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Abstract. We take a decision theoretic approach to predictive inference as in Black-

well [4, 5] and de Finetti [8, 9]. We construct a simple dynamic setup incorporating

inherent uncertainty, where at any given time period the decision maker updates her

posterior regarding the uncertainty related to the subsequent period. These predic-

tive posteriors reflect the decision maker’s preferences, period by period. We study

the dynamics of the agents’ posteriors and preferences, and show that a consistency

axiom, reminiscent of the classic dynamic consistency, is the behavioral foundation

for Bayesian updating according to noisy signals. We then focus on showing how

such Bayesian updating is behaviorally distinct from exchangeability. It is pointed

that even though beliefs of such Bayesian updating may not follow an exchangeable

process, it seems as if they do from some point onwards.
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1. Introduction

Uncertainty regarding payoff relevant factors prevails in many economic models. In

dynamic environments with uncertainty, as time goes by agents gather information,

allowing them to update their perception of that uncertainty and infer regarding future

events. When an agent is updating her belief in a Bayesian fashion, information might

become increasingly useless as time passes. This phenomenon is referred to as learning :

the agent learns as much as the dynamics allows her about the underlying uncertainty.1

This paper takes a decision theoretic approach to Bayesian updating as in Blackwell

[4, 5] and predictive inference as in de Finetti [8, 9]. We introduce a novel dynamic setup

with inherent uncertainty and study the agent’s preferences over uncertain alternatives,

period by period.

In this set up we propose a behavioral property of preferences (an axiom) that

is natural in this environment. On one hand it is reminiscent of the classical sure

thing principle/dynamic consistency. On the other had, our decision environment is

different than the classical one, and the axiom does not have the usual commitment

interpretation. The axiom is termed local consistency. It turns out that this axiom

is the behavioral foundation of the fundamental model introduced by Blackwell [4,

5], which in turn is equivalent to a martingale. In particular, over time learning

occurs. This leads to the natural question of how such preferences differ from those

who follow exchangeable processes (de Finetti [8]). The distinct behavioral features

of exchangeable processes (relative to a general martingale) are shown. In addition, it

is pointed that while these models are different and can be separated by axioms, the

outcome of learning is similar.

1.1. Bayesian updating: the local approach. Consider a dynamic setup where

at every period the decision maker (henceforth, DM) faces uncertainty regarding the

upcoming state, and specifies her preferences over uncertain alternatives (Anscombe-

Aumman [2] acts) for the following period only. Then, a state is realized and the DM

makes up her mind regarding the next period. We assume that in every period the

DM is a subjective expected-utility maximizer, and thus, following every history of

realizations, her preferences are induced by some posterior belief over the state space.

The aim of this study is to investigate the evolution of the posteriors and to find

1See Kalai and Lehrer [21], and Jackson, Kalai and Smorodinski [20] and references within for an

extended study of learnability.
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conditions under which different forms of Bayesian inference regarding future events

take place. To gain a basic understanding we begin with a two-period model. That is,

there is a single instance where the DM can accumulate new information. In this model

the DM holds a prior belief over the state space S (representing the DM’s preferences

over Anscombe-Aumman acts for that period). Any realization of a state, say t ∈ S,

at the first period, generates a posterior qt over S (which typically differs from p).

The posterior qt represents the DM’s preferences over Anscombe-Aumman acts for the

second period.

As an example for how the posteriors are obtained from the prior, consider the classic

model of Bayesian updating from a noisy signal that stochastically depends on the true

state (as in Blackwell [4, 5]). For such a model in our environment the set S has two

potential interpretations. First, it can be interpreted by the DM, and by a modeler

as well, as the state space, which is the underlying payoff-relevant factor the DM is

trying to asses. Second, for the DM, S can be interpreted as the set of signals she

may observe. To explain this interpretation, suppose for instance, that there are only

two states, low and high. Moreover, suppose the DM believes that in both states, she

might observe ‘high’. In this case, the signal ‘high’ tells her that the true state is high

with some probability and low with the remaining probability. She may believe that

in the two different states the signals are generated with different probabilities, and

update her belief regarding the state that generated the signal accordingly. Having

this in mind, the modeler interprets qt as the DM’s belief over the state space after

observing t.

In our decision theoretic environment we introduce a condition on preferences re-

ferred to as local consistency. It states that if, at the second stage, preferences agree on

the ranking of two alternatives, regardless of the information observed, then it must be

that the two alternatives were ranked in the same way in the first stage as well. Stated

differently, if the DM prefers to invest in firm A rather than in firm B, regardless of the

information she observes today, then she should have preferred A over B also prior to

observing any signal. Local consistency is reminiscent of the classical sure thing prin-

ciple/dynamic consistency condition. However, our decision theoretic environment is

different than the one in which these axioms are typically employed, and in particular

the commitment interpretation is not suited for the current study.

We show that indeed local consistency has new implications. It is clearly necessary

for Bayesian updating according to a noisy signal. Theorem 1 states that it is also
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sufficient. If local consistency is satisfied, one can elicit the probabilities according to

which the DM expects to observe each signal, conditional on the state. In particular,

when the DM updates her prior according to these probabilities, the posteriors derived

from her preferences are obtained. We refer to systems of preferences, or beliefs,

satisfying local consistency as Blackwellian.2

Local consistency has an additional representation, one that is useful when studying

the infinite horizon model. It is well known that posteriors generated from noisy signals

are a mean preserving spread of the prior. Theorem 1 shows that these two conditions

are actually equivalent. That is, if the posteriors are a mean preserving spread of the

prior, then it is possible to find noisy signals that would generate them from the prior

through Bayesian updating.

1.2. The global and local approaches. Before introducing the infinite horizon

model and the learning results, we point to the relation and distinction between the

current approach and the classical one. In this paper we study updating in a local

sense, similar to predictive inference. Here, the posteriors (and their dynamics) rep-

resent the DM’s preferences (and their evolution) over outcomes determined only by

the one-period-ahead signal realization. The posteriors naturally induce a probability

over all (long and short) histories of signals. To clarify this statement, let p be the

prior and qt be the posterior following the history t. The probability µ over the two-

period process is defined as µ(t, t′) = p(t)qt(t
′) (for every t, t′ ∈ S). This probability

is not directly revealed through the DM’s preferences for bets over two-period state

realizations; it is merely an auxiliary mathematical entity on which we can rely to

make succinct statements regarding primitives. Our local approach stands in contrast

with the global one, usually taken in the learning literature3 and the updating litera-

ture (following Savage’s [28] sure thing principle) discussing dynamic consistency.4 In

the global approach to dynamic consistency, the probability µ explicitly represents the

primitives. The local approach introduced here gives rise to a different consistency

axiom than the one prevalent in the existing literature. This axiom is one of the main

issues of this study.

2This also assists in refraining from using the term “Bayesian,” which may have a more general

connotation than using Bayes rule upon observing a noisy signal.
3E.g., Epstein and Seo [13], Klibanoff, Mukerji and Seo [24] and others.
4See Epstein and Schneider [11], Sinischalchi [30] and Hanany and Klibanoff [18, 19].
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1.3. Martingales and exchangeable processes. We extend the analysis from the

two-period model to an infinite horizon one. From Theorem 1, the DM satisfies local

consistency (following every history of signals) if and only if the process of posteriors

forms a martingale. That is, when studying the dynamics of a Blackwellian system, one

may alternatively study any martingale process and need not worry that some of the

assumptions have been relaxed. This is useful since martingales are well understood

processes with substantiated theory. For example, we can apply Doob’s martingale

convergence theorem and obtain that local consistency induces learning: the effect of

additional information becomes increasingly negligible as the history observed by the

DM becomes longer. Moreover, the posteriors converge.

Local consistency on its own does not impose any further restrictions on how the DM

updates her beliefs, and may not satisfy many properties that are typically assumed

in applications. For example, the signal structure following every history need not be

the same as others, posteriors may not depend on the frequency of realizations, etc.

