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Abstract

We establish the existence of the phase transition in site percolation on pseudo-
random d-regular graphs. Let G = (V,E) be an (n, d, λ)-graph, that is, a d-regular
graph on n vertices in which all eigenvalues of the adjacency matrix, but the first
one, are at most λ in their absolute values. Form a random subset R of V by
putting every vertex v ∈ V into R independently with probability p. Then for any
small enough constant ε > 0, if p = 1−ε

d , then with high probability all connected
components of the subgraph of G induced by R are of size at most logarithmic in
n, while for p = 1+ε

d , if the eigenvalue ratio λ/d is small enough as a function of ε,
then typically R contains a connected component of size at least εn

d and a path of

length proportional to ε2n
d .

1 Introduction and main results

Let G = (V,E) be a d-regular graph on n vertices. Form a random vertex subset R ⊆ V
by putting every vertex v ∈ V into R independently with probability p. What can be said
about the properties of the random subgraph of G induced by R? How large a connected
component does it typically contain? How long a path can one find with high probability
(whp) in G[R]?

Of course, the above model is nothing else but the site percolation, sometimes also
called the vertex percolation, on G. Although it is perhaps somewhat less popular than
its sister model of bond (edge) percolation, it has been quite extensively studied for various
graphs and probability regimes.
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A well tested intuition suggests that interesting things start happening when the ex-
pected vertex degree in the so formed random subgraph crosses the value of 1. This should
correspond to the vertex probability p = 1

d
. For this regime, we expect the cardinality

of R to be about n/d, and it is thus natural so scale the obtained structures relative
to this size. There are several results of this type, showing the typical emergence of a
connected component C whose size is proportional to n/d for several concrete graphs, like
the d-dimensional cube Qd ([4], [9]), or the n-dimensional Hamming torus [10] (in fact,
statements much more accurate than those to be presented here have been obtained for
these models). We however aim to obtain a result applicable to a large class of d-regular
graphs.

Certainly some further assumptions on the ground graph G have to be made if we
aim to get a positive result, that is, to claim the typical existence of a large connected
component spanned by R. Indeed, we can start with the graph G being a collection of
vertex disjoint cliques of size d + 1 — in which case of course all connected components
in R are of size at most d+ 1, much smaller than n/d for small degree d = d(n). Thus, it
is natural to impose some restrictions on the edge distribution of G.

Here we assume that G is a pseudo-random graph. Informally speaking, a pseudo-
random graph is a graph G = (V,E), whose edge distribution resembles closely that of a

truly random graph G(n, p) of the same edge density p = 2|E|
|V | . There are several possible

models of pseudo-random graphs commonly used. In this paper we adapt the notion of
(n, d, λ)-graphs. A graph G is an (n, d, λ)-graph if G has n vertices, is d-regular, and all
eigenvalues of the adjacency matrix of G, but the first one, are at most λ in their absolute
values. (We assume that the eigenvalues of (the adjacency matrix of) G are ordered in
the non-increasing order λ1 > . . . > λn. The largest eigenvalue of any d-regular graph is
easily seen to be d, sometimes referred to as the trivial eigenvalue of G.) The reader can
consult the survey [7] for an extensive discussion of this notion.

Results about bond (edge) percolation on (n, d, λ)-graphs have appeared in [6], [8].
To the best of our knowledge, the present paper is the first one to address the general
setting of site percolation on (n, d, λ)-graphs, or on some other general class of regular
pseudo-random graphs.

It is well known that the pseudo-randomness of the edge distribution in (n, d, λ)-graphs
can be controlled through the so called eigenvalue ratio λ/d — the smaller the ratio is the
closer the edge distribution of G approaches that of a random graph with edge probability
p = d

n
. We will state a standard result establishing this connection later (Lemma 2.1).

Equipped with this formalism, we can now state our main results.

Theorem 1. Let ε > 0. Let G = (V,E) be a graph of maximum degree at most d on n
vertices. Form a random subset R ⊆ V by including each vertex v ∈ V in R independently
and with probability p. If p = 1−ε

d
, then whp all connected components of the induced

subgraph G[R] are of size less than 4
ε2

lnn.

Theorem 2. For every small enough ε > 0 there exists δ > 0 such that the following is
true. Let G = (V,E) be an (n, d, λ)-graph. Assume that d = o(n) and λ

d
< δ. Let p = 1+ε

d
.
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Form a random subset R ⊆ V by including each vertex v ∈ V in R independently and
with probability p. Then whp R contains a path of length at least ε2n

5d
in G.

