆i,j,k = 1 & βi,j,k = 1] (9)

≥
(

d′ − 1/18

n′

)3

−
(

d′

n′

)3

· 3(d′ − 1)2

n′ (10)

=

(
d′

n′

)3

·
((

1 − 1

18d′

)3

− 3 ·
(

1 − 1

d′

)2

· (d′)2

n′

)
(11)

≥ 1

2
·
(

d′

n′

)3

=
1

54
· (n′)−3/2 (12)
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where we have used our assumption that n′ and d′ =
√

n′/3 are sufficiently large. Hence, the
expected number of triples (v1,i, v2,j , v3,k) that constitute a triangle that does not share an edge
with any other triangle is at least

(n′)3 · 1

54
· (n′)−3/2 =

1

54
· (n′)3/2 =

1

54
· n · d (13)

Next, we shall use Chebyshev’s inequality to show that with high probability, the number of such
triples is not much smaller than this expected value.

For each triple v1,i, v2,j , v3,k let ηi,j,k be the 0/1 random variable that is 1 if and only if
(v1,i, v2,j , v3,k) constitute a triangle, and there is no other triangle that shares any of its edges.
Using our previous notation we have that

Pr[ηi,j,k = 1] = Pr[∆i,j,k = 1 & βi,j,k = 0] (14)

which implies (using Equations (9)–(13)) that


Exp


∑

i,j,k

ηi,j,k






2

≥ (n′)3/c (15)

for some constant c > 1. By Chebyshev’s inequality,

Pr


∑

i,j,k

ηi,j,k <
1

2
Exp


∑

i,j,k

ηi,j,k




 ≤

4Var
[∑

i,j,k ηi,j,k

]

(
Exp

[∑
i,j,k ηi,j,k

])2 <
c′Var

[∑
i,j,k ηi,j,k

]

(n′)3
(16)

for a constant c′ > 1. We would like to bound the variance of
∑

i,j,k ηi,j,k:

Var


∑

i,j,k

ηi,j,k


 = Exp




∑

i,j,k

ηi,j,k




2
−


Exp


∑

i,j,k

ηi,j,k






2

(17)

Now,

Exp




∑

i,j,k

ηi,j,k




2
 =

∑

i,j,k

∑

i′,j′,k′

Exp[ηi,j,k · ηi′,j′,k′ ] (18)

=
∑

i6=i′

∑

j 6=j′

∑

k 6=k′

Exp[ηi,j,k · ηi′,j′,k′ ]

+3 ·
∑

i

∑

j 6=j′

∑

k 6=k′

Exp[ηi,j,k · ηi,j′,k′]

+3 ·
∑

i,j

∑

k 6=k′

Exp[ηi,j,k · ηi,j,k′]

+
∑

i,j,k

Exp[η2
i,j,k] (19)

9



while


Exp


∑

i,j,k

ηi,j,k






2

=
∑

i,j,k

∑

i′,j′,k′

Exp[ηi,j,k] · Exp[ηi′,j′,k′ ] (20)

>
∑

i6=i′

∑

j 6=j′

∑

k 6=k′

Exp[ηi,j,k] · Exp[ηi′,j′,k′ ] (21)

Therefore,

Var


∑

i,j,k

ηi,j,k




≤
∑

i6=i′

∑

j 6=j′

∑

k 6=k′

(
Exp[ηi,j,k · ηi′,j′,k′ ] − Exp[ηi,j,k] · Exp[ηi′,j′,k′ ]

)

+3 ·
∑

i

∑

j 6=j′

∑

k 6=k′

Exp[ηi,j,k · ηi,j′,k′ ] + 3 ·
∑

i,j

∑

k 6=k′

Exp[ηi,j,k · ηi,j,k′] +
∑

i,j,k

Exp[η2
i,j,k] (22)

First observe that by definition of ηi,j,k, for every i, j and k 6= k′, since if both (v1,i, v2,j , v3,k) and
(v1,i, v2,j , v3,k′) are triangles then they share an edge, we get that

ηi,j,k · ηi,j,k′ = 0 . (23)

Next observe that since Pr[ηi,j,k = 1] ≤ Pr[∆i,j,k = 1], where by Equation (5) Pr[∆i,j,k = 1] ≤
(d′/n′)3,

∑

i,j,k

Exp[η2
i,j,k] =

∑

i,j,k

Exp[ηi,j,k] ≤ (n′)3 ·
(

d′

n′

)3

= (d′)3 (24)

We turn to the sum over triangles that share a (single) vertex. Conditioned on there being a
triangle (v1,i, v2,j , v3,k) i.e., ∆i,j,k = 1, the probability of having the edge (v1,i, v2,j′) for j′ 6= j, i.e.,

η1,2
i,j = 1 (and similarly the edge (v1,i, v3,k′) for k′ 6= k) is upper bounded3 by 1 −

(
1 − 1

n′

)d′−1
<

d′

n′ . The probability of having the edge (v2,j′ , v3,k′) (conditioned on the existence of the triangle

(v1,i, v2,j , v3,k)) is upper bounded by 1 −
(

1 − 1
n−1

)d′

, which is at most 2d′

n′ for n′ ≥ 2. Therefore,

Exp[ηi,j,k · ηi,j′,k′] ≤ Exp[∆i,j,k · ∆i,j′,k′] (25)

= Pr[∆i,j,k = 1] · Pr[∆i,j′,k′ = 1 | ∆i,j,k = 1] (26)

≤ 2

(
d′

n′

)6

(27)

and so ∑

i

∑

j 6=j′

∑

k 6=k′

Exp[ηi,j,k · ηi,j′,k′] ≤ (n′)5 · 2(d′)6

(n′)6
=

2(d′)6

n′ (28)

3The reason this is an upper bound and equality does not necessarily hold is that the triangle (v1,i, v2,j , v3,k) may
have parallel edges. That is, the event ∆i,j,k = 1 is a union of events in which each edge of the triangle may appear
with different multiplicity.
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To complete the proof we bound the difference between Exp[ηi,j,k·ηi′,j′,k′] and Exp[ηi,j,k]·Exp[ηi′,j′,k′ ]
(for i 6= i′, j 6= j′, and k 6= k′). By definition,

Exp[ηi,j,k · ηi′,j′,k′ ] − Exp[ηi,j,k] · Exp[ηi′,j′,k′]

= Pr[ηi,j,k = 1] ·
(
Pr[ηi′,j′,k′ = 1|ηi,j,k = 1] − Pr[ηi′,j′,k′ = 1]

)
(29)

Since the proof of the following claim is a bit technical, we give it in the appendix.

Claim 4

Pr[ηi′,j′,k′ = 1 | ηi,j,k = 1] =

(
1 + O

(
1

d′

))
· Pr[ηi′,j′,k′ = 1] (30)

Since Pr[ηi,j,k = 1] = Pr[ηi′,j′,k′ = 1] ≤
(

d′

n′

)3
, Claim 4 implies that

Exp[ηi,j,k · ηi′,j′,k′ ] − Exp[ηi,j,k] · Exp[ηi′,j′,k′] = O

(
(d′)5

(n′)6

)
(31)

Hence,

∑

i6=i′

∑

j 6=j′

∑

k 6=k′

Exp[ηi,j,k · ηi′,j′,k′] − Exp[ηi,j,k] · Exp[ηi′,j′,k′ ] = O

(
(n′)6 · (d′)5

(n′)6

)
= O

(
(d′)5

)
(32)

By combining Equation (16) with Equations (22)–(32) we get that

Pr


∑

i,j,k

ηi,j,k <
1

2
Exp


∑

i,j,k

ηi,j,k




 =

O((d′)5) + O((d′)3)

(n′)3
= O

(
1

d′

)
. (33)

Since we have shown that Exp
[∑

i,j,k ηi,j,k

]
= Ω(nd), the lemma follows.

The case d > 2

3
√

3

√
n. The distribution in this case is the same as described at the start of

this section: the graph vertices are partitioned into three equal parts V1, V2, and V3, and between
every pair Vi and Vj we put d/2 random perfect matchings. We would like to show that with
high probability the resulting graph contains at least 1

c ·nd edge-disjoint triangles in the graph, for

some constant c. To this end we think of the matchings as being selected in k = 3
√

3
2 · d√

n
rounds,

where in each round d′ = 1
3
√

3
· √n matching are selected between every pair Vi, Vj , i 6= j. For

each round we can apply Lemma 3 and get that with high probability we have at least 1
c · n · d′

edge-disjoint triangles. Observe that the triangles created in the different rounds are edge-disjoint.
When k = o(d′) (i.e., d = o(n)) we can apply a union bound and get that with probability at least
1 − O(k/d′) = 1 − o(1) we obtain 1

c · n · d edge-disjoint triangles. For larger k we can use the facts
the the different rounds are independent. Therefore, with probability 1 − exp(−k) = 1 − o(1) in at
least 1/2 of the rounds there are 1

c · n · d′ edge-disjoint triangles, implying that there are at least
1
2c · n · d edge-disjoint triangles.
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The case d < 2

3
√

3

√
n. In this case we first partition the vertices into k parts V 1, . . . , V k where

|V i| = 27
4 d2. We then apply the construction described at the start of this section to each V i. In

this case too, for small k we can apply a union bound on the different V i’s, and once k is sufficiently
large we can use the fact that the different subgraphs are constructed independently. In either case
we get that with high probability, for at least a half of the V i’s there are Ω(|V i| · d) edge disjoint
triangles within the subgraph induced by V i.

4.2 The lower bound

Let A be any one-sided error algorithm for testing triangle-freeness, where A is allowed to perform
both neighbor queries and vertex-pair queries. If A views a triangle in the tested graph then clearly
it can reject the graph. However, since A is a one-sided error algorithm, if it terminates before
viewing a triangle, then it must accept. Suppose we run A on a graph chosen according to D∆,
with some (sufficiently small) constant ε. Since we have shown that with high probability such a
graph is ε-far from being triangle free, the probability that A terminates before viewing a triangle
must be small. Hence it remains to prove the following lemma.

Lemma 5 Any algorithm whose goal is to detect, with high constant probability, a triangle in a
graph selected according to D∆, must ask Ω(min{d, n/d}) queries.

We note that the proof actually establishes the stronger statement: Ω(min{d, n/d}) queries are
required to detect a cycle of any length.

Proof: We first present the argument for d ≥ 2
3
√

3

√
n and later discuss the modifications required

for d < 2
3
√

3

√
n.