Exchangeability (de Finetti [8]) is a particular form of martingales that introduces

further restrictions over such updating. Suppose, for instance, that there are only two

states, H and T . The DM believes that nature tosses a coin in each period in order

to determine the state for that period, but she does not know the parameter of the

coin; she has only a prior belief over the parameters. Every period, she observes the

realized state, updates her belief regarding the real parameter, and thereby her belief

regarding the probability over the state in the subsequent period. This scenario is

akin to exchangeability: the DM has a broad picture regarding the evolution of states,

in light of which she updates her beliefs regarding the outcome of the toss in the

following period. From her broad picture one can easily determine, for instance, that

the empirical frequency of states must converge. Furthermore, the beliefs regarding

subsequent states become closer and closer to the empirical frequency.

Exchangeable processes are classic and are frequently used in theory and applica-

tions. It is well known that an exchangeable process forms a martingale. It make

studying the relation between martingales and exchangeable processes all the more

interesting. In particular, what is the distinction between (general) martingales and

exchangeability, and what behavioral feature makes an updating process exchangeable?

We provide two results. First, it is shown that local consistency is not only equivalent

to a martingale, but implies a specific form of learning. It turns out, that processes

that follow local consistency are almost exchnageable: from some period onwards,
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the learning process looks similar to the learning in an exchangeable process. More

formally, there exists an exchangeable process such that with high probability, following

any sufficiently long history, the posterior representing the DM’s preferences and the

posterior associated with the exchangeable process are close to each other. From some

point onwards it may seem to an outside observer that the DM closely followed an

exchangeable process, and not just conducted Bayesian updating.

Second, we provide a condition on preferences implying that a martingale is also

exchangeable. It turns out that the key behavioral difference between martingales and

exchangeability is related to a property mentioned above, namely that preferences that

follow two histories whose empirical frequencies coincide, must be equal. We refer to

this property as frequency dependence. Under the expected utility paradigm, frequency

dependence implies that the posteriors following histories with identical frequencies are

the same. In an exchangeable process, the ex-ante probability of histories with identical

frequencies must be the same. Here, in contrast, frequency dependence entails that the

posteriors following two histories with the same frequencies must coincide. It turns out

that even in the presence of local consistency the two requirements are not equivalent.

Frequency dependence does not imply exchangeability. Example 2 shows that the fact

that the posteriors following histories that have the same frequencies must coincide

does not guarantee exchangeability. In the case of two states matters are relatively

simple. Theorem 2 shows that in this case, frequency dependence, along with local

consistency, axiomatize exchangeability. When more than two states are involved,

frequency dependence is not strong enough: an additional consistency assumption

(the formal discussion of which is deferred to the relevant section) is needed in order

to characterize exchangeability. This is stated as Theorem 3.

The synthesis of our results implies the following. While local consistency induces

different processes than exchangeable ones, the learning outcome is identical to that of

an exchangeable process (Theorem 4). Now, whether a DM is interested in the precise

evolution of beliefs right at the beginning, or only in the horizon, can be precisely

determined by certain behavioral restrictions (Theorems 2 and 3).

1.4. The structure of the paper. The subsequent section introduces the two-period

model and the main concepts. Section 3 extends the basic model to the infinite hori-

zon and studies exchangeable processes. Section 4 introduces the notion of almost

exchangeability and the relation of martingales to such processes. A discussion of the
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related literature and additional comments appear in Section 5. All proofs appear in

the Appendix.

2. The Two-Period Model

In this section we introduce the decision theoretic environment and primitives. We

start with a two-period model, which will later be extended to a dynamic model with

infinite horizon.

2.1. Acts. We fix a finite state space S. An act is a real valued function defined over

S taking values in R. An act is interpreted as the utility the decision maker (DM)

derives contingent on the realized state.5 Denote the set of acts by A. The classical

theory of decision making under uncertainty6 deals with preferences � over A.

In a framework similar to the one described above, Anscombe and Aumann [2]

put forth the foundation for Subjective Expected Utlity (SEU) theory. A possible in-

terpretation of this theory is that the decision maker entertains a prior probability7

p ∈ ∆(S) over the states S where an act f ∈ A is being evaluated according to its

expected utility Ep(f) =
∑

s∈S p(s)f(s). We assume throughout that every preference

relation discussed satisfies the Anscombe-Aumann assumptions and admits an SEU

representation.

2.2. Dynamics and preferences. We are considering a dynamic environment in

which the agent expresses her preferences over acts for the current period (only). Over

time she may receive information regarding the underlying uncertainty and updates

her beliefs. We start by analyzing a two-period model.

Formally, let � and {�s}s∈S, be a system of preferences, each of which defined over

A. In the first period (today) the DM expresses her preferences, �, over uncertain

alternatives for the first period. Then, a state s ∈ S is materialized, and in the second

period (tomorrow) the DM is asked to express her preferences, �s, over acts for the

5One can also consider the classical Anscombe-Aumann [2] set-up. In this case, standard axioms

imply that the vNM utility index can be identified and that the formulation of alternatives as utility

acts, as we use here, is well defined. Such results, on which we rely, have been established repeatedly.
6See, for example, Savage [28], Anscombe and Aumann [2], Schmeidler [29], Gilboa and Schmei-

dler [15], Karni [22], Bewely [3], Klibanoff, Marinacci, and Mukerji [23], Maccheroni, Marinacci and

Rustichini [27], Chateauneuf and Faro [7], Lehrer and Teper [26], and many others.
7For a set A, denote by ∆(A) all Borel probability measures over A.
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second period. We assume throughout that preferences admit an SEU representation.

In particular, following every history, including the null one, we assume that the DM

entertains some posterior over the state space S. We denote by p and ps (for every

s ∈ S) the system of posteriors representing � and �s, respectively.

The main question asked is what are the properties needed (beyond maximization of

expected utility) to tie together the different history-dependent preferences. The goals

are (a) to determine whether the beliefs the DM holds in the two periods regarding the

underlying state are related in a natural sense, and (b) to figure out in what way the

DM updates her belief about the future upon getting information between periods.

Bayesianism in the context of decision theory has been discussed broadly in the

literature. The relation between an axiom (or a class of axioms) referred to as dynamic

consistency and Bayesianism has been investigated (e.g., Hammond [16, 17], Chapter

7 in Tallon and Vergnaud [31] and the references within). Dynamic consistency is

typically applied as follows. The underlying uncertainty is modeled globally”: the DM

is associated a preference over the entire duration of the model. More precisely, today

the DM states her preferences over alternatives that are contingent acts; each such

alternative is an act for today, and conditional on every possible piece of information

between periods, an act for tomorrow. Then, in between periods a state is materialized,

and the DM provides her preferences over acts for tomorrow.

Now consider the DM’s ranking of two contingent acts, and assume they are identical

accept for when a specific s is materialized in the first period. Dynamic consistency

requires that her preferences today between such contingent acts, and her preferences

tomorrow over the future acts, contingent on s materializing, have to be the same.

That is, the DM’s preferences today for alternatives tomorrow is consistent with her

preferences tomorrow. With other classic axioms, dynamic consistency implies that

the DM entertains an ex-ante belief µ over S × S according to which she assesses

contingent acts today, and when s is materialized, she assesses alternatives in a Bayes

consistent manner according to µ(·|s).
In the current model, in contrast, we take a local approach. We assume that, given

every history, the DM has preferences over choice objects defined over S, the stage-

state space. In particular, in each period the DM states her preferences over one-period

outcomes depending on the resolution of uncertainty in that period only. In our model

the DM has merely a local view. This is the main conceptual difference between the

current setup and those in the existing literature. True, a probability µ along with its
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conditionals can be defined over S × S by µ(s, t) = p(s)ps(t). However, this equality

is merely a mathematical entity which does not capture the DM’s preferences and

perception. Nevertheless, we are going to introduce this kind of extension in later

sections in order to ease notation. It is important to note at this point that the

construction of the probability µ places no further assumptions on preferences beyond

expected utility, and cannot guarantee that the posteriors themselves evolve according

to an updating with respect to some noisy information structure.

2.3. Local consistency. We introduce the following property, which postulates that

if regardless of the state realized today the DM prefers f over g tomorrow, then today

she should prefer f over g as well. Formally:

Local Consistency. For every f, g ∈ A, if f �s g for every s ∈ S, then f � g.