Theorem 3. For every small enough ε > 0 there exists δ > 0 such that the following is
true. Let G = (V,E) be an (n, d, λ)-graph. Assume that d = o(n) and λ

d
< δ. Let p = 1+ε

d
.

Form a random subset R ⊆ V by including each vertex v ∈ V in R independently and
with probability p. Then whp the induced subgraph G[R] has a connected component of
size at least εn

d
.

Some comments are in order here. First, observe that Theorem 1 holds unconditionally,
i.e., without any further assumptions on the edge distribution of G — it applies to every
graph G of maximum degree d. This means that if the vertex probability p = p(d) is a
notch below the critical value 1/d, then even for the best ground graphs G the random
induced subgraph G[R] typically shatters into relatively small pieces. On the positive
side, for p(d) above the critical probability and assuming that G is pseudo-random, R
contains typically a component of size linear in |R|, and even a path of linear size. This
phenomenon can be viewed as the phase transition in this site percolation model. It is
pretty much in line with the familiar situation in the random graph G(n, p). There, for
p = 1−ε

n
all components are of size Oε(log n), while for p = 1+ε

n
, there is whp a connected

component of size linear in n. This is, in one sentence, the essence of the fundamental
discovery of Erdős and Rényi [5]. As for paths, Ajtai, Komlós and Szemerédi proved some
20 years later [1] that G(n, p) with p = 1+ε

n
contains whp a path of length linear in n

as well (see [8] for a recent simple proof of this fact). Actually, even the order of the
dependence on ε in our theorems matches the corresponding results for G(n, p).

Let us say a few general words about the proofs. We use the Depth First Search
algorithm (DFS) for all three theorems above. We run the DFS algorithm on our random
instance, allowing it to uncover the random set R along the algorithm execution. In this
respect, our arguments are somewhat similar to those of [8], with the most substantial
difference being that in our setting the algorithm exposes random decisions on the vertices
of G, rather than its edges as in [8]. Another key ingredient in the proof is an estimate of
the number of non-expanding sets of a given size in an (n, d, λ)-graph; here we are pretty
much inspired by a similar argument from the paper of Alon and Rödl [2].

The notation we use here is fairly standard. In particular, for a graph G = (V,E) and
disjoint vertex subsets U,W ⊂ V , we denote by NG(U) the external neighborhood of U ,
i.e., NG(U) = {v ∈ V \ U : v has a neighbor in U}; let also eG(U), eG(U,W ) denote the
number of edges of G spanned by U , between U and W , resp. For v ∈ V and U ⊆ V , let
d(v, U) be the number of neighbors of v in U . If the graph G is clear from the context, we
often allow ourselves not to put it in the indices of the above notation. We omit rounding
signs occasionally for the the sake of clarity of presentation.
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2 Tools

2.1 Eigenvalues and edge distribution

We will apply the following standard estimate (see, e.g., Chapter 9 of [3]), sometimes
called the expander mixing lemma; it postulates that the edge distribution in an (n, d, λ)-
graph G with small eigenvalue ratio λ/d is quite close to that of a truly random graph of
edge density d/n. In fact this will be the only tool about graph eigenvalues used in our
proof.

Lemma 2.1. Let G = (V,E) be an (n, d, λ)-graph. Then for any pair of subsets B,C ⊆ V ,∣∣∣∣e(B,C)− d

n
|B||C|

∣∣∣∣ 6 λ
√
|B||C| , (1)

where e(B,C) denotes the number of ordered pairs (u, v) with u ∈ B, v ∈ C such that
(u, v) ∈ E.

Corollary 2.2. Let G = (V,E) be an (n, d, λ)-graph and let α > 0. Let B ⊆ V be a
vertex subset of cardinality |B| > n

2
. Define

C =

{
v ∈ V : d(v,B) 6 (1− α)

|B|d
n

}
.

Then |C| 6 2
α2

(
λ
d

)2
n.

Proof. Observe that by the definition of C we have e(B,C) 6 (1−α) |B||C|d
n

. On the other

hand, by (1) e(B,C) > d
n
|B||C| − λ

√
|B||C|. Comparing we derive:

d

n
|B||C| − λ

√
|B||C| 6 (1− α)

|B||C|d
n

,

and from here

|C| 6 n2

|B|
· 1

α2

(
λ

d

)2

6
2

α2

(
λ

d

)2

n

(the last inequality is due to the assumption |B| > n
2
), and the claim follows.

