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Abstract

Given a class of graphs F, we say that a graph G
is universal for F, or F-universal, if every H € F
is contained in G as a subgraph. The construction
of sparse universal graphs for various families F has
received a considerable amount of attention. One is
particularly interested in tight F-universal graphs, i.e.,
graphs whose number of vertices is equal to the largest
number of vertices in a graph from F. Arguably, the
most studied case is that when F is some class of trees.

Given integers n and A, we denote by 7 (n,A)
the class of all n-vertex trees with maximum degree at
most A. In this work, we show that every m-vertex
graph satisfying certain natural expansion properties
is 7 (n, A)-universal or, in other words, contains every
spanning tree of maximum degree at most A. Our meth-
ods also apply to the case when A is some function of n.
The result has a few very interesting implications. Most
importantly, since random graphs are known to be good
expanders, we obtain that the random graph G(n,p) is
asymptotically almost surely (a.a.s.) universal for the
class of all bounded degree spanning (that is, n-vertex)
trees provided that p > en~/3log®n where ¢ > 0 is
a constant. Moreover, a corresponding result holds for
the random regular graph of degree pn. In fact, we show
that if A satisfies logn < A < n'/3, then the random
graph G(n,p) with p > ¢An~/3logn and the random
r-regular n-vertex graph with r > ¢An?/3 logn are a.a.s.
universal for 7 (n, A). Another interesting consequence
is the existence of locally sparse n-vertex graphs that are
universal for 7 (n,A). For A € O(1), we show that one
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can (randomly) construct n-vertex 7 (n,A)-universal
graphs with clique number at most five. This comple-
ments the construction of Bhatt, Chung, Leighton, and
Rosenberg (1989), whose 7 (n, A)-universal graphs with
merely O(n) edges contain large cliques of size Q(A).

We also derive some lower bounds and show that
there exist very good expanders which are not universal
for T(n,A). In particular, we see that there are
expanders of minimum degree 2(n/logn) which are
not 7 (n,cy/n)-universal. Finally, we show robustness
of random graphs with respect to being universal for
7 (n,A) in the context of the Maker-Breaker tree-
universality game.

1 Introduction

A graph G is universal for a class of graphs F (equiv-
alently, we say that G is F-universal) if a copy of ev-
ery member of F is contained in G. Since universal-
ity for the class F implies that the maximum degree
of G is at least as large as the maximum degrees of all
graphs in F, it is natural to consider only classes with
bounded maximum degree. There exists a rich literature
on explicit and randomized constructions of universal
graphs [2, 20, 6, 12, 17, 18, 19, 27, 42, 30, 3, 15, 16, 4.
One of the classes for which universality has been stud-
ied extensively is the class of bounded degree trees. For
two positive integers n and A, let 7(n, A) be the class
of all n-vertex trees with maximum degree at most A.
Bhatt, Chung, Leighton, and Rosenberg [12] gave an
explicit construction of very sparse n-vertex 7 (n,A)-
universal graphs of maximum degree bounded by a func-
tion in A. For A € O(1), their universal graphs have
only O(n) edges.

In this work, instead of constructing specific uni-
versal graphs, we are rather interested in determining
for which edge densities almost all n-vertex graphs be-
come 7 (n, A)-universal. In particular, we want to know



for which edge probabilities p, the binomial random
graph G(n,p) asymptotically almost surely (a.a.s.) be-
comes universal for the class of all bounded degree span-
ning trees. Moreover, we want to identify particular
pseudo-random properties that guarantee this univer-
sality and that are a.a.s. satisfied by G(n,p).

Since every connected component of a graph con-
tains a spanning tree, we know that, for large val-
ues of ¢, the random graph G(n,c/n) a.a.s. contains
a copy of some tree that covers a significant propor-
tion of the vertices of G. We may now ask whether
this is true for every specific tree with size linear in n.
For paths, that is, trees with maximum degree two, Aj-
tai, Komlés and Szemerédi [1] showed that if ¢ > 1 the
random graph G(n,c/n) indeed contains a.a.s. a path
of length linear in n. On the other hand, for fixed c,
the random graph G(n,c/n) a.a.s. has maximum de-
gree (14 o(1))logn/loglogn and therefore we cannot
expect to embed trees of larger maximum degree. Thus,
a more reasonable question is to ask whether for every
bounded degree tree T with size linear in n, the random
graph G(n,c/n) a.a.s. contains a copy of T.

This question was first addressed by Fernandez
de la Vega [25], who showed that, for fixed A > 2
and 7/8 < a < 1, there exists a constant ¢ = c¢(A, a)
with A —1 < ¢ < 8(A — 1) such that, for every specific
tree T € T((1 — a)n,A), the random graph G(n,c/n)
a.a.s. contains a copy of T. Alon, Krivelevich, and
Sudakov [5] showed for all € € (0,1) the existence of a
constant ¢ = ¢(A, €) such that G(n, c¢/n) a.a.s. contains
a copy of all trees in 7 ((1 —e)n, A), thus extending the
result Fernandez de la Vega to almost spanning trees,
that is, to arbitrary small values of €. A better bound
for ¢(A,e) and a resilience version of this result were
obtained by Balogh, Csaba, Pei, and Samotij [7] and by
Balogh, Csaba, and Samotij [8], respectively.

Besides being valid for small values of ¢, the results
of Alon et al. as well as of Balogh et al. exhibit
a substantial difference to that of Fernandez de la
Vega. Instead of (i) showing that a particular tree
in T((1 —e)n, A) (that is, one tree for every n) is a.a.s.
contained in G(n,p), they show instead that (ii) G(n, p)
is a.a.s. universal for the whole class 7((1 — ¢)n, A),
that is, contains a copy of every tree in 7((1 — e)n, A)
simultaneously. Note that, for A > 3, the size of the
class 7((1 — e)n, A) is exponential in n and therefore
the union-bound is not sufficient to derive (ii) from (i).

In order to show that G(n,c/n) is a.a.s. universal
for 7((1 — &)n,A), both Alon et al. [5] and Balogh,
Csaba, Pei, and Samotij [7] showed that G(n,c/n)
exhibits certain pseudo-random properties that imply
large expansion of small sets of vertices (after one deletes
few vertices with very small degrees). This allows to

apply the classical tree-embedding result of Friedman
and Pippenger [27] (as was done in [5]) or its somewhat
stronger version due to Haxell [30] (as was done in [7])
to embed every bounded degree tree that covers all but
an e-fraction of the vertices of G(n,c/n). Recently,
Sudakov and Vondrék [43] gave a randomized algorithm
to efficiently embed bounded degree almost spanning
trees in graphs with certain expansion properties. We
discuss the result of Haxell in Section 3.