Local consistency is reminiscent of dynamic consistency, but since the approach we

take is local, it does not imply any commitment on the part of DM as in the global

approach. In addition, dynamic consistency puts no restrictions on beliefs beyond

subjective expected utility, while local consistency clearly caries additional behavioral

content. It points to the idea that the underlying uncertainty today and that of

tomorrow are related, and that the DM should expect the information received in

between periods to at least partially convey this relation. Indeed, if the posteriors

representing (�s)s∈S are a mean preserving spread of the belief representing �, then

the condition holds.8 In environments for which the uncertainty today and tomorrow

are not related, this axiom is less appealing. A Markov process is a good example.

If state s is realized, then the transition probabilities for tomorrow conditional on s

do not depend on what is the law under which state s was chosen today. In the next

sections we see exactly how these intuitions are formalized.

Note, the axiom can also be interpreted as a no ”Dutch Book” condition; if regardless

of the information about the realization of uncertainty the DM will choose tomorrow

f over g, then she should not be swayed to choose g over f today, and tomorrow swap

back to f for sure.

2.4. Blackwell’s comparison. Blackwell’s comparison of experiments [4, 5] is clas-

sical in the theory of Bayesian updating. A DM has a prior probability regarding the

8(qs)s∈S is a mean preserving spread of p if there is some distribution α ∈ ∆(S) such that p =∑
s∈S αsqs.
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state of nature. Before she takes a decision, she receives a noisy signal that depends

on the true state. Formally, a stochastic matrix reflecting what is the likelihood of

a signal conditional on the parameter is given. Once a signal is observed, the DM

updates the prior according to the matrix and Bayes rule to obtain a posterior, and

takes a decision.

We integrate this idea in our framework. In our model the set of signals coincides

with the state space S: any s ∈ S is referred to not only as a state but also as a

signal. For example, there are two possible states of the economy, low and high. Then

a signal, whether the true state is high or low, is observed (say, through the return from

an investment). Since the signal stochastically depends on the true state, it partially

reveals the identity of true state of the economy.9

Formally, let p ∈ ∆(S) be some prior over the state space and π a stochastic map—

π(t|s) is the probability to observe t conditional on s. Assume that signal t ∈ S is

observed. By Bayes updating the posterior obtained is, qp,πt ∈ ∆(S) defined by

qp,πt (s) =
p(s)π(t|s)∑
s′ p(s

′)π(t|s′)
.

The primitive in our decision theoretic setup is, p, (qt)t∈S, a system of beliefs, or

equivalently a system of SEU preferences, each of which is represented by a belief

over the state space S. We ask when is it that the system is such that there exists a

stochastic map π, where qt = qp,πt for every t ∈ S. In words, under what conditions

the system can be explained by Bayes updating of p with respect to some stochastic

map π?

Definition 1. Let p, (qt)t∈S be a system. We say that the system is Blackwellian if

there is a stochastic map π such that qt = qp,πt for every t ∈ S.

2.5. Preferences and Blackwellian systems. Consider a system of preferences �
and (�t)t∈S. We interpret it as follows: the DM has to convey her preferences over

uncertain alternatives before (�) and after (�t) the realization of a state t ∈ S. How-

ever, we do not make an assumption that the DM herself interprets it in the same way

as us, the modelers. She may believe that what is being observed between periods,

namely t ∈ S, is merely a signal of what the true state is, and not the state itself. This

also explains why in the model of Blackwellian systems the state space and the signal

9The fact that we identify states with signals is an artifact of our decision theoretic environment.

We elaborate on this point prior to the main preference representation result of this section.
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space are identical; in our set up the modeler and the DM observe the same piece of

information, but they may interpret it differently.

With this in mind, we are ready to present the main representation result of this

section.

Theorem 1. Let � and (�t)t∈S be a system with p, (qt)t∈S representing posteriors.

Then the following are equivalent:

(1) Local consistency is satisfied;

(2) The system is Blackwellian; and

(3) There is an α ∈ ∆(S) such that p =
∑

t∈S αtqt.

Furthermore, if π is a subjective stochastic map such that qt = qp,πt for every t ∈ S,

then α can be obtained by αt =
∑

s∈S p(s)π(t|s) for every t ∈ S. Alternatively, if

α ∈ ∆(S) is such that p =
∑

t∈S αtqt, then for π defined by π(s|t) = αt
qt(s)
p(s)

for every

t, s ∈ S, we obtain qt = qp,πt .

The theorem identifies local consistency as a necessary and sufficient condition for a

system to be Blackwellian. It means that this condition is met if, and only if, there is a

subjective stochastic map according to which the DM updates p to obtain qt whenever

t is observed, for every t ∈ S.

It is well known that a system being Blackwellian implies that the qt’s are a mean

preserving spread of p. The theorem states that the opposite implication is also true.

If we consider a set of beliefs (qt)t∈S that is a mean preserving spread of p, then it

must be that the system is Blackwellian. This part of Theorem 1 will be helpful in the

subsequent section when we study the infinite horizon model.

3. The Infinite Horizon Model

We now turn to analyze the infinite horizon model. We further study Blackwellian

systems, and focus on implications to learning. Consider the scenario whereby every

period a state of nature is materialized and the DM derives utility that depends on

the realized state and the chosen alternative. We assume, like before, that alongside

with the utility derived, as the history of realizations evolves, the DM might change

her beliefs regarding the likelihood of future events. As a result, her preferences might

change as well.

We expand the model presented in the previous section. A sequence (s1, ..., sk) ∈ Sk

is said to be a history of states of length k. The set of all possible histories is H :=
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∪∞k=0S
k. A typical history will be denoted by h. We assume that a DM is characterized

by a collection of preferences over A, indexed by histories h. Formally, for every history

h ∈ H there is a preference �h defined over A and interpreted as the DM’s preferences

following the history h. We assume that every history-dependent preferences �h admit

an SEU representation with respect to the posterior ph ∈ ∆(S).

3.1. Infinite histories and the generated probability. Let Ω = SN be the set of

all possible infinite histories. A finite history h ∈ Sk can also be considered a subset

of Ω by looking at all those infinite histories such that their projection to the first k

periods is exactly h. Thus, if a history h′ ∈ Sn is a continuation of h ∈ Sk (that is,

n ≥ k and the projection of h′ into the initial k periods is exactly h), then we will use

the notation h′ ⊆ h. Similarly, if an infinite history ω ∈ Ω is a continuation of h ∈ Sk

(that is, the projection of ω into the first k periods is exactly h), then we will use the

notation ω ∈ h.

Endow the set of infinite histories Ω with the σ-algebra generated by the finite histo-

ries H. Denote by µ the unique countably-additive probability over Ω that is generated

by the posteriors {ph}h∈H: for every µ-positive history h ∈ H, the µ-probability that

s follows h is ph(s). If no confusion might occur, we will refer to µ as the probability

(over the infinite histories tree). In certain cases it will be convenient to think about

the evolution of the posteriors {ph}h∈H by means of the probability µ they generate.

3.2. Local consistency and martingales. Extending our theory from the previous

section to the infinite horizon model, we first consider preferences that are locally

consistent regardless of the history. That is, for every history h ∈ H and f, g ∈ A, if

f �hs g for every s ∈ S, then f �h g. We abuse terminology and refer to the same

term used in the two-period model. The interpretation remains.

Theorem 1 implies that local consistency is satisfied if and only if for every history

h ∈ H the system associated with the histories h and (hs)s∈S is Blackwellian. That

is, following every history, the system follows updating according to Bayes rule with

respect to some subjective stochastic map. Note that these matrices could differ as

a function of the history. We can also deduce that this is equivalent to the system,

following every history, being a mean preserving spread. That is, for every non-null

history h there is an αh ∈ ∆(S) such that ph =
∑

s∈S α
h
sphs. Now, let α ∈ ∆(Ω) be

the distribution over Ω with α-probability of state s ∈ S conditional on history h ∈ H
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equals αhs . Then, for every history h we obtain

(1) Eα (phs|h) = ph.