It will be convenient to view graphs in the support of D∆ as being represented by “matchings
over tables”. Namely, there are 6 tables: T1,2, T1,3, T2,1, T2,3, T3,1, T3,2, two for each set of vertices
Vb, b ∈ {1, 2, 3}. Each table Tb,b′ is of size (n/3)× (d/2): there is a row for each vertex v in Vb, and
each entry in v’s row corresponds to one of the d/2 edges that are incident to v and to vertices in Vb′ .
An edge between u ∈ Vb and v ∈ Vb′ is represented by a pair of entries (Tb,b′ [u][i], Tb′ ,b[v][j]). Hence
the d/2 perfect matchings between Vb and Vb′ correspond to a single perfect matching between the
entries of the two tables Tb,b′ and Tb′,b.

Let ALG be an algorithm that performs Q = Q(n, d) queries and whose goal is to detect a
triangle with probability at least 9/10. The probability is taken over the choice of the graph G in
the support of D∆ and the coin flips of the algorithm. Namely ALG is a (possibly probabilistic)
mapping from query-answer histories 〈(q1, a1), . . . , (qt, at)〉, to qt+1 for every t < Q. A vertex-pair
query is of the form qt = (u, v) where u ∈ Vb and v ∈ Vb′ for some b 6= b′, b, b′ ∈ {1, 2, 3}. The answer
is either at = (1, i, j), which denotes that there is an edge between u and v and it corresponds to
the pair of entries (Tb,b′ [u][i], Tb′ ,b[v][j]), or at = 0, which denotes that there is no edge between u
and v. A neighbor query is of the form qt = (u, b′, i) where u ∈ Vb, b′ 6= b. The answer is of the
form at = (v, j) where v ∈ Vb′ denoting that there is an edge between u and v and it corresponds
to the pair of entries (Tb,b′ [u][i], Tb′ ,b[v][j]). We note that the mapping from query-answer histories
to queries needs to be defined only on histories that are consistent with some graph in the support
of D∆.
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In what follows we define a process that answers the queries of the algorithm while generating a
graph according to D∆. At any time t, the queries of the algorithm and the answers it is provided
with determine the knowledge graph Gt = (V t, Et, E

t
), where V t are the vertices, Et are the edges

and E
t

are the non-edges. Namely, V t consists of all vertices that appeared in queries of the
algorithm or in answers to neighbor queries. Similarly E t consists of all pairs u, v such that either
(u, v) was a vertex-pair query that was answered positively, or v was an answer to a neighbor query

involving u, and E
t

consists of all pairs u, v such that either (u, v) was a vertex-pair query that was
answered negatively. For every edge (u, v) ∈ E t the knowledge graph will include the indices of the
entries in the tables by which u and v are connected (that is, (i, j) such that Tb,b′ [u][i] is matched
to Tb′,b[v][j].

Vertex-pair queries. Given a vertex-pair query qt = (u, v) where u ∈ Vb and v ∈ Vb′ , the process
computes the probability, conditioned on the current knowledge graph, that (u, v) is an edge.
Namely, it considers all graphs in the support of D∆ that are consistent with Gt−1 and answers
positively with probability that is proportional to the number of these graphs in which there is
an edge between u and v. Let Ut−1,b,b′ denote the number of unmatched entries in Tb,b′ at time t
(before the t-th query). Note that this number equals the number of unmatched entries in Tb′,b at
the same time.

The conditional probability that there is an edge between u and v is upper bounded by:

(d/2) · (d/2)

Ut−1,b,b′ − |Et−1| · (d/2) − (d/2)
(34)

To verify this consider an iterative process in which the (at most d/2) unmatched entries in u’s
row in Tb,b′ are matched one by one to unmatched entries in Tb′,b. After 0 ≤ i < d/2 steps,
the probability of selecting any of the (at most d/2) unmatched entries in v’s row in Tb′,b is the

current number of unmatched entries in v’s row, divided by Ut−1,b,b′ − i − |Et−1| · (d/2). The term

Ut−1,b,b′ − i is the number of unmatched entries after i steps, and the term |E t−1| · (d/2) is the
maximum number of unmatched entries that cannot be matched to entries in u’s row because the
correspond to vertices w such that (u,w) ∈ E

t−1
.

Since Ut−1,b,b′ ≥ (n/3) · (d/2) − (t − 1), |Et−1| ≤ t − 1 and t − 1 < Q = o(n/d) the probability
is O(d/n). It follows that the probability that the algorithm gets a positive answer for any of the
at most Q = o(n/d) vertex-pair queries is o(1). But if the algorithm always gets negative answers
for its vertex-pair queries it clearly cannot close a triangle with such a query.

Neighbor queries. Given a neighbor query (u, b′, i) where u ∈ Vb, the process gives an answer (v, j)
where v ∈ Vb′ according to the conditional probability that the entries Tb,b′ [u, i] and Tb′,b[v][j] are
matched (where again, the conditioning is on the current knowledge graph Gt−1). Here we would
like to upper bound the probability that v already belongs to the knowledge graph. Observe that
the knowledge graph Gt−1 contains at most 2t vertices and at most t edges and non-edges. Hence
the conditional probability that Tb,b′ [u, i] is matched to Tb′,b[v, j] for some v ∈ V t−1

b′ = V t−1 ∩ Vb′

and j ∈ {1, . . . , d/2}, is upper bounded by the following expression: (d/2) × (2t) (the maximum
number of unmatched entries Tb′,b[v, j] for v ∈ V t−1

b′ ) divided by the total number of unmatched

entries in Tb′,b that do not belong to rows of vertices u ∈ Vb′ such that (u, v) ∈ E
t−1

, minus d/2
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(where the argument is very similar to the one given for vertex-pair queries). By our assumption on
Q (where t− 1 < Q), the numerator in the above expression is o(min{n, d2}) and the denominator
is at least (n/3) · (d/2) − (t − 1) · (d/2) − (d/2) = Ω(n · d). Hence, the probability that such an
event occurs at a given particular time t is o(min{(1/d), (d/n)}, and the probability that it occurs
at any t ≤ Q is o(1). But if the algorithm never gets a vertex in the knowledge graph as an answer
to a neighbor query, it clearly cannot close a triangle, or any cycle, with such a query.

Finally we address the case that d < 2
3
√

3

√
n. Recall that in this case we first partition the

vertices into k parts V 1, . . . , V k where |V i| = n′ = 27
4 d2. We then apply the construction to each

V i. By the argument described above, here we can get a lower bound of the form Ω(min{d, n ′/d}) =
Ω(d). But for the current setting of d we also have that min{d, n/d} = d, and so the lower bound
holds in this case as well. (Lemma 5 and Lemma 2)

A remark about multiple edges. The lower bound proof stated above is valid for graphs that
may contain multiple edges. In the distribution D∆ the probability of a multiple edge between a
pair of vertices is O( d2

n2 ). Thus, graphs created according to this distribution contain multiple edges
with probability close to 1. However, with probability 1 − o(1) there are O(d2) multiple edges in
the graphs created according to this distribution. We have shown in Lemma 3 that graphs created
according to the distribution D∆ are Ω(1)-far from being triangle-free with probability 1 − o(1).
Hence we can deduce that by removing multiple edges from a graph G constructed according
to the distribution D∆, the resulting graph is Ω(1)-far from being triangle-free with probability
1 − o(1). In addition, an algorithm ALG that interacts with the process detects a multiple edge
with probability o(1) due to the following reason: ALG doesn’t detect any edges by vertex-pair
queries with probability 1− o(1). The probability of detecting a multiple edge in a neighbor query
is at most the probability that such a query is answered by a vertex in the knowledge graph. This
probability was shown in Lemma 3 to be o(1). Thus, at the end of the interaction with ALG,
the process can delete all the multiple edges from the resulting graph, so that the resulting graph
contains no multiple edges. The graph remains Ω(1)-far from being triangle-free after the deletion,
and its average degree is d − o(1). As a conclusion we get that our lower bound is valid also for
graphs with no multiple edges.

5 An Improved Lower Bound for High Degrees

In this section we establish the following lemma, which improves on our previous lower bound of
min{d, n/d} when the degree of the graph is at least n2/3+o(1).

Lemma 6 Every one-sided error testing algorithm for triangle-freeness must perform

Ω
(

min
{√

d, n2/3

d1/3

}
· n−ν(n)

)
queries, where ν(n) = log log log n+4

log log n . This lower bound holds

even for d-regular graphs.

In order to prove the lemma, here too we define a distribution over graphs that are far from
being triangle free. We then prove a lower bound on the number of queries that are required in
order to detect a triangle with probability bounded away from zero in a graph that is generated
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according to the distribution. As we shall see, it will actually be convenient to consider graphs over
3n vertices and degree 2d.

5.1 A variant of Behrend graphs

Our lower bound distribution builds on graphs that are variants of what are known as Behrend
Graphs [Beh46, RS76, SS42]. These graphs are defined by sets of integers that include no three-
term arithmetic progression (abbreviated as 3AP). Namely, these are sets X ⊂ {1, . . . , n} such that
for every three elements x1, x2, x3 ∈ X, if x2 − x1 = x3 − x2 (i.e., x1 + x3 = 2x2), then necessarily
x1 = x2 = x3. Below we describe a construction of such sets that are large (relative to n), and
later explain how such sets determine Behrend graphs. Our construction of X uses similar ideas
to those used in known constructions [Beh46, SS42] and gives a slightly weaker result. However,
our alternative construction is somewhat simpler, and the size of the resulting set suffices for our
purposes.

Lemma 7 For every sufficiently large n there exists a set X ⊂ {1, . . . , n}, |X| ≥ n
1− log log log n+4

log log n ,
such that X contains no three-term arithmetic progression.

Proof: For simplicity we we do not explicitly write floors (or ceilings). Let b = log n and k =
log n/ log b − 2. Since log n/ log b = log n/ log log n we have that k < b/2 for every n ≥ 8. We
arbitrarily select a subset of k different numbers {x1, . . . , xk} ⊂ {0, . . . , b/2 − 1} and define X ={∑k

i=1 xπ(i)b
i : π is a permutation of {1, . . . , k}

}
. By the definition of X we have that |X| = k!.

By using z! > (z/e)z , we get that

|X| = k! ≥
(

log log n

log n

)2

·
(

log n

log log n

)
! > n1− log log log n+4

log log n (35)

Consider any three elements u, v, w ∈ X such that u + v = 2w. By definition of X, these elements
are of the form u =

∑k
i=1 xπu(i)b

i, v =
∑k

i=1 xπv(i)b
i and w =

∑k
i=1 xπw(i)b

i ∈ X, where πu, πv, πw

are permutations over {1, . . . , k}. Since xi < b/2 for every 1 ≤ i ≤ k, it must be the case that for
each i,

xπu(i) + xπv(i) = 2xπw(i) (36)

This implies that for every i:
x2

πu(i) + x2
πv(i) ≥ 2x2

πw(i) (37)

where the inequality in Equation (37) is strict unless xπu(i) = xπv(i) = xπw(i). If we sum over all i’s
and there is at least one index i for which the inequality in Equation (37) is strict we get that

k∑

i=1

x2
πu(i) +

k∑

i=1

x2
πv(i) >

k∑

i=1

2x2
πw(i) (38)

which is a contradiction since we took permutations of the same numbers. Thus, we get that
u = v = w.