2.2 Depth first search on random vertex subgraphs

The Depth First Search, or DFS for brevity, is a standard graph search algorithm, usually
used to uncover the connected components of an input graph G = (V,E). In this paper
we use it in a somewhat unusual context, revealing also a random subset R ⊂ V of the
vertex set V as the algorithm proceeds. Here is a brief description of the algorithm. It
maintains and updates a partition of V into four sets of vertices, letting S be the set of
vertices whose exploration is complete, T be the set of unvisited vertices, U be the set of
presently processed vertices, where the vertices of U are kept in a stack (the last in, first
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out data structure), and finally W be the set of vertices discovered to fall outside of the
random set R. It is also assumed that some order σ on the vertices of G is fixed, and the
algorithm prioritizes vertices according to σ. The algorithm starts with S = U = W = ∅
and T = V , and runs till U ∪ T = ∅. At each round of the algorithm, if the set U is
non-empty, the algorithm queries T for neighbors of the last vertex v that has been added
to U , scanning these neighbors according to σ. If v has a neighbor u in T , the algorithm
flips a coin that comes heads with probability p. If the result of this coin flipping is
positive, the algorithm deletes u from T and inserts it into U ; otherwise u moves to W .
If v does not have a neighbor in T , then v is popped out of U and is moved to S. If U is
empty, the algorithm chooses the first vertex u of T according to σ, deletes it from T , flips
a coin for u and either pushes it into U or moves to W based on the result of this coin
flipping. Once the algorithm execution is complete, the set S coincides with the random
set R, while W is its complement W = V \R.

Observe that the DFS algorithm starts revealing a connected component C of the
induced subgraph G[R] at the moment the first vertex of C gets into (empty beforehand)
U and completes discovering all of C when U becomes empty again. We call a period of
time between two consecutive emptyings of U an epoch, each epoch corresponding to one
connected component of G[R].

The following basic properties of the DFS algorithm will be useful to us:

• at any stage of the algorithm, it has been revealed already that the graph G has no
edges between the current set S and the current set T , and thus NG(S) ⊆ U ∪W ;

• the set U always spans a path (indeed, when a vertex u is added to U , it happens
because u is a neighbor of the last vertex v in U ; thus, u augments the path spanned
by U , of which v is the last vertex).

We will run the DFS on an n-vertex input G, fixing some order σ on V (G). When the
DFS algorithm is fed with a sequence of i.i.d. Bernoulli(p) random variables X̄ = (Xi)

n
i=1,

so that it gets its i-th query answered positively if Xi = 1 and answered negatively
otherwise, the final subset S of the algorithm is distributed exactly like a random subset
R, formed by including each vertex of V independently and with probability p. Thus,
studying the structure of G[R] can be reduced to studying the properties of the random
sequence X̄ — a much more accessible task.

2.3 Concentration of random variables

As we indicated, our argument allows to study the properties of a random vector X̄ =
(Xi)

n
i=1, instead of studying directly the subgraph of G, spanned by a random subset R.

Since for a subset I ⊆ [n], the sum
∑

i∈I Xi is distributed binomially with parameters |I|
and p, we can use standard large deviation estimates for binomial random variables. In
particular, we have:

Lemma 2.3. Let ε > 0 be a small enough constant. Consider the sequence X̄ = (Xi)
n
i=1

of i.i.d. Bernoulli random variables with parameter p. Assume d = o(n).
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1. Let p = 1−ε
d

. Let k = 4
ε2

lnn. Then whp there is no interval of length kd in [n], in
which at least k of the random variables Xi take value 1.

2. Let p = 1+ε
d

. Then whp
∑ε3n

i=1Xi 6 2ε3n
d

.

3. Let p = 1+ε
d

. Then whp
∑εn

i=1Xi 6 2εn
d

.

4. Let p = 1+ε
d

. Then whp for every ε3n 6 t 6 εn,
∑t

i=1Xi >
(1+ 3ε

4 )t
d

.