We see that Theorem 1 has broad implications to the infinite horizon model. It

shows that Blackwellian systems are exactly the well studied class of models in the

learning literature, namely martingales. In particular, the system of posteriors form

a martingale with respect to the distribution α. Since our interest is in Blackwellian

systems, this implies that we can focus on martingales, benefitting from the familiar

tools in that literature, without being concerned that it is a too general model. We will

alternate between using the equivalent terms Blackwellian systems and martingales.

Having this in mind, we turn to investigating a particular class of martingales well

studied and applied in the statistics and economics literatures, namely exchangeable

processes. The main question is what are the behavioral properties, if any, distinct

such processes from general Blackwellian processes.

3.3. Exchangeability. Consider a DM who believes that a distribution (or, a pa-

rameter) p over the state space S is chosen randomly according to some distribution

θ ∈ ∆(∆(S)). Assume that states are selected according to the chosen p in an i.i.d.

manner. Also assume that the DM does not know what is the data-generating param-

eter; She has nothing but a belief regarding the way in which this parameter is chosen.

At every given period she observes the realized state and based on the history of the

realized states she attempts to learn the identity of the real parameter. After each

history h she Bayesian updates her belief (initially θ) to obtain θh. She then calculates

the expected posterior Eθh(p) in order to make decisions. It turns out that as the

number of observations increases, the DM’s belief converges to the true “parameter”

that governs the process.

Let h ∈ H be a history. Denote by φh(s) the frequency of state s in h –the number

of times s occurred during the history h. When two histories h and h′ satisfy φh = φh′ ,

we say that they share the same frequency. Notice that if h and h′ share the same

frequency it follows that they are of the same length.10 The following definition is due

to de Finetti [8]:

Definition 2. µ is exchangeable if whenever two histories h, h′ ∈ H share the same

frequency, µ(h) = µ(h′).

10Note that h and h′ share the same frequency, not the same relative frequency.
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de Finetti showed that exchangeable processes are interesting because they are char-

acterized by i.i.d. conditionals, as described above. Kreps (1988) summarizes the im-

portance of this result:

”...de Finetti’s theorem, which is, in my opinion, the fundamental the-

orem of statistical inference – the theorem that from a subjectivist point

of view makes sense out of most statistical procedures.”

So, how exactly exchangeable processes differ from martingales? For example, while

in exchangeable processes the DM obtains signals that are i.i.d. conditional on the state-

generating parameter, a general Blackwellian considers an abstract signal structure

(that may depend on the history of realizations). But perhaps there is a corresponding

representation in terms of the de Finetti representation?

Example 1. Suppose that S = {H,T}. Suppose also that at the beginning of the

sequential decision problem the DM believes that H and T are being determined by a

toss of a fair coin. If at the first period the realized state is H, she then “updates” her

belief and from then on believes that H and T will be determined by an infinite toss of

a 2
3
-biased coin. But if the realized state is T , she comes to believe that H and T will

be determined (from that point on) by an infinite toss of a 1
3
-biased coin. Assume that

�h reflects SEU maximization with respect to the beliefs just described.

In other words, p∅ = (1
2
, 1

2
), where ∅ stands for the empty history (at the beginning

of the process). Consequently, for every history h starting with H, ph = (2
3
, 1

3
), and

for every history h starting with T , ph = (1
3
, 2

3
). The system of posteriors forms a

martingale and thus local consistency is satisfied. The process itself however is not

exchangeable since the probability of HTT is different than that of THT .

Exchangeable processes are martingales and thus satisfy our local consistency axiom.

The example above shows that not every martingale is exchangeable. In the subsequent

sections we find conditions in terms of the primitives that identify which martingale is

indeed an exchangeable process.

3.4. Self confirming processes. As discussed in Section 2, when the DM observes

the state realization, it is as if she believes it is merely a signal regarding what the

state was. In exchangeable processes however, the information is the sate itself, and

the DM believes this as well.

So consider a system ph, (phs)s∈S following some history h ∈ H. If local consistency

is satisfied, then this system is Blackwellian and there is an α ∈ ∆(S) such that ph =
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s∈S αsphs. If αs 6= p(s) for some s ∈ S, then the DM assigns different probabilities

to event that state s occurring and to the event of observing s. Thus, a necessary

condition for a martingale being exchangeable, is that αs = p(s). In this case we

obtain that
∑

s∈S ph(s)phs(t) = p(t) for every t ∈ S, and writing it as in Eq. (1), we

obtain,

Eµ (phs|h) = ph.

We will refer to systems satisfying this condition as self confirming.11 Note, that this

is not a sufficient condition for exchangeability; the martingale in Example 1 satisfies

this property, but is not exchangeable.

We now turn to formalizing this condition in terms of preferences. Let Ac be the

collection of all constant acts. That is, if f ∈ Ac then f(s) = f(s′) for all s, s′ ∈ S. Fix

an act f ∈ A, a history h and a state s ∈ S. Denote by chs(f) the constant equivalent

(in Ac) of f after the history hs; that is, chs(f) ∼hs f . Now, define an act ĉh(f) ∈ A
by ĉh(f) = (chs1(f), ..., chs|S|(f)). That is, in case s occurs, the reward under the act

ĉh(f) is chs(f). The act ĉh(f) represents the way the DM perceives f , looking one

period ahead into the future. The following axiom postulates that, given a history h,

the DM is indifferent between f and the way she perceives it looking one period ahead

into the future, without knowing which state will be realized.

Let h be a history of length k and s a state. By hs we denote the history of length

k + 1, starting with h and ending with s. For state s ∈ S, act f ∈ A and utility

a ∈ [0, 1], f−sa stands for the act that yields utility f(s′) for every state s′ 6= s and

utility a in state s. A state s ∈ S is �h-null if for every act f ∈ A and utility

a ∈ [0, 1], f ∼h f−sa. A history h′ = hss1...sk ∈ H is null if s is �h-null. It is clear

that every subsequent history of a null history is also null. Since we assume preferences

adhere to SEU, a �h-null state is one whose ph-probability is 0. Thus, a history is null

if its µ-probability is 0.

Strong Local Consistency: For every non-null history h and act f ,

f ∼h ĉh(f).

11There is a minor issue of µ-probability 0 histories, but the axiom and formal result we will present

take this into consideration.
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Strong local consistency is a formulation of the idea that if the state/signal is not

going to be observed, the DM’s assessment of acts should not change. In other words,

the underlying uncertainty in the future should not be assessed differently than in the

present, if the information regarding the underlying uncertainty is a counterfactual.

This axiom is appealing, just like local consistency, when the underlying uncertainty

tomorrow is related to today. However, it is conceptually stronger in the sense that

absent any information, preferences should not change. Note, the axiom can be re-

formulated as in local consistency and postulate that for every non-null history h and

acts f, g,

f �h g if and only if ĉh(f) �h ĉh(g).

From the latter formulation we can see that it is indeed stronger version of local con-

sistency. This is true even without the assumption that preferences admit an SEU

representation. All is needed is that every act has a certainty equivalent and that pref-

erences are monotonic.12 Indeed, if for some history h and acts f, g we have f �hs g
for every s ∈ S, then chs(f) �hs chs(g) for every s ∈ S. If preferences are monotonic,

then it is implied that ĉh(f) �h ĉh(g).

Proposition 1. Let (�h)h∈H be a system with representing posteriors (ph)h∈H. Then

the following are equivalent:

(1) Strong local consistency is satisfied; and

(2) The system is Blackwellian and self confirming. In particular,

Eµ (phs|h) = ph µ-a.s.

The proposition has implications beyond bringing us one step closer to understand-

ing the behavioral underpinning of excangeability in our setup, and how it differs from

general Blackwellian systems. From the martingale convergence theorem (Doob [10])

we know that the posteriors converge with µ-probability 1. As discussed above, while

the probability µ entails information regarding the DM preferences, it is constructed

by us modelers and does not directly represent the DM’s beliefs over Ω. The proposi-

tion (and subsequent results) can be interpreted as follows: if strong local consistency

is satisfied then the modeler knows the DM is going to learn, where learning is ac-

complished with respect to the natural measure µ, which is consistent with the DM’s

beliefs. In a similar manner, the modeler can appeal to the DM’s reasoning. If she

12A preference � is monotonic if whenever f(s) � g(s) for every s ∈ S, then f � g.
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satisfies strong local consistency, then she is guaranteed to learn with respect to the

natural measure induced by her beliefs. Subsequent results may be interpreted in a

similar fashion.