Remark. In fact, the set constructed above is also 3AP-free when all calculations are performed
modulo n. We will use this observation below.
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Behrend graphs. Given a set X ⊂ {1, . . . , n} with no three-term arithmetic progression we
define the Behrend graph BGX as follows. It has 3n vertices that are partitioned into three equal
parts: V1, V2, and V3. For each i ∈ {1, 2, 3} we associate with each vertex in Vi a different integer
in {0, . . . , n − 1}. The edges of the graph are defined as follows:

• The edges between V1 and V2: For every x ∈ X and j ∈ {0, . . . , n− 1} there is an edge between
j ∈ V1 and (j + x) mod n ∈ V2;

• The edges between V2 and V3: For every x ∈ X and j ∈ {0, . . . , n− 1} there is an edge between
(j + x) mod n ∈ V2 and (j + 2x) mod n ∈ V3;

• The edges between V1 and V3: For every x ∈ X and j ∈ {0, . . . , n− 1} there is an edge between
j ∈ V1 and (j + 2x) mod n ∈ V3.

We shall say that an edge between j ∈ V1 and j′ ∈ V2 or between j ∈ V2 and j′ ∈ V3 is labeled by
x, if j′ = (j + x) mod n, and we shall say that an edge between j ∈ V1 and j′ ∈ V3 is labeled by x,
if j′ = (j + 2x) mod n.

The graph BGX is 2|X|-regular and it contains 3|X|n edges. For every j ∈ {0, . . . , n − 1}
and x ∈ X, the graph contains a triangle (j, (j + x) mod n, (j + 2x) mod n) where j ∈ V1, (j +
x) mod n ∈ V2 and (j + 2x) mod n ∈ V3. There are n · |X| such edge-disjoint triangles and
every edge is part of one such triangle. Moreover, there are no other triangles in the graph. To
verify this consider any three vertices j1, j2, j3 where ji ∈ Vi and such that there is a triangle
between the three vertices. By definition of the graph, j2 = (j1 + x1) mod n, for some x1 ∈ X.
j3 = (j2 + x2) mod n, for some x2 ∈ X. j3 = (j1 + 2x3) mod n, for some x3 ∈ X. Therefore,
(j1 + x1 + x2) mod n = (j1 + 2x3) mod n. That is, we get that (x1 + x2) mod n = (2x3) mod n.
Note that by the definition of X, for every x ∈ X, x < n/2, and so x1 +x2 = 2x3. Since X contains
no three-term arithmetic progression, the last implies that x1 = x2 = x3, meaning that the triangle
(j1, j2, j3) is of the form (j, (j + x) mod n, (j + 2x) mod n).

5.2 The edge density of large sets in random Behrend graphs

In this subsection we prove the following lemma, which is central to the proof of Lemma 6. We
shall use the following notation: For a subset Y ⊆ X and a subset of vertices C in BGY , we let
eY (C) denote the number of edges spanned by C in BGY .

Lemma 8 Let 0 < β < 1
2 and 0 < α ≤ 1 be such that α − 2β > 1

log log n , and let X ⊂ {1, . . . , n},
|X| ≥ nβ. Consider the random Behrend graph BGY obtained by choosing a random subset Y ⊆ X,

|Y | = d = |X|
nβ . With high probability over the choice of Y , for every subset C of vertices in BGY

where |C| = nα, we have eY (C) ≤ 90
α−2β

n2α

nβ edges.

The lemma states that for sufficiently large subsets C (i.e., for |C| = nα, where α−2β is a constant),
the number of edges eY (C) is not much larger than its expected value. Note that the smaller we
choose β (i.e., the larger we choose Y ), the smaller can α be. Thus, the lemma can be applied to
sets with of relatively small size.

Before proving the lemma we introduce some notation and prove two claims. For a subset
W ⊆ V1 ∪V2, |W | = s, let W1 = W ∩V1, W2 = W ∩V2 and consider the subgraph of BGX induced
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by W . Let

∆(W ) = {(j2 − j1) mod n : j1 ∈ W1, j2 ∈ W2,

and (j2 − j1) mod n ∈ X} (39)

denote the set of differences in W . That is, it is the set of labels of the edges between W1 and W2 in
BGX . Obviously, |∆(W )| ≤ |W |2 = s2. For every difference x ∈ ∆(W ), we define the multiplicity
of x in W as the number of edges in BGX between vertices in W1 and vertices in W2 that are
labeled by x.

Let k = 5
α−2β . For β and α that satisfy the condition of the lemma (α − 2β > 1

log log n) we have
that k ≤ 5 log log n. We shall say that W is good if no difference in ∆(W ) has multiplicity higher
than k in W .

Claim 9 With high probability over the choice of Y ⊆ X, for every good W such that |W | = s ≥
nβ log n, we have that eY (W ) ≤ 2ks2

nβ .

Proof: Consider a fixed choice of a good W such that |W | = s = nβ log n. By definition,
|∆(W )| ≤ |W |2 = s2. Since W is good, for every x ∈ ∆(W ), if x ∈ Y , then the number of edges
labeled by x in the subgraph of BGX induced by W is at most k.

Since Y ⊆ X, |Y | = d = |X|
nβ is a random subset selected uniformly from a set of size |X|,

the expected size of ∆(W ) ∩ Y is |∆(W )| · n−β ≤ s2 · n−β. Using known bounds of the tail of
the Hypergeometric distribution (see, e.g., [JuR00, Page 29]), the probability that |∆(W ) ∩ Y | >

2 · s2 · n−β is upper bounded by exp
(
− cs2

n−β

)
for some constant c. The claim follows by taking a

union bound over all choices of W of size s.

We also need the following claim.

Claim 10 Let C be a subset of V1∪V2, such that |C| = nα. Suppose we uniformly and independently
select W ⊂ C, |W | = nβ log n. Then the probability that W is not good is at most 1

nβ .

Proof: Note that by the definition of Behrend graphs, the edges between vertices in C that are
labeled by a specific difference, form a matching. When we choose a random subset W ⊂ C, the
probability that there exists a single difference of C (i.e. an element of ∆(C)) that has multiplicity
at least k + 1 in W is bounded by

|C|2|C|k+1

( |C| − (2k + 2)

|W | − (2k + 2)

)( |C|
|W |

)−1

. (40)

To verify this expression, note first that there are at most |C|2 possibilities to choose a difference
from ∆(C). Since the edges of a specific difference form a matching of size at most |C| over the
edges of C, there are at most |C|k+1 possibilities to choose the k + 1 edges of this difference. The

k + 1 edges of the difference determine 2k + 2 of the vertices of W . Thus there are
( |C|−(2k+2)
|W |−(2k+2)

)

possibilities to choose the remaining vertices of W . Now,

|C|2|C|k+1
( |C|−(2k+2)
|W |−(2k+2)

)
( |C|
|W |
) ≤ |C|2 · |C|k+1 ·

( |W |
|C|

)2k+2
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≤ n2α

(
log2 n

nα−2β

) 5
α−2β

≤ 1

n2
(41)

The last expression is upper bounded by 1
nβ as required.

Proof of Lemma 8. Consider a set C of vertices of BGY such that |C| = nα. Let Ci = C ∩ Vi

for 1 ≤ i ≤ 3. We will show that almost surely the number of edges between C1 and C2 is at
most 30

α−2β
n2α

nβ . The argument for the number of edges between C2 and C3 and between C1 and C3

is analogous, and hence the lemma follows. We shall prove the claim for every C1, C2 such that
|C1 ∪ C2| = nα. Clearly this implies that it holds for every C1, C2, s.t. |C1 ∪ C2| ≤ nα.

By Claim 9, with high probability over the choice of Y the following holds. For every good W ,
W ⊂ C, such that |W | = s ≥ nβ log n, the number of edges spanned by W in BGY is at most
2ks2n−β. Assume from now on that the selected Y has this property. We shall use Claim 10 to
derive an upper bound on the number of edges in BGY that are spanned by the vertices of C.

By our assumption on Y , if W is good and |W | = s ≥ nβ log n then eY (W ) ≤ 2ks2n−β. Clearly,
eY (W ) ≤ s2. If we uniformly at random select W ⊂ C, such that |W | = s then

Exp[eY (W )] ≥ 1

2
· eY (C) · s2

n2α
.

We stress that the expectation is taken only over the choice of W and not over the choice of Y .
Now,

Exp[eY (W )]

= Exp[eY (W ) | W is good ] · Pr[W is good ] + Exp[eY (W ) | W is not good ] · Pr[W is not good ]

≤ 2ks2 · n−β + s2 · n−β = (2k + 1)s2 · n−β (42)

It follows that
eY (C) ≤ (2k + 1) · 2|C|2 · n−β ≤ 5k|C|2 · n−β . (43)

Since k = 5
α−2β , the lemma follows.

As a corollary of Lemma 8 we get:

Corollary 11 Let 0 < β < 1
2 and X ⊂ {1, . . . , n} where |X| ≥ n1−ν(n) for ν(n) = log log log n+4

log log n .
Consider the random Behrend graph BGY obtained by choosing a random subset Y ⊆ X, |Y | =

d = |X|
nβ . With high probability over the choice of Y , for every subset C of vertices in BGY such

that |C| ≤ min
{√

d, n2/3

d1/3

}
· n−ν(n), the following bound applies: |C| · eY (C) ≤ n1−ν(n).

Proof: Note that d = n1−ν(n)−β, and so we need to bound the number of edges in sets C s.t.

|C| ≤ min
{

n
1−ν(n)−β

2 , n
1+ν(n)+β

3

}
· n−ν(n) ≤ n2/5−ν(n), (44)

where n2/5−ν(n) is obtained for β = 1/5 − ν(n).

