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Abstract

A decision maker wishes to determine whether her prior probability is consistent with the beliefs of
several advisors, that are given in the form of capacities. We provide a necessary and sufficient condition
for the compatibility of such a prior probability with those capacities. The condition states that the
expected value of any (positive) random variable according to the prior probability is greater or equal
to the weighted average of the concave integral of that random variable with respect to the different
capacities. We demonstrate the usefulness of this result in a setting where an administrator is required
to form a frequency distribution based on several data sets that may include inconclusive observations.
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1 Motivation

Consider the problem of a health authority that must make a recommendation on the com-
position of viruses in the influenza vaccine. The recommendation is based on the health au-
thority’s forecast regarding the viruses that are most likely to spread in the upcoming season.
There are several health centers in different regions that collect data on patients in an attempt
to diagnose their viruses. Vaccines are known to vary in their effectiveness across seasons.1

Naturally, the health authority is able to justify its recommendation if it is supported by the
data collected by the health centers.

More generally, managers, both in the civil and in the private sectors, must often oper-
ate under uncertainty, bearing in mind that they may be held accountable for their decisions.
Therefore, it is essential for them to be able to prove that the probability that underlined their
decisions was based on all available information of all possible sources.

To study this problem, we consider an administrator who forms a probability over the
possible states of nature. In addition, there is a group of practitioners who collect relevant in-
formation on the matter under consideration. The practitioners transfer their raw data to the
administrator. The administrator will be able to establish that her probability is well-founded if
it is supported by the information available to each of the practitioners.

*A previous version was titled “Aggregating Non-Additive Beliefs”.
1The seasonal influenza vaccine is designed to protect against the three or four influenza viruses that are most

likely to spread and cause illness during the upcoming flu season. Twice a year, the World Health Organization pro-
vides recommendations on the composition of the influenza vaccine (in February for the Northern Hemisphere’s
vaccine and in September for the Southern Hemisphere’s vaccine). More than 100 national influenza centers in
over 100 countries conduct year-round surveillance for influenza that involves receiving and testing thousands of
influenza virus samples from patients and report their results to the World Health Organization. See, for example,
Osterholm et al. (2012) for an account of the effectiveness of these vaccines.
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Suppose that the practitioners’ information is given in the form of data sets containing
evidence about the states of nature that possibly occurred in each observation. In some obser-
vations it may be known which state of nature was realized, yet in others the outcome could
be ambiguous. For example, a case wherein the physician can perfectly diagnose the patient’s
condition corresponds to a single virus, whereas the outcome of cases that are only partially
diagnosed contains several possible viruses.

An observation is inconclusive if the practitioner cannot attribute it to a single state of
nature, but only to a subset of states of nature, namely events. A data set with inconclusive
observations induces a characteristic function that assigns each event with the number of times
it was known to have occurred in the data set. That is, the event {ω1,ω2} is assigned with the
number of patients for whom the practitioner’s diagnosis is inconclusive - she is able to narrow
the set of possible viruses down to ω1 and ω2, but can not determine which one is the correct
diagnosis.

A frequency in the core of the resulting cooperative game is a possible realization of the
outcomes’ distribution that is consistent with these data. If the data set includes no inconclu-
sive evidence there will be a single frequency in the core. However, if the data set contains
some inconclusive evidence then there will be several frequencies in the core, each resolving
the ambiguity differently.

The administrator could argue that her probability is well-founded if the associated fre-
quency can be decomposed into frequencies in the cores of the corresponding data set based
cooperative games. The result stated in Proposition 2 provides a sufficient and necessary con-
dition for the existence of such a justification for the administrator’s probability. The condition
can be interpreted as testing the consistency of the administrator’s probability against the raw
data in every weighted combination of events.

Jaffray (1991), Gonzales and Jaffray (1998) and Arad and Gayer (2012), had already
pointed out that imprecise statistical data generate ambiguity that is incorporated into beliefs.
In our setting, a practitioner’s characteristic function, after applying the appropriate transforma-
tion, becomes a special case of non-additive probabilities, also known as capacities. Capacities
allow individuals to express their perceived ambiguity in the problem at hand.2 Lehrer (2009)
introduced the concept of concave integral as a method of ambiguity adverse individuals to
evaluate alternatives under uncertainty based on hard facts only (the events that are known to
have occurred). Here, in order to justify her probability, the administrator needs to establish
that her probability is supported by the non-additive probabilities of the practitioners insofar as
it is a weighted average of probabilities in the cores of their capacities.

Our general result (Proposition 1) states that given a set of capacities on the same set
of states of nature (each with a non-empty core), a prior probability can be represented as a
weighted average of probabilities in the cores of the these capacities if and only if for any
positive random variable Y , the average expected value of Y according to the concave integral
across capacities is bounded from above by the expected value of Y with respect to the prior
probability. The weights, which are fixed, can represent the experience, the quality, the political
power, or the influence of the practitioners.3 Proposition 2 is a special case of this result where
the information of the practitioners is given in the form of data sets and the weights are set to
be proportional to the quality of each practitioner’s data set.

In Section 2 we introduce the necessary and sufficient condition for the aggregation of

2See Schmeidler (1989), for a characterization of a decision maker with non-additive beliefs.
3There is a large body of literature that studies the opposite problem of how to aggregate several prior proba-

bilities into a single probability. Genest and Zidek (1986), Cooke et al. (1991) and Clemen and Winkler (1999),
among others, review different aggregation methods.
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capacities evaluated according to the concave integral. In Section 3 we present the data sets’
setting and provide the result on the aggregation of data sets. In Section 4 we conclude. All
proofs are relegated to the appendix.