3.5. Frequency-determined preferences and Exchangeability. We now provide

a condition that guarantees not only that the DM is a self confirming Blackwellian,

but also that her posteriors follow a learning pattern akin to an exchangeable process.

Frequency Dependence: For every two non-null histories h and h′ such that φh =

φh′ ,

�h=�h′ .

Frequency dependence postulates that preferences associated with (positive µ-probability)

histories that share the same frequency are identical. Note that, given our assumption

that preferences following every history adhere to SEU, and given the uniqueness of

the representation of SEU preferences, frequency dependence implies that ph = ph′ .

Frequency dependence assumes that posteriors following two histories sharing the

same frequency coincide, while in an exchangeable process, two histories that share

the same frequency have the same probability. Histories that have the same frequency

are used in both concepts. A DM who believes that nature selects states according

to an exchangeable process and maximizes SEU satisfies frequency dependence. The

converse, however, is not true, which makes the next result all the more interesting

and challenging. In order to convince the reader, consider the following example.

Example 2. Let S = {H,T}. The first two periods of the process are as in Example 1:

at the first period the states from S are chosen with equal probabilities. At the second

period a 2
3

or 1
3
-biased coin is tossed according to whether H or T was realized in the

first period. From the third period onwards the process is i.i.d: following the history

HH the continuation is forever H and following TT the continuation is forever T .

Finally, if the history is mixed (either HT or TH) the process goes on according to a

toss of a fair coin.

It is clear that after any two histories (that occur with positive probability) that share

the same frequency, the posteriors coincide. Thus, frequency dependence is satisfied.

This process, however, is not exchangeable: the probability of HTT is positive while

the probability of TTH is 0. Moreover, the underlying process does not satisfy strong
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local consistency: following T , the probability of H is 1
3
, while the probability of H in

the subsequent period is 1
3
· 1

2
+ 2

3
· 0 = 1

6
.

The example shows that even though the process satisfies frequency dependence,

it is not exchangeable. The following theorem states that this is no longer the case

when strong local consistency is satisfied, and that these two properties characterize

exchangeable processes when the state space consists of two states.

Theorem 2. Suppose the state space S = {H,T} consists of two states. Then, strong

local consistency and frequency dependence are satisfied if and only if µ is exchange-

able.

3.6. Spaces with more than two states. The assumption in Theorem 2 that S

consists of two states guarantees, without relying on frequency dependence, that the

probability of HT equals the probability of TH, which is implied by exchangeability.

Example 3 below shows that when S consists of more than two states, the probabili-

ties of HT and TH are not necessarily equal even though strong local consistency is

satisfied.

Example 3. Suppose that S = {H,T,M}. Suppose that the DM believes at the begin-

ning that H,T and M are selected according to p∅ = (1
2
, 1

4
, 1

4
). From the second stage

on the process becomes i.i.d. with a distribution that depends on the outcome of the

first state. Following H, the one-stage distribution is pH = (1
2
, 0, 1

2
); following T , the

one-stage distribution is pT = (1
3
, 2

3
, 0); and following M it is pM = (2

3
, 1

3
, 0). A DM

acting according to these beliefs would satisfy strong local consistency. Nevertheless,

µ generated by this beliefs is such that µ(HT ) = 0 while µ(TH) > 0.

Let S1, S2, ... be a stochastic process determining the states in every period and

denote by ν the distribution it generates. We say the process is k-stationary if for

every history h of length k, ν((S1...Sk) = h) = ν((StSt+1...St+k−1) = h) for any time t.

When a process is k-stationary for every k we say that it is stationary. While strong

local consistency implies that the underlying process is 1-stationary, it does not imply

that it is stationary. The following example shows that the axioms above do not imply

that the underlying process is 2-stationary.

Example 3 continued. The main point of this example is that µ(S1S2 = HT ) = 0,

while µ(S2S3 = HT ) = 1
4
· 1

3
· 2

3
+ 1

4
· 2

3
· 1

3
> 0. In particular, µ(S1S2 = HT ) 6= µ(S2S3 =

HT ), making the process non-stationary.
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From Example 3 and the discussion above, it seems that in order to be able to prove

a representation result for exchangeable processes in a more-than-two-states space,

additional structure is called for in terms of strong local consistency. Such an axiom

would guarantee that the underlying process is 2-stationary.

By 1lr we denote the act that induces utility 1 if state r ∈ S is realized and by 0

if otherwise. Fix a history h ∈ H and states s, r ∈ S. As in Section 3.4, chs(1lr) is

the constant equivalent of 1lr if the history is hs. Now, the act chs(1lr)1ls is the act

that induces utility chs(1lr) if state s is realized and 0 if otherwise. Let ch(s, r) be the

constant equivalent of chs(1lr)1ls following the history h (that is, ch(s, r) ∼h chs(1lr)1ls).
While notation is a bit cumbersome, c1

h(s, r) simply represents the DM’s valuation

(given history h) of placing a bet on state s for today followed by a bet on state r for

tomorrow.

The same idea can be repeated for the history hw (where w ∈ S is some state); that

is, chws(1lr)1ls is the act inducing the constant equivalent of 1lr (following the history

hws) at state s, and 0 otherwise. Evaluating chws(1lr)1ls from the point of view of history

hw yields the constant equivalent c1
hw(s, r). Now, following history h, let c2

h(s, r) be

the constant equivalent of (c1
hw1

(s, r), ..., c1
hw|S|

(s, r)). That is, c2
h(s, r) represents the

DM’s valuation (given history h) of placing a bet on state s for tomorrow, followed

by a bet on state r for the day after tomorrow (without knowing or conditioning on

today’s state realization).

The following axiom captures a idea similar to strong local consistency ; we postulate

that the DM is indifferent between a bet on s today followed by a bet on r tomorrow

(if s indeed occurred), and a bet on s tomorrow followed by a bet on r in the following

period (provided that s has indeed occurred).

Two-Tier Local Consistency: For every non-null history h and states s and r,

c1
h(s, r) ∼h c2

h(s, r).

Theorem 3. Let S be any finite state space. In this case, strong local consistency,

two-tier local consistency and frequency dependence are satisfied if and only if µ is

exchangeable.

Remark 1. The preferences in Example 3 satisfy strong local consistency but not

frequency dependence (both HM and MH are histories with positive probability but

their associated posteriors are different). As we have seen, the resulting probability
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for such preferences is neither 2-stationary nor exchangeable. It is possible that in the

presence of frequency dependence, strong local consistency implies 2-stationarity (and

exchangeability from Theorem 3), yet this question remains open at the current point.

4. Martingales and Almost Exchangeable Processes

In Section 3.4 we discussed how since a system of posteriors satisfying strong local

consistency is a self confirming martingale, it must be from the martingale convergence

theorem that the posteriors converge with probability 1. In the current section we show

that in the long run any such martingale is as close as we wish to an exchangeable pro-

cess, even if it does not satisfy frequency dependence (and two-tier local consistency).

Initially the updating need not be identical to an exchangeable process. Nevertheless,

there exists an exchangeable process such that from some point onwards, the set of

histories, for which the posteriors are close to those associated with the exchangeable

process, is of probability close to 1.

Consider now a processes of posteriors {ph}h∈H converging with µ-probability 1, and

let C ⊆ Ω be the set of (infinite) histories of µ-probability 1 for which the posteriors

converge. That is,13 for every ω ∈ C, p
ωT

converges (as T → ∞) to a limit denoted

as pω. Thus, {pω}ω∈C and µ induce a probability distribution over ∆(S), which we

denote as θ. Note that martingales fall in this realm of processes. Also note that if µ

is exchangeable, then θ completely characterizes the evolution of the posteriors, and

not just the limits as does a martingale.