Proof. (1) For a given interval I of length kd in [n], the sum
∑

i∈I Xi is distributed
binomially with parameters kd and p. Applying the standard Chernoff-type bound (see,
e.g., Theorem A.1.11 of [3]) to the upper tail of Bin(kd, p), and then the union bound,
we see that the probability of the existence of an interval violating the assertion of the
lemma is at most

(n− kd+ 1)Pr[B(kd, p) > k] < n · e−
ε2

3
(1−ε)k < n · e−

ε2(1−ε)
3

4
ε2

lnn = o(1) ,

for small enough ε > 0.

(2) This follows by applying Chernoff to the upper tail of
∑ε3n

i=1Xi ∼ Bin
(
ε3n, 1+ε

d

)
.

(3) This follows by applying Chernoff to the upper tail of
∑εn

i=1Xi ∼ Bin
(
εn, 1+ε

d

)
.

(4) Partition [εn] into 1/ε3 intervals Ij of length ε4n each. Applying Chernoff to the lower
tails of the interval sums

∑
i∈Ij Xi and then the union bound, we derive that whp for all

j ∑
i∈Ij

Xi >
ε4(1 + ε)n

d
− ε6n

d
,

say. Assume this to be true. Then for ε3n 6 t 6 εn,

t∑
i=1

Xi >

⌊
t

ε4n

⌋ (
ε4(1 + ε)n

d
− ε6n

d

)
>

(
1 + 3ε

4

)
t

d
.

3 Proofs

3.1 Proof of Theorem 1

Assume to the contrary that R contains a connected component C with at least k = 4
ε2

lnn
vertices. Let us look at the epoch of the DFS when C was created. Consider the moment
inside this epoch when the algorithm found the k-th vertex of C and has just moved it
to U . Denote C0 = (S ∪ U) ∩ C at that moment. Then |C0| = k, the subgraph G[C0] is
connected and thus spans at least k − 1 edges. Notice that

|NG(C0)| 6 eG(C0, V − C0) =
∑
v∈C0

dG(v)− 2eG(C0) 6 kd− 2(k − 1) .
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The algorithm got exactly k positive answers to its queries to random variables Xi during
the epoch, with each positive answer being responsible for revealing yet another vertex
of C0. At this moment during the epoch only the vertices in C0 and those neighboring
them in G have been queried, and the number of these vertices is therefore at most
k+ kd− 2(k− 1) 6 kd. It thus follows that the sequence X̄ contains an interval of length
at most kd with at least k 1’s inside — a contradiction to Property 1 of Lemma 2.3.

3.2 Proofs of Theorems 2 and 3

The proofs of Theorems 2 and 3 are based on the same lemma we present and prove
next. Observe that in an (n, d, λ)-graph G = (V,E), every vertex subset S expands itself
outside by at most the factor of d. The assumption λ/d 6 δ we put on the eigenvalue
ratio is fairly mild (indeed, best pseudo-random graphs are known to satisfy λ = Θ(

√
d),

see, e.g., [7]), and cannot guarantee such expansion for all sets. The key lemma below
asserts that sets S ⊂ V of relevant size |S| = Θ(n/d), not expanding themselves by nearly
the factor of d, are very rare in G even under this weak eigenvalue ratio assumption, and
thus are unlikely to fall into a random subset R of size proportional to n/d.

Lemma 3.1. For every 0 < α0 < 1, 0 < c 6 1/3 there exists δ > 0 such that the following
is true. Let G = (V,E) be an (n, d, λ)-graph. Assume that d = o(n) and λ

d
< δ. Let p 6 2

d
.

Form a random subset R ⊆ V by including each vertex v ∈ V in R independently and
with probability p. Then whp R does not contain a set S with |S| = m, cn

d
6 m 6 n

3d
,

such that |NG(S)| < (1− α0)
(
dm− d2m2

2n

)
.

Proof. A set S ⊆ V , |S| = m, is called non-expanding if |NG(S)| < (1−α0)
(
dm− d2m2

2n

)
,

and is expanding otherwise. We estimate from above the number of non-expanding m-sets

in G. Define 0 < α < 1 by 1 − α0 = (1−α)2
1+α

. (The function f(x) = (1−x)2
1+x

is monotone
decreasing in the interval [0, 1] with f(0) = 1, f(1) = 0, so α = α(α0) as above is indeed
well defined.) Consider the number of ways to choose a sequence τ = (v1, . . . , vm) of
distinct vertices of G such that the union S of the vertices in the sequence forms a non-
expanding set. Suppose we have chosen the first i−1 vertices of τ , let Si−1 = {v1, . . . , vi−1},
and Ni−1 = NG(Si−1). A vertex v is bad with respect to the prefix (v1, . . . , vi−1) if v has
at most (1−α) d

n
(n− (d+ 1)(i− 1)) neighbors in V − (Si−1∪Ni−1), and is good otherwise.