2 Aggregating Concave Integrals

Preliminaries

Let Ω = {ω1, ...,ωn} be a finite set of states of nature (n > 2) and let Σ be an algebra
of subsets of Ω called events which is given by the power set 2Ω. Capacities are functions
v : Ω→ R+ that satisfy (i) no empty events (v( /0) = 0) (ii) finiteness (v(Ω) is finite) and (iii)
monotonicity (S⊆ T ⇒ v(S)≤ v(T )).4

Concave integrals are integrals over capacities used to evaluate acts in a setting with non-
additive beliefs. The Concave integral was introduced by Lehrer (2009) (it was behaviorally
characterized in Lehrer and Teper (2015) and later generalized in Even and Lehrer (2014)) to
allow for the expression of ambiguity aversion even when capacities are not convex.5

The concave integral of a finite non-negative random variable Y over the capacity v is
given by

∫ cavY dv = min f∈Fv{ f (Y )} where Fv is the set of all concave and homogeneous of
degree one functions f : Rn

+→R such that ∀B ∈ Σ : f (χB)≥ v(B) where χB ∈ {0,1}n denotes
the indicator vector of B (χB

i = 1 if i ∈ B and χB
i = 0 otherwise).6,7

A decomposition of vector Y is αY : Σ→ R+ such that ∑B∈Σ αY (B)χB = Y . Denote the
set of all decompositions of Y by D(Y ) and the optimal decomposition of Y relative to capac-

ity v by α?
Y = argmaxαY∈D(Y )

{
∑B∈Σ αY (B)v(B)

}
.8 Lemma 1(i) in Lehrer (2009) states that∫ cavY dv = ∑B∈Σ α?

Y (B)v(B), namely, that the concave integral can be expressed as a linear
combination of the capacities where the weights are the corresponding optimal decomposition
elements.

A capacity v induces the cooperative game G = (Ω;v). We denote the core of the coopera-
tive game G = (Ω;v) by C(v) and the vector of length n that all its elements are ones (zeros) by
1n (0n). By the definition of concave integrals v(Ω)≤

∫ cav 1ndv. Hence, since D(1n) is the set
of all balancing weights, by the Shapley-Bondareva Theorem (Bondareva (1963) and Shapley
(1967)),

Remark 1. Let Ω = {ω1, ...,ωn} be a finite set of states of nature and let Σ = 2Ω. Let v be a
capacity on Ω.

1. C(v) is non-empty if and only if v(Ω) =
∫ cav 1ndv.

2. C(v) is empty if and only if v(Ω)<
∫ cav 1ndv.

4When more convenient, we slightly abuse notation by treating v as a length 2n vector.
5A capacity v is convex if v(S)+ v(T ) ≤ v(S∪T )+ v(S∩T ) for every two events S and T . In the Choquet

expected utility model (Schmeidler (1989)) ambiguity aversion corresponds to convex capacities, for which the
concave integral and the Choquet integral imply the same preferences over random variables (Lehrer (2009)).

6Note that this definition does not require v to be monotonic. Since the data sets in our framework may induce
non-monotonic characteristic functions we prove that the concave integral can also operate on non-monotonic
capacities.

7We use χ to denote the indicator matrix where the columns are the 2n indicator vectors. Also, all vectors are
defined to be column vectors. Row vectors are denoted by the superscript ‘T‘.

8For the non-emptyness of D(Y ) consider α such that ∀i ∈ {1, . . . ,n} : α({ωi}) = Yi and for every non-
singleton B ∈ Σ, α(B) = 0. α ∈ D(Y ) for every Y .
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Aggregation of Concave Integrals

We now extend the framework to allow for several capacities. Let, V = {v1, . . . ,vm}, be a
set of m capacities on Ω and denote V (Ω) = ∑

m
j=1 v j(Ω). These capacities represent the (non-

normalized) beliefs of m advisors who evaluate the expectation of random variables according
to the concave integral. An m-Multi-Game Ḡ is the pair Ḡ = (Ω;V ). We denote the single
cooperative game that is defined by the jth characteristic function of the Multi-Game Ḡ by
Ḡ j = (Ω;v j).

A decision maker wishes to establish that the probability that underlies her decisions is ad-
missible. Let X ∈Rn

+, such that ∑
n
i=1 Xi = ∑

m
j=1 v j(Ω), be the decision maker’s non-normalized

probability also known as a charge. We say that the decision maker’s probability belongs to
the core of a multi-game induced by V (X ∈ C(Ḡ)) if there are m finite non-negative vectors
X1, ...,Xm such that ∀ j : X j ∈ C(Ḡ j) and ∑

m
j=1 X j = X (see Section 4 in Gayer and Persitz

(2016) for a discussion on this solution concept). In this case the decision maker could claim
that her probability is well-founded as it is supported by the beliefs of the advisors. Proposition
1 is a novel result on the aggregation of concave integrals that presents a condition that can help
the decision maker to corroborate her claim.

Proposition 1. Let Ω = {ω1, ...,ωn} be a finite set of states of nature and let Σ = 2Ω. Let
V = {v1, . . . ,vm} be a set of m capacities on Ω. Let X ∈Rn

+ be a non-normalized probability on

Ω for the set V . X ∈C(Ḡ) if and only if every random variable Y ∈Rn
+ :

m

∑
j=1

∫ cav
Y dv j ≤ XT ·Y

To sketch the proof, if X is in the core of the multi-game induced by V it is a sum of
members of the cores of each game in V (X = ∑

m
j=1 X j where ∀ j : X j ∈C(Ḡ j)). We first show

for each capacity v j ∈ V that the expectation of any Y ∈ Rn
+ according to a vector in the core of

that game is larger or equal to its expectation according to the respective concave integral. Then
summing over all capacities entails that the expectation of Y according to X must be larger or
equal to the sum of the concave integrals of Y over all v j ∈ V .