Consider first the case that β ≤ 1
5 − ν(n). In this case we need to bound the number of edges

in sets C, s.t. |C| ≤ n2/3−ν(n)

d1/3 = n
1−2ν(n)+β

3 .
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Let α = 1−2ν(n)+β
3 and observe that α − 2β ≥ ν(n) > 1

log log n . Hence we can apply Lemma 8
and get that with high probability over the choice of Y , for every subset C such that |C| = nα, we

have that eY (C) ≤ 90
α−2β · n2α

nβ . Clearly this upper bound holds also for every subset C such that
|C| ≤ nα. Hence,

|C| · eY (C) ≤ 90

α − 2β
· n3α

nβ
≤ 90

ν(n)
· n1−2ν(n) ≤ n1−ν(n) (45)

Consider now the case that β > 1
5 − ν(n). Note that we need to bound the number of edges

in sets C such that |C| ≤ n2/5−ν(n). We have shown that the bound applies for the case that
β = 1

5 − ν(n), and |C| = n2/5−ν(n). Hence, for β > 1
5 − ν(n), the sets C for which |C| ≤ n2/5−ν(n)

contain less edges and therefore the previous bound applies.

5.3 The lower bound distribution BG(n, d)

Let X ⊂ [n] be a set with no three-term arithmetic progression, as constructed in Subsection 5.1,
such that |X| = n1−ν(n) (where ν(n) = log log log n+4

log log n ). Consider the Behrend graph, denoted BGX ,
whose set of generators is X. Recall that BGX , which is a graph over 3n vertices, contains |X| · n
edge-disjoint triangles: every edge belongs to exactly one triangle, and every triangle corresponds
to some x ∈ X.

For each subset Y ⊂ X, such that |Y | = d we consider the subgraph of BGX that contains all
its vertices but only the edges labeled by differences y ∈ Y . This (sub-)graph contains n · |Y | = nd
edge-disjoint triangles and is hence ε-far from being triangle free for any 0 < ε < 1/3. Next we
apply a permutation π on the names of the vertices. More precisely, π consists of 3 permutations,
π(b), b ∈ {1, 2, 3}, each over {0, . . . , n − 1}. If we denote each vertex v in BGX by a pair (b, i)
where b ∈ {1, 2, 3} is the index of the subset that the vertex belongs to and i ∈ {0, . . . , n− 1}, then
π(v) = π(b, i) = (b, π(b)(i)). We denote the resulting graph by BGY,π.

A graph is generated according to the distribution BG(n, d) by uniformly selecting Y and π
and outputting the resulting graph BGY,π. We also assume that the edges incident to a vertex v
are ordered randomly in the incidence list of v. For the sake of simplicity, we do not include these
random labelings in the notation.

5.4 Online generation of graphs according to BG(n, d)

In order to prove Lemma 6 we would like to show that any algorithm that is given query access to a

graph generated according to BG(n, d) must perform Ω
(

min
{√

d, n2/3

d1/3

}
· n−ν(n)

)
queries in order

to detect a triangle with sufficiently high constant probability. We wish to stress that the algorithm
can be much more powerful/sophisticated potentially than just an algorithm that samples a random
set of the input and looking for a triangle inside.

For the sake of our analysis, it will be convenient to define an online process, denoted P , that
answers the algorithm’s queries while generating a graph according to BG(n, d). The process P will
actually provide the algorithm with more information than required by neighbor and vertex-pair
queries. Namely, whenever the algorithm asks a query involving a vertex v ∈ {(1, 0), . . . , (3, n−1)}
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(in either type of query), the process will provide it with π−1(v). This will also be the case when
the process answers a neighbor query (u, i) with a vertex v. Thus the algorithm is provided with
the “identity” in BGX of the vertices it has observed, and can also derive the labels y ∈ Y of the
edges it has observed.

Clearly, a lower bound on the number of queries of an algorithm that is provided with the
additional information described above constitutes a lower bound on an algorithm that is not
provided with this additional information. It will actually be convenient to consider the following
three types of queries:

1. Vertex queries: for any choice of a vertex v ∈ {(1, 0), . . . , (3, n−1)} the algorithm is provided
with π−1(v).

2. Random neighbor queries: for any vertex v the algorithm has already observed, it may ask
for a new random neighbor u of v (together with π−1(u)). The algorithm can indicate the
subset to which the neighbor belongs.

3. Difference queries: for any x ∈ X the algorithm can ask whether x ∈ Y .

Vertex queries are denoted (V Q, (b, i)), neighbor queries are denoted (NQ, (b, i), b ′), and difference
queries are denoted (DQ,x) where b 6= b′ ∈ {1, 2, 3}, i ∈ {0, . . . , n − 1}, and x ∈ X.

Note that a vertex-pair query can be performed by asking at most two vertex queries and one
difference query, and a neighbor query can be performed by asking a vertex query and a random
neighbor query (recall that the edges adjacent to a vertex are labeled randomly in BGY,π). It
follows that any lower bound on algorithms that perform these types of queries implies a lower
bound that is at most a factor of 3 smaller on algorithms that perform vertex-pair and neighbor
queries.

Let ALG be an algorithm that performs Q = Q(n, d) queries of the above three types and whose
goal is to detect a triangle with probability at least 9/10. The probability is taken over the choice
of the graph BGY,π and the coin flips of the algorithm. Namely, ALG is a (possibly probabilistic)
mapping from query-answer histories 〈(q1, t1), . . . , (qt, at)〉, to qt+1 for every t < Q. The mapping
needs to be defined only on histories that are consistent with some graph BGY,π.

As described above, a vertex query qt = (V Q, vt) for vt ∈ {(1, 0), . . . , (3, n − 1)} that has not
yet been observed is answered by π−1(vt). A random neighbor query qt = (NQ, vt, b

′) for vt = (b, i)
that has been observed is answered by a new random neighbor Ut = (b′, j) of vt together with
π−1(Ut). A difference query qt = (DQ,x) for x ∈ X is answered by ‘1’ (yes) or ‘0’ (no), indicating
whether x ∈ Y or not.

Any query-answer history of length t can be used to define the knowledge base Kt =
(Vt, Yt, Y t, πt), where Vt ⊂ {(1, 0), . . . , (3, n − 1)}, Yt, Y t ⊂ X and πt : Vt → {(1, 0), . . . , (3, n − 1)}
(where πt is one-to-one). Specifically, Vt consists of all vertices (b, j) such that (b, j) = π−1(v) for
some v that appeared either in one of the first t queries of ALG or in one of the first t answers.
The set Yt consists of all x ∈ X such that for some t′ ≤ t there was either a query qt′ = (DQ,x)
that was answered by ‘1’, or a query qt′ = (NQ, vt, b

′) that was answered with Ut where the edge
between π−1(vt) and π−1(Ut) is labeled by x. The set Y t consists of all x ∈ X such that for some
t′ ≤ t there was a query qt′ = (DQ,x) that was answered by ‘0’. Finally, for every (b, j) ∈ Vt,
πt(b, j) = v where v is such that π−1(v) = (b, j).
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Observe that Vt together with Yt determine a subgraph of BGX : the vertices of the subgraph
are the vertices of Vt, and the edges are all pairs (u, v), u, v ∈ Vt such that there is an edge
between u and v in BGX and this edge is labeled by some x ∈ Yt. For each b ∈ {1, 2, 3} we let
Vt,b = {(b, j) : (b, j) ∈ Vt}.

5.4.1 Definition of the process P .

Let R = R(n, d) denote the set of all graphs BGY,π in the support of BG(n, d). For b ∈ {1, 2, 3} and
i, j ∈ {0, . . . , n− 1} let Rb,i,j ⊂ R denote the subset of graphs BGY,π ∈ R such that π(b, j) = (b, i).
For x ∈ X let Rx ⊂ R denote the subset of graphs BGY,π ∈ R such that x ∈ Y , and let R¬x ⊂ R
denote the subset of graphs BGY,π ∈ R such that x /∈ Y .

The process P answers ALG’s queries as follows, where we assume without loss of generality
that ALG does not ask any query qt whose answer can be deduced from the knowledge base Kt−1.
In particular, for every vertex query qt = (V Q, v) we have that v /∈ Vt−1, and for every difference
query qt = (DQ,x) we have that x /∈ Yt−1∪Y t−1. The process P initializes R0 = R, and in general,
for any t ≥ 0, we have that Rt consists of all graphs in R that are consistent with the first t queries.

• To answer a vertex query qt = (V Q, v), where v = (b, i), the process uniformly selects
(b, j) ∈ {(b, 0), . . . , (b, n − 1)} \ Vt−1,b and sets Rt = Rb,i,j ∩ Rt−1. Note that (b, j) is selected

with probability
|Rb,i,j∩Rt−1|

|Rt−1| = |Rt|
|Rt−1| .

• Given a difference query (DQ,x), with probability d−|Yt−1|
|X|−|Yt−1|−|Y t−1|

the process answers ‘1’ and

with probability 1− d−|Yt−1|
|X|−|Yt−1|−|Y t−1|

= |X|−d−|Y t−1|
|X|−|Yt−1|−|Y t−1|

it answers ‘0’. In the former case it sets

Rt = Rx∩Rt−1 and in the latter case it sets Rt = R¬x∩Rt−1. Note that here the answer is ‘1’

with probability |Rx∩Rt−1|
|Rt−1| = |Rt|

|Rt−1| and is ‘0’ with probability 1− |Rx∩Rt−1|
|Rt−1| = |R¬x∩Rt−1|

|Rt−1|
|Rt|

|Rt−1| .

• To answer a random neighbor query qt = (NQ, v, b′), the process performs two steps. First

it selects x ∈ X in the following manner. With probability |Yt−1|
d it selects x uniformly

from Yt−1, and with probability 1 − |Yt−1|
d it selects x uniformly from X \ (Yt−1 ∪ Y t−1).

In either case the choice of x (together with b′) determines the value of j ∈ {0, . . . , n − 1}
such that there is an edge labeled x in BGX between π−1(v) and (b′, j). If (b′, j) ∈ Vt−1

then u = πt(b
′, j) = π(b′, j) is known and Rt = Rx ∩ Rt−1. Otherwise u = (b′, i) is selected

uniformly in {(b′, 0), . . . , (3, n − 1)} \ Vt−1,b′ and Rt = Rx ∩ Rb′,i,j ∩ Rt−1.

Once P completes answering the Q queries of ALG it uniformly selects a graph in RQ. The next
lemma is easily derived from the definition of the process.

Lemma 12 For every algorithm ALG, the process P , when interacting with ALG, uniformly gen-
erates graphs in BG(n, d)

Proof: Consider a specific graph G in R0 = BG(n, d). The probability that G is generated by P
is

Pr[G ∈ R1] · Pr[G ∈ R2|G ∈ R1] · · ·Pr[G ∈ RQ|G ∈ RQ−1] · 1

|RQ|
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=
|R1|
|R0|

· |R2|
|R1|

· · · · · |RQ|
|RQ−1|

· 1

|RQ|
=

1

|R0|
(46)

and the lemma follows.