For pn > logn, the situation changes drastically.
In this regime, G(n, p) is connected and we may ask for
the existence of spanning trees. The very specific case
of embedding a Hamilton path was resolved by Komlds
and Szemerédi [35] and, independently, Bollobds [13],
who proved that if pn > logn + loglogn + w(1)
(where w(1) is any function which tends to infinity
as n — 00), then G(n,p) a.a.s. contains a Hamilton
cycle. Frieze and Krivelevich [28] and Krivelevich and
Sudakov [37] investigated pseudo-random conditions
expressed in terms of the spectral gap of the host
graph which guarantee the existence of Hamilton paths.
Hefetz, Krivelevich, and Szabé [31] showed Hamilton-
connectedness (that is, the existence of a Hamilton path
between any two vertices) of graphs with expansion
properties similar to those we introduce in the next
section. We discuss their result in Section 3.

Addressing the question of embedding a particular
tree T € T(n,A) (again one tree for every n), Kriv-
elevich [36] showed that if np > 22Alogn + n® for
some € > 0, then the random graph G(n,p) a.a.s. con-
tains a copy of T. Moreover, it is shown in [36] that
this bound on p is asymptotically tight in the order of
magnitude if n°® < A < n/logn. Extending and im-
proving a result of Alon, Krivelevich, and Sudakov [5],
Hefetz, Krivelevich, and Szabé [32] showed that if, in
addition, T has a linear number of leaves or contains a
bare path (that is, a path in which all vertices have de-
gree two in T') of length linear in n, then G(n,p) a.a.s.
contains a copy of T already for pn = (1 + o(1)) log n.

To the best of our knowledge, until now there
exist no results directly addressing the question
whether G(n, p) is a.a.s. 7 (n, A)-universal for p € o(1).
For G(n,A), the class of all graphs on n vertices with
maximum degree at most A, Dellamonica, Kohayakawa,
Rodl, and Rucinski [21] showed that there exists a con-
stant ¢ := c¢(A) such that, for pn > en!=1/28) Jog/4 p,
the random graph G(n, p) is a.a.s. G(n, A)-universal, im-
proving an earlier result in [4]. As a special case, this re-
sult also applies to the subclass 7 (n, A) and implies that
the random graph G(n,p) is a.a.s. 7 (n, A)-universal for
such values of p. Recently, Dellamonica et al. [22] im-
proved their result to pn > en!~1/2logn. However, in
all these bounds pn = n'—°M for A — co.



1.1 Notation

Let N and RT be the sets of positive integers and
positive real numbers, respectively. For two functions
f,9: N — RY we write f € o(g) or, equivalently,
f < g, to denote the fact that lim,_ . % =0 and
f € O(g) or, equivalently, g € Q(f), to denote the fact
that there exists an absolute positive constant ¢ such
that f(n) < cg(n) for all positive integers n.

Given a graph G, we denote its vertex set by V(G)
and its edge set by E(G). All graphs considered in this
work are finite (where typically |V (G)| will be denoted
by n), simple, and undirected. For a set X C V(G),
let G[X] be the subgraph of G induced by X and let
Ng(X) be the external neighborhood of X, that is,
No(X) = l{y € V(G)\ X | 3o € X: {a,y} € EG)}].
For a vertex v € V(G), let Ng(v) := Ng({v}) and
let dege(v) := |Ng(v)|]. For two sets X, Y C V(G),
eq(X,Y) denotes the number of ordered pairs (z,y)
with + € X and y € Y such that {z,y} € E(QG).
Note that if X and Y intersect, then all edges in the
intersection are counted twice.

Finally, for two graphs H and G, an embedding ¢
of H in G is an injective graph homomorphism, that
is, an injective map ¢: V(H) — V(@) such that
{v,w} € E(H) implies {¢(v), p(w)} € E(G). We say ¢
embeds H onto G if @ is bijective and we say G contains
a copy of H if there exists an embedding of H in G.

2 Our Results

2.1 Tree-Universality of (n,d)-Expanders

The main contribution of this work is establishing tree-
universality for the members of a certain class of graphs
with good expansion properties, which we term (n,d)-
expanders. For all positive integers n and all positive
real numbers d, let
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The following notion is an adaptation of the expansion
properties investigated in [7] and [31].

DEFINITION 2.1. ((n,d)-EXPANDER) Let n be a posi-
tive integer, let d be a positive real number. A graph
G is an (n,d)-expander if |[V(G)| = n and G satisfies
the following two conditions:

Ei:

1 <|X]| < m(n,d).

[Na(X)| > d|X| holds for all X C V(G) with

E2: eq(X,Y) > 0 holds for all disjoint X, Y C V(G)

with | X| = Y] = m(n,d).

A simple calculation (Lemma 3.1 in Section 3) shows
that these properties are monotone, that is, if d and dy

satisfy 3 < dy < d < n/6, then every (n,d)-expander is
also an (n, dg)-expander.

The main result of this work is the following
theorem which states that (n,d)-expanders are tree-
universal.

THEOREM 2.1. (TREE-UNIVERSALITY) There exists
an absolute positive constant ¢ such that the follow-
ing statement holds. Let n and A be two positive
integers satisfying logn < A < cen'/3. Then every
(n, TAn?/3)-expander is universal for T (n, A).

Note that the class 7 (n,logn) also includes all n-vertex
trees of maximum degree A smaller than logn (for
example, for A € O(1) and n large). Thus, Theorem 2.1
also applies to the situation where A < logn by
setting A to logn. The proof of Theorem 2.1 is given
in Section 4.

There are many known constructions of expanders
(see, e.g. [38]). Thus, by verifying the conditions in
Definition 2.1, one obtains explicit constructions of
relatively sparse universal graphs for 7 (n, A).

2.2 Random Graphs

Random graphs are well-known to typically exhibit
strong expansion properties. For example, the random
graph G(n,p) with pn > 7dlogn is a.a.s. an (n,d)-
expander. We omit the proof of this claim, which can
be shown by a simple union-bound argument. Thus,
as a direct consequence of Theorem 2.1, such a random
graph is a.a.s. universal for the class of all bounded-
degree spanning trees.

THEOREM 2.2. There exists an absolute positive con-
stant ¢ such that the following statement holds. Let
A = A(n) satisfy A > logn. Then the random graph
G(n,p) is a.a.s. universal for T(n,A), provided that
pn > cAn?/3logn.

Theorem 2.2 implies that G(n,cn~/3log?n) is a.a.s.
universal for 7 (n,logn) and thus also for 7 (n,O(1))
if ¢ is a large enough constant.

Likewise, the random r-regular n-vertex graph with
max{7dlogn,y/nlogn} < r < n (where rn is even) is
a.a.s. an (n,d)-expander. We omit the proof of this
claim, which can be shown similarly to Theorem 2.2
in [39] which applies a switching argument originally
introduced in [40]. Thus, again as a direct consequence
of Theorem 2.1, such a random r-regular graph is a.a.s.
tree-universal.

THEOREM 2.3. There exists an absolute positive con-
stant ¢ such that the following statement holds. Let
A = A(n) satisfy A > logn. Then the r-reqular ran-
dom graph on n vertices is a.a.s. unwersal for T (n,A),
provided that cAn?/3logn < r < n, and rn is even.