For a given probability (generated by a family of history dependent posteriors), let

ST be the random variable standing for the realized state at time T .

Definition 3. Let µ and µ′ be two probabilities, each generated by a processes of

posteriors converging with µ and µ’ probability 1, respectively. Let θ and θ′ be the

respective induced distributions over ∆(S). We say that µ and µ′ are ε-close if

(i) |θ(A)− θ′(A)| < ε for every measurable A ⊆ ∆(S); and

(ii) |µ(Sτ = s)− µ′(Sτ = s)| < ε for every s ∈ S and every time τ .

The definition states that two probabilities are close up to ε, if (i) the distributions

over the limits of the two martingales are close up to ε, and (ii) in every period, the

distributions over the realized state, induced by the two processes, are also close up to

ε.

13For ω = (ω1, ω2, . . . ) ∈ Ω and T , denote by ωT = (ω1, . . . , ωT ) the prefix of ω whose length is T .



20 LEHRER AND TEPER

Definition 4. The probability µ is almost exchangeable if for every ε > 0 there exists

an exchangeable probability ζε such that

(a) there exists T > 0 satisfying

|µ(hs|h)− ζε(hs|h)| < ε for every s ∈ S

for a set of histories h ∈ ST whose µ-probability is at least 1− ε; and

(b) µ and ζε are ε-close.

Theorem 4. If the posteriors form a self confirming martingale, then the probability

is almost exchangeable.

The following example illustrates Theorem 4 and conveys some of the intuition

behind this result.

Example 1 continued. While it may seem non-intuitive at a first glance, the pro-

cess in Example 1 is almost exchangeable. To show why it could look non-intuitive,

consider two (very long) histories in which T appears only once, and they differ from

one another by whether T appears at the first period or the last: h = (T,H, ..., H)

and h′ = (H, ..., H, T ). Obviously, an exchangeable process, say ζ, induces the same

posterior after both h and h′. That is, ζ(hH|h) = ζ(h′H|h′). If our statement (that the

process µ in the example is almost exchangeable) is correct, then ζ(hH|h) must be very

close to µ(hH|h) = 1
3
. At the same time ζ(h′H|h′) must be very close to µ(h′H|h′) = 2

3
.

This is impossible. While the reasoning applied to h and h′ is correct, it is misleading.

The reason is that histories (like h and h′) indicating that our statement is counter

intuitive cannot both have non-negligible probability. In the long-run, a long stretch of

H’s induces a high posterior probability on (the next outcome being) H. Thus, if h

has a non-negligible probability, then the probability of h′ must be negligible. In what

follows we show that the process in Example 1 is indeed almost exchangeable.

Consider the following exchangeable process ζ: with probability 1
2

it chooses a biased

coin assigning probability 2
3

to H and with probability 1
2

it chooses a biased coin assign-

ing probability 1
3

to H. As for µ, if H is the outcome of the first toss, the law of large

numbers implies that the frequency of H will converge to 2
3

with µ probability 1. But

this is also true if in producing the distribution of ζ, the coin chosen is the 2
3
-biased.

The posteriors related to ζ converge to 2
3
. Thus, while not necessarily true early on, as

time goes by the posteriors associated to µ and those associated to ζ are getting closer

to each other (on a collection of histories of µ-probability that is getting close to 1). A
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similar argument holds in the case where the outcome of the first toss determining µ

is T .

Note that in this example all the exchangeable processes ζε in the definition of almost

exchangeable coincide with ζ. The next example shows that this is not always possible.

Example 4. Consider the process µ in which we throw a fair coin in the first period;

if the outcome is H we forever throw a coin that yields T for sure, and if the outcome

in the first period is T we forever throw a coin that yields H for sure. This process is a

martingale. The distribution it generates over ∆({H,T}) is 0.5 on the parameter that

yields H for sure, and 0.5 on the parameter that yields T for sure. However µ does not

approximate ζ according to Definition 4. While item 2 of the definition holds, item 1

fails since it is impossible under ζ that T would follow an H (and vice versa).

The way to rectify this, and this construction is explicit in the proof of Theorem 4,

is to ε perturb the parameters of ζ and let ζε as the process defined by the parameters

of ζ when they are ε-mixed with a uniform distribution over ∆({H,T}).

5. The Literature and Additional Comments

5.1. Literature. Several papers have studied different aspects of Bayesianism and

exchangeability in the context of decision theory (e.g., Epstein and Seo [13], Klibanoff,

Mukerji and Seo [24] and Al-Najjar and De Castro [1]). These papers are typically

not interested in exchangeability in the context of expected utility. The reason is

that in the setup these papers consider, the outcome depends on the realizations of

all states across time.14 In such a setup, axiomatizing exchangeability in the context

of expected utility is a straightforward application of de Finetti’s [8] characterization

and is obtained by assuming symmetry of preferences for (finite) permutations of the

experiments’ outcomes.

Epstein and Schneider [11], Sinischalchi [30] and Hanany and Klibanoff [18, 19]

discuss dynamic models of ambiguity and issues that emerge as a result of updating

vis-a-vis ambiguity. Specifications concerning the meaning of learning in the long-run

is discussed in detail in Epstein and Schneider [12] without an axiomatic foundation.

14As opposed to a sequential problem in which every period produces an outcome that depends on

the state realized at that period.
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In a statistical framework, Fortini, Ladelli and Regazzini [14] consider processes of

posteriors, where the primary concern is to identify when such processes are exchange-

able. This is as opposed to the current study, focusing on general Bayesianism and its

relation to exchangeability. Our results do not imply, nor are implied by, the results in

[14]. One of their properties is similar to our frequency dependence when translated to

posteriors. They introduce a second condition which does not characterize martingales

(or Bayesianism) and is a strengthening of a two-symmetry condition we discuss in the

proofs of Theorems 2 and 3.

5.2. Symmetry in the current framework. It is possible to use the notation de-

veloped specifically for two-tier local consistency and formulate an axiom stating that,

from the point of view of the current period, the DM is indifferent between 1. the bet

on state r today and then on state s (conditional on r occurring); and 2. the bet on

state s today and then on r (conditional on s occurring). This would be a simple

symmetry condition for permutations of two possible experiments. It is possible to

further develop this idea and formulate, at a high modelling intractability cost, a sym-

metry condition for every finite permutation of the experiments’ outcome. Following

de Finetti’s characterization, such an axiom will characterize exchangeable processes

without any further postulations.

Our consistency axioms require the DM looks forward either one or two periods

ahead into the future (depending on the axiom), and makes predictions about the

likelihood of subsequent events. Making such predictions would also be a feature of

any symmetry axiom we formulate, the main difference being that a fully fledged

symmetry axiom would require making predictions while looking forward far into the

future (for any finite but unbounded number of periods).15 This seems a much more

complicated task.

Lastly, our approach separates (self confirming) Blacwellian systems and exchange-

able processes. This woud not have been possible if we axiomatized exchangeable

processes directly through a symmetry axiom.

15Note that making predictions far into the future is different from frequency dependence which

imposes restrictions on the DM’s predictions for the current period.
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5.3. A probabilistic issue. It is clear that in any exchangeable process, the posteriors

that follow any two (positive probability) histories having the same frequency coincide.

As shown in Example 2, however, the inverse direction is typically incorrect.

The consistency axioms (i.e., strong local consistency and two-tier local consistency)

imply 1 and 2-stationarity. But from Proposition 1, strong local consistency alone

has actually a stronger consequence. It implies that the one-stage predictions form a

martingale. As shown, this fact, alongside with frequency dependence and two-tier local

consistency, is sufficient to guarantee exchangeability, and in particular stationary. The

inverse, however, is incorrect: there could be a case (for instance, in a Markov chain

when the initial distribution over states is invariant) in which the underlying process

is stationary while the one-stage predictions do not form a martingale. Typically, in

such a case, the stage-predictions do not converge, and no learning is taking place.

This observation naturally raises the following questions, which seem to be rather

difficult to answer:

1. Is a stationary stochastic process necessarily be exchangeable whenever any two

posteriors that follow histories sharing the same frequency coincide .