5.5 Proof of Lemma 6

Consider any algorithm ALG that interacts with the process P . We shall show that if ALG asks

Q = o
(

min
{√

d, n2/3

d1/3

}
· n−ν(n)

)
queries, then the probability that it reveals a triangle is o(1). By

Corollary 11, with high probability over the choice of Y , |Y | = d, for every subset U of vertices such

that |U | = o
(

min
{√

d, n2/3

d1/3

}
· n−ν(n)

)
, we have |U | · e(U) = o(n1−ν(n)), where e(U) denotes the

number of edges induced by the vertices of U . In what follows we assume that the graph generated
by P in fact has this property, where we take into account the probability of o(1) that this is not
the case. Let Et be the set of edges between vertices in Vt that are known to the algorithm after
the first t queries. That is, Et consists of all edges in BGX whose labels are in Yt and are between

vertices in Vt. Therefore, for every t = o
(

min
{√

d, n2/3

d1/3

}
· n−ν(n)

)
we have that t|Et| = o(n1−ν(n)).

Recall that every edge (i, j) ∈ Et participates in exactly one triangle. There are two ways
by which ALG can close a triangle in its t-th query. If the query is either a vertex query or a
random neighbor query, the algorithm must receive as an answer one of the |Et−1| vertices that
close triangles with (the known) edges between vertices in Vt−1. If the query is a difference query
(DQ,x) (where x /∈ Yt−1 ∪ Y t−1), then there must be three vertices (1, i), (2, j), (3, k) ∈ Vt−1 that
form a triangle in BGX whose edges are labeled by x and the answer to the query is ‘1’ (i.e.,
x ∈ Y ). For sake of simplicity we assume that whenever the algorithm obtains a vertex that closes
a triangle in BGX , then it is also told whether this triangle is in BGY,π or not (i.e., it gets a
difference query “for free”). We now turn to bounding the probability of each of the above events
by which a triangle is closed.

We first observe that since |Vt| ≤ t = o(n), whenever ALG asks a vertex query (V Q, v) where
v = (b, i), the answer, (b, j), is uniformly distributed in a subset of size Θ(n). Since |Yt| + |Y t| ≤ t,
whenever ALG asks a random neighbor query qt = (NQ, v, b′), with probability at least 1 − t

d we

have that (b′, j) = π−1(u) is uniformly distributed in a subset of size |X|−t. Since |X| = Ω(n1−ν(n)),
and t = o(

√
d) = o(

√
|X|), with probability 1−o(1), for every neighbor query performed, the answer

to the neighbor query is uniformly distributed in a subset of size Ω(n1−ν(n)). Let us assume from
this point on that this is in fact the case (where we take into account that o(1) probability that
this is not the case).

Given the above, the probability that ALG closes a triangle in the t-th query when one of the
edges of the triangle is already in Et is |Et|

Ω(n1−ν(n))
. It remains to bound the probability that ALG

closes a triangle by obtaining a vertex (b, j) that closes a triangle in the subgraph of BGX that is
induced by Vt−1, and that the difference x /∈ Yt−1∪Y t−1 corresponding to the triangle is determined
to be in Y . Since the number of edges in the subgraph of BGX that is induced by Vt−1 is upper
bounded by t2, the probability of the above event is at most

t2

Ω(n1−ν(n)))
· d − t

Ω(n1−ν(n)))
=

t2(d − t)

Ω(n2(1−ν(n)))
. (47)
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Since t = o
(

min{
√

d, n2/3/d1/3} · n−ν(n)
)

, we know that t|Et| = o(n1−ν(n)) and t3 · (d − t) =

o(n2(1−ν(n))). Hence, the probability that one of the above events occurs for any t ≤ Q is o(1), as
required.

6 From 1-Sided Error to 2-Sided Error

In this section we establish that under certain conditions, a one-sided error lower bound for triangle-
freeness can be transformed into a two-sided error lower bound. Since these conditions hold for our
one-sided error lower bounds, we obtain two-sided error lower bounds.

Theorem 3 Let D∆ be a distribution over graphs with n vertices and average degree d, and let
q(n, d) be a function of these parameters. Assume the following holds:

• With probability 1− o(1) a graph selected according to D∆ is ε-far from being triangle-free for
some constant ε.

• One of the following two conditions holds:

1. In all graphs in the support of D∆, the triangles are edge-disjoint, and for any algorithm
A, the probability that A reveals a triangle in a graph selected according to D∆ using
o(q(n, d)) queries is less than 2/3.

2. For any algorithm A, the probability that A reveals a cycle (of any length) in a graph
selected according to D∆ using o(q(n, d)) queries is less than 2/3.

Then any two-sided error algorithm for testing triangle-freeness that has success probability at least
5/6 must perform Ω(q(n/2, d)) queries.

Since the distributions that are defined for our one-sided error lower bounds, which are stated in
Lemmas 2 and 6, are as required by Theorem 3, we get the following corollary.

Corollary 13 Any algorithm for testing triangle-freeness must perform

Ω
(

max
{

min{d, n/d}, min
{√

d, n2/3/d1/3
}
· n−ν(n)

})

queries. This lower bound holds even if the algorithm is allowed two-sided error and dmax = O(d).

6.1 Proof of Theorem 3: Condition 1

Given the distribution D∆ we define two distributions over graphs that have n′ = 2n vertices and
average degree d. One distribution, denoted D ′

∆, generates graphs that are ε-far from being triangle-
free, and the other distribution, denoted D∆̄ generates graphs that are triangle-free. Assume,
contrary to what is claimed in the theorem that there exists a two-sided error algorithm A ′ for
testing triangle freeness that performs o(q(n′/2, d)) queries and has success probability at least
5/6. Then, in particular, using o(q(n′/2, d)) = o(q(n/d)) queries, A′ should be able to distinguish
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with sufficiently high probability between graphs generated by D ′
∆ and graphs generated by D∆̄.

We shall show that we can then use A′ to obtain an algorithm A that performs o(q(n, d)) queries
and with probability at least 2/3 reveals a triangle in a random graph generated according to D∆.

Defining the two distributions. In both distributions, a graph G′ over n′ = 2n vertices is generated
by first selecting a graph G from D∆. Every vertex v in G is replaced by two vertices, v0 and v1.
Every edge (u, v) in G is replaced by two edges: either the two edges (u0, v0) and (u1, v1) (so that
they are “in parallel”) or the two edges (u0, v1) and (u1, v0) (so that they are “crossing”). If v is
the j-th neighbor of u and u is the `-th neighbor of v, then in both cases we maintain the ordering
on neighbors. Namely, in the case of parallel edges we have that v0 is the j-th neighbor of u0 and
v1 is the j-th neighbor of u1, u0 is the `-th neighbor of v0 and u1 is the `-th neighbor of v1 (an
analogous correspondence holds for crossing edges). The difference between the distributions is in
the choice (distribution on the choice) between the above two options.

Recall that the triangles in G are edge-disjoint. Hence, for each triangle in G, the edges between
the corresponding vertices in G′ can be determined independently from the edges that belong to
other triangles. Consider a particular triangle (u, v, w) in G. There are 23 = 8 ways to select the
edges between the vertices u0, u1, v0, v1, w0, w1 (depending on whether we select parallel or crossing
edges). In 4 of these ways we get 2 edge-disjoint triangles (e.g., (u0, v0, w0) and (u1, v1, w1)), and in
4 of these ways we get a single cycle of length 6 (e.g. (u0, v0, w0, u1, v1, w1)). The graph generated
by D′

∆ simply selects one of the former 4 ways uniformly, and the graph generated by D∆̄ selects
one of the latter 4 ways uniformly. For an illustration see Figure 2.

v0 w0

u

wv

w0

v1

v0

u0

w1v1 w1

u1 u1

u0

Figure 2: On the top is a triangle (u, v, w). On the bottom left is a transformation of this triangle into two
disjoint triangles, and on the bottom right is a transformation into a cycle of length 6. In particular, on the
left all pairs of edges are parallel, and on the right two are parallel and one is crossing.

The basic, but important observation is that for both distributions the following holds: If we
consider any edge that belongs to a particular triangle in G, then the probability that the corre-
sponding pair of edges in G′ are parallel is equal to the probability that they are crossing. Moreover,
this remains true if we condition on any other (single) edge in the triangle being transformed to
either parallel or crossing edges. Independence breaks down only when we consider all 3 edges in
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a triangle. We shall refer to this observation as the Independence Observation.

Using a two-sided error algorithm to find triangles. Let A′ be a two-sided error algorithm for testing
triangle freeness that performs o(q(n′/2, d)) queries when testing graphs over n′ = 2n vertices and
has success probability at least 5/6. We next show how to use it in order to detect triangles in a
graph G over n vertices that is generated randomly according to D∆. The idea is that by performing
queries to G and flipping some coins, we shall actually be emulating the execution of A ′ on graphs
generated by either D′

∆ or D∆̄. Since A′ is supposed to test graphs over n′ = 2n vertices, we denote
the vertices in the queries it performs by {v1,0, v1,1, . . . , vn,0, vn,1}.

Let G be a graph generated according to D∆. Algorithm A (whose goal is to detect a triangle
in G) runs A′ as a subroutine and answers its queries by performing queries to G and transforming
the answers to the queries in an appropriate manner described below. In this process A maintains
a knowledge graph, denoted Ĝ, which contains all the edges it has observed in G as well as the
“non-edges” (i.e., pairs (u, v) that do not have an edge between them). In addition, A records all
the answers it has already given to A′.

Whenever A′ performs a degree query for a vertex vi,b (b ∈ {0, 1}), algorithm A queries the
degree of vi and returns it as an answer. Whenever A′ performs a vertex-pair query (vi,b, vj,b′)

(b, b′ ∈ {0, 1}), if (u, v) is an edge or a non-edge in the knowledge graph Ĝ then the answer to A′

is determined. If this is not the case then A performs the vertex-pair query (vi, vj). If the answer
is that there is no edge between the two vertices, then the answer given to A′ is “no” as well. If
the answer is that there is an edge, then there are two cases. If this edge closes a triangle with
two other edges in Ĝ then A terminates successfully. Otherwise, with probability 1/2 A answers
that there is an edge between vi,b and vj,b′ and with probability 1/2 it answers that there is no

such edge. In both cases the existence of the edge in G is recorded in the knowledge graph Ĝ. In
addition, in the former case A′ is provided with the information concerning which neighbor is vj,b′

of vi,b.