Note that the restriction r < n in Theorem 2.3 is likely
to be an artifact resulting from the use of a switching
argument in our proof and we believe the result should
extend to linear values of r = r(n). Similarly as before,
Theorem 2.3 implies that the random r-regular graph
on n vertices with r > cn?/3 log2 (where rn is even)
is a.a.s. universal for 7 (n,O(1)) if ¢ is a large enough
constant.

2.3 Locally Sparse Expanders
Bhatt, Chung, Leighton, and Rosenberg [12] gave an ex-
plicit construction of 7 (n, A)-universal graphs on n ver-
tices whose maximum degree is bounded by a function
of A. Thus, for constant A, the number of edges in this
graph is in O(n). In comparison, the random graph we
consider in Theorem 2.2 a.a.s. has ©(n%/3log® n) edges.
However, the graph constructed in [12] is locally dense,
that is, it contains a large number of cliques of size Q(A)
(cf. Lemma 8 in [12]). Here, we show how to construct
locally sparse graphs that are universal for all bounded
degree trees.

We first observe that the expected number of cliques

of size k in the random graph G(n,p) is (Z)p(g)

Therefore, by Markov’s inequality, if nkpk(k;l) < 1,
then G(n,p) a.a.s. does not contain any clique of
size k. Consequently, for p(n) = n=3log?n, the ran-
dom graph G(n,p) is a.a.s. both Kg-free and universal
for 7 (n,logn). Thus, for sufficiently large n, there ex-
ists a 7 (n, log n)-universal graph with clique number at
most seven.

We can strengthen this observation by showing
that, for an appropriate choice of chosen d, r, and p, the
random graph G(n,p) is still a.a.s. an (n,d)-expander
even if we make it K.-free by deleting a carefully chosen
set of edges. (We omit the proof of this claim.) Together
with Theorem 2.1, this implies the existence of locally
sparse tree-universal graphs.

THEOREM 2.4. There exists an absolute positive con-
stant ¢ such that the following statement holds. Let n
and r be two positive integers with r > 5. Then there

exists a graph with clique number at most r that is uni-
versal for T (n,en/3=2/(r+2) /logn).

In particular, Theorem 2.4 implies that there exists a
T (n,cen'/?' /logn)-universal graph with clique number
at most five for all positive integers n if ¢ is a small
enough constant.

2.4 Lower Bound Constructions

In Theorem 2.1, we gave an upper bound of 7An?/3logn
on the minimum value d* such that, for all d > d*,
every (n,d)-expanders are 7 (n, A)-universal. We now
discuss lower bounds on d*, that is, constructions of

(n, d)-expanders with (relatively) large values of d which
are not universal for 7 (n, A).

For random graphs, Krivelevich [36] showed the
following: for every € > 0, there exists a § > 0 such
that if n® < A < $7 then there exists a tree 7 (n, A)
of which the random graph G(n,p) with pn = dAlogn
a.a.s. does not contain a copy. In contrast, Theorem 2.2
shows that there exist an absolute positive constant c
such that pn = cAn?/3logn is sufficient for G(n,p)
to become universal for 7(n,A). This huge gap of
order n?/3 seems to be mainly an artifact of the proof
of Theorem 2.1.

In the setting of (n,d)-expanders and for the
case A € O(1), we know of no lower bounds on the
smallest value of d necessary for every (n,d)-expander
to be 7 (n,A)-universal (except for the trivial lower
bound A). For A € n(M) however, we can show that
(in contrast to the random graph setting) this value
grows faster than Q(Alogn). To this end, recall that
the radius of a connected graph G is defined as

r(G) := min max dist(u, v)

ueV veV
where the distance dist(u,v) between two vertices u
and v is the length of a shortest path connecting u and v
in G. For example, the radius of the star-graph K ,
is 1 and the radius of a path of even length 2k is k. A
crucial observation is that we cannot embed a spanning
graph onto a host graph with a strictly larger radius:
the embedding itself would be a proof that the host
graph has small radius, too. We will show that, for
certain values of n and A, the class 7 (n,A) contains
trees with a relatively small radius, whereas there are
(n, d)-expanders (with quite large d) with a fairly large
radius.

First, consider the rooted tree Ta, with r 41
levels of vertices, where all vertices except for the
leaves have A neighbors. Thus, there is one vertex
(the root) on the 0-th level and A(A — 1)~ vertices
on the i-th level for ¢ € {1,...,r}. Then Ta, has
I+AY (A-1)t =1+ % vertices in total,
has radius 7, and is in 7 (n, A). On the other hand, we
show below that there exist very strong expanders with
radius at least r + 1.

DEFINITION 2.2. Let n be a positive integer and let H
be a graph on n wvertices. We define Gy to be the
class of 2n-vertex graphs obtained from H by replacing
each vertex v of H by two vertices u, and ul and
each edge {v,w} of H by either the two edges {uy, tqy }
and {u,u,} or the two edges {u,,ul,} and {ul, uy}.

For the class Gy, the following result holds if we choose
H to be the complete graph (in the case r = 2) or a



suitable pseudo-random graph with girth r» + 1 (in the
case r > 3). The details of the proof are omitted.

LEMMA 2.1. There exists an absolute positive con-
stant ¢ such that the following statement holds. Let n
and r be two positive integers that satisfy r > 2
and en/(=1 > 3logn. Then there exists an n-vertex
graph H such that all graphs in Gy have radius at
least ¥ + 1 and a graph chosen uniformly at random
from Gy is a.a.s. a (2n,en'/ "=V log™! n)-expander.

Combining Lemma 2.1 with our discussion of the radius
of Ta -, we get the following theorem.

THEOREM 2.5. There exists an absolute positive con-
stant ¢ such that the following statement holds. Let A
and r be positive integers satisfying A > ¢ 'logn

A(A-1)"—1
L+ =55
(n, cA* /" log ™! n)-expander which is not universal for

T(n,A).

with n = Then there exists an

Note that although all graphs in Gy have an even
number of vertices we do not require this restriction
in Theorem 2.5: If we duplicate a vertex of an (n,d)-
expander with radius r and connect the duplicate to
all of the vertex’s neighbors we obtain an (n + 1,d/2)-
expander which still has radius r.

Theorem 2.5 implies that there even exist
(n,cn/logn)-expanders which are not universal for
T(n,(1+ o(1))y/n). In comparison, we do not expect
the same to be true a.a.s. for G(n, 7c), which (a.a.s.) isa
canonical example of an (n, cn/logn)-expander. More-
over, our construction complements a result of Komlds,
Sérkozy, and Szemerédi [34]. They showed that, for
every given 0, there exists a constant ¢ := ¢(d) such
that every graph of minimum degree (1 4+ 0)n/2 is
T (n,cn/logn)-universal. It is clear that this bound
is sharp, since if we allow the minimum degree to be
at most |n/2] — 1, then the host graph may be dis-
connected. However, our (|n/2| — 1)-regular construc-
tion shows that even host graphs that have an edge be-
tween all disjoint pairs of vertex sets of relatively small
size O(logn) may be not 7 (n, (1 + o(1))y/n)-universal.
Finally, we remark that Bottcher, Taraz, and Wiirfl [14)
observed a similar effect in the context of (g, §)-regular
graphs and independently proposed a construction with
similar properties as Gy.