Each good vertex vi appended to Si−1 increases substantially the external neighborhood
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of the prefix. Suppose that τ has at most αm bad vertices. Then

|NG(S)| = |NG(Sm)| >
m∑

i=αm+1

(1− α)
d

n
(n− (d+ 1)(i− 1))−m

> (1− α)2dm− (1− α)d(d+ 1)

n

m∑
i=αm+1

(i− 1)−m

> (1− α)2dm− (1− α)2(1 + α)d(d+ 1)m2

2n
−m

> (1− α)2dm

(
1− (1 + α)dm

2n

)
− (1 + α)dm2

2n
−m.

(We subtracted m in the first line above to account for the the m vertices of S itself, not
contributing to the external neighborhood of S.) We need to verify that S is an expanding

set. Observe that (1+α)dm2

2n
< 2dm2

2n
6 m

3
< m, due to our assumption on m. Also,

(1− α)2dm

(
1− (1 + α)dm

2n

)
− (1− α0)dm

(
1− dm

2n

)
= (1− α)2dm

(
1− (1 + α)dm

2n
−

1− dm
2n

1 + α

)

=
(1− α)2

1 + α
dm

(
1 + α− (1 + α)2

dm

2n
− 1 +

dm

2n

)
= (1− α0)αdm

(
1− (2 + α)

dm

2n

)
.

Since dm
2n

6 1
6

and 2 +α < 3, the expression above is at least (1−α0)αdm/2 > 2m, for
large enough d, the latter can be guaranteed by our choice of δ. (Here is a simple argument
showing that λ cannot be arbitrarily small. Let G = (V,E) be a d-regular graph on n
vertices, 1 6 d 6 n− 1, and let λ1 > . . . > λn be the eigenvalues of the adjacency matrix
A of G. It is well known and easy that λ1 = d,

∑n
i=1 λ

2
i = Tr(A2) = 2|E(G)| = dn. This

implies that λ > ((dn− d2)/(n− 1))1/2 > 1. Much better lower bounds on λ are known.)
It follows that in this case the set S is indeed expanding. Hence, in order to produce
a non-expanding set S, the sequence τ should contain at least αm bad vertices. Let us
zoom in at the i-th vertex vi of τ . Given v1, . . . , vi−1, the set Si−1 ∪Ni−1 has obviously at
most (i− 1)(d+ 1) < m(d+ 1) < n/2 vertices. Then by Corollary 2.2 the number of bad

choices for vi is at most 2
α2

(
λ
d

)2
n 6 2

α2 δ
2n. Therefore the number of sequences τ with at

least αm bad vertices is at most(
m

αm

)
·
(

2

α2
δ2n

)αm
nm−αm 6

[( e
α

)α
·
(

2

α2
δ2
)α
· n
]m

.

Dividing by m! to get the number of unordered non-expanding m-sets, and then multi-
plying by pm we get that the probability that R contains a non-expanding m-set is at
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most [(
e
α

)α · ( 2
α2 δ

2
)α · np]m

m!
6

[(
2eδ2

α3

)α
· enp
m

]m
. (2)

Recall that we assumed p 6 2
d

and m > cn
d

, implying np
m

6 2
c
. Choosing δ > 0 from the

lemma statement small enough guarantees that the expression in (2) is, say, at most 2−m.
Applying the union bound over all possible values of m establishes the lemma.

Proof of Theorem 2. Set α0 = ε
25

, c = ε, and choose δ in the theorem statement to be
δ(α0, c) from Lemma 3.1. Run the DFS algorithm of G and feed it with a sequence X̄ =
(Xi)

n
i=1 of i.i.d. Bernoulli(p) random variables. Assume that X̄ satisfies the properties

stated in Lemma 2.3. We claim that after the first εn vertex queries (of the type “Whether
v ∈ R?”) of the DFS algorithm, the set U contains at least ε2n

5d
vertices, with the contents

of U forming a path of desired length at that moment. At that point, all εn queried vertices
reside in S ∪ U ∪W , implying |S ∪ U ∪W | = εn. Also, each positive answer to a query

put a vertex in U (that possibly has migrated further to S). Hence |S ∪ U | > ε(1+ 3ε
4 )n
d

,

by Property (4) of Lemma 2.3. Denote |S| = m. If |U | 6 ε2n
5d

, then it follows that

m >
ε
(
1 + 3ε

4

)
n

d
− ε2n

5d
=

(
ε+ 11ε2

20

)
n

d
.