If X in not in the core of the multi-game induced by V we construct Y s that do not sat-

isfy
m

∑
j=1

∫ cav
Y dv j ≤ XT ·Y . In case the core of the multi-game induced by V is non-empty,

a hyperplane separation theorem guarantees the existence of a vector Z that separates X and
C(Ḡ). We use this vector to construct a sequence of vectors, Zc = 1

c × [Z + c], that goes to 1n

when c goes to infinity. Then we show that ∑
m
j=1
∫ cav Zcdv j = ∑

m
j=1 minw j∈C(Ḡ j)

{w jT ·Zc} >
XT · Zc. In case the core of the multi-game induced by V is empty, Remark 1 implies that

m

∑
j=1

∫ cav
1ndv j > XT ·1n.

To better understand Proposition 1, note that the decision maker’s non-normalized prob-
ability X can be normalized by V (Ω) to become a probability, X? = 1

V (Ω)X , and the advisors’

capacities can be normalized by v j(Ω) to become their non-additive beliefs, v?j =
v j

v j(Ω) . In
this case Proposition 1 can be restated using the above terminology: There exist m vectors
X? j ∈C(Ḡ?

j) such that X? = α jX? j where α j =
v j(Ω)
V (Ω) if and only if for every random variable

Y ∈ Rn
+ :

m

∑
j=1

α j

∫ cav
Y dv∗j ≤ X?T ·Y . Thus, the decision maker can prove that her probability

is a weighted average of probabilities in the respective cores of the advisors’ non-additive be-
liefs if and only if her evaluation of any random variable Y (X?T ·Y ) is higher or equal to the
weighted average of those of the advisors (

∫ cavY dv∗j).
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Even and Lehrer (2014) showed that the expectation of Y according to the concave integral
is (weakly) higher than that according to the Choquet integral. Hence, if the advisors were to
use the Choquet integral to evaluate random variables instead of the concave integral, showing
that the decision maker’s evaluation of Y is higher than the weighted average of the advisors’
evaluations would be insufficient to prove that the decision maker’s probability is supported by
the non-additive beliefs of the advisors.

Finally, a technically useful implication of Proposition 1 is that it provides an upper bound
on the sum of concave integrals in case the core of the multi-game is non-empty. That is, for

every random variable Y ∈ Rn
+ :

m

∑
j=1

∫ cav
Y dv j ≤ min

X∈C(Ḡ)
XT ·Y .

3 Aggregating Datasets

A Single Data Set

A data set is a sequence of T observations, indexed by i ∈ {1, ...,T}, denoted by D =
(B1, ...,BT ) where Bi ∈ Σ\{∅,Ω}.9 The event Bi represents the set of all states that may have
occurred in observation i. When the state of nature that occurred in observation i is clear, Bi
is a singleton. However, some observations may be assigned to non-singleton events when it
is not clear which specific state of nature within that event had actually occurred. Following
the example of health centers, in certain cases it may be known that a patient was infected with
a type C virus (ruling out other types), but it is unknown which sub type infected the patient.

We assume that the data set is cross-sectional, meaning that the order of observations
does not affect the inference. Therefore, we can also describe the data set in a characteristic
function form. A data set in a disaggregated characteristic function form is the cooperative
game GV = (Ω;V ) where V : Σ→ N be a function such that (i) For every event B ⊂ Ω, V (B)
is the number of occurrences of B in data set D and (ii) V (Ω) = argmin{[0,T ]|C(GV ) 6= /0}, so
that V (Ω) is the lowest value that ensues a non-empty core.10 Note that by Remark 1.1 and (ii):
V (Ω) =

∫ cav 1ndV ≤ T .

Compatible Frequency Distributions

We say that X̄ is compatible with the data set in a disaggregated characteristic function
form GV if X̄ ∈C(GV ). A frequency distribution of T observations that is compatible with data
set D is a vector X ∈ Rn

+ such that ∑
n
i=1 Xi = T and ∀i ∈ N : xi ≥ x̄i.

That is, X does not understate the number of observations assigned to event B according
to V (∀B⊆Ω : ∑ωi∈B Xi ≥V (B)). Note, however, that weak compatibility does not require the
frequency distribution to resolve inconclusive observations “consistently”. Consider a data set
of 3 observations on 3 states of nature where V ({1}) = 1, V ({2}) = 1, V ({3}) = 0, V ({1,2}) =
1, V ({1,3}) = 0 and V ({2,3}) = 0. While the frequency distribution X = (1,1,1) is weakly
compatible with the data set, V ({1}) +V ({2}) +V ({1,2}) > X1 +X2. The total frequency
attributed to states 1 and 2 understates the total number of observations assigned to the relevant
events - {1}, {2} and {1,2}. The frequency attributed to state 3 is erroneously overstated since
no observation is assigned to an event that includes state 3.

A frequency distribution X is strongly compatible with data set D if X ∈C(GU). That is,

9Excluding B = ∅ implies that an event that is known to have occurred cannot be empty. Excluding B = Ω

implies that we ignore cases that add no information.
10Since T = ∑S⊂N V (S) the set {[0,T ]|C(GV ) 6= /0} is non empty.
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X does not understate the number of observations assigned to all events that are subsets of B.
In fact, inconclusive observations are resolved “consistently” by assigning each observation to
one of the states in the corresponding event (or to a mix of states in this event). Continuing the
example above, the corresponding aggregated characteristic function is U({1}) = 1, U({2}) =
1, U({3}) = 0, U({1,2}) = 3, U({1,3}) = 1 and U({2,3}) = 1. The frequency distribution
X = (1,1,1) is not strongly compatible with the data set, yet, Y = (1.5,1.5,0) is strongly
compatible with it since the inconclusive observation of the event {1,2} is attributed to both
state {1} and state {2} equally.