2.5 Universality for Almost All Labeled Trees

For all positive integers n, let 7, be the family of all
labeled trees on the vertex set {1,...,n}. Bender and
Wormald [11] showed that for every constant p € (0,1)
there is a subfamily 7.* C 7.* with |7.7| = (1 —o0(1))|7,,]
such that the random graph G(n,p) is a.a.s. universal
for 7. Note that this notion differs substantially from

the (weaker) notion of being almost-universal for T,
(see, e.g. [29, 15]), which means that if T is drawn
uniformly at random from all trees of 7, then G a.a.s.
contains a copy of T

It is well known (see, e.g. [41]) that a tree chosen
uniformly at random from 7, has a.a.s. maximum
degree at most (1+0(1)) logn/loglogn. Therefore, the
subfamily 7% of all trees in 7,, with maximum degree
at most 2logn/loglogn satisfies |7.*| = (1 — o(1))|Z,].
Thus, Theorem 2.2 strengthens the result of Bender
and Wormald as it allows us to replace the constant
p € (0,1) with a function p € o(1).

THEOREM 2.6. There exists an absolute positive con-
stant ¢ and a subfamily T,* of T, satisfying the con-
dition |T*| = (1 — 0(1))|7,| such that the random
graph G(n,p) is a.a.s. unwversal for T, provided
that p > en~1/3 log2 n.

2.6 The Maker-Breaker Game

In recent studies of extremal properties of random
graphs (like tree-universality), a central concept is that
of robustness. This means that we require some prop-
erty to be not only typically present in the respective
graph class (that is, to appear a.a.s. in a random graph
drawn from this class), but also to persist after a mod-
ification of the random instance. There are numerous
ways to model robustness, for example by the notion
of resilience or via positional games. Here, we study
the robustness of tree-universality in expanders in the
setting of a Maker-Breaker game.

An (a:b) Maker-Breaker game is played on a finite
hypergraph (X,F) between two players, Maker and
Breaker. The vertex set of the hypergraph is the board
and the hyperedges are the winning sets in the game.
The game is played in turns, starting with Maker’s
turn. In each of their turns, Maker claims a and
Breaker claims b previously unclaimed vertices. The
numbers a and b are called the biases of Maker and
Breaker, respectively. Maker’s objective is to claim all
elements of a winning set by the end of the game. In
this case, Maker wins the game. Breaker’s objective is
to claim at least one element in each winning set by the
end of the game. In this case, Breaker wins the game.
The game ends when all vertices have been claimed, by
which time either Maker or Breaker have won.

We say that an (a:b) Maker-Breaker game
on (X,F) is Maker’s win if Maker has a strategy that
allows him to win the game regardless of Breaker’s strat-
egy, otherwise the game is Breaker’s win. Clearly, every
(a:b) Maker-Breaker game (X, F) is either Maker’s or
Breaker’s win and the decision which of the two holds
depends only on the parameters a, b, X, and F. For a
more detailed discussion, we refer to [10].



We now formulate a Maker-Breaker game for pre-
serving tree-universality of a graph. Given a graph,
Maker tries to claim a set of edges which induces a
7T (n, A)-universal subgraph.

DEFINITION 2.3. For two positive integers n and A,
the Maker-Breaker 7 (n,A)-universality game on a
graph G is the Maker-Breaker game on the hypergraph
(E(G),F), where F consists of all edge sets F C E(G)
such that the subgraph (V(G), F) is T (n, A)-universal.

Our main finding in this section is a condition
for Maker’s win in the (1:b) Maker-Breaker Tree-
Universality game on an (n, d)-expander.

THEOREM 2.7. There exists an absolute positive con-
stant ¢ such that the following statement holds. Let n, b,
and A be integers that satisfy A > logn. Then the (1:b)
Maker-Breaker T (n, A)-universality game is Maker’s
win on every (n, d)-expander with d > cbAn?/>logn.

Theorem 2.7 implies that, for A < logn and in partic-
ular for A € O(1) and n sufficiently large, the (1:b)
Maker-Breaker 7 (n, A)-universality game is Maker’s
win on every (n, d)-expander with d > c¢bn?/? log® n.
We omit the proof of Theorem 2.7, which can be
derived using Beck’s generalized Erdés-Selfridge crite-
rion for Breaker’s win [24, 9]. Together with the fact
that the random graph G(n,p) with pn > 7dlogn is
a.a.s. an (n,d)-expander (see above), Theorem 2.7 im-
plies the following condition for Maker’s win in the tree-
universality game on binomial random graphs.

COROLLARY 2.1. There exists an absolute positive con-
stant ¢ such that the following statement holds. Let
b := b(n) and let A := A(n) satisfy A > logn. Then
the (1:b) Maker-Breaker T (n, A)-universality game is
a.a.s. Maker’s win on the random graph G(n,p), pro-
vided that pn > cbAn2/3log? n.

Correspondingly, Theorem 2.7 and the fact
that the random r-regular n-vertex graph with
max{7dlogn,/nlogn} < r < n (where rn is even) is
a.a.s. an (n,d)-expander (see above) imply the follow-
ing conditions for Maker’s win for the tree-universality
game on binomial random graphs.

COROLLARY 2.2. There exists an absolute positive con-
stant ¢ such that the following statement holds. Let
b :=b(n) and let A := A(n) satisfy A > logn. Then
the (1:b) Maker-Breaker T (n, A)-universality game is
a.a.s. Maker’s win on the random r-reqular graph, pro-
vided that r > cbAn?/3log®n, r € o(n), and rn is even.

3 Properties of (n,d)-Expanders

We now present all properties of (n,d)-expanders that
are needed to prove the universality results in the re-

mainder of this work. First, we observe that the ex-
pansion properties given in Definition 2.1 are monotone
in d.

LEMMA 3.1. Let n be a positive integer and let d and dy
be two positive real numbers such that 3 < dyg < d < n/6.
Then every (n,d)-expander is also an (n,dy)-expander.

Proof. Let m := m(n,d) and mg := m(n,dp). Since
mo > m, condition (E2) holds immediately for the
parameter mg, and since dy < d, condition (E1) holds
immediately for the parameters m and dy. Thus, it is
sufficient to verify that |Ng(X)| > do|X| holds for all
X C V(G) with m < |X| < mg. For such a set X, we
have by condition (E2) that |[Ng(X)| > n—|X|—m and
therefore

|Ng(X)| Z 2d0(m0 — 1) — 2m0 Z domo Z d0|X‘
The lemma follows.