2. In case the answer to the above question is on the affirmative, what behavioral

axiomatization would capture a DM who is a present-value expected utility maximizer

when the underlying state of nature evolves according to a stationary process.

5.4. Lexicographic probability systems. By assuming that strong local consistency

even for non-null histories, it is possible to reformulate the results and to incorporate

learning even when the DM is “surprised” and a null history actually occurs. Ex-ante

such histories are of probability 0, but, in the interim, even in case that such a history

(h) is realized, and strong local consistency is satisfied for that history as well, the

probability generated by the posteriors associated with the continuation histories (of

history h) is a self confirming martingale.16 Similar modifications can be made to the

other results.

16This construction is similar to the one behind Lexicographic Probability Systems presented in

Brandenburger, Friedenberg and Keisler [6] (see Definition 4.1), where the probabilities in the system

are almost exchangeable. One difference is that there is no (linear) ordering of the probabilities, but

a partial ordering naturally inherited from the partial ordering of histories.
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Appendix A. Proofs

A.1. Proof of Theorem 1. We start by showing that local consistency is equivalent

to (qt)t∈S being a mean preserving spread of p. local consistency is clearly necessary.

To see that it is sufficient, assume that local consistency and that p is not in the convex

hull of (qt)t∈S. Thus we can find a separating vector f ∈ R such that Ep(f) > 0 = Ep(0)

while Eqt(f) ≥ 0 = Eqt(0) for every t ∈ S. But the later contradicts local consistency.

We now turn to show that (qt)t∈S being a mean preserving spread of p is equivalent

to the system being Blackwellian. Again, (qt)t∈S being a mean preserving spread of p is

clearly necessary. We show that it is sufficient. Let α ∈ ∆(S) such that p =
∑

t∈S αtqt.

Now, define π as follows: π(t|s) = αt
qt(s)
p(s)

. If we show that π is indeed a stochastic map

and that qt = qp,πt , then the proof is complete. Indeed,

∑
t∈S

π(t|s) =
∑
t∈S

αt
qt(s)

p(s)
=

1

p(s)

∑
t∈S

αtqt(s) =
1

p(s)
p(s) = 1,
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for every s ∈ S. Lastly, for every t, s ∈ S we obtain

qp,πt (s) =
p(s)π(t|s)∑
s′ p(s

′)π(t|s′)
=
qt(s)αt
αt

= qt(s).

A.2. Proof of Proposition 1. In order to see the sufficiency of strong local consis-

tency, fix a history h and let 1lE denote the indicator function for an event E ⊆ S.

We know that strong local consistency implies that 1lE ∼h ĉh(1lE). Since �h is SEU

represented by ph, we have that ph(E) =
∑

s∈S ph(s)chs(1lE). By the definition of chs,

we have that the right hand side of the latter equality equals
∑

s∈S ph(s)phs(E). Since

E is arbitrary and since the mixture weights, ph(s), do not depend on E, we have that

ph =
∑

s∈S ph(s)phs, implying that the posteriors form a martingale.

The necessity of strong local consistency is immediate and is thus omitted.

A.3. Proof of Theorem 2. It is immediate that the conditions of the theorem are

necessary. We prove sufficiency by induction on the length of the history. We start

with the base case where h, h′ ∈ S2. We need to show that µ(HT ) = µ(TH). Denote

p∅(H) = p, pH(H) = q and pT (H) = r. Then we want to show that

(2) p(1− q) = (1− p)r.

This holds if and only if p = r
1−q+r . But this in turn is equivalent to p = pq+ (1− p)r.

The latter, however, holds due to strong local consistency, which means that Eq. (2)

holds.

Now assume that the hypothesis holds for any two histories h, h′ ∈ Sk sharing the

same frequency, for every history length k smaller than n. We show that µ(h) = µ(h′)

for h, h′ ∈ Sn sharing the same frequency.

Case 1 : Assume that h, h′ ∈ Sn share the same frequency and that h = h̄s and

h′ = h̄′s. By definition of µ we have that µ(h) = µ(h̄s) = µ(h̄)ph̄(s) and similarly,

µ(h) = µ(h̄′)ph̄′(s). Since h and h′ share identical frequencies,

(3) φ(h̄) = φ(h̄′).

From the induction assumption, µ(h̄) = µ(h̄′). Also implied from Eq. (3) and frequency

dependence is that ph̄(s) = ph̄′(s). Combined we have that µ(h) = µ(h′).
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Case 2 : Assume that h, h′ ∈ Sn share the same frequency and h = h̄st and h′ = h̄′ts.

Then, φ(h̄) = φ(h̄′), and from the induction assumption µ(h̄) = µ(h̄′). Relying on

strong local consistency and repeating the same arguments as in the base case, one

obtains that µ(h̄st) = µ(h̄′st).

Case 3: Assume now that h, h′ ∈ Sn share the same frequency and that h = h̄s and

h′ = h̄′t (where t 6= s). This means that t must have been part of the history h̄. Let

ĥ ∈ Sn−2 such that h̄ = ĥt, and similarly, let ĥ′ ∈ Sn−2 such that h̄′ = ĥ′s. We claim

that

(4) µ(h̄s) = µ(ĥts) and µ(h̄′t) = µ(ĥ′st).

If this indeed holds, then µ(h) = µ(h̄s) = µ(ĥts), where, as we deduce from Case 2,

the right hand side equals to µ(ĥ′st) = µ(h̄′t) = µ(h′).

To show that Eq. (4) holds, note that φ(h̄) = φ(ĥt) and by the induction assumption

µ(h̄) = µ(ĥt). Now, similarly to the arguments in Case 1, the left equality of Eq. (4)

is satisfied. From similar arguments, the right equality holds too.

A.4. Proof of Theorem 3. The one thing in the proof of Theorem 2 that does not

hold with more than two states and without assuming two-tier local consistency, is

that µ(sr) = µ(rs) for every s, r ∈ S. We prove this point here and by that prove the

theorem.

Fix a history h ∈ H and states s, r ∈ S. We recursively define cn+1
h (s, r) For n ≥ 3

by

(5) cn+1
h (s, r) ∼h (cnhw1

(s, r), ..., cnhw|S|
(s, r)).

That is, cnh(s, r) reflects the DM evaluation of a bet on state s to occur n periods from

now on, followed by the occurance of state r, regardelss of the states realized in the

first n− 1 periods.

Claim 1. c1
h(s, r) ∼h cnh(s, r) for every history h ∈ H and n ≥ 2.

Proof of Claim 1. We prove by induction on n that cn−1
h (s, r) ∼h cnh(s, r) for every

history h ∈ H and n ≥ 1. The base case n = 2 holds for every history h ∈ H due to

two-tier local consistency. Assume the the statement holds for n. We show it holds for



28 LEHRER AND TEPER

n+1. Indeed, by the induction hypothesis cnhw(s, r) ∼hw cn−1
hw (s, r) for every w ∈ S, and

thus cn+1
h (s, r) ∼h (cnhw1

(s, r), ..., cnhw|S|
(s, r)) = (cn−1

hw1
(s, r), ..., cn−1

hw|S|
(s, r)) ∼h cnh(s, r).

�

Claim 2. Let |h| be the length of the history h ∈ H. Then for every n ≥ 1,

cnh(s, r) = µ(Sn+|h|Sn+|h|+1 = sr|S1...S|h| = h).

In particular, cn∅ (s, r) = µ(SnSn+1 = sr).

Proof of Claim 2. We prove the statement by induction on n, starting with the case

base, n = 1. Indeed, cs(1lr)1ls = ps(r)1lr. Thus, c1
∅(s, r) = c∅(cs(1lr)1ls) = p∅(s)ps(r) =

µ(sr) = µ(S1S2 = sr). The base case holds for every history following identical

arguments.