Multiple Data Sets

Let D = {D1,D2, . . . ,Dm} be a collection of m data sets with T = ∑
m
i=1 Ti observations.

Let ḠV = (Ω;V ) be the disaggregated multi game where V = {V1,V2, . . . ,Vm} and Vi is a
disaggregated characteristic function that corresponds to data set Di. We refer to C(ḠV ) as the
weakly compatible core of D . Similarly, we define the aggregated multi game ḠU = (Ω;U )
where U = {U1,U2, . . . ,Um} and Ui is an aggregated characteristic function that corresponds
to data set Di. We refer to C(ḠU ) as the strongly compatible core of D .

Systems of Weights

We generalize the balancing weights of Bondareva (1963) and Shapley (1967) to account
for systems of weights whose total weights may differ across states of nature. Let F : Σ→ R+

be a system of weights. The vector of weights induced by F is denoted by W F = ∑B∈Σ F(B)χB.
We say that F1 and F2 are W-equivalent if W F1 = W F2 . The W-equivalence relation induces
a partition on the set of all systems of weights.11 Let us denote the set of all W-equivalence
classes by Γ. For every class γ ∈Γ, the maximal γ-weighted sum of a data set in a disaggregated
characteristic function form V is TW γ

V ≡max
F∈γ

∑
B∈Σ

F(B)V (B) and the maximal γ-weighted sum

of a data set in an aggregated characteristic function form U is TW γ

U ≡max
F∈γ

∑
B∈Σ

F(B)U(B).

Compatibility Conditions

We provide a necessary and sufficient condition for the decomposition of an aggregate
frequency distribution into m frequency distributions such that the first is weakly compatible
with the first data set, the second is weakly compatible with the second data set and so on.12

Proposition 2. Let Ω = {ω1, ...,ωn} be a finite set of states of nature and let Σ = 2Ω. Let
X ∈Rn

+ be an aggregate frequency distribution vector for the set of m data sets D . X ∈C(ḠV )

if and only if every class γ ∈ Γ satisfies ∑
V j∈V

TW γ

V j
≤ ∑

i∈{1,...,n}
W γ

i Xi.

Proposition 2 is almost a direct application of Proposition 1. The only difference is that
Proposition 1 requires V to be a set of capacities while in Proposition 2 V is a set of data
sets which may be non-monotonic. In the proof we show that replacing the data sets by their
monotonic covers, generates capacities with the same cores for which the concave integrals are
well defined. In addition, since strong compatibility implies weak compatibility (by Lemma 1),

11The set of all the balancing weights of Bondareva (1963) and Shapley (1967) is identical to the class of
functions F such that W F is the vector of ones.

12This result was used to prove Proposition 3 in Gayer and Persitz (2016) (see p. 948).
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the condition stated in Proposition 2 is a necessary (though insufficient) condition for strong
compatibility.

To demonstrate how Proposition 2 can be utilized to determine whether a frequency dis-
tribution is compatible with the available data sets, consider the following example with two
practitioners and three states of nature. Practitioner 1’s data set contains 3 observations that
are all inconclusive, each containing a pair of states - the first observation includes states 1
and 2, the second observation includes states 1 and 3 and the third includes states 2 and 3.
Practitioner 2’s data set contains two observations, where the first observation is conclusive,
containing only state 1, while the second observation is inconclusive including states 2 and
3.13 An administrator’s frequency distribution that assigns one observation to state 1 and four
observations to state 3 (X = (1,0,4)) can be falsified with the help of Proposition 2. To see
this take the class γ such that wγ = (1,1,0). First, T wγ

v1
≥ 1 on account of the system of weights

F such that F({1,2}) = 1 and F(B) = 0 otherwise, ∑B∈Σ F(B)v1(B) = 1. Moreover, T wγ

v2
≥ 1

since for a system of weights F such that F({1}) = F({2}) = 1 and F(B) = 0 otherwise,
∑B∈Σ F(B)v2(B) = 1. However, wγ · (1,0,4) = 1 < T wγ

v1
+T wγ

v2
, thus, by Proposition 2, the ad-

ministrator’s frequency distribution if found to be incompatible with the data sets collected by
the practitioners.

The data sets that were considered in Proposition 2 were given in a disaggregated charac-
teristic function form. Proposition 2 presents a condition that if satisfied provides support to
the claim that a frequency distribution is weakly compatible with the available data sets. One
can apply an adequate version of Proposition 2 to U to understand if a frequency distribution
is strongly compatible with the available data sets. Alternatively, recall that Lemma 1 states
that cooperative games induced by data sets in an aggregated characteristic function form are
convex. Therefore, by Dragan et al. (1989) (see also Footnote 18 in Gayer and Persitz (2016)),
C(ḠU ) =C(∑U∈U GU). Therefore, strong compatibility can be established by verifying that a
frequency distribution is in the core of C(∑U∈U GU).

Aggregated Characteristic Function Form

It will also be useful to describe the data set in a corresponding aggregated form. Let
U : Σ→N be a function such that ∀B⊆Ω :U(B)=∑b⊆BV (b). That is, U(B) is the total number
of occurrences of B and its subsets in data set D. A data set in an aggregated characteristic
function form is the cooperative game GU = (Ω;U).14

Lemma 1. Let V be a data set in a disaggregated characteristic function form and let U be the
corresponding data set in an aggregated characteristic function form.

1. GU is a convex cooperative game.

2. C(GU) is non empty.

3. C(GU)⊆C(GV ).

4 Concluding Remarks

We provide a necessary and sufficient condition for the compatibility of a non-normalized
probability distribution with a set of given capacities. We demonstrate the usefulness of this

13Formally, v1({1}) = v1({2}) = v1({3}) = 0, v1({1,2}) = v1({1,3}) = v1({2,3}) = 1, v1{1,2,3} = 3,
v2({1}) = 1, v2({2}) = v2({3}) = 0, v2({1,2}) = v2({1,3}) = 0, v2({2,3}) = 1 and v2{1,2,3}= 2.