The following fact is an important insight into the
structure of sparse expanders and is frequently used
in the proof of Theorem 2.1. It allows us to bound
the number of vertices with small neighborhood in any
sufficiently large vertex set of an expander.

LEMMA 3.2. Let G be a graph, let m be a positive
integer, and let W C V(G) satisfy |[W| > m?. Suppose
that eq(X,Y) > 0 for all X C V(G)\ W and all
Y C W that satisfy | X| = |Y| = m. Then there are at
most m — 1 vertices in V(G) \ W that have less than m
neighbors in W.

In the following proof a simple counting argument shows
that if there exist m exceptional vertices in V(G) \ W,
then there are at least m vertices in W which are not
in their neighborhood — a contradiction to (E2) of
Definition 2.1.

Proof. Let V := V(G). Assume for contradiction that
there exists a set X C V' \ W with |X| = m such that
|[Ng(v) "W < m for all v € X.

On one hand, since we have |X| = m and therefore
[V (XU NG(X))| < m— 1, we gt

eq(X,W) > |WNNg(X)| > [W|-(m—1) > m>—m+1.
On the other hand,

ea(X, W)=Y |Na(x) N\W| <m(m—1) =m’ —m,
rzeX

which is clearly a contradiction. Thus, no such set X
exists and there are at most m — 1 vertices in V' \ W
with fewer than m neighbors in W.



3.1 Partitioning Expanders

We now show that we can partition the vertex set of an
(n, d)-expander in such a way that the neighborhoods
of small expanding sets distribute between the parts
according to the sizes of the parts. In Section 4,
this technique plays a major role in the proof of our
main result, the tree-universality of sparse expanders
(Theorem 2.1).

LEMMA 3.3. (PARTITION LEMMA) There exists an ab-
solute positive constant ng such that the following state-
ment holds. Let k and n be two positive integers and d
a positive real number such that n > ng and k < logn.
Furthermore, let ny,...,ng be positive integers satisfy-
ingn = ni+---+ny and let d; := g-d satisfy d; > 2logn
forallie{l,... k}.

Then, for every (n,d)-expander G, the wvertex
set V(G) can be partitioned into k disjoint sets
Uy,..., U of sizes ny,...,ng, respectively, such that
(3.1) INa(X) NUs| > di| X]|

holds for all sets X C V with 1 < |X| < m(n,d) and
all i € {1,...,k}. Moreover, for all i € {1,...,k}
and oll W; C V(GQ) with U; C W;, the induced
subgraph G|W;] is a (|W;], d;)-expander.

This statement can be shown using the probabilistic
method: Using the union bound and a tail bound on the
hypergeometric distribution, we show that a uniformly
random partition of an (n,d)-expander into k parts of
sizes mi, ..., ny satisfies (3.1).

Before we prove Lemma 3.3, we first state a well-
known result (see, e.g., [33, Theorem 2.10]) for bound-
ing the tail probabilities of the hypergeometric distri-
bution HypP(n,m,¢). A random variable X distributed
according to HYP(n, m, ¢) models the number of white
balls found among ¢ balls drawn without replacement
from an urn containing n balls, m of which are white.
Recall that we have Pr(X = k] = (7) (") /(}) for
all 0 < k <n and E[X] = ml/n.

THEOREM 3.1. Let € be a positive constant satisfy-
ing e <3/2 and let X ~ HyP(n,m, ). Then

Pr [|X — E[X]| > £] < e~ FEX],

Proof. (Proof of Lemma 3.3) Choose ng such that
logn < n?/1® Let V = V(G) and m := m(n,d).
We show the existence of a partition Uy, ..., U, which
respects (3.1) by a simple probabilistic argument.
Choose a partition Uy, ..., Uy of V into disjoint sets
of respective sizes nq,...,ng uniformly at random. We
show that with positive probability, (3.1) holds for all
sets X CV withl <|X|<mandallie{l,...,k}.

Let X C V be a set with 1 < |X| < m and let
i €{1,...,k}. Then the random variable |[Ng(X) N U;|
is distributed according to the hypergeometric distribu-
tion Hyp(n,n;, |Ng(X)|) with

n; n;
E[|Na(X) n U] = 2 [Na(X)| = ™ d|X]| = 5d,{X].
We apply Theorem 3.1 with € = 4/5 and obtain
Pr[|Ne(X) NUi| < di] X|] < e 184X < = 5IXT,

Let ¢ be the probability that there exists a set
X CVwithl <|X|<mandanie€{l,...,k} which
violates property (3.1). Then, by the union bound,

k. m k n
q< (n)n?gj < nin =139 < kn~ 15 <1
for sufficiently large n.

We have shown that with positive probability the
randomly chosen partition Uj,..., Uy satisfies prop-
erty (3.1); therefore, such a partition exists and the first
statement of Lemma 3.3 holds.

Finally, let Uj,...,Ux be such a partition that
satisfies property (3.1). Let i € {1,...,k} and consider
aset W C V with U; € W and the induced graph
H = G[W]. Then, by the choice of d;, we have

m(|W|,d;) > m(n;,d;) > m(n,d).

Thus, since G is an (n,d)-expander, condition (E2)
in Definition 2.1 with m = m(|W]|,d;) holds for H.
By (3.1), |[Ng(X)| > d;|X| holds for all X C V(H)
with 1 < |X| < m(n,d). Thus, similar to the proof of
Lemma 3.1, it is sufficient to verify that the condition
[Ng(X)| > d;]X| holds also for all X C V(H) with
m(n,d) < |X| < m(|]W|,d;). Since G is an (n,d)-
expander, we have |[Ng(X)| > |W|— |X| — m(n,d) for
such a set X and therefore

|NH(X)| Z 2d1(m(nt,dt) — 1) — Qm(nl,dl) Z d1|X|

and the second statement of Lemma 3.3 holds.

3.2 Almost Spanning Trees, Hamilton Paths,
and Star Matchings
We now summarize three known results on embedding
almost spanning trees, Hamilton paths, and star match-
ings in graphs with large expansion. These results are
crucial for the proof of Theorem 2.1 (Tree-Universality).
In [30], Haxell extended a result of Friedman and
Pippenger [27] and showed that one can embed every
almost spanning tree with bounded maximum degree
in a graph with sufficiently large expansion. Here, we
present a formulation of this result in the flavor of
Theorem 3 in [7].



THEOREM 3.2. Let d, m, and k be positive integers and
let H be a non-empty graph satisfying the following two
conditions:

(i) |Ng(X)| > d|X| + 1 holds for all sets X C V(H)
with 1 < |X| < m,

(ii) |[Ng(X)| > d|X|+ k holds for all sets X C V(H)
with m < | X| < 2m.

Then the graph H contains a copy of every tree T with
[V(T)| < k+1 and mazimum degree at most d.

In terms of (n,d)-expanders, we may reformulate
the previous theorem as follows.