Now, assume that the statement holds for n, and we prove it for n+ 1: cn+1
∅ (s, r) ∼∅

(cnw1
(s, r), ..., cnw|S|

(s, r)) =
(
µ(Sn+1Sn+2 = sr|S1 = w1), ..., µ(Sn+1Sn+2 = sr|S1 = w|S|)

)
,

where the last equality follows from the induction hypothesis. Thus, cn+1
∅ (s, r) =∑

w∈S p∅(w)µ(Sn+1Sn+2 = sr|S1 = w) = µ(Sn+1Sn+2 = sr). Again, the proof for

non-empty histories follows identical arguments.

�

The following is an immediate corollary of the two claims above.

Corollary 1. µ is 2-stationary.

Claim 3. µ(sr) = µ(rs) for every s, r ∈ S.

Proof of Claim 3. From Proposition 1 we know the posteriors converge with µ-probability

1. That is, in the limit the process determining the state realization is i.i.d. Thus,

for ε > 0 there exists T > 0 such that for every µ-positive probability h ∈ ST ,

µ(STST+1 = sr|h) = ph(s)phs(r) is close up to ε to µ(STST+1 = rs|h) = ph(r)phr(s),

for every s, r ∈ S. Since this is true for every history h ∈ ST , then µ(STST+1 = sr)

is close up to ε to µ(STST+1 = rs). From Corollary 1 above we know then that

µ(sr) = µ(S1S2 = sr) and µ(rs) = µ(S1S2 = rs) are also close up to ε, but since ε is

arbitrarily small, we have that µ(sr) = µ(rs).

�

This completes the proof of the theorem.
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A.5. Proof of Theorem 4. For every ω = (ω1, ω2, . . . ) ∈ Ω and T , denote by ωT =

(ω1, . . . , ωT ) the prefix of ω whose length is T , and for T1 < T2 denote ωT1,T2 =

(ωT1 , . . . , ωT2).

Assume strong local consistency, then by Proposition 1 the posteriors form a mar-

tingale. Thus, the posteriors converge µ-almost surely (see Doob [10]). Let C ⊆ Ω be

a set of µ-probability 1 for which the martingale of posteriors converges. That is, for

every ω ∈ C, p
ωT

converges (as T → ∞) to a limit denoted as pω. This implies that

for every ε > 0 there is t1(ε) large enough so that17 for every T ≥ t1(ε)

(6) µ
(
ω ∈ C; ||pω − p

ωT
|| < ε/3

)
> 1− ε/3.

Without loss of generality we may assume that for every ω ∈ Ω and T , ωT has a

µ-positive probability (otherwise we can omit the set of ω’s that do not share this

property, which is measurable.)

Fix ε > 0 and ω ∈ C. Consider the (history) space conditional on ωt1(ε). We

examine the frequency of states along sufficiently long continuations of ωt1(ε). By the

strong law of large numbers there is t2(ε) such that with probability of at least 1− ε/3
(conditional on ωt1(ε)), for any t2 ≥ t2(ε) the frequency of s ∈ S in ωt1(ε),t2 is ε/3 far

from the average posterior of s along ωt1(ε),t2 . Formally, for any ε > 0, there is t2(ε)

such that for any t2 ≥ t2(ε) and every s ∈ S,

(7) µ

(
ω ∈ Ω;

|
∑t2

t=t1(ε)[1lωt=s − pωt (s)]|
t2 − t1(ε) + 1

< ε/3 for every s ∈ S
∣∣∣ ωt1(ε)

)
> 1− ε/3.

Recall that for ω ∈ C, all posteriors, p
ωT

, for T > t1(ε), are close to pω up to ε/3.

Denote by φ(h) the relative frequency of history h. Due to (6) we obtain,

(8) µ
(
ω ∈ C; ||φ(ωt1(ε),t2)− pω || < 2ε/3

)
> 1− 2ε/3.

If t2(ε) is large enough, then t1(ε)
t2(ε)

< ε/3 and the first t1(ε) states in ωt2(ε) have a weight

smaller than ε/3. Thus, (8) changes to

(9) µ
(
ω ∈ C; ||φ(ωt2)− pω|| < ε

)
> 1− 2ε/3.

In words, the probability of ω ∈ C such that the empirical frequency of the states over

the history ωt2 (recall, t2 ≥ t2(ε)) is close to pω, is at least 1 − 2ε/3. Recalling the

definition of C, we conclude that with high probability the empirical frequency over

17For two probability distributions p, p′ over S, we denote ||p−p′|| < ε if |p(s)−p′(s)| < ε for every

s ∈ S.
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histories ωt2 and their posteriors are close to each other. Formally, with the help of

(6), when t2 ≥ t2(ε) > 3t1(ε)/ε,

(10) µ
(
ω ∈ C; ||φ(ωt2)− p

ωt2
|| < 4ε/3 and ||φ(ωt2)− pω|| < ε

)
> 1− 2ε/3.

So much for µ.

We turn now to the definition of an exchangeable process, ζε. Recall that pω is a

random variable defined on C that takes values in ∆(S). Thus, pω and µ induce a

probability distribution over ∆(S), which we denote as θ. Let the parameter space be

(∆(S), θ). Now, let U be a uniform distribution over ∆(S), and for ε > 0 let θε be

εU + (1 − ε)θ. For every p ∈ ∆(S) let Bp be the i.i.d. process with stage-distribution

p. ζε is the process defined by the distribution over {Bp; p ∈ ∆(S)} induced by the

distribution θε over the p’s (i.e., over ∆(S)).

We start by showing that item (b) of Definition 4 holds. The first part is immediate

by the definition of ζε. Since the distributions over ∆(S), θ and θε, induced respectively

by µ and ζε are ε-close, in the limit, the distribution over the realized state is close up

to ε. Since both µ and ζε are martingales, this is true for every time period t.

We move to show item (a) of Definition 4 holds. The definition of ζε and the fact

that it is exchangeable imply the following facts:

(i) For ζε-almost every ω ∈ Ω, the limit of the empirical frequencies, limt→∞ φ(ωt),

exists. Denote it by qω. qω is a limit of empirical frequencies of states in S and is

therefore in ∆(S).

(ii) For ζε-almost every ω ∈ Ω, the posteriors w.r.t. to ζε, denoted pζεωt , converge to qω

as t→∞. That is, limt→∞ p
ζε
ωt = qω with ζε-probability 1.

(iii) The distributions of pω (induced by µ) and that of qω (induced by ζε) (both over

∆(S)) are close up to ε as appears in Definition 3 item (i).

(iv) For θ-almost every p ∈ ∆(S) with ζε high probability, if the relative frequency

φ(ωT ) is close to p, then the posterior (the one induced by ζε following ωT ) must also

be close to p. Formally, for θ-almost every p ∈ ∆(S) and for every ε > 0, there is t3

such that for every t > t3(ε),

(11) ζ
(
ω; ||φ(ωt)− p|| < ε/2 implies ||pζεωt − p|| < ε

)
> 1− ε/3.

In other words, for every ε > 0, there is t3(ε) and ∆(ε) ⊆ ∆(S) such that θ(∆(ε)) >

1− ε/3 and for every t > t3(ε),

(12) ||φ(ωt)− p|| < ε/2 implies ||pζεωt − pω|| < ε.
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We now return toµ. Due to fact (iii), there is t4(ε) such that for every t4 > t4(ε),

(13) µ
(
ω; there is p ∈ ∆(ε) such that ||φ(ωt4)− p|| < ε/2

)
> 1− ε/3.

From (10) and (13) we obtain that for every t > max{t2(ε), t4(ε)},

(14) µ

(
ω ∈ C; ||φ(ωt)− p

ωt
|| < 4ε/3, ||φ(ωt)− pω|| < ε

and there is p ∈ ∆(ε) such that ||φ(ωt)− p|| < ε/2

)
> 1− ε.

Combining with (12) we get that when t > max{t2(ε), t3(ε), t4(ε)},

(15) µ

(
ω ∈ C; ||φ(ωt)− p

ωt
|| < 4ε/3, ||φ(ωt)− pω|| < ε

and ||pζεωt − pω|| < ε

)
> 1− 4ε/3.

Thus (due to the triangle inequality),

(16) µ
(
ω ∈ C; ||pζεωt − pωt || < 10ε/3

)
> 1− 4ε/3.

This completes the proof.
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