Whenever A′ performs a neighbor query (vi,b, `) (that does not correspond to an edge already

in Ĝ), algorithm A performs the neighbor query (vi, `). Let the answer be (vj , t). Namely, there
is an edge between vi and vj , where vj is the `-th neighbor of vi, and vi is the t-th neighbor of vj .
Here too, if a triangle in G is detected then A terminates successfully. Otherwise it answers the
query of A′ in an analogous manner to the way a vertex-pair query is answered. If A′ terminates
before A has found a triangle, then A terminates unsuccessfully.

Completing the proof. Since A always terminates when or before it finds a triangle, by the In-
dependence Observation, the distribution on the answers it gives to the queries of A ′ is exactly
the same as the one we would get if the queries of A′ were answered by a graph that is selected
either according to D′

∆ or according to D∆̄. We claim that this implies that the probability that
A′ terminates before A finds a triangle (thus causing A to terminate unsuccessfully) is less than
1/3. Here the probability is taken over the choice of G, the coin flips of A and the possible coin
flips of A′.

Assume, contrary to the claim, that the probability that A′ terminates before A finds a triangle
is at least 1/3. Consider the distribution over graphs that results from selecting with probability 1/2
a graph G′ according to D′

∆, and with probability 1/2 a graph G′ according to D∆̄. By our counter
assumption the probability that A′ terminates before it sees three edges of the form (vi,b1 , vj,b2),
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(vj,b3 , vk,b4) and (vk,b5 , vi,b6) (where b1, . . . , b6 ∈ {0, 1}) is greater than 1/3. In such a case, by the
Independence Observation, the distribution on the answers to the queries of A ′ (and hence on its
queries conditioned on these answers) is the same if the graph G′ is selected according to D′

∆ or
according to D∆̄. Therefore, the probability that A′ terminates with an incorrect output, is greater
than 1/6 − o(1) > 1/9, where the term o(1) is due to the probability that G is not ε-far from
triangle-free. But this contradicts our assumption on A′.

Since the number of queries performed by A before it terminates is upper bounded by the
number of queries performed by A′, the theorem follows.

6.2 Proof of Theorem 3: Condition 2

Similarly to the proof of Theorem 3 under Condition 1, given the distribution D∆ we define two
distributions over graphs that have n′ = 2n vertices and average degree d. One distribution, denoted
D′

∆, generates graphs that are Ω(1)-far from being triangle-free, and the other distribution, denoted
D∆̄ generates graphs that are triangle-free. In fact, the graphs in the support of D∆̄ are all bipartite.
We then show how it is possible to use an algorithm A′ that can distinguish with high probability
between graphs generated according to D ′

∆ and graphs generated according to D∆̄ in order to
obtain an algorithm A that with high probability reveals a cycle in a random graph generated
according to D∆.

Defining the two distributions. In both distributions, a graph G′ over n′ = 2n vertices is generated
by first selecting a graph G from D∆. Here too, each edge (u, v) ∈ E(G) is replaced by two edges
in G′: either the “parallel” edges (u0, v0) and (u1, v1) or the “crossing” edges (u0, v1) and (u1, v0).
The difference between the distributions is in the choice (distribution on the choice) between the
above two options.

In the distribution D′
∆, the decision whether an edge is transformed into parallel edges or

into crossing edges is done independently, and with equal probability. Namely, for each function
σ : E(G) → {p, c}, there is a graph Gσ in the support of D′

∆. For every edge (u, v) ∈ E(G), if
σ(u, v) = p, then in Gσ we have the parallel edges (u0, v0) and (u1, v1), and if σ(u, v) = c, then in
Gσ we have the crossing edges (u0, v1) and (u1, v0). The function σ is selected uniformly at random.

On the other hand, each graph in the support of D∆̄ is determined by a function π : V (G) →
{`, r}. Here ` stands for ‘left’ and r for ‘right’ so that π defines a two-way partition of the vertices:
If π(v) = ` then v0 is put on the ‘left’ side, and if π(v) = r then v0 is put on the ‘right’ side. In
either case, v1 is put on the opposite side. The decision between parallel and crossing edges is done
so that the resulting graph is bipartite. Specifically, for every edge (u, v) ∈ E(G), if π(u) = π(v)
then in Gπ we have the crossing edges (u0, v1) and (u1, v0), and if π(u) 6= π(v) then we have the
parallel edges (u0, v0) and (u1, v1). The function π is selected uniformly at random. We note that
different choices of π may result in the same graph, but this is inconsequential to our argument.

Properties of the distributions. By definition of D∆̄, every graph in the support of D∆̄ is bipartite,
and hence is necessarily triangle-free. On the other hand, we claim that if the graph G (that is
selected according to D∆) is ε-far from being triangle-free, then with probability 1− exp(−Ω(εdn))
over the choice of σ, the graph Gσ (in the support of D′

∆) is at least ε/4-far from being triangle-
free. To verify this claim observe that since G is ε-far from being triangle-free, it contains at least
εdn edge-disjoint triangles. For each such triangle, the probability that it is transformed into two
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triangles in in Gσ is 1/2. By a multiplicative Chernoff bound, the probability that less than (εdn)/4
of the disjoint triangles in G are transformed into a pair of disjoint triangles is exp(−Ω(εdn)). That
is, with probability 1−exp(−Ω(εdn)) there are (εdn)/2 disjoint triangles in the resulting graph, and
since the graph contains 2n vertices, it is (ε/4)-far from being triangle-free. Since the probability
that G is ε-far from triangle free for some constant ε is 1 − o(1), we get that with probability
1 − o(1), a graph generated according to D ′

∆ is at least Ω(1)-far from being triangle-free.

Completing the proof. Most parts of the argument are almost identical to those in the proof of
Theorem 3 subject to Condition 1, where the only difference is that “detecting a triangle” is re-
placed by “detecting a cycle”. The only essential difference is that the “Independence Observation”
concerning the distribution on parallel/crossing edges conditioned on a triangle not being detected,
needs to be modified. Specifically, consider any fixed choice of edges in G that do not contain a
cycle. We shall show that under both distributions, all mappings of these edges to parallel/crossing
pairs of edges in G′ have equal probability. This implies that if we fix any choice of parallel/crossing
pairs of edges in G′, where the corresponding edges in G do not contain a cycle, and we consider a
new edge that does not close a cycle with these edges, then under both distributions it has equal
conditional probability to be mapped to a parallel/crossing pair of edges in G ′.

Let F = {(u1, v1), . . . , (ut, vt)} be any subset of edges in G that do not contain a cycle. For
a graph G′ either in the support of D∆̄ or in the support of D′

∆, let σG′(ui, vi) = p if the edge
(ui, vi) is transformed into parallel edges in G′, and let σG′(ui, vi) = c if it is transformed into
crossing edges. By definition of the distributions, if G′ is in the support of D′

∆, so that G′ = Gσ

for σ : E(G) → {p, c}, then σG′(ui, vi) = σ, and if G′ is in the support of D∆̄, so that G′ = Gπ for
π : V (G) → {`, r}, then σG′(ui, vi) = c when π(ui) = π(vi), and σG′(ui, vi) = p otherwise.

Consider the distribution over σG′(u1, v1), . . . , σG′(ut, vt) when G′ is chosen according to each
of the two distributions. Then we claim that the distribution is uniform over {p, c}t. This is clearly
the case when G′ is selected according to D′

∆ (as G′ is determined by selecting σ : E(G) → {p, c}
uniformly at random). It remains to verify that this is also true when G′ = Gπ, and π : V (G) →
{`, r} is selected uniformly at random. Consider any vector h ∈ {p, c}t (where hi = p means that
(ui, vi) is transformed into a parallel edge, and hi = c means that it is transformed into a crossing
edge). Since F does not contain a cycle, it consists of a forest of trees, T1, . . . , Ts. The total
number of vertices in these trees is t + s. For each tree Tj , if the value of π(v) is determined for
some arbitrary vertex v in the tree, then the setting of h enforces a unique value π(u) for every
u ∈ Tj . In other words, the number of settings of π that induce a particular h is 2s. Since the total
number of settings of π is 2s+t we get:

∀h ∈ {p, c}t , Prπ [σGπ(u1, v1), . . . , σGπ(ut, vt) = h] =
2s

2t+s
=

1

2t
(48)

and so the (modified) Independence Observation is established. The proof is completed analogously
to the way it was completed under Condition 1 (using the modified Independence Observation and
replacing detection of triangles with detection of cycles).
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7 Upper Bounds

7.1 An upper bound of Õ(
√

nd/ε3/2) for general graphs

Lemma 14 It is possible to test triangle-freeness by performing Õ(
√

nd/ε3/2) queries. If dmax =
O(d) then O(d/ε) queries suffice.

Proof: Let G be a graph with average degree d over n vertices that is ε-far from being triangle-free.
By definition, G must contain at least εdn edges that belong to triangles. If dmax = O(d) then
by uniformly selecting Θ(1/ε) vertices and for each uniformly selecting an incident edge, with high
probability we obtain an edge that belongs to a triangle. Conditioned on this event, if we now
perform all O(d) neighbor queries to the end-points of each selected edge, we reveal a triangle.

If the maximum degree of the graph differs significantly from its average degree, then the above
argument cannot be applied: First, the suggested edge selection process might not select with
sufficiently high probability an edge that belongs to a triangle because the algorithm uniformly
selects vertices rather than edges. Second, even if we obtain such an edge, its end-points might
have a very high degree. To address these issues, we first introduce some notation.

We say that a vertex has high degree if its degree is more than c
√

nd (where we set c momen-
tarily). We shall say that an edge is covered by these high degree vertices, if both its end-points
have high degree. By definition, the high-degree vertices can cover at most ((1/c)

√
nd)2 = (1/c2)nd

edges. Hence, among the edges that belong to triangles, there are at least (ε− (1/c2))nd edges that
have at least one end-point with degree at most c

√
nd. If we set c =

√
2/ε then we have at least

(ε/2)nd such edges.

In order to obtain one of these edges, we would like to sample edges uniformly in G. In fact,
it suffices to sample edges “almost uniformly” as defined in [KKR04]. In [KKR04] an algorithm is
described that uses Õ(

√
n/δ) queries to a graph G and for which the following holds: For all but

at most δ/4-fraction of the edges of G the probability that the edge is selected is at least 1
32nd . We

refer to this algorithm as “Edge-Select”. By definition of the algorithm, if we set δ = ε, we get
that there are at least (ε/4)nd edges that can be returned by “Edge-Select” such that these edges
belong to triangles and have at least one end-point with degree at most

√
2/ε

√
nd. It follows that

at a cost of Õ(
√

n/ε3/2) queries we obtain such an edge with a high constant probability. Thus
the algorithm for detecting a triangle runs “Edge-Select” Θ(1/ε) times. For each selected edge, if
it has one end-point with degree less than

√
2/ε ·

√
nd then it asks all neighbor queries for that

vertex, and for each of them it asks all pair queries with the other end point. (If both end-points
have high degree then the algorithm does nothing).