COROLLARY 3.1. Let n and A be two positive integers
and let d be a positive real number with d > 2A. Then
every (n, d)-expander is T (n—4Am(n, d), A)-universal.

Proof. Without loss of generality we may suppose
that A > 2. Let m := m(n,d) and let k := |V(T)|. Fur-
thermore, let H be an (n, d)-expander with n = k+4Am
and let T € T (k,A).

Then, for all X C V(H) with 1 < |X| < m, we have
by (E1) that

INg(X)] > 2A|X] > A|X| + 1.

Furthermore, we have |[Ny(X)| > n — |X| — m for
all X C V(H) with m < |X| < 2m, and therefore

INg(X)| > k+4Am —3m > k+2Am > Al X| + k.
The corollary then follows from Theorem 3.2.

Next, we state a result of Hefetz, Krivelevich, and
Szabé [31] on the Hamilton-connectedness of expanders
with edge-connectivity between large sets. For this, let
us briefly revisit the notion of Hamilton-connectedness.
An x-y-Hamilton path in a graph is a path with end-
vertices x and y that visits each vertex of the graph
exactly once. A graph is Hamilton-connected if there
exists an xz-y-Hamilton path for every pair of vertices x
and y in the graph. The following theorem is a simplified
version of the results in [31].

THEOREM 3.3. Let n and d be two positive integers
such that m is sufficiently large and 12 < d < /n.
Then a graph H on n wvertices is Hamilton-connected
if it satisfies the following two conditions:

(i) |Ng(X)| > d|X| holds for all sets X C V(H) with

log d
0 <|X| < Ficgn

(i) e (X,Y) > 0 holds for all disjoint XY C V(H)

. log d
with | X| = Y| > 10%501%3;11‘

As before, we give a reformulation of this result in
terms of (n, d)-expanders.

COROLLARY 3.2. There exists an absolute positive con-
stant ng such that the following statement holds. Let n
be a positive integer with n > ng and let d be a positive
real number with d > logn. Then every (n,d)-expander
1s Hamilton-connected.

Proof. Let G be an (n, d)-expander. For dp 33 = 193,

consider the two conditions of Theorem 3.3. Condi-
tion (i) holds by Lemma 3.1 for sufficiently large n.
Condition (ii) holds since

m < n < no_ nlOngg,g.
- 10351logn

d ~ logn
Thus, G is Hamilton-connected by Theorem 3.3.

Finally, we state a version of Hall’s marriage the-
orem for expanders which shows that we can embed a
star matching in a bipartite graph with large expansion
in one direction and large minimum degree in the other
direction.

LEMMA 3.4. Let d and m be two positive integers and
let G be a graph. Suppose that two disjoint vertex sets U
and W satisfy the following three conditions:

(i) |Ng(X) N W| > d|X| holds for all X C U with
1< X[ <m,

(ii) eq(X,Y) > 0 holds for all X C U and Y C W
with | X| = Y| > m,

(#ii) |Nag(w)NU| > m for allw e W.

Then, for every map k: U — {0,...,d} that sat-
isfies Y ,cyk(u) = |W|, there exists a partition
of W into |U| disjoint subsets {W,}ueu each satisfy-
ing |Wy| = k(u) and W,, C Ng(u) NW. We call the set
of edges between the vertices of U and their respective
parts in W a star matching.

Proof. To prove this lemma, we show for all X C U the
generalized Hall’s condition,

(32) Na(X)N W] > 3 k).

reX

We distinguish three cases:

First, if |X| < m, then k(z) < d for all z € X
and (i) implies (3.2).

Second, if m < |X| < |U| — m, then k(u) > 1 for
all w € U\ X and (ii) implies (3.2).

Third, if |[U| — m < |X]|, then (iii) directly im-
plies (3.2).
Thus, (3.2) holds for all X C U and the lemma is
a direct consequence of the Max-Flow Min-Cut The-
orem [23, 26].



4 Tree-Universality of (n,d)-Expanders

This section is devoted to the proof of our main result,
Theorem 2.1 (Tree-Universality), which we presented
in the introduction. The proof is based on a case
distinction on whether the embedded tree contains a
long bare path or many leaves. This extends the ideas
in [36].

DEFINITION 4.1. Let T be a tree. A leaf of T is a
vertex of degree one in T. A bare path is a path in T
whose vertices have all degree two in T. If we remove
all leaves from T, we call the leaves and bare paths in
the remaining tree second level leaves and second level
bare paths, respectively. For distinction, we call the
leaves and bare paths of the original tree T also first
level leaves and first level bare paths.

The following observation was already made in [36]
and states that a tree with bounded maximum degree
contains a long bare path or many leaves.

LEMMA 4.1. Let T be a tree, let P be a bare path of
mazximum length in T, and let L be the set of leaves
i T. Then

2(IV(P) + 1) (1L = 1) = [V(T)].

Proof. Let V :=V(T), let L :={v € V | degy(v) = 1}
and let B := {v € V | degp(v) > 3}. Then we have
|B| < |L| — 2, since

—2=2|E(T)|-2|V(T)| = ) (degr(v)-2) > |B|-|L|.
veV

Next, we root T" at an arbitrary leaf. This allows us to
injectively map the bare paths of T" to the set L U B by
assigning every bare path to the leaf or branching vertex
adjacent to it farther away from the root. Therefore, the
number of bare paths is at most |L| 4+ |B|. Since every
vertex in V is either in L, in B, or in a bare path of T,
this implies that |V| < |L|+|B|+ |V (P)|(|L| +|B]) and
therefore the lemma.

Consider the setting of Theorem 2.1. Let ¢ be a
sufficiently small positive constant and assume that n is
sufficiently large. Let A satisfy logn < A < en'/2, let
T € T(n,A), and let G be an (n, d)-expander with

d = TAn?/3.

Recall that m := m(n,d) = [g5]. Lemma 4.1 tells us
that T contains a bare path on 50Am vertices or has at

least 25Am? leaves, since

2(50Am + 1)(25Am?* — 1) < n

for sufficiently large n and small ¢. In fact, we even have
that
2(50Am + 1)(25Am? — 1) < n/A

for sufficiently large n. Therefore, if L is the set of
leaves in T', then the tree T — L still contains a bare
path on 50Am vertices or has at least 25Am? leaves,
since |T'— L| > n/A. Based on this observation, we
consider three cases.

Case 1. T contains a first level bare path on at
least 50Am vertices.

In this case, we use Corollary 3.1 to first embed
all of T in G except for the bare path (whose removal
splits T into two rooted trees). Then we apply Corol-
lary 3.2 to also embed the bare path by connecting the
two roots by a path covering all the unused vertices
in G. The details of this argument are given in Propo-
sition 4.1.

Case 2. T has at least 25Am? first level leaves
and contains a second level bare path on at least 50Am
vertices.

In this case, T" has many leaves. We use Corol-
lary 3.1 to first embed all of T in G except for the
second level bare path and the leaves. Then we use
Corollary 3.2 to embed the bare path. Finally, we use
Lemma 3.4 to embed the leaves of T'. Note that once T'
without the leaves is embedded, we know which vertices
in G are the images of the parents of the leaves of T.
We call these vertices in GG the portals of the leaves.
In order to embed the leaves, we need to find a star
matching in G between the set of portals and the set
of vertices which remain free after the embedding of T
without the leaves. However, if we are not careful, then
after embedding T without the leaves (and thus fixing
the set of portals), some of the remaining vertices of G
may be not connected to any of the portals. As these
vertices would prevent us from finding a star matching,
we call them exceptional vertices. We solve this prob-
lem by forcing the second level bare path to cover all
exceptional vertices. The details of this argument are
given in Proposition 4.2.

Case 3. T has at least 25Am? first level leaves and
at least 25Am? second level leaves.

In this case, T" has many (first level) leaves that
are attached to second level leaves. We again use
Corollary 3.1 to embed T without these two levels of
leaves and then embed the leaves of each level separately
using Lemma 3.4. Here, there again may exist a set of
exceptional vertices which can spoil the embedding of
the second level leaves. We apply a similar argument as
in Case 2, only this time the original leaves of T take
the role that the second level bare path played before,
that is, cover the set of exceptional vertices. The details
for this argument are given in Proposition 4.3.



In the remainder of this section we show three
results (Proposition 4.1, Proposition 4.2, and Propo-
sition 4.3) which cover the cases discussed above. The-
orem 2.1 (Tree-Universality) is a direct consequence of
these three propositions.

PROPOSITION 4.1. (CASE 1) The statement of Theo-
rem 2.1 holds with T (n,A) restricted to trees that con-
tain a first level bare path on at least 50Am vertices.

Proof. We construct an embedding ¢ of T onto G as
follows. We split T into two parts and embed them
consecutively. These parts are a (first level) bare path P
on exactly 50Am vertices (chosen as a subpath of a
longest bare path in 7') and, after removing P, the
remaining forest F := T[V(T) \ V(P)] on n — 50Am
vertices which consists of two trees. Note that we have
[V(F)| > |V(P)| since 50Am < n/3 for sufficiently
large n. Let sp and tp be the two end-vertices of P
and let sp and tp, respectively, be their two neighbors
in F. We first find an embedding ¢r of the forest F
in G and then we will find an embedding ¢p of the
path P in G[V \ ¢p(F)]. In this, we make sure
that {¢p(sp), pr(sr)} and {pp(tp), or(tr)} are edges
in G.

We start by partitioning V' into Urp and Up which
(partially) host the embeddings of F and P. For this,
we apply Lemma 3.3 (Partition Lemma) to partition V'
into two sets Up and Up with |Up| = |[V(F)| + 4Am
and |Up| = |V(P)| — 4Am. Note that Ur and Up are
each of size at least 20Am. Since

el U]
on  — 10m
the prerequisites of Lemma 3.3 are satisfied. Thus,
G|Ur] is a (|Up|,2A)-expander and, for every set Wp
with Up C Wp C V, G[Wp] is a (|Wp|,2A)-expander.
Now, we turn to the actual constructions of ¢
and pp. First, we determine ¢p. By Corollary 3.1,
there exists an embedding ¢r of F in G[Ur]. Note
that since this result only allows us to embed almost
spanning trees, Ur was chosen to be somewhat larger
than |V (F)|.
Next, we move the unused 4Am vertices of Up
to Up and embed P by applying Corollary 3.2.
Let Wp := V \ pr(F). Since Up C Wp, we already
know that G[Wp] is a (50Am,2A)-expander. More-
over, because of Lemma 3.3 (Partition Lemma), we are
able find two (distinct) vertices v € Ng(pr(sp)) NUp
and w € Ng(pp(tr)) N Up to which we embed sp
and ¢p, respectively. Since 2A > logn, G[Wp]| contains
a Hamilton path connecting v and w by Corollary 3.2.
Let ¢p be the embedding of the bare path P to this
Hamilton path. This concludes the construction of ¢
and the proof of the proposition.

> 2A (> 2logn),

PROPOSITION 4.2. (CASE 2) The statement of Theo-
rem 2.1 holds with T (n, A) restricted to trees that have
at least 25Am? first level leaves and contain a second
level bare path on at least 50Am vertices.

Proof. Let L C V(T) be the set of (first level) leaves
of T. By the assumptions of the proposition, we have
|L| > 25Am?. Let K be the set of neighbors of the
leaves in T, that is, K = Np(L). Since T contains a
second level bare path on at least 50Am vertices, we
can find two vertex-disjoint second level bare paths on
exactly 25Am vertices in T (e.g., two subpaths of a
longest bare path). Of these two second level bare paths,
let P be the one that contains at most |K|/2 vertices
of K.

Let F be the forest T[V(T)\ (LUV (P))]; note that
F consists of two trees. Like in Proposition 4.1, let sp
and tp be the end-vertices of P and let sp and tg be
their respective neighbors in F. We partition K into
the two parts Kp := KNV(F) and Kp := KNV(P).
Since each vertex in K is adjacent to at most A vertices
in L, we have |K| > 25m?. Moreover, |Kr| > |Kp| by
the choice of P and therefore

(4.3) |Kp| > m?.

Similarly as in Proposition 4.1, we construct an em-
bedding ¢ of T in G in several steps. First, we con-
struct an embedding pp of the forest F', then an em-
bedding ¢ p of the path P, and finally an embedding ¢,
of the leaves L. In this, we make sure that the images
of sp and tp are adjacent to those of sy and tp, respec-
tively, and that the image of each leaf in L is adjacent
to the image of its respective neighbor in K.

Again, we partition the vertices of G into sets
which partially host the embeddings of F', P, and L.
For this, we apply Lemma 3.3 (Partition Lemma) to
partition V' into the three parts Up, Up, and Up
satisfying |Up| = |V(F)| + 4Am, |Ur| = |L| + Am,
and |Up| = |V(P)| — 5Am. Then U and Up are each
of size at least 20Am and Uy, is of size at least 20Am?.
Hence, the subgraph G[Ur] is a (|Up|,2A)-expander
and also G[Wp] is a (|Wp|,2A)-expander for every
set Wp with Up C Wp C V. Moreover, |[Ng(X)NUL| >
2Am|X]| holds for every set X C V with 1 < |X| < m.
Therefore,

(4.4) |Ne(X)NWi| > [Ne(X)NUL| — Am > A|X|

holds for every set Wy, of size |L| with W C U and
for all sets X C V' \ Wy, with 1 < |X]| < m.

In order to construct ¢, we first apply Corollary 3.1
to find an embedding ¢ of F in Up. Let Wg := o(F).
Later, we move the remaining 4Am vertices in Up \ W
to Up.