Also, by Property (3) of Lemma 2.3, m 6 2εn
d

. So Lemma 3.1 is applicable, and we derive:

|NG(S)| > (1− α0)

(
dm− d2m2

2n

)
> (1− α0)

(
ε+

11ε2

20

)(
1− ε

2
− 11ε2

40

)
n

=
(

1− ε

25

)(
ε+

ε2

20
−O(ε3)

)
n

> εn ,

for small enough ε > 0 — a contradiction, since, as we stated earlier, at any point of the
algorithm execution we have NG(S) ⊆ U ∪W , and |U ∪W | 6 εn.

Remark: Since by (1) there is an edge between any two disjoint vertex subsets B,C of
an (n, d, λ)-graph G, as long as |B|, |C| > λn

d
, we obtain immediately that for λ/d small

enough as a function of ε, the random set R contains also a cycle of length proportional
to ε2n

d
. Indeed, take a path P of length ε2n

5d
, whose typical existence is guaranteed by

Theorem 2, and let B,C be the first, resp. last, ε2n
15d

vertices of P . Then G has an edge
between B and C, this edge obviously closes a cycle C with the corresponding part of P ;
the length of this cycle is proportional to ε2n

d
.

Proof of Theorem 3. Set α0 = ε
5
, c = ε3, and choose δ in the theorem statement to be

δ(α0, c) from Lemma 3.1. Run the DFS algorithm of G and feed it with a random binary
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sequence X̄. Assume that X̄ satisfies the properties stated in Lemma 2.3. Let us focus
on the situation after the first εn vertex queries of the algorithm. We claim that at this
moment we are in the midst of processing a connected component of G[R] of size at least
εn
d

. Assume that at some moment t ∈ [ε3n, εn] the set U becomes empty. We have then:

|S ∪W | = t and m := |S| =
∑t

i=1Xi >
(1+ 3ε

4 )t
d

, by Property (4) of Lemma 2.3; also,
m 6 2εn

d
, by Property (3) of Lemma 2.3, allowing to apply Lemma 3.1. Since U = ∅, we

have now: NG(S) ⊆ W . Therefore

|W | > (1− α0)

(
dm− d2m2

2n

)
> (1− α0)

(
1 +

3ε

4

)(
1−

(
1 + 3ε

4

)
t

2n

)
t

>
(

1− ε

5

)(
1 +

3ε

4

)(
1−

(
1 +

3ε

4

)
ε

2

)
t

> t ,

for small enough ε > 0 — a contradiction. Hence U never empties in the interval [ε3n, εn].
This means that all vertices added to U during this period belong to the same connected
component C, whose epoch contains this interval; their number is

εn∑
i=ε3n

Xi >
ε
(
1 + 3ε

4

)
n

d
− 2ε3n

d
>
εn

d

(we used Property (2) of Lemma 2.3 in the estimate above.) It follows that under the above
probabilistic assumptions G[R] has a component C of at least εn

d
vertices, as claimed.

4 Concluding remarks

We have proven that in the site percolation model for an (n, d, λ)-graph G, under rather
mild assumptions on the spectral ratio λ/d, the phase transition occurs at p = 1

d
: for

p = 1−ε
d

, whp all connected components of the subgraph of G induced by a random
subset R are of size at most logarithmic in n, while for p = 1+ε

d
, the random set R spans

whp a connected component of size at least εn
d

and a path of length proportional to ε2n
d

.
Although we have established the existence of the phase transition for this model of

pseudo-random graphs in this paper, many further natural questions about site perco-
lation on pseudo-random graphs have not been resolved here, and it would be nice to
address them. Particular issues include, for the super-critical regime p = 1+ε

d
:

• the uniqueness of the giant component, bounding sizes of all other components
spanned by the random subset R;

• accurate (in ε) asymptotics of the size of the giant component in G[R];
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• upper bounding the length of a longest path/cycle spanned by R.

And of course, it would be very interesting to look into the critical regime p = 1+o(1)
d

,
aiming to try and understand the continuous evolution of the size of the giant component
spanned by R from logarithmic to linear in |R|.
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