7.2 An improved upper bound for relatively dense general graphs

Lemma 15 It is possible to test triangle-freeness by performing O
(

max
{

n4/3

ε2/3d2/3 , d2
max

ε2d2

})
queries.

As a corollary we get:

Corollary 16 It is possible to test triangle-freeness of graphs with average degree d = Ω(
√

n) by

performing O
(

n4/3

d2/3ε2

)
queries.
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Proof of Lemma 15. Let G be a graph over n vertices with average degree d and maximum
degree dmax that is ε-far from being triangle-free. We shall show that if we take a uniform sample of

Θ
(

max
{

n2/3

ε1/3d1/3 , dmax
εd

})
vertices of G, and ask vertex-pair queries between all pairs in the sample,

then a triangle is detected with probability at least 2/3.

Since G is ε-far from being triangle-free, it must contain at least εdn triples of vertices that form a
triangle. This lower bound on the number of triangles implies that the expected number of triangles
in a set of s uniformly selected vertices is at least s3 · εdn

n3 . It follows that for s ≥ n2/3/(εd)1/3,
the expected number of triangles spanned by the sample is at least 1. This unfortunately does
not imply in general that a uniform sample of s = Ω(n2/3/(εd)1/3) vertices spans a triangle with
probability at least 2/3. Rather, the size of the sample should depend on the ratio between dmax

and d.

Let s = c · max
(

n2/3

(εd)1/3 , dmax
εd

)
, where c > 0 is a sufficiently large constant. Since G is ε-far

from being triangle-free, G must contain a family T of (εdn)/3 pairwise edge-disjoint triangles. Fix
such a family, and for every v ∈ V (G), let dT (v) be the number of triangles in T containing v;
obviously, dT (v) ≤ d(v)/2 ≤ dmax/2. We sample a set S of s vertices of G uniformly at random.
Let X be the random variable counting the number of triangles of T spanned by S. Due to the
Chebyshev inequality, it is enough to prove that Exp[X] is at least a large constant, and the ratio
Var[X]/Exp2[X] is at most a small enough constant. We will estimate both quantities.

Observe that each triangle of T falls into S with probability (1 + o(1))s3/n3. It follows that

Exp[X] = (1 + o(1))
s3

n3
|T | = Θ

(
εds3

n2

)
. (49)

Thus, taking c large enough, we get: Exp[X] is large enough, too. Also,

Var[X] ≤
∑

t,t′∈T
t∩t′ 6=∅

Pr[t, t′ ⊂ S]

=
∑

v∈V (G)

(
dT (v)

2

)
(1 + o(1))s5

n5
(50)

(the latter estimate is due to the fact that, since T is pairwise edge-disjoint, for any t, t ′ ∈ T with
t∩t′ 6= ∅, the union t∪t′ contains exactly five vertices). Recall that dT (v) ≤ dmax. Due to convexity,
we get:

Var[X] = O

(
εdn

dmax
· d2

max

)
s5

n5
. (51)

Using the assumption s = Ω
(

dmax
εd

)
, we derive: Var[X]/Exp2[X] is small enough, as required.

8 Bounds on the Edge Density of Random Cayley Graphs with
Large Sets of Generators

In this section we consider Random Cayley graphs. Behrend graphs are essentially variants of
Cayley graphs. Using methods that were introduced in Subsection 5.2, we get bounds on the edge
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density of random Cayley graphs with large sets of generators. We start with a definition of Cayley
graphs. For simplicity we consider only Cayley graphs over Abelian groups, but all arguments
apply to the non-Abelian case as well.

Let H be a finite Abelian group. A set X ⊆ H is symmetric if X = −X, where −X = {−x :
x ∈ X}. The Cayley graph over H with respect to a symmetric set X, denoted CGX , has H as its
vertex set and distinct vertices a, b ∈ H are connected by an edge if and only if a − b (hence also
b − a) is in X. We shall say in such a case that the edge corresponds to x = a − b. All operations
involving vertices are performed in H. A difference of a set T ⊆ H is an element a − b such that
a, b ∈ T . We let ∆(T ) denote the set {a − b : a, b ∈ T} of differences of T . By definition ∆(T )
contains at most |T |(|T | − 1) nonzero elements. The multiplicity in T of a difference x ∈ ∆(T ) is
|{(a, b) : a, b ∈ T and a−b = x}|. Clearly, the differences that correspond to edges that are incident
to a specific vertex are all distinct. It follows that the multiplicity in T of any specific difference
in ∆(T ) is at most |T |. Moreover, if we consider the complete graph over H, then the edges that
correspond to a specific difference form a set of cycles that cover H.

In what follows we show that for dense random Cayley graphs the edge density in relatively large
induced subgraphs is close to the edge density of the whole graph. It was previously shown [AR94]
that random Cayley graphs are expanders and hence have the property that the density of every
induced subgraph on sufficiently many vertices is very close to the density of the graph. However,
the known techniques for proving this property are based on estimating the second eigenvalue of
the graph’s adjacency matrix, and do not supply any informative bounds for sets of vertices that
are much smaller than the number of vertices divided by the square root of the degree.

We shall use the following notation: For X,C ⊆ H, we let eX(C) denote the number of edges
in the subgraph of CGX that is induced by C.

Theorem 4 Let 0 < β < 1
2 and 0 < α ≤ 1 satisfy α − 2β > 1

log log n , and let H be an Abelian
group where |H| = n. Let X ⊂ H, X = −X, be determined as follows: Every pair x,−x is chosen
independently with probability p(n) = 1

nβ to be in X. With high probability over the choice of X,

for every subset C of nα vertices in CGX , we have that eX(C) ≤ 90
α−2β

n2α

nβ .

Similarly to Lemma 8, Theorem 4 shows that for sufficiently large subsets C (i.e., for |C| = nα,
where α − 2β is a constant), the number of edges spanned by C in CGX is close to its expected
value. Here too, the smaller we choose β (i.e., the larger we choose X), the smaller can α be. That
is, the theorem can be applied to sets with smaller size. The proof of Theorem 4 is similar to the
proof of Lemma 8. The difference lies in the proof of Claim 18, which is analogous to Claim 9. Here
too we let k = 5

α−2β and note that for β and α as required in the theorem, k ≤ 5 log log n. We shall
say that W is good if no difference in ∆(W ) has multiplicity higher than k in W . Theorem 4 follows
from the next two claims using the same arguments that were applied in showing that Lemma 8
follows from Claims 9 and 10.

Claim 17 With high probability over the choice of X, for every good W such that |W | = s ≥
nβ log n, we have that eX(W ) ≤ 2ks2

nβ .

Proof: Consider a fixed choice of a good W such that |W | = s = nβ log n. By definition,
|∆(W )| ≤ |W |2 = s2. Since W is good, for every x ∈ ∆(W ), if x ∈ X, then the number of edges
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labeled by x in the subgraph of CGX induced by W is at most k. Since each x ∈ ∆(W ) is chosen to
be in X independently with probability n−β, the expected size of ∆(W )∩X is |∆(W )|·n−β ≤ s2·n−β .
By a multiplicative Chernoff bound, the probability that |∆(W )|∩X > 2 ·s2 ·n−β is upper bounded
by exp

(
−s2 · n−β

)
. The claim follows by taking a union bound over all choices of W of size s.

Claim 18 Let C ⊂ H satisfy |C| = nα. Suppose we uniformly and independently select W ⊂ C,
|W | = nβ log n. Then the probability that W is not good is at most 1

nβ .

Proof: Consider any fixed difference x ∈ ∆(C), where there are at most |C|2 such differences.
Recall that there are at most |C| edges in the subgraph of CGH induced by C that correspond to
x. We denote this set of edges by Ex(C). Since Ex(H) is a union of disjoint cycles, Ex(C) is a
union of disjoint cycles and paths. Therefore, every choice of k + 1 edges in Ex(C) is a union of r1

(sub)paths and r2 cycles where 1 ≤ r1 ≤ k+1 and r2 ≤ (k+1−r1)/3 (the second inequality follows
from the fact that the length of a cycle is at least 3). Note that when r1 = k + 1 then the k + 1
edges constitute a matching, as was the case in the proof of Claim 10. In this case the number of
vertices incident to them is 2(k + 1).

More generally, the number of incident vertices is k + 1 + r1. For each pair (r1, r2), the number
of choices of k + 1 edges that constitute r1 paths and r2 cycles is at most |C|r1(k + 1)r1 · |C|r2 .
Namely, to determine each of the r1 paths, we select a starting vertex (out of |C| vertices) and a
length (between 1 and k + 1). To determine each of the r2 cycles, we select a vertex (that belongs
to the cycle). Once the edges are selected, the number of choices of the remaining |W |− (k +1+r1)

vertices in W is
( |C|−(k+1+r1)
|W |−(k+1+r1)

)
. Therefore, for each fixed choice of r1 and r2, the probability that

W spans k + 1 edges in Ex(C) that constitute r1 paths and r2 cycles is at most

|C|r1(k + 1)r1 |C|r2
( |C|−(k+1+r1)
|W |−(k+1+r1)

)
( |C|
|W |
) ≤ |C|r1(k + 1)r1 |C|r2 ·

( |W |
|C|

)k+1+r1

(52)

= (k + 1)r1 · |W |k+1+r1

|C|k+1−r2
(53)

< (k + 1)r1
|W |k+1+r1

|C|(2/3)(k+1)+(1/3)r1
(54)

The expression in Equation (54) is maximized when the ratio between |W | and |C| is maximized
(i.e., β is maximized with respect to α) and r1 is maximized (i.e., r1 = k+1). In this case we get an
upper bound of (k + 1)k+1(log n)2(k+1)n(2β−α)(k+1). Substituting k = 5

α−2β , where k ≤ 5 log log n,

summing over all r1, r2 and taking a union bound over the at most |C|2 = n2α ≤ n2 choices of
x ∈ ∆(C), the claim follows.

It is worth noting that the technique here can be applied with other parameters as well. In
particular, it can be shown, for example, that with high probability, in random Cayley graphs
over groups of size n in which the number of generators is (1 + o(1)) n

2 , every set X of at least

some poly log(n) vertices spans (1 + o(1)) 1
2

(|X|
2

)
edges. This is related to the results in [AO95]

and [Gre05].
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[RS76] I. Z. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles.
Combinatorics (Keszthely), Coll. Math. Soc. J. Bolyai 18, 2:939–945, 1976.

[RS96] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

[SS42] R. Salem and D. C. Spencer. On sets of integers which contain no three terms in
arithmetical progression. Proc. National Academy of Sciences USA, 28:561–563, 1942.