Next, we embed the second level bare path P.
However, before doing so, we identify the exceptional
set of vertices Z C Up which might later spoil the
application of Lemma 3.4 for the embedding of L. This
set, denoted by Z, contains all vertices in Uy, that have
fewer than m neighbors in ¢(K), the set of portals. At
this point of the construction of ¢, we only know (K r),
which is equal to (K ). However, since |Kr| > |Kp|
and therefore |pp(Kp)| > |p(K)|/2, we may already
define Z.

Let Z := {u € U | |Ng(u) N pr(KFr)| < m}.
We already know that |o(Kr)| = |Kr| > m?. Thus,
since G is an (n,d)-expander, we have by Lemma 3.2
that |Z] < m < Am. Let Wi, C Up, be an arbitrary
set of size |L| that contains no vertex in Z. In the
third step of the embedding, W will be the image
of L under ¢r. Note that however we embed Kp, this
choice of W, ensures that |Ng(u) N p(K)| > m holds
for every vertex u € Wr. In fact, the only reason why
we separated the embedding of the second level bare
path P from the embedding of F is to take care of the
exceptional set 7.

Now, we return to the embedding ¢p of the sec-
ond level bare path P. So far, we constructed the em-
bedding ¢ of F to the set Wr C Up of size |V (F)|
and reserved the set Wy C Uy of size |L| for the
embedding ¢ of L. Let Wp = V \ (Wp U Wp).
Then |Wp| = |P| and we have already seen that G[Wp]
is a (|[Wp|,2A)-expander. Moreover, as in the proof of
the previous proposition, we can choose two distinct ver-
tices v € Ng(prp(sp)) NUp and w € Ng(vr(tr)) NUp
as the images of sp and tp in @p, respectively. After-
wards, we define pp by embedding P onto a Hamilton
path between v and w in G[Wp] given by Corollary 3.2.

Finally, we construct an embedding ¢; of L by
applying Lemma 3.4. At this point, the embedding of K
is already given by the embeddings ¢r of Kr and ¢p
of Kp. Thus, it suffices to verify that the conditions of
Lemma 3.4 are satisfied. Condition (i) holds by (4.4),
condition (ii) holds since G is an (n,d)-expander, and
condition (iii) holds since we excluded Z from U, when
choosing Wy. Thus, we find an embedding ¢y of L
to G that respects the edges between K and L in T.
This concludes the construction of ¢ and the proof of
the proposition.

PROPOSITION 4.3. (CASE 3) The statement of Theo-
rem 2.1 holds with T (n, A) restricted to trees that have
at least 25Am? (first level) leaves and at least 25Am?
second level leaves.

Proof. Let L' be the set of first level leaves of T and M’
be the set of second level leaves of T, that is, the set
of leaves of T[V(T) \ L]. By the assumptions of the

proposition, |L'| > 25Am? and |M'| > 25Am?. Note
that every second level leaf v € M’ has at least one first
level leaf attached to it since otherwise v would have
been in L’ to begin with.

As in the proof of Proposition 4.2, we split T" into
three parts. Let M be an arbitrary subset of M’ of
size exactly 25Am?2, let L := Np(M) N L’ be the set of
first level leaves with neighbors in M, and let F' be the
induced subtree F':=T[V(T) \ (LU M)].

Let K := Np_p, (M) be the neighbors of the second
level leaves M in T without the first level leaves.
Then |K| > 25m?. Note that by definition M is the
set of portals of L, that is M = Np(L). Also note
that |[M U L| < 25A2m? and thus |V (F)| > 16Am for
sufficiently large n.

We construct an embedding ¢ of T in G by defining
three partial embeddings ¢p, @, and ¢ of F, M,
and L, respectively. As before, we make sure that these
embeddings respect the edges linking K to M and M
to L in T. A crucial step in this process will be again
to handle the exceptional set Z that might spoil the
embedding of M. In the proof of Proposition 4.2, we
forced Z to be covered by the image of the second level
path, now we will force Z to be covered by the images
of L.

We again apply Lemma 3.3 (Partition Lemma)
and partition V into three parts Up, Ups, and Up
satisfying |Up| = |V(F)| + 4Am, |Uy| = | M| + Am,
and |Up| = |L| — 5Am. This implies that Ug is of size
at least 20Am and that Uy and Uy, are each of size at
least 20Am?. Hence, G[UF] is a (|Ur|,2A)-expander.
Moreover, for every set Wy, of size |L| with Uy, C Wy,
we have for all sets X C V with 1 < |X| < m, that
(4.5)  |Nag(X)NWr| > |Na(X)NUL|l > 2Am|X|
and for every set Wy, of size |M| with Wy C Uy we
have for all sets X C V with 1 < |X| < m, that

(4.6) | Na(X)NWar| > [Ne(X)NUnr|—Am > Am|X].

The construction of the embedding ¢ closely fol-
lows that of the previous proposition. We first apply
Corollary 3.1 to find an embedding ¢ of F in Up.
Let Wg := pp(F). We later move Ur \ Wr to Up.

Next, we give an embedding ¢j); of M. For this,
let Z be the set of exceptional vertices in M, that
is, let Z := {u € Uy | |[Ng(u) Nor(K)| < m}.
Then |Z| < m by Lemma 3.2. Let Wy be an arbitrary
subset of Ups \ Z of size | M| and let W, be the set given
by V' \ (Wg U Wy). Then, by the choice of W), and
by (4.5) and (4.6), we can apply Lemma 3.4 to find an
embedding s of M in Ujp; which respects the edges
between K and M in T.



Finally, we give an embedding ¢ of L. Because
of (4.5) and (4.6), Lemma 3.4 also hold for L. However,
this time there is no exceptional set, since (4.6) guaran-
tees the minimum degree constraint (iii) in Lemma 3.4.
Hence, we can embed L such that the edges between M
and L in T are respected. This concludes the proof of
Proposition 4.3 and hence of Theorem 2.1.

5 Conclusion

We have shown that, for sufficiently large n, ev-
ery (n,7n?/® max{A,logn})-expander is universal for
T(n,A), the class of all n-vertex trees with maxi-
mum degree at most A. This implies that binomial
random graphs and random regular graphs with suf-
ficiently large (average) degree are a.a.s. universal for
7T (n,A). Furthermore, we obtain constructions of lo-
cally sparse 7 (n, A)-universal graphs. We have also dis-
cussed 7 (n, A)-universality in the setting of the Maker-
Breaker game.

One major open problem is to establish the smallest
value of p for which G(n,p) becomes a.a.s. universal
for T(n,A). Here, our work leaves a substantial gap
of n?/3 compared to the lower bound in [36]. Also,
it would be interesting to see why the corresponding
lower bound for (n, d)-expanders in Theorem 2.5 differs
so drastically from that in [36] and to possibly find
pseudo-random sufficient conditions which do not yield
this discrepancy. In the spirit of Theorem 2.4, it would
be nice to see constructions of tree-universal graphs
which are triangle-free or even have large girth. Finally,
although our embedding results are (for the most part)
constructive, they do not give an efficient algorithm
to find the embeddings. Here, an algorithmic version
would be also desirable.
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