14Note that formally V is the Möbius transform of U .
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result, by applying it to a setting where an administrator is required to form a frequency distri-
bution based on several data sets that may include inconclusive observations.
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Appendix

The following results are used in the proof of Proposition 1.

Lemma 2

Lemma 2. Let Ω = {ω1, ...,ωn} be a finite set of states of nature and let Σ = 2Ω. Let v be
a capacity on Ω and let Y be a finite non-negative random variable on Ω. Denote Ĥ = {h ∈
Rn
+|∀B ∈ Σ :∑ωi∈B hi ≥ v(B)} and the set of its extreme points by H.15 Then,∫ cav

Y dv = min
h∈H

hT ·Y.

Proof. By the definitions of concave integral and optimal decomposition,∫ cav
Y dv = max

α:Σ→R+

{
∑

B∈Σ

α(B)v(B)
∣∣∣∣ ∑

B∈Σ

α(B)χB = Y,∀B ∈ Σ :α(B)≥ 0
}

Since v and Y are finite and since D(Y ) is non-empty, there is a solution to the maximization
problem. Therefore, by the general strong duality theorem, the dual has the same solution.
Hence,∫ cav

Y dv = min
h∈Rn

+

{
hT ·X |∀B ∈ Σ : ∑

ωi∈B
hi ≥ v(B)

}
= min

h∈Ĥ
hT ·Y

Ĥ is non empty16 and convex.17 Since hT ·Y is a linear function of h and since Ĥ is convex, the

minimum of hT ·Y is achieved on the extreme points of Ĥ. Thus,
∫ cav

Y dv = min
h∈H

hT ·Y .

Lemma 3

Lemma 3. Let Ω = {ω1, ...,ωn} be a finite set of states of nature and let Σ = 2Ω. Let v be
a capacity on Ω. If C(v) is non empty there is a neighborhood U of 1n such that every non-
negative random variable Y ∈U on Ω satisfies∫ cav

Y dv = min
c∈C(v)

cT ·Y.

Proof. First note that C(v) = {h ∈ Ĥ|∑ωi∈Ω hi = v(Ω)} 6= /0. Therefore, minc∈C(v) cT ·Y ≥
minh∈Ĥ hT ·Y . Moreover, by the proof of Lemma 2, minc∈C(v) cT ·X ≥minh∈H hT ·Y =

∫ cavY dv.
Suppose, to the contrary, that there is a sequence Yt that converges to 1n and each element

satisfies minc∈C(v) cT ·Yt >
∫ cavYtdv.

15h ∈ Ĥ is an extreme point of Ĥ if there are no h̃, ˜̃h ∈ Ĥ and λ ∈ (0,1) such that h = λ h̃+(1−λ ) ˜̃h.
16For example, by the monotonicity of capacities, (v(Ω), . . . ,v(Ω))′ ∈ Ĥ.
17h, h̄ ∈ Ĥ implies that χ ′h≥ v and χ ′h̄≥ v and therefore for every λ ∈ [0,1] :

χ
′(λh+(1−λ )h̄) = λ χ

′h+(1−λ )χ ′h̄≥ λv+(1−λ )v = v

9



Since by Lemma 2, for every t, minh∈H hT ·Yt =
∫ cavYtdv it must be that for every t,

ht ∈H\C(v) where ht = argminh∈H hT ·Yt . In particular, since ht ∈H\C(v) then htT ·1n > v(Ω).
Let us consider the sequence

∫ cavYtdv. Since (i) H is finite (ii) The elements of H are finite
(iii) Yt is a sequence of finite elements and (iv)

∫ cavYtdv=minh∈H hT ·Yt , the sequence
∫ cavYtdv

is bounded.
Thus,

∫ cavYtdv has a convergent subsequence
∫ cavYsdv. The limit of this subsequence is

lims→∞

∫ cavYsdv =
∫ cav lims→∞Ysdv =

∫ cav 1ndv = v(Ω), the last equality is due to C(v) being
non empty and Remark 1.1.

Since
∫ cavYsdv converges, every of its subsequences is also convergent, and to the same

limit. Since H is finite, at least one such subsequence is
∫ cavYrdv such that Yr converges to

1n and all its elements correspond to the same hr. For this subsequence limr→∞

∫ cavYrdv =
limr→∞ hrT ·Yr = hrT · {limr→∞Yr}= hrT ·1n. Hence, hrT ·1n = v(Ω). Contradiction.

Hence, there is a neighborhood U of 1n such that every non-negative random variable
Y ∈U satisfies

∫ cav Xdv = minc∈C(v) cT ·Y .

Lemma 4

Lemma 4. Let Ḡ be an m-Multi-Game, Ḡ = (Ω;V ). Then, C(Ḡ) is a closed and convex set.

Proof. For every v j ∈ V , C(v j) is compact since (i) A set of vectors that satisfies a set of weak
linear inequalities is closed (recall that the empty set is closed) and (ii) A set of non-negative
vectors that satisfy efficiency is bounded (recall that the capacities are non-negative). Since
C(Ḡ) is the sum of compact individual cores, it is also compact. Thus, C(Ḡ) is a closed set.

To show that C(Ḡ) is a convex set, let Z, Ẑ ∈C(Ḡ). First, for every λ ∈ [0,1] we get that
λZ +(1−λ )Ẑ is a non normalized probability vector for the set V since

n

∑
i=1

(λZ +(1−λ )Ẑ)i =
n

∑
i=1

λZi +(1−λ )Ẑi = λ

n

∑
i=1

Zi +(1−λ )
n

∑
i=1

Ẑi

= λ

m

∑
j=1

v j(Ω)+(1−λ )
m

∑
j=1

v j(Ω) =
m

∑
j=1

v j(Ω)

In addition, since Z, Ẑ ∈ C(Ḡ) there exist 2m vectors Z1, ...,Zm and Ẑ1, ..., Ẑm such that ∀ j:
Z j ∈ C(v j), Ẑ j ∈ C(v j) and ∑

m
j=1 Z j = Z and ∑

m
j=1 Ẑ j = Ẑ. By the convexity of the core of a

single game ∀λ ∈ [0,1], ∀ j: λZ j +(1−λ )Ẑ j ∈ C(v j). These vectors sum to λZ +(1−λ )Ẑ
since,

m

∑
j=1

λZ j +(1−λ )Ẑ j = λ

m

∑
j=1

Z j +(1−λ )
m

∑
j=1

Ẑ j = λZ +(1−λ )Ẑ

Hence, λZ +(1−λ )Ẑ ∈C(Ḡ). Thus, C(Ḡ) is a convex set.

Proof of Proposition 1

Proof. First suppose that X ∈ C(Ḡ). Then, X is a non normalized probability vector on Ω

for the set V and there are m finite non-negative random variables X1, ...,Xm on Ω such that
∀v j ∈ V : X j ∈C(v j) and ∑

m
j=1 X j = X .

Recall that for every Y ∈ Rn
+, D(Y ) denotes the non-empty set of all decompositions. For
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every random variable Y ∈ Rn
+, for every decomposition αY ∈ D(Y ) and for every capacity

v j ∈ V we get

X jT ·Y = X jT ·
[

∑
B∈Σ

[
αY (B)×χ

B]]= ∑
B∈Σ

[
X jT ·

[
αY (B)×χ

B]]=
∑

B∈Σ

[
αY (B)×

[
X jT ·χB]]= ∑

B∈Σ

[
αY (B)× ∑

ωi∈B
X j

i

]
≥ ∑

B∈Σ

[
αY (B)× v j(B)

]
Where the first equality is by the definition of a decomposition and the final inequality is true
since ∀v j ∈ V : X j ∈C(v j) implies that ∀v j ∈ V ,∀B ∈ Σ : ∑ωi∈B X j

i ≥ v j(B).
In particular, for every random variable Y ∈ Rn

+ and for every capacity v j ∈ V , X jT ·Y ≥
∑B∈Σ

[
α?

Y (B)× v j(B)
]
. Hence, by Lemma 1(i) in Lehrer (2009), for every random variable

Y ∈ Rn
+ and for every capacity v j ∈ V , X jT ·Y ≥

∫ cavY dv j. Summing over all capacities,

for every random variable Y ∈ Rn
+ we get XT ·Y =

m

∑
j=1

X jT ·Y =
m

∑
j=1

[
X jT ·Y

]
≥

m

∑
j=1

∫ cav
Y dv j.

Thus, X ∈C(Ḡ) implies that for every random variable Y ∈ Rn
+, XT ·Y ≥ ∑

m
j=1
∫ cavY dv j.

Next suppose X /∈C(Ḡ). Let us first attend to the case where C(Ḡ) is non-empty.
Since C(Ḡ) is closed and convex (by Lemma 4) and since a singleton is closed and convex,

the separating hyperplane theorem guarantees that there is a vector Z = (Z1, ...,Zn) 6= 0n that
separates X and C(Ḡ). That is, there exists Z 6= 0n such that for every w∈C(Ḡ), XT ·Z <wT ·Z.
Thus, there exists Z 6= 0n such that XT ·Z < minw∈C(Ḡ){wT ·Z}.

For a positive constant c denote by Zc the vector that has Zc
i = Zi+c

c as a representative
element. X and every member of C(Ḡ) are non normalized probability vectors on Ω for the set
V . Therefore, for every w ∈C(Ḡ), ∑

n
i=1 Xi = ∑

n
i=1 wi = ∑

m
j=1 v j(Ω). Hence,

XT ·Zc =
1
c
×(XT ·Z)+(XT ·1n) =

1
c
×(XT ·Z)+(wT ·1n)<

1
c
× min

w∈C(Ḡ)
{wT ·Z}+(wT ·1n) =

min
w∈C(Ḡ)

{1
c
× (wT ·Z)}+(wT ·1n) = min

w∈C(Ḡ)
{1

c
× (wT ·Z)+(wT ·1n)}= min

w∈C(Ḡ)
{wT ·Zc}

Thus, for every positive constant c and for every w∈C(Ḡ) we get XT ·Zc <minw∈C(Ḡ){wT ·Zc}.
Denote w? = argminw∈C(Ḡ){wT ·Zc}. Since w? ∈C(Ḡ) there exist w1?, ...,wm? such that

∀v j ∈ V : w j? ∈ C(v j) and ∑
m
j=1 w j? = w?. Moreover, ∀v j ∈ V : w j? ∈ argminw j∈C(v j){w

jT ·
Zc}.18 Therefore, for every positive constant c, XT ·Zc < ∑

m
j=1 minw j∈C(v j){w

jT ·Zc}.
For every capacity v j ∈ V , let U j be the neighborhood of 1n that satisfies Lemma 3. That

is,
∫ cavY dv j = minc j∈C(v j){c

jT ·Y} for every non negative random variable Y ∈U j. Let U =

∩ jU j. Therefore,
∫ cavY dv j = minc j∈C(v j){c

jT ·Y} for every v j ∈ V and every non negative

18To see that, suppose that ∃v j ∈ V such that w j? ∈ C(v j) but w j? /∈ argminw j∈C(v j)
{w jT ·Zc} while w j?? ∈

argminw j∈C(v j)
{w jT ·Zc}. Then,

w1?T ·Zc + · · ·+w j??T ·Zc + · · ·+wm?T ·Zc < w1?T ·Zc + · · ·+w j?T ·Zc + · · ·+wm?T ·Zc

Denote w̄ = w1? + · · ·+ w j?? + · · ·+ wm?. Then w̄ ∈ C(Ḡ) and w̄T · Zc < w?T · Zc in contradiction to w? =
argminw∈C(Ḡ){w ·Zc}. Hence, ∀v j ∈ V : w j? ∈ argminw j∈C(v j)

{w j ·Zc}.
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random variable Y ∈ U . As a consequence, for every non negative random variable Y ∈ U ,
∑

m
j=1
∫ cavY dv j = ∑

m
j=1 minc j∈C(Ḡ j)

{c jT ·Y}.
Note that (i) Zc goes to 1n when c goes to infinity; (ii) Zc is non-negative for large enough

c and (iii) the w js are the minimizers of minc j∈C(Ḡ j)
{c jT ·Zc}. Let c be large enough so that

Zc ∈U ∩Rn
+. Hence,

m

∑
j=1

∫ cav
Zcdv j =

m

∑
j=1

min
w j∈C(v j)

{w jT ·Zc}> XT ·Zc

Thus, if C(Ḡ) is non-empty, X /∈ C(Ḡ) implies that there exists Y ∈ Rn
+ that does not

satisfy
m

∑
j=1

∫ cav
Y dv j ≤ XT ·Y . That is, if C(Ḡ) is non-empty and every Y ∈ Rn

+ satisfies

m

∑
j=1

∫ cav
Y dv j ≤ XT ·Y then X ∈C(Ḡ).

Finally, we attend to the case where X /∈C(Ḡ) and C(Ḡ) is empty. Consider Y = 1n. Thus,
XT ·Y = XT ·1n = ∑

n
i=1 Xi = ∑

m
j=1 v j(Ω), where the final equality is true since X is non normal-

ized probability vector on Ω for the set V .
By definition, C(Ḡ) is empty if and only if ∃v j ∈ V : C(v j) = /0. Then, by Remark 1.2,

v j(Ω) <
∫ cav 1ndv j. Moreover, by the same remark, vk(Ω) ≤

∫ cav 1ndvk for all vk ∈ V \{v j}.
Therefore,

m

∑
j=1

∫ cav
Y dv j =

m

∑
j=1

∫ cav
1ndv j >

m

∑
j=1

v j(Ω) = XT ·Y

Thus, if C(Ḡ) is empty, for every non normalized probability vector on Ω for the set V , X ∈

Rn
+, there exists Y ∈ Rn

+ such that
m

∑
j=1

∫ cav
Y dv j > XT ·Y . That is, if every Y ∈ Rn

+ satisfies

m

∑
j=1

∫ cav
Y dv j ≤ XT ·Y then X ∈C(Ḡ). That completes the proof.

Proof of Lemma 1

Proof. (i) U(S) is the number of observations in D that are assigned to events that are subsets of
S, U(T ) is the number of observations in D that are assigned to events that are subsets of T and
U(T ∩S) is the number of observations in D that are assigned to events that are subsets of both
S and T . U(T ∪S) is the number of observations in D that are assigned to events that are subsets
of S∪T , meaning it is at least the number of observations in D that are assigned to events that
are either in S or in T excluding those in T ∩ S. Hence, U(S∪T ) ≥U(S)+U(T )−U(T ∩S)
and therefore U(S)+U(T )≤U(S∪T )+U(S∩T ). That is, GU is a convex cooperative game.

(ii) C(GU) is non empty since the core of any convex cooperative game is non empty (see
Shapley (1971/72)).

(iii) Recall that ∀B⊂Ω : U(B) = ∑b⊆BV (b) and U(Ω) =V (Ω). Let X ∈C(GU) (C(GU)
is non empty) then ∑

n
i=1 Xi =U(Ω) =V (Ω) and ∑ωi∈B Xi ≥U(B) = ∑b⊆BV (b)≥V (B). Thus,

X ∈C(GV ). Hence, C(GU)⊆C(GV ) and C(GV ) is non empty.

12



Lemma 5

Lemma 5. Let V be a data set in a disaggregated characteristic function form and let G be
the cooperative game induced by V . Let Ṽ be the monotonic cover19 of V and let G̃ be the
cooperative game induced by Ṽ . Then, (i) Ṽ is a capacity, (ii) C(G) =C(G̃), (iii) Let Y ∈ Rn

+

be a finite non-negative random variable on Ω. Then,
∫ cavY dV =

∫ cavY dṼ .

Proof. By the definition of V , we have V ( /0) = 0 and therefore also Ṽ ( /0) = 0. By the same
definition we have (i) V (Ω) is the number of observations and (ii) Ṽ (Ω) = max{V (R)|R ⊆
Ω}. Hence, Ṽ (Ω) = V (Ω), that is Ṽ (Ω) is finite. Finally, by definition, a monotonic cover is
monotonic. Thus, Ṽ is a capacity.

Before we prove the second part, note that a data set in a disaggregated characteristic
function form induces both a non-negative cooperative game and a non-negative monotonic
cover. Therefore, the elements of C(G) and C(G̃) must be non-negative.

First, since Ṽ (Ω) =V (Ω), ∑i∈{1,...,n} xi =V (Ω) if and only if ∑i∈{1,...,n} xi = Ṽ (Ω).
Next, if x ∈ C(G̃) then ∀B⊂Ω : ∑ωi∈B xi ≥ Ṽ (B). That is, if x ∈ C(G̃) then ∀B⊂Ω :

∑ωi∈B xi ≥max{V (R)|R⊆ B}. In particular, if x ∈C(G̃) then ∀B⊂Ω : ∑ωi∈B xi ≥V (B). Thus,
if x ∈C(G̃) then x ∈C(G).

For the other direction, suppose x ∈ C(G). Fix B and let R ⊂ B. Since x ∈ C(G) then
∑ωi∈R xi ≥ V (R). Since x is non-negative, ∑ωi∈B xi ≥ ∑ωi∈R xi. Therefore, ∑ωi∈B xi ≥ V (R).
As a result, if x ∈ C(G) then ∀B⊂Ω,∀R⊆ B : ∑ωi∈B xi ≥ V (R). Thus, ∀B⊂Ω : ∑ωi∈B xi ≥
max{V (R)|R⊆ B}. Hence, ∀B⊂Ω : ∑ωi∈B xi ≥ Ṽ (B). That is, if x ∈C(G) then x ∈C(G̃).

It is left to be shown that for every finite non-negative random variable, Y ∈ Rn
+, the

concave integral is the same whether it is calculated directly over V or over its monotonic cover
(
∫ cavY dV =

∫ cavY dṼ ).
First, note that, by definition, for every B ∈ Σ we have Ṽ (B) ≥ V (B).20 Let αY ∈ D(Y ).

Then, ∑B∈Σ αY (B)Ṽ (B) ≥ ∑B∈Σ αY (B)V (B). Denote the optimal decomposition of Y relative
to V by α?

Y and the optimal decomposition of Y relative to Ṽ by α̃?
Y . Thus,

∑
B∈Σ

α̃
?
Y (B)Ṽ (B)≥ ∑

B∈Σ

α
?
Y (B)Ṽ (B)≥ ∑

B∈Σ

α
?
Y (B)V (B)

Hence,
∫ cav XdV ≤

∫ cav XdṼ .
Finally, for every B⊆Ω denote by S(B) = argmaxR⊆BV (R) the subset of B that deter-

mines Ṽ (B).21 Let β : Σ→ R+ be the following a system of weights,

β (R) = ∑
{B∈Σ|S(B)=R}

α̃
?
Y (B)+ ∑

{B∈Σ|S(B)=B\R}
α̃
?
Y (B)

The vector of weights induced by β is denoted by W β .

W β

i = ∑
{R∈Σ|ωi∈R}

β (R) = ∑
{R∈Σ|ωi∈R}

∑
{B∈Σ|S(B)=R}

α̃
?
Y (B)+ ∑

{R∈Σ|ωi∈R}
∑

{B∈Σ|S(B)=B\R}
α̃
?
Y (B)

The first term on the right-hand-side is the sum of weights over all the events that include state

19The monotonic cover of G = (Ω,V ) is G̃ = (Ω,Ṽ ) such that ∀B⊆Ω : Ṽ (B) = maxR⊆B V (R).
20This is close to the monotonicity with respect to capacities property stated in Section 11.1.2 of Lehrer (2009).

It is not the same since V may be non-monotonic.
21In cases where there is more than one maximizer, we assume, with no loss of generality, that S(B) is the first

in some given list of subsets.
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ωi and were determined by an event that includes state ωi. The second term on the right-hand-
side is the sum of weights over all the events that include state ωi and were determined by an
event that does not include state ωi. Hence, this can also be written as

W β

i = ∑
{B∈Σ|ωi∈S(B)}

α̃
?
Y (B)+ ∑

{B∈Σ|ωi∈B\S(B)}
α̃
?
Y (B) = ∑

{B∈Σ|ωi∈B}
α̃
?
Y (B) = Yi

Thus, β is a decomposition of X .
Note that,∫ cav

Y dṼ = ∑
B∈Σ

α̃
?
Y (B)Ṽ (B) = ∑

R∈Σ

∑
{B∈Σ|S(B)=R}

α̃
?
Y (B)Ṽ (B) = ∑

R∈Σ

∑
{B∈Σ|S(B)=R}

α̃
?
Y (B)V (R)

The second equality is true since every event B has a corresponding event S(B) that determines
it and the third is due to the definitions of monotonic cover and S(B). Thus,∫ cav

Y dV ≥ ∑
R∈Σ

β (R)V (R) = ∑
R∈Σ

∑
{B∈Σ|S(B)=R}

α̃
?
Y (B)V (R)+ ∑

R∈Σ

∑
{B∈Σ|S(B)=B\R}

α̃
?
Y (B)V (R)

=
∫ cav

Y dṼ + ∑
R∈Σ

∑
{B∈Σ|S(B)=B\R}

α̃
?
Y (B)V (R)≥

∫ cav
Y dṼ

The first inequality is due to β being a decomposition of Y (but not necessarily the optimal
one). The next equality is by the definition of β while the following equality is due to the result
above. The final inequality results from system of weights and data sets being non-negative.
This completes the proof since

∫ cavY dṼ =
∫ cavY dV .

Proof of Proposition 222

Proof. Suppose X ∈ Rn
+ is an aggregate frequency distribution vector for the set of m data sets

V . By Proposition 1, X ∈C(Ḡ) if and only if every random variable Y ∈ Rn
+ satisfies

∑
V j∈V

∫ cav
Y dVj ≤ Y ·X

By the definition of T γ

V , ∑V j∈V
∫ cavY dVj = ∑V j∈V TY

V . Finally, by the definition of W-
equivalence classes every random variable Y ∈ Rn

+ corresponds to a class γ ∈ Γ, therefore, the
proof is complete.

22A different proof of this result involves constructing a set of linear inequalities that characterize the set of all
the decompositions of a given payoff vector such that all vectors belong to the cores of the respective individual
games. Then, Farkas’ Lemma (or equivalently, the hyperplane separation theorem) can be used to show that this
set of inequalities has a solution if and only if the above condition is satisfied. We prefer the proof presented here
due to the novel result on concave integrals.
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