A Proof of Claim 4

Recall that this claim is part of the proof of Lemma 3. Specifically, it is part of the probabilistic
analysis of the number of disjoint triangles obtained when drawing a graph according to the distri-
bution D∆, which is defined as follows. A graph is generated by first partitioning the vertices into
equal-size subsets of size n′ = n/3, denoted V1, V2, V3, where the vertices in each V`, ` ∈ {1, 2, 3}
are denoted {v`,1, . . . , v`,n′}. Next, between each pair of subsets, d′ = d/2 =

√
n/3 random perfect

matchings are selected. Recall that ηi,j,k is a 0/1 random variable that equals 1 if and only if the
graph contains the triangle (v1,i, v2,j , v3,k) and there is no other triangle that shares an edge with
this triangle. The claim is that for i′ 6= i, j′ 6= j, k′ 6= k

Pr[ηi′,j′,k′ = 1 | ηi,j,k = 1] =

(
1 + O

(
1

d′

))
· Pr[ηi′,j′,k′ = 1] (55)

To prove the claim we break both Pr[ηi′,j′,k′ = 1] and Pr[ηi′,j′,k′ = 1 | ηi,j,k = 1] into a product of
(conditional) probabilities, and bound the ratio between each corresponding pair of probabilities.

Recall that α`,`′

i,j is a 0/1 random variable that indicates the existence of the edge (v`,i, v`′,j), ∆i,j,k

is a 0/1 random variable that indicates the existence of the triangle (v1,i, v2,j , v3,k), and βi,j,k is a
0/1 random variable that indicates whether there is a triangle different from (v1,i, v2,j , v3,k) that
contains one of the three edges: (v1,i, v2,j), (v1,i, v3,k), (v2,j , v3,k). By definition,

Pr[ηi′,j′,k′ = 1] = Pr[∆i′,j′,k′ = 1] · Pr[βi′,j′,k′ = 0 | ∆i′,j′,k′ = 1] (56)

and

Pr[ηi′,j′,k′ = 1 | ηi,j,k = 1] = Pr[∆i′,j′,k′ = 1 | ηi,j,k = 1] · Pr[βi′,j′,k′ = 0 | ∆i′,j′,k′ = 1 & ηi,j,k = 1]
(57)

We first bound the ratio between Pr[∆i′,j′,k′ = 1 | ηi,j,k = 1] and Pr[∆i′,j′,k′ = 1], and then between
Pr[βi′ ,j′,k′ = 0 | ∆i′,j′,k′ = 1 & ηi,j,k = 1] and Pr[βi′,j′,k′ = 0 | ∆i′,j′,k′ = 1].

Before doing so we make a few observations (some of which were already used in the proof of
Lemma 3). For illustrations of these observations see Figure 3. Consider an event of the form

α`,`′
r,s = 1. We know that Pr

[
α`,`′

r,s = 1
]

= 1 −
(
1 − 1

n′

)d′
. How is the probability of this event

influenced by the existence or non-existence of other edges? Consider first conditioning on the
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event that α`,`′

r′,s′ = 1 for r′ 6= r and s′ 6= s. This means that for at least one of the d′ matchings
between V` and V`′ , the vertex s′ cannot be matched to r (and similarly, r ′ cannot be matched to
s). In other words, in each of these matchings where the vertex s′ cannot be matched to r, the
probability that r is matched to s is 1

n′−1 rather than 1
n′ . Therefore, for r′ 6= r, s′ 6= s,

Pr
[
α`,`′

r,s = 1 | α`,`′

r′,s′ = 1
]

≤ 1 −
(

1 − 1

n′ − 1

)d′

≤ d′

n′ − 1
=

d′

n′ ·
n′

n′ − 1
(58)

That is, the probability that α`,`′
r,s = 1 slightly increases when conditioning on α`,`′

r′,s′ = 1. Next,

consider conditioning on there not being an edge between r ′ and s for r′ 6= r, that is α`,`′

r′,s = 0. We

claim that the probability that α`,`′
r,s = 1 increases as well in this case. This is true because α`,`′

r′,s = 0
means that in each of the d′ matchings, r′ is matched to some vertex s′ 6= s, so that the conditional
probability that r is matched to s in every matching is 1

n′−1 . Therefore, for r′ 6= r,

Pr
[
α`,`′

r,s = 1 | α`,`′

r′,s = 0
]

= 1 −
(

1 − 1

n′ − 1

)d′

≤ d′

n′ − 1
=

d′

n′ ·
n′

n′ − 1
(59)

Finally we observe that for any s′ 6= s

Pr
[
α`,`′

r,s = 1 | α`,`′

r′,s = 0 & α`,`′

r′,s′ = 1
]

= Pr
[
α`,`′

r,s = 1 | α`,`′

r′,s = 0
]

(60)

This is true since the event α`,`′

r′,s = 0 implies that α`,`′

r′,s′ = 1 for some s′ 6= s, and the identity of s′

is irrelevant when computing the probability that α`,`′
r,s = 1.

Given the above discussion, how does the conditioning on ηi,j,k = 1 (i.e., ∆i,j,k = 1 and βi,j,k = 0)

influence the probability of the event ∆i′,j′,k′ = 1? Consider the event α1,2
i′,j′ = 1 (the other two

events, α1,3
i′,k′ and α2,3

j′,k′, are analyzed similarly). Since ∆i,j,k = 1, we have that α1,2
i,j = 1. Since

βi,j,k = 0 we know that for every j ′′ 6= j either α1,2
i,j′′ = 0 or α2,3

j′′,k = 0. In particular, setting j ′′ = j′

we have that either α1,2
i,j′ = 0 or α2,3

j′,k = 0. Recall that we have argued above that conditioning on

α1,2
i,j′ = 0 can only increase the probability that α1,2

i′,j′ = 1 (assuming i′ 6= i). Therefore,

Pr
[
α1,2

i′,j′ = 1 | ηi,j,k = 1
]

≤ Pr
[
α1,2

i′,j′ = 1 | α1,2
i,j = 1 & α1,2

i,j′ = 0
]

(61)

≤ Pr
[
α1,2

i′,j′ = 1 | α1,2
i,j′ = 0

]
(62)

≤ d′

n′ ·
n′

n′ − 1
(63)

≤ d′

n′ ·
(

1 +
2

n′

)
. (64)

In Equation (62) we applied Equation (60), in Equation (63) we applied Equation (59), and in
Equation (64) we used the assumption that n′ ≥ 2. The same upper bound holds for α2,3

j,k and α1,3
i,k .

Using the lower bound on Pr[∆i′,j′,k′ = 1] given in Equation (6) we get

Pr[∆i′,j′,k′ = 1 | ηi,j,k = 1]

Pr[∆i′,j′,k′ = 1]
≤

(
1 + 2

n′

)3
(
1 − 1

18d′

)3 ≤ 1 + O

(
1

d′

)
(65)
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Figure 3: An illustration of how the existence and non-existence of edges influences the probability of
obtaining another edge. On the top is an illustration of the case in which there is an edge between v`,r and
v`′,s, and the event we are interested in is the existence of an edge between v`,r′ and v`′,s′ where r′ 6= r and
s′ 6= s. In this illustration the label of the edge between v`,r and v`′,s (the number of the matching among
the d′ matchings) is c, which implies that in this matching, v`,r cannot be matched to v`′,s′ , which increases
the probability that v`,r′ is matched to v`′,s′ in this matching. On the bottom is an illustration of the case
that there is no edge between v`,r and v`′,s′ . This means that in all d′ matchings, v`,r is matched to other
vertices in V`′ , which increases the probability, in every matching, that v`,r′ is matched to v`′,s′ .

It remains to upper bound the ratio between Pr[βi′,j′,k′ = 0 | ∆i′,j′,k′ = 1 & ηi,j,k = 1] and
Pr[βi′ ,j′,k′ = 0 | ∆i′,j′,k′ = 1]. We start by observing that since the constraints imposed by the
conditioning on βi,j,k = 0 can only increase the probability of having a triangle that shares an edge
with (v1,i′ , v2,j′ , v3,k′),

Pr[βi′,j′,k′ = 0 | ∆i′,j′,k′ = 1 & ηi,j,k = 1] ≤ Pr[βi′ ,j′,k′ = 0 | ∆i′,j′,k′ = 1 & ∆i,j,k = 1] (66)

Next, in order to upper bound the ratio between Pr[βi′,j′,k′ = 0 | ∆i′,j′,k′ = 1 & ∆i,j,k = 1]
and Pr[βi′,j′,k′ = 0 | ∆i′,j′,k′ = 1], we lower bound the ratio between Pr[βi′,j′,k′ = 1 | ∆i′,j′,k′ =
1 & ∆i,j,k = 1] and Pr[βi′,j′,k′ = 1 | ∆i′,j′,k′ = 1]. This suffices since Pr[βi′,j′,k′ = 1 | ∆i′,j′,k′ = 1] <
1/2, and for every y ≤ 1/2, if we have that x ≥ (1−α)y for some α < 1, then (1−x) ≥ (1+α)(1−y).

The event βi′,j′,k′ = 1 is a union of events of the form ∆i′,j′,k′′ = 1 for k′′ 6= k′ (the other two
types of events, ∆i′,j′′,k′ = 1 and ∆i′′,j′,k′ = 1 are analyzed analogously.) The key observation is
that for every k′′ /∈ {k′, k}, the conditioning on the event ∆i,j,k = 1 (in addition to the conditioning
on the event ∆i′,j′,k′ = 1) can only increase the probability that ∆i′,j′,k′′ = 1 (since for at least one
of the matchings, i′ cannot be matched to k). Therefore, the only case in which the conditioning
on ∆i,j,k = 1 decreases the probability that ∆i′,j′,k′′ = 1, is for k′′ = k. However, the weight of the
event ∆i′,j′,k = 1 (and similarly ∆i,j′,k′ = 1 and ∆i′,j,k′) relative to βi′,j′,k′ = 1 is O(1/n′), and so

Pr[βi′,j′,k′ = 1 | ∆i′,j′,k′ = 1 & ∆i,j,k = 1] ≥
(

1 − O

(
1

n′

))
· Pr[βi′,j′,k′ = 1 | ∆i′,j′,k′ = 1] (67)
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from which it follows that

Pr[βi′,j′,k′ = 0 | ∆i′,j′,k′ = 1 & ∆i,j,k = 1]

Pr[βi′,j′,k′ = 0 | ∆i′,j′,k′ = 1]
≤ 1 + O

(
1

n′

)
(68)

The claim follows by combining Equations (56), (57), (65), (66), and (